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Abstract

Lawvere theories and monads have been the two main category theoretic formulations of universal algebra,
Lawvere theories arising in 1963 and the connection with monads being established a few years later.
Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence.
A generation later, the definition of monad began to appear extensively in theoretical computer science in
order to model computational effects, without reference to universal algebra. But since then, the relevance
of universal algebra to computational effects has been recognised, leading to renewed prominence of the
notion of Lawvere theory, now in a computational setting. This development has formed a major part of
Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories
were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting
might develop in future.
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1 Introduction

There have been two main category theoretic formulations of universal algebra. The

earlier was by Bill Lawvere in his doctoral thesis in 1963 [23]. Nowadays, his central

construct is usually called a Lawvere theory, more prosaically a single-sorted finite

product theory [2,3]. It is a more flexible version of the universal algebraist’s notion

1 This work is supported by EPSRC grant GR/586372/01: A Theory of Effects for Programming Languages.
2 Email: M.Hyland@dpmms.cam.ac.uk
3 Email: ajp@inf.ed.ac.uk

mailto:M.Hyland@dpmms.cam.ac.uk
mailto:ajp@inf.ed.ac.uk


of clone: indeed Lawvere himself arrived at the latter notion before formulating that

which we describe below. In mathematical practice Lawvere theories arise whenever

one has a functor into a category with finite products and one studies the natural

transformations between finite products of the functor. (Historically the idea first

arose in the form of cohomology operations.)

It is important to distinguish the invariant notion of Lawvere theory from the

notion of equational theory. Equational theories are a form of presentation for

Lawvere theories (or for clones): every equational theory determines a Lawvere

theory and every Lawvere theory is determined by an infinite class of equational

theories, that is, by those equational theories for which it is essentially the clone.

Choosing good presentations for a (e.g. Lawvere) theory and deriving an invariant

description of the theory from a presentation are important aspects of computer

science which we shall discuss in passing; but the semantics of a theory can be

considered independently of that.

The second category-theoretic formulation of universal algebra, which was in

terms of monads, has a more complicated history. Monads typically arise from ad-

joint pairs of functors; and in such a case, the Eilenberg-Moore [8] and Kleisli [22]

categories of algebras for the monad provide adjoint pairs which one can regard

as approximations to the original adjoint pair. This notion of monad (or triple or

standard construction) arose in algebraic topology for reasons distinct from univer-

sal algebra, see for instance [10]. In [8] Eilenberg and Moore noted that in case

T is the free group monad, their category of T -algebras is the category of groups.

Then Linton [29] made the general connection between monads and Lawvere theo-

ries (universal algebra): every Lawvere theory gives rise to a monad on Set whose

category of algebras is equivalent to the category of models of the Lawvere theory,

and, subject to a generalisation in the definition of Lawvere theory, every monad

arises thus, uniquely up to coherent isomorphism.

Monads immediately became the more common category theoretic formulation

of universal algebra, see for instance [31]. In retrospect, that surprises the current

authors: the notion of Lawvere theory arose directly from universal algebra while

that of monad did not; Lawvere theories relate more closely to universal algebra,

and they immediately allow natural constructions that arise in universal algebra,

such as those of taking the sum or tensor of theories. So the first main goal of the

paper is to investigate how and why history favoured monads.

Moving forward to the late 1980’s, computer scientists, led by Eugenio Moggi,

began extensively to exploit the notion of monad but without reference to universal

algebra [33,34,35]. Moggi wanted to unify the study of what he called notions of com-

putation. The aim was to recover the many examples of denotational semantics al-

ready proposed at that time as instances of one general construction. He had in mind

models for exceptions, side-effects, interactive input/output and non-determinism,

as well as partiality and continuations. Probabalistic non-determinism [18] was

soon to be added to the list. Monads have come to be used as a tool in com-

puter science in contexts other than those originally proposed (data bases [5], pure

function languages [48]), but it seems to us that their central use is Moggi’s. We



maintain however that two of Moggi’s applications, partiality and continuations are

of a different nature from the others. Partiality arises from recursion without any

imperative behaviour. We consider special features of continuations further in this

paper.

In retrospect it seems to us that the universal algebra perspective is fundamental

to the other notions of computation, those which we now prefer to call computational

effects; but that was not clear at the time. The various computational effects

and Moggi’s corresponding monads arise from computationally natural operations,

such as raise for exceptions, lookup and update for side-effects, read and write for

interactive input/output, nondeterministic ∨ for nondeterminism, and [0, 1]-many

binary operations +r for probabilistic nondeterminism, subject to computationally

natural equations. So there are evident scientific issues relating to the computational

justification of (presentations of) Lawvere theories. Here we investigate how it

was that Lawvere theories did not arise when Moggi proposed his approach, what

did happen ten years later when they did arise, and how the relationship between

computational effects and universal algebra might develop from here.

Gordon Plotkin was Moggi’s PhD supervisor and later provided the computa-

tional expertise required to develop the study of computational effects in terms

of universal algebra. The algebra of effects has been one of the major themes of

his mature scientific research, hence the submission to this volume of our modest

survey.

The paper is organised as follows. In Section 2, we recall the development of the

notions of Lawvere theory and model. In Section 3, we explain properties and con-

structions on Lawvere theories that later proved useful in computation. In Section 4,

we explain how each Lawvere theory gives rise to a monad on Set. In Section 5,

we analyse how the notion of monad gained prominence over that of Lawvere the-

ory in the category theoretic understanding of universal algebra. In Section 6, we

investigate the use of monads, and later of Lawvere theories, the former by Moggi,

the latter by Plotkin, in modelling computational effects. And in Section 7, we

speculate upon the implications of the connection between computational effects

and universal algebra.

We are grateful to Bill Lawvere, Mike Mislove and Eugenio Moggi for com-

ments on early drafts of this paper. Their observations have materially affected our

formulation of the salient issues.

2 Lawvere theories

The 1930’s were a remarkable decade for foundational mathematics. At the time,

mathematics was dominated by Germany to an extent that has never since been

parallelled by any country. The era saw not only famous discoveries in logic, but also

the development of two topics, fundamental from a category theoretic perspective,

namely algebraic topology and universal algebra. The researchers involved with

those developments were often the same or at least were closely related to each

other. An interesting example is Saunders Mac Lane, who went to Germany to



write a thesis in logic, became one of the world’s leading algebraic topologists, and

co-wrote one of the world’s most influential texts on algebra.

By the 1960’s, algebraic topology and universal algebra had become much more

distinct, and the new generation of researchers tended to have a deep understand-

ing of one topic or the other, but not both. It was into that environment that Bill

Lawvere entered. Lawvere was a student of Samuel Eilenberg at Columbia Univer-

sity in New York, at a time when Eilenberg was educating or influencing many of

the foundational figures in North American category theory. Others who played

a part in the development of the category theory we consider in this paper were

Peter Freyd, recognised as an important predecesor in Lawvere’s thesis, Michael

Barr, Fred Linton, Jon Beck and Myles Tierney, the last two also students of Eilen-

berg. Almost all of them were expert in algebraic topology, but Lawvere’s PhD

thesis under Eilenberg was in universal algebra. (Late in the writing of this paper

we learnt a piece of the history, which is particularly interesting from a computer

science perspective. Eilenberg, who let it be known that he did not read Lawvere’s

thesis when it was written, did do so a few years later and for computer science

reasons. Apparently this influenced his lectures ‘Universal algebras and the theory

of automata’ at the AMS summer meeting in Toronto in 1967. As we write efforts

are under way to locate and reassess this material.)

In his thesis, Lawvere axiomatised the clone of an equational theory along the

following lines. Take a skeleton of the category of finite sets and all functions

between them. So for each natural number n we have an object, n say, with n

elements. The category has finite coproducts given on objects n, m, by cardinal

sum n + m. Evidently it is equivalent to (any version of) the free category with

finite coproducts on 1. We make a choice of coproduct structure: for definiteness

we make the standard (ordinal sum) choice making + strictly associative. (But

nothing essential follows from that choice.)

Definition 2.1 Let ℵ0 denote a skeleton of the category of finite sets and all func-

tions between them, considered as a category with strictly associative coproducts.

Since ℵ0 is equipped with finite coproducts, it is immediate that the opposite

category ℵ
op
0 is equipped with finite products.

Definition 2.2 A Lawvere theory consists of a small category L with (necessarily

strictly associative) finite products and a strict finite-product preserving identity-

on-objects functor I : ℵ
op
0 −→ L. A map of Lawvere theories from L to L′ is a

(necessarily strict) finite-product preserving functor from L to L′ that commutes

with the functors I and I ′.

Thus the objects of any Lawvere theory L are exactly the objects of ℵ0, and

every function between such objects yields a map in L. One often refers to the

maps of a Lawvere theory as operations, those arising from ℵ0 being the basic

product operations. The notion of map between Lawvere theories encapsulates the

idea of a simple interpretation of one theory in another. Note that the behaviour

of an interpretation on the product structure is determined.



Trivially, the definitions of Lawvere theory and map between them yield a cate-

gory Law, with composition given by ordinary composition of functors. The functor

I plays an important structural role in this regard: the category FP of small cat-

egories with finite products and strict finite-product preserving functors between

them extends naturally to one of the leading examples of a 2-category [16], whereas

the category Law, which is essentially a subcategory of FP , does not naturally

extend in a compelling way. For the functor I fully determines the behaviour of

finite products in L. It is immediate that given maps F,G : L −→ L′ between

Lawvere theories, a coherent natural transformation from F to G (that is one which

composes with ℵ
op
0 −→ L to give the identity) is completely determined by the

identity on the object 1. So the only such are identities. This is a much more re-

strictive situation than in the usual categorical logic extensions to Lawvere theories

(compare [2] and see our discussion in Section 5), and it is because of this that

it makes sense to regard Law as a simple category. (Without coherence, natural

transformations correspond to unary operations in L′ which intertwine between the

images of operations in L under F and G respectively; but there is little interest in

these from the point of view of models.)

We stress the fact that in the definition of Lawvere theory, the functor I is not

required to be an inclusion.

Example 2.3 There is a Lawvere theory Triv that is equivalent to the unit cate-

gory 1: its objects are the objects of ℵ0, and there is one arrow from any object to

any other object. The functor I is the identity-on-objects but is trivial on maps.

This is a useful example giving counter-examples to natural seeming conjectures.

Although trivial, it is important to the structure of the category Law as it is the

terminal object. The identity ℵ
op
0 −→ ℵ

op
0 gives an initial object. More generally,

Law enjoys good closure properties: it is complete and cocomplete, indeed it is a

locally finitely presentable category. We shall investigate finite coproducts in Law

briefly in Section 3.

In passing we note that there are just two Lawvere theories L such that the

hom set L(2, 1) has just one element. In addition to the theory Triv one has the

following variant.

Example 2.4 There is a Lawvere theory Triv0 with no arrows from 0 to n for

n 6= 0 and one arrow between objects in all other cases. The functor I is the

identity-on-objects and identifies all maps with the same domain and codomain.

The relation between Triv and Triv0 is an example of a general phenomenon:

in the language of [23], the second is the result of depleting the first by making

inexpressible the definable constants. Leaving that aside we note that examples 2.3

and 2.4 are the only counterintuitive ones. It is generally harmless to pretend that

the functor I in the definition of Lawvere theory is faithful, as it is so in all examples

of primary interest.

For most mathematical purposes, one understands a Lawvere theory by study

of its models.



Definition 2.5 A model of a Lawvere theory L in any category C with finite prod-

ucts is a finite-product preserving functor M : L −→ C.

Note that one asks for preservation of finite products here, not for strict preser-

vation of them. That may seem surprising in the light of the strictness in the

definition of Lawvere theory. One consequence is that a pair of models M and M ′

of a Lawvere theory L may differ only because of a choice of product in C. However,

as Lawvere noted from the start [23], preservation rather than strict preservation

of finite products is fundamental: if one demanded strict preservation, the category

of models for the Lawvere theory for a monoid would be empty (!), rather than

being the category of monoids as one wants. The reason is that, with the usual

set-theoretic definitions, finite products in Set are not strictly associative, whereas

they are strictly associative in any Lawvere theory. Preservation rather than strict

preservation has other advantages: for example it allows a smooth account of change

of base category along a finite preserving functor H : C −→ C ′.

The requirement that M preserves projections, which is part of what preser-

vation of products means, determines the behaviour of M on the basic product

operation If for every function f : for projections in L amount to coprojections

in ℵ0, and every function f there is given by a family of coprojections. So what

determines a model is the interpretation of the other operations.

The notion of Lawvere theory axiomatises the clone of an equational theory: that

was its intent. Given any equational theory, one can generate a Lawvere theory: in

the category L we construct, the object n is the n-fold product of n copies of 1 and

so a map from m to n , corresponds uniquely to n maps from m to 1; and one of

the latter amounts to an equivalence class of terms in (at most) m free variables

generated by the operations subject to the equations of the theory.

Definition 2.6 For any Lawvere theory L and any category C with finite products,

the category Mod(L,C) is defined to have objects given by all models of L in C,

with maps given by all natural transformations between them.

The correctness of the above definition of map in Mod(L,C) is a more subtle

matter than may at first appear. One can readily prove that the naturality condition

implies that all natural transformations between models respect the finite product

structure: for any natural transformation α between models M and N , and for

any n in ℵ0, the map αn : Mn −→ Nn is given by the product of n copies of the

map α1 : M1 −→ N1. Thus the maps in Mod(L,C), which we defined to be all

natural transformations, could equally be defined to be all natural transformations

that respect the product structure of L. In the context of maps between models,

we observe that a pair of models M and M ′ of L, differing (the issue mentioned

above) only in a choice of product in C are isomorphic in Mod(L,C).

The semantic category C of primary interest is Set. So consider a model M of a

Lawvere theory L in Set. The set M1 determines Mn up to coherent isomorphism

for every n in L: for M preserves finite products of L, equivalently of ℵ
op
0 , these

are finite coproducts of ℵ0, which are given by finite sum, and so Mn must be

the product of n copies of M1. Thus to give a model M is equivalent to giving a



set X = M1 together with, a function from Xm to X for each map of the form

f : m −→ 1 in the category L, subject to the equations given by the composition

and product structure of L; and Mod(L,C) is equivalent to the evident category

of such structures. This analysis routinely extends to any category C with finite

products.

The flexibility as regards the category in which models may be sought is an

important feature of the Lawvere theory approach. We recall the traditional exam-

ple. Take the Lawvere theory LG of a group, so that the category Mod(LG, Set) of

models in Set is (equivalent to) the category of groups. (At the beginning of the

next section we explain why the theory is determined by its category of models in

Sets.) But we can interpret LG in other categories. In particular a model of LG

in the category Top of topological spaces is essentially a topological group. We can

tell the same story for other base categories, categories of sheaves, of differentiable

manifolds, of schemes and so on. A special case of interest is that of models of LG in

the category Group ≃ Mod(LG, Set) of small groups. By the Eckmann-Hilton ar-

gument [6], which was published in 1962, these are abelian groups; and this explains

why the higher homotopy groups are abelian. These examples give some indication

how the notion of Lawvere theory brought precision and unity to constructs that

were already being studied in the 1960s.

The model category Mod(L,C) is functorial in both arguments, functoriality

being induced by composition. An interpretation L −→ L′ induces a functor

Mod(L′, C) −→ Mod(L,C), while a finite preserving functor C −→ C ′ induces

a functor Mod(L,C) −→ Mod(L,C ′). We shall briefly contrast this with the situ-

ation for monads.

3 Properties of Lawvere theories

Now let us consider some of the properties of the notion of Lawvere theory, and some

constructions that can be made with them. Unlike equational theories, Lawvere

theories are semantically invariant. The precise sense in which that is so is as

follows. With each Lawvere theory L, we associate the underlying set functor

ev1 : Mod(L,Set) −→ Set ,

given by evaluation at 1. (This association is the semantics functor of Lawvere [23].)

We say that the categories Mod(L,Set) and Mod(L′, Set) of models are coherently

equivalent if they are so respecting the underlying set functor.

Proposition 3.1 Given Lawvere theories L and L′, if the categories Mod(L,Set)

and Mod(L′, Set) are coherently equivalent, then the Lawvere theories L and L′ are

isomorphic in the category Law.

Proof. For any Lawvere theory L, the Yoneda embedding restricts to a fully faithful

functor of the form

YL : Lop −→ Mod(L,Set) .



The representable YL(n) = L(n,−) in Mod(L,Set) itself represents the functor

evn
∼= (ev1)

n : Mod(L,Set) −→ Set .

So an equivalence between Mod(L,Set) and Mod(L′, Set) respecting the underlying

set functor ev1, induces isomorphisms

Mod(L,Set)(L(n,−), L(m,−)) ∼= Mod(L′, Set)(L′(n,−), L′(m,−))

and so (by two uses of Yoneda) isomorphisms

L(n,m) ∼= L′(n,m)

compatible with composition. The isomorphism respects the basic product structure

because ev1 is isomorphic to

Mod(I, Set) : Mod(L,Set) −→ Mod(ℵop
0 , Set) ≃ Set .

2

The argument we have sketched is part of Lawvere’s adjunction between se-

mantics and algebraic structure [23]. The ideas are extended and refined in the

treatment of algebraic operations in [38].

A major thrust of recent work (see [15] and [13]) has been to understand com-

putationally natural ways to combine computational effects in terms of operations

on Lawvere theories. We briefly review here two natural ways to combine Lawvere

theories, which have proved of value.

First we explain a sum of Lawvere theories: it is is precisely the coproduct in

the category Law. It has a simple description as it agrees with the obvious sum

of equational theories: it corresponds to taking all operations from each of the

equational theories at hand, subject to all equations of each of the theories, with

no additional equations. So a model for L + L′ in Set is a set equipped with both

the structure of a model of L and the structure of a model of L′.

One does require a little care with this notion of sum, but only the evident

care one requires in regard to the sum of equational theories anyway. For instance,

given Lawvere theories L and L′, there are maps of Lawvere theories given by

coprojections L −→ L+L′ and L′ −→ L+L′. But those coprojection functors need

not be faithful: if L is Triv, then L + L′ is also Triv, so the coprojection from L′

is trivial. (There are analogous issues with Triv0.)

One can also consider the tensor product L ⊗ L′ of Lawvere theories L and L′

which can be explained as follows, (but see also discussions in [9,45]). The category

ℵ0 not only has finite coproducts, but also has finite products, which we denote by

n × n′. The object n × n′ may also be seen as the coproduct of n copies of n′. So,

given an arbitrary map f ′ : n′ −→ m′ in a Lawvere theory, it is immediately clear

what we mean by the morphism n × f ′ : n × n′ −→ n × m′. We define f × n′ by

conjugation, and, in the following, we suppress the canonical isomorphisms.



Definition 3.2 Given Lawvere theories L and L′, the Lawvere theory L⊗L′, called

the tensor product of L and L′, is defined by the universal property of having maps

of Lawvere theories from L and L′ to L⊗L′, with commutativity of all operations of

L with respect to all operations of L′, i.e., given f : n −→ m in L and f ′ : n′ −→ m′

in L′, we demand commutativity of the diagram

n × n′
n × f ′

- n × m′

m × n′

f × n′

?

m × f ′
- m × m′

f × m′

?

The tensor product always exists either because it is defined by operations and

equations, or more elegantly by appeal to the work on pseudo-commutativity in [16].

Proposition 3.3 The tensor product ⊗ extends canonically to a symmetric

monoidal structure on the category of Lawvere theories.

A proof for this proposition is elementary. The unit for the tensor product is

the initial Lawvere theory, that is, the theory generated by no operations and no

equations. We can take this to be ℵ
op
0 −→ ℵ

op
0 , so it is the initial object of the

category of Lawvere theories; and so it is also the unit for the sum.

This last result gives some indication of the definitiveness of the tensor product,

but does not amount to much. What is central to the meaning of commutativity

but is not a common feature of operations on theories, is a simple characterisation

of L ⊗ L′ in terms of the categories of models of L and L′ [14,15].

Theorem 3.4 For any category C with finite products, there is a coherent equiva-

lence of categories between Mod(L ⊗ L′, C) and Mod(L,Mod(L′, C)).

This theorem gives us a new view on the Eckmann-Hilton argument mentioned

at the end of Section 2. What that argument shows is that the tensor product of

the Lawvere theory LG of a group with itself is isomorphic to the Lawvere theory

LA of an Abelian group.

As a final general remark we observe that properties of and structure on the

category of Lawvere theories remains an interesting area of study in its own right.

A survey together with a list of problems appears in [25], and the commentary to

the TAC reprint updates the material.

4 Monads

Soon after Lawvere gave his characterisation of the clone of an algebraic theory, Lin-

ton showed that every Lawvere theory yields a monad on Set [29]. The construction

extends to a fully faithful functor from Law to the category Mnd of monads on Set.



This functor is not an equivalence of categories. So in this precise sense, a monad

on Set can be regarded as a more general notion than that of Lawvere theory.

Linton also gave a partial converse. One can generalise the definition of Lawvere

theory to allow for arities of arbitrary size, with a generalised theory no longer a

small category or fully determined by one. The construction of a monad from a

Lawvere theory then generalises to an equivalence of categories. In [30], Linton

gives generalisations of Lawvere’s treatments of semantics and algebraic structure.

It is implied that the case treated by Lawvere should be seen as a special case of

the more general theory.

We give some details of the relation between theories and monads as analysed

by Linton. Given any Lawvere theory L, there is a canonical forgetful functor

UL : Mod(L,C) −→ C given by evaluation at the object 1 of L, equally of ℵ0.

If that forgetful functor has a left adjoint FL, as it does whenever C is locally

presentable, one can prove either directly or by Beck’s monadicity theorem [2] that

it exhibits Mod(L,C) as equivalent to the category TL-Alg for the induced monad

TL on C. Since in particular Set is locally finitely presentable, every Lawvere theory

L induces a monad TL on Set.

Proposition 4.1 The monad TL may be described by the following colimit (coend):

TLX =

nǫℵ0∫
L(n, 1) × Xn

This colimit is the coproduct over all natural numbers n of the set L(n, 1)×Xn,

factored by identifying elements determined by taking projections and diagonal

maps of ℵop
0 . It is easy to see that this corresponds to the collection of all terms in

the theory up to equality in the theory. Monads and pseudo-monads which arise

from many kinds of generalised algebra are constructed using analogous formulae,

but we do not pursue that here. We note that the formula allows an easy proof that

the construction of a monad from a Lawvere theory is functorial and that it is fully

faithful as a functor from Law to Mnd; and with a little more effort one can prove

the following.

Proposition 4.2 The construction sending a Lawvere theory L to the monad TL

determined by the forgetful functor UL : Mod(L,Set) −→ Set extends to a fully

faithful functor from Law to Mnd. Moreover, the comparison functor exhibits an

equivalence between Mod(L,Set) and TL-Alg.

One can readily check that the monad TL is finitary for every Lawvere the-

ory L. When the base category is Set, finitariness characterises the image of the

construction, but that was an observation of a later time [19].

For a converse, first observe that for any monad T on Set, the Kleisli cate-

gory Kl(T ) has all small coproducts and the canonical functor I : Set −→ Kl(T )

preserves them: for the canonical functor I has a right adjoint and is identity-on-

objects. Then restricting I to the full subcategory ℵ0, we obtain (the opposite of)

a Lawvere theory as in the diagram.



L
op
T

- Kl(T )

ℵ0

6

- Set

6

It is then straightforward to show the following.

Proposition 4.3 The construction sending a monad T on Set to the category

Kl(T )op
ℵ0

determined by restricting Kl(T ) to the objects of ℵ0 extends to a func-

tor from Mnd to Law.

The simple idea behind the construction is this. If TL is the monad for a Lawvere

theory L, then Kl(T )(n,m) consists of maps between the free models for L on n

and m; and as Kl(T )(n,m) ∼= Set(n, Tm), these correspond to n-tuples of elements

of Tm. But the free model is given by equivalence classes of terms so this is just

L(m,n). Thus it is routine to verify that, for any Lawvere theory L, the Lawvere

theory LTL
is isomorphic in Law to L. However the corresponding statement start-

ing with a monad T on Set is not true because the construction TL yields precisely

finitary monads. Indeed we have the following.

Theorem 4.4 The constructions sending L to TL and that sending T to LT exhibit

Law as a full coreflective subcategory of Mnd, the category of monads on Set.

The point of view extending this taken by Linton was as follows. One can define

a generalised theory to consist of a locally small category L with all small products,

together with a strict product preserving identity-on-objects functor from the op-

posite of a skeleton of Set to L. With this notion of generalised Lawvere theory,

one can show that the construction of Proposition 4.2 extends [13]; and then in the

corresponding version of Theorem 4.4 we have an equivalence of categories [29].

This extension seems smooth and attractive, so we briefly give some counter-

indications. The problems do not occur for monads of bounded rank (monads with

rank); for them a version of the material for (finitary) Lawvere theories goes through.

However there are interesting monads without rank [2,13]. In mathematics one has

the monad for compact Hausdorff spaces, and in the theory of computation, those

for continuations. One meets the monad for sup lattices in both areas of science.

The problem as we see it is that one cannot handle the notion of large Lawvere

theory corresponding to the general notion of monad as one can in the case where

the monad or theory has rank. So this move inherently involves a step away from

the idea of universal algebra.

One point is clear. The notion of large Lawvere theory is not closed under sum.

Indeed there is no sum of the monad generated by a unary operation with any of the

monads without rank mentioned above. This is explained for continuations in [13],

but the argument in the other cases is essentially the same. Rather than repeat the

proof here we give an intuition why it is the case, based on the analysis of the sum



given in [15]. In the large Lawvere theory corresponding to a monad T without

rank, we have a class of operations; and this gives a monad on Set only because

there are equations between complex expressions in this class of operations. Now

we add an independent unary operation, s say. Consider the class of operations

obtained from the original class by postcomposing with s. Since s is independent

there are now no non-trivial equations between complex expressions in these new

operations. As a result we lose control over the size of what may be constructed in

the putative sum theory. Specifically, the unit of T without rank will be monic and

so it follows that starting from any set x the free algebra on x for the sum must

contain T ∗x = µy.(Ty + x) the image of x under the free monad T ∗ generated by

the functor T . But T ∗x ∼= T (T ∗x+ x) and this is impossible for cardinality reasons

in all the cases we know of. Thus none of these sums exist.

An intuition of a similar kind makes it clear that if one of the generalised Lawvere

theories L and L′ has rank then the tensor product L ⊗ L′ exists. (This is proved

formally in [13].) However the intuition does not carry through if both L and L′

are without rank, and we believe that the tensor product does not exist in general.

The different range of generality of the ideas of monads and Lawvere theories

bears on the connection between (generalised) Lawvere theories and monads. One

can consider monads on any category, while Lawvere theories correspond to (fini-

tary) monads on Set. On the other hand, a monad on a category has algebras (i.e.

models) just in that category, while a Lawvere theory naturally has models in any

category with products. So while monad maps between monads on Set (see [2] for

this notion of monad map) correspond directly to maps of Lawvere theories, there

is nothing in the world of monads (at least nothing to which one has immediate ac-

cess) corresponding to the functoriality of Mod(L,C) in the category with products

C.

We make some remarks by way of amplification of this last point. If F : C → D

is product preserving between (say) locally presentable categories, then it follows

from the description in Proposition 4.1 that Mod(L,F ) : Mod(L,C) → Mod(L,D)

is a lift of F , and so corresponds to a monad map (in the general sense, see [46])

between the induced monads TC
L on C and TD

L on D. Now there appears to be no

way to get a handle even on this purely in terms of monads: the description of the

monad (and indeed the monad map) depends on the theory. But the use of Lawvere

theories takes us much further. By way of illustration, we consider some issues for

the category Top of topological spaces.

The (discrete) embedding Set → Top of Set in Top preserves finite products and

so we get an obvious embedding of the category of groups (in Set) into that of topo-

logical groups (which as we mentioned earlier is the models in Top for the relevant

Lawvere theory). Now Top is not locally presentable, so in the absence of general

theory we need to check that the coend formula of Proposition 4.1 enables us to

extend the monad for groups from Set to Top. That is reasonably straightforward,

but Set → Top does not preserve other products. So if we consider a countable

Lawvere theory (which we need when treating side-effects, see Example 6.2), we

cannot expect to lift the embedding at the level of models. However the coend



formula still applies and we still get a monad on Top. But one should take care.

Since the forgetful Top → Set preserves all products, the space has the expected

points. But the coend does not generally give the expected topology: for example

from the side-effects monad on Set we do not get the natural side-effects monad on

Top. For a yet more teasing situation the reader may like to consider what happens

with the continuations monad.

5 Lawvere theories and monads

By the mid 1960s the categorical understanding of universal algebra was established.

(Most of the relevant publications appeared in 1966.) Lawvere theories axiomatised

the notion of a clone of an equational theory. Monads, which had arisen in algebraic

topology, had been seen to generalise the notion of Lawvere theory; and, as we indi-

cated in Section 4, it had been recognised that one could formally extend the notion

of Lawvere theory to give a notion of theory equivalent to that of monad on Set.

But in retrospect, the generalised notion of theory involved in these developments

is not attractive. It is a further step away from the activity of universal algebra,

which is itself an abstraction from the bulk of activity within algebra. And one

loses useful constructions: a sum of monads need not exist in general, and it seems

likely that even the tensor need not exist either. That is worrying partly because

these are natural algebraic constructs, and partly because even when they do ex-

ist, it is not easy to see how and why one might naturally think of their universal

properties in terms of monads. Notwithstanding all this however, category theorists

overwhelmingly began to conceptualise universal algebra in terms of monads rather

than Lawvere theories, see for instance [31] where the notion is mentioned in one

sentence. So why was that? It is always difficult to understand the motivations of

people either individually or collectively, but there were salient scientific historical

facts in the particular circumstances of the time.

First, even had the will been there to conceptualise universal algebra in terms

of Lawvere theories, the ethos of category theory is to see constructs in terms of

arbitrary categories with axiomatically defined structure, then to take Set as a

leading example. That is easy for the notion of monad but difficult for the notion

of Lawvere theory, as it requires one to answer the question:

Given an arbitrary object X of an arbitrary category C satisfying axiomatic

conditions, what does it mean for X to be finite?

A definitive answer to that question only appeared in 1971, when Gabriel and Ulmer

published, in German, their account of locally finitely presentable categories [11].

Second, enriched categories had not been appreciated and developed. The notion

of enriched category was first formulated by Eilenberg and Kelly in 1966 in [7], but

it took time for it to enter the mainstream, and a definitive account of finiteness in

the enriched setting only appeared in 1982 in [20]. The reason enriched categories

help is because, given a notion of finiteness, the generalisation of Lawvere theory

to that setting is easy and covers a wide class of the examples of structures that

are usefully treated under the rubric of universal algebra. The notion of enriched



Lawvere theory was only published in 2000 in [43], and while it was understood well

before that, the understanding is still not widely spread. We shall give some details

of enriched Lawvere theories shortly.

Third, developments in categorical logic which favour the Lawvere theory per-

spective were yet to come. As discussed in the Appendix to [28] there are two

extant senses to logic, a broader one concerning the development of thinking and

a narrower one typically concerned with the logic of properties. In the epoch we

consider, the former was undergoing substantial development largely stimulated

by Lawvere (see [24,25,26,27]). But it was only in the 1970s that a sophisticated

categorical logic in the narrower sense emerged; and ironically Lawvere theories fit

naturally within this narrow reading of logic. Lawvere theories correspond to single-

sorted equational theories; more generally finite limit theories [11] mildly generalise

Horn clauses; and more generally still, one has regular theories, coherent theories,

and geometric theories, all fitting into the topos theory perspective on categorical

logic [32,2]. In the context of that work, monads are isolated. Though they are part

of logic in the broader sense, in contrast to Lawvere theories, they do not imme-

diately fit into this logical hierarchy. But that development all came later, so did

not provide a mathematical culture which favoured Lawvere theories as opposed to

monads in the mid 1960s.

Our first two reasons hang together, and we say a little about the technical

developments on those fronts as they are important for applications. Enriched

Lawvere theories are defined as follows. One generalises from Set to a category V

that is locally finitely presentable as a (symmetric) monoidal closed category [20].

That includes categories such as Cat, Poset, Graph, as well as all categories of

algebras for any ordinary commutative equational signature. The notion of cotensor

is then the definitive enrichment of the notion of a power.

Definition 5.1 Given an object X of V and an object B of a V -category C, the

X-cotensor of B, if it exists, is the object BX of C together with a family of

isomorphisms

C(A,B)X ∼= C(A,BX)

V -natural in A.

Taking V to be Set, the cotensor just defines the X-fold product of copies of

B. Next an X-cotensor is called finite if X is finitely presentable, in the definitive

sense of Gabriel and Ulmer. Now the basic material above generalises.

Definition 5.2 A Lawvere-V -theory is a small V -category L with finite cotensors

together with a strict finite-cotensor preserving and identity-on-objects V -functor

I : V
op
f −→ L, where Vf is a skeleton of the full sub-V -category of V determined by

the finitely presentable objects of V .

Definition 5.3 A model of L in a V -category C with finite cotensors is a finite-

cotensor preserving V -functor M : L −→ C.

One can duly define a V -category Mod(L,C) and one can then generalise all

our category theoretic analysis of ordinary Lawvere theories without fuss. The one



important aspect of ordinary Lawvere theories that has not yet been extended well

is the syntactic notion of equational theory: as best we know, there is currently no

enriched notion of equational theory corresponding to enriched Lawvere theories.

But equational theories can be rephrased in terms of sketches, for which an enriched

account does exist or at least can readily be gleaned from the literature [21]. This

does appear to be a satisfactory approach to the syntactic treatment of enriched

Lawvere theories.

In the presence of both enrichment and an axiomatic account of finiteness, one

can proceed easily, but as we said that combination did not exist in 1966. In passing

we note that if one has finiteness but not enrichment, one can still give an account

of Lawvere theories relative to an arbitrary base category subject to axiomatically

defined conditions. But that is awkward: it was only finally resolved in 2005, the

details appearing in [36].

How history might have developed had finiteness and enrichment been resolved

by 1966 and had the motivating experience of more general categorical logic been

available then is imponderable. Lawvere theories might or might not have emerged

as the definitive category theoretic formulation of universal algebra; but they would

certainly have had a better chance. In the event, Lawvere did not proceed with

universal algebra (though he did take an interest in enrichment), but rather went

on to characterise the category Set [24], a line of work which eventually led to the

notion of elementary topos and then to categorical logic. The category theoretic

development of universal algebra was taken forward by Beck, Barr, and others

whose expertise lay primarily in algebraic topology, where the notion of monad had

arisen; that led to important mathematical developments, see for instance [1,4] and

the account in [2], but the focus of these results is quite different from that of the

Lawvere theory notion.

6 Computational Effects

We now jump from the mid 1960s to the late 1980s. In the meantime, the notion of

monad had been consolidated as the primary category-theoretic formulation of uni-

versal algebra, as witnessed by its prominent role in Mac Lane’s influential text [31],

where Lawvere theories are only mentioned in the final line of the chapter on mon-

ads. Simultaneously and independently, computer scientists had begun to take an

interest in category theory in connection with denotational semantics. Then, in

1987, Eugenio Moggi completed his PhD thesis at the University of Edinburgh un-

der Gordon Plotkin, with Martin Hyland his external examiner. At precisely that

point, Moggi’s new idea of computational effects came to the attention of experi-

enced category theorists.

A defining moment came at Moggi’s oral defence. Moggi had completed a tech-

nical thesis on partiality, and the discussion turned to future work. He then intro-

duced his new idea of notions of computation and proposed using monads to model

them. It immediately struck Hyland as a particularly elegant idea, involving an

enrichment of a basic type theory with terms having computational meaning. He



was very encouraging. It did not occur to Hyland, in the circumstances of the time,

to mention universal algebra or Lawvere theories: rather he tried to learn about the

computational concepts from the monads, having no independent understanding of

them on the basis of which to apply critical judgement.

A year later, at the Constructive Logic and Category Theory workshop at the

Isle of Thorns, Peter Freyd, who was the leading North American category theorist

connected with computer science at the time, first heard Moggi’s idea. He too

was impressed and said so to Hyland who was sitting by him, and to others. But

again the ideas of universal algebra and Lawvere theories did not crop up in the

discussions of Moggi’s ideas.

Moggi’s work was soon published prominently in [33,35] and has been enor-

mously influential as a meta-principle for thinking about programming languages.

And it was some ten years before the move from monads to the Lawvere theories

that give rise to them began to change the emphasis of this line of research. It is

only now after a further five years of research that we begin to see the impact of

that change. From Moggi’s assignment to each set X of the set TX of values as-

sociated with a computational effect, one has passed to the study of the operations

associated with the computational effect. Given that in most cases a choice of TX is

apparent on the basis of some kind of computational intuition, the process is a kind

of reverse engineering. Moreover one does not merely want the clone of an algebraic

theory but rather a good choice of primitives in which to couch the theory, with

a good choice of axioms. The recognition (see section 7) that Moggi’s monad for

side-effects arises from the computationally natural operations lookup and update

subject to computationally natural equations was critical to the development of the

ideas: we describe this case in Example 6.2 below. The general situation of know-

ing the monad and reconstructing the theory is not that familiar in mathematics:

theory has had to be developed adequately to ground the practice, and the compu-

tationally significant examples have had to be worked through. This has resulted in

a series of recent papers [37,38,39,40,41,42]. But one should recognise that issues of

presentation are also mathematically significant. Famously for instance the theory

of groups has a presentation in terms of division, but that presentation generally

seems to be of little interest.

We now survey examples of computational effects, given by Moggi in terms of

monads, and later described in terms of (countable) Lawvere theories. (For more

extended discussions see [14,15].)

Example 6.1 The Lawvere theory LE for exceptions is the free Lawvere theory

generated by E operations raise : 0 −→ 1, where E is a set of exceptions. In terms

of operations and equations, this corresponds to an E-indexed family of nullary

operations with no equations. The monad on Set generated by LE is TE = − + E.

More generally, the forgetful functor UL : Mod(LE , C) −→ C induces the monad

−+E on C, where E is the E-fold copower of 1, i.e.,
∐

E 1, assuming the coproduct

exists in C.

For side-effects, one must make the routine generalisation from Lawvere theories



to countable Lawvere theories: the latter allow operations of countable arity [14,15].

In the following V al is a countable set of values and Loc is a finite set of locations.

We make the harmless identification of V al with ℵ0 and Loc with its cardinality.

Example 6.2 The countable Lawvere theory LS for side-effects, where the state

S = V alLoc, is the free countable Lawvere theory generated by the operations

lookup : V al −→ Loc and update : 1 −→ Loc × V al subject to the seven natural

equations listed in [39], four of them specifying interaction equations for lookup and

update and three of them specifying commutation equations. It is shown in [39]

that this countable Lawvere theory induces Moggi’s side-effects monad (S×−)S on

Set. More generally, if C is any category with countable powers and copowers then,

slightly generalising the result in [39], the forgetful functor UL : Mod(LS , C) −→ C

induces the monad (S ×−)S on C, where we write (S ×−) for the S-fold copower∐
S −, and (−)S for the S-fold power

∏
S −.

In the previous example we assumed that the set of locations was finite. In his

contribution to the Plotkin Symposium, Eugenio Moggi drew attention to a more

subtle side-effects monad, which arises in case the set Loc of locations is infinite.

Example 6.3 Suppose we take Loc to be infinite. Then the operations and equa-

tions of [39] induce a submonad of the side-effects monad (S × −)S . The functor

part is a finitary version of (S × −)S given by pairs (σ : S → S,α : S → A) with

the property that for each s,

(i) σ(s) differs from s at a finite number of locations,

(ii) there is a finite number of locations such that if we fix s at these then

(a) that fixes α(s), and σ(s) on a finite set of locations as in (i), and

(b) moreover the remaining locations are untouched.

The monad structure is inherited from (S ×−)S .

The last two examples illustrate the give and take between the semantic analysis

of a monad with a view to extracting an attractive presentation of the corresponding

theory and the construction of a monad from a theory. In the first place one would

hardly arrive at the second monad independently of the theory for side-effects.

Secondly the language for the theory is not at all evident from the monad. Indeed

since S = V alLoc is countable whenever Loc is finite non-empty, we get the same

Lawvere theory in all non-degenerate cases of the basic side effects monad: the

chosen presentation depends on the number of locations. (That is not the end of

the semantic issues as regards state. If one thinks of the collection of locations

as being potentially rather than actually infinite, one might argue for a presheaf

approach as in [39] in place of the modified side-effects monad.)

For the next example, given any endofunctor F on a category C, let µy.Fy

denote the initial F -algebra if it exists. Then, for an endofunctor Σ on a category

C with binary sums, the free Σ-algebra on an object x is µy.(Σy + x), with one

existing if and only the other does. These free algebras certainly exist if C is locally

countably presentable and Σ has countable rank, and in analogous cases.



Example 6.4 The countable Lawvere theory LI/O for interactive input/output is

the free countable Lawvere theory generated by operations read : I −→ 1 and

write : 1 −→ O, where I is a countable set of inputs and O of outputs. The monad

for interactive input/output TI/O(X) = µY.(O × Y + Y I + X) is induced by this

Lawvere theory: TI/O(X) is the free Σ-algebra on X, where ΣY = O × Y + Y I is

the signature functor determined by the two operations; an algebra for Σ consists

of an O-indexed family of unary operations and an I-ary operation. This is also the

form of TI/O in the more general situation where it arises from Mod(LS , C) for a

locally countably presentable category C.

Example 6.5 The countable Lawvere theory LN for (binary) nondeterminism is

the countable Lawvere theory freely generated by a binary operation ∨ : 2 −→ 1

subject to equations for associativity, commutativity and idempotence, i.e., the

countable Lawvere theory for a semilattice; the induced monad on Set is the finite

non-empty subset monad F+.

Example 6.6 The countable Lawvere theory LP for probabilistic nondeterminism

is that freely generated by [0, 1]-many binary operations +r : 2 −→ 1 subject to the

equations for forms of associativity, commutativity and idempotence as in [12]. The

induced monad on Set is the monad Df of distributions with finite support. For the

record, the associative laws are (a+rb)+sc = a+rs(b+tc), where (1−r)s = (1−rs)t;

the pseudo-commutative laws are a+r b = b+(1−r) a, and idempotence is the family

of equations a +r a = a.

The category Set is not the category of primary interest in denotational seman-

tics. One is more interested in ωCpo, and variants, which model recursion and

non-termination. As we observed earlier, the relationship between finite Lawvere

theories and finitary monads generalises without fuss to one between countable

Lawvere theories and monads and then to one between countable enriched Lawvere

theories and enriched monads, equivalently strong monads, on the category in which

the enrichment takes place. For that theory to work, it suffices that the category

be locally countably presentable as a cartesian closed category. The category ωCpo

is an example of such a category. So the work here generalises to include ωCpo.

One thing which tells in favour of the Lawvere theory point of view is that the

natural combinations of computational effects correspond to natural combinations

of Lawvere theories, notably sum and tensor [14,15]. In particular, the combination

of exceptions with any other computational effect corresponds to the sum of Lawvere

theories; that is also true for the natural combination of interactive input/output

with most other effects. On the other hand for combining side-effects, we have the

following [15].

Example 6.7 Let LS denote the countable Lawvere theory for side-effects, where

S = V alLoc, and let L denote any countable Lawvere theory. Then the monad

TLS⊗L is isomorphic to (TL(S ×−))S .

This shows that the tensor product of computational effects agrees with Moggi’s

definition of the side-effects monad transformer. Furthermore we have the following



agreeable corollary.

Corollary 6.8 The side-effects theory for S = V alLoc is the Loc-fold tensor product

of the side-effects theory for S = V al.

Returning briefly to the sum of theories we note that in the non-degenerate cases

of interest it provides a way of combining theories without adding new equations

to either. There is a way to do that (again in non-degenerate cases) purely in

terms of monads by using a distributive law. From a distributive law TS → ST

one gets a composite monad ST ; but from the point of view of Lawvere theories

this distributes the operations of LS over those of LT , and so the result is very

different from the monad corresponding to the sum LS +LT . Moreover in important

instances distributive laws do not exist. It was shown by Plotkin and Varacca that

there is no distributive law for any of the nondeterministic choice monads over the

probabilistic choice monad or vice versa. One needs considerable effort to resolve the

situation [47]. In contrast with the situation for distributive laws, the various kinds

of composite of Lawvere theories, such as sum, tensor, and a distributive tensor [17],

always exist. Those we know include the combinations of computational effects of

primary interest; and it seems likely that further combinations of computational

effects which may well arise in particular in the enriched setting will also be best

treated in terms of Lawvere theories.

One monad missing from the list of examples above is the continuations monad.

This is a monad without rank, and so cannot be taken to be a useful kind of Lawvere

theory. Indeed by the discussion in [13], it appears that the continuations monad

transformer should be seen as something sui generis. It does not appear to be

the result of combining the continuations monad with others, at least not in any

very obvious sense. The change in emphasis, to which we referred above, leads

one to differentiate between monads arising from operations and equations and the

others, with the others including continuations. Furthermore, the resulting point

of view downplays the role of the Kleisli construction for computational effects:

generally one need not pass from a Lawvere theory to a monad, then to its Kleisli

construction, but rather just start with the Lawvere theory L, knowing that it is

the finitary restriction of KL(TL)op, then extending that directly if needed [44].

7 The future

In view of recent developments, it is tempting to wonder what might have happened

in 1987 at and immediately after Moggi’s oral defence had Mac Lane’s book had

a chapter on Lawvere theories with a section on monads rather than having a

chapter on monads with a line about Lawvere theories? Would research have taken

a different course had Hyland or Freyd, upon listening to Moggi, immediately asked

about universal algebra or Lawvere theories? Of course we can never know, but we

can say what did happen in 2001 when a universal algebra connection was eventually

suggested.

In 2001, Gordon Plotkin gave the opening, invited talk at ETAPS in Genova,



with Moggi in the audience. Plotkin presented joint work with Power that began

to relate computational effects and universal algebra [37]: he described structural

operational semantics at the level of generality of universal algebra and studied

examples drawn from the various forms of nondeterminism and probabilistic non-

determinism. At the end of his talk, Moggi suggested that his side-effects monad

might be generated by the operations lookup and update subject to computationally

natural operations. It was over the following few months that Plotkin and Power

verified that and, later joined by Hyland, saw that what were then regarded as com-

putational effects could, with one exception, fruitfully be seen as an instance and

a development of universal algebra: interactive input/output was soon recognised

as an example involving no equations; it was seen how to incorporate local state

naturally; and the various ways of combining computational effects proved to be

simple instances of combining Lawvere theories. The exception was continuations.

So one wonders:

What might have happened in 1987 had the connection with universal algebra

been noticed at the time? More to the point, one wonders what will happen from

now?

We end the paper with speculative answers to those questions:

• Perhaps computational effects might be seen as an instance and development of

universal algebra? Continuations would not be regarded as a computational effect

but rather as a distinct notion. It would still have its own body of theory, and

one would still study the relationship between it and computational effects; but

perhaps it would not be regarded as a computational effect?

• Monads appear quite directly in the study of continuations. So perhaps the notion

of monad might be seen as a generalised semantics of continuations? With the

unit and counit being regarded as generalised forms of thunk and force?

• Perhaps the construction sending a Lawvere theory L to the monad TL might be

seen as providing mathematical support to a CPS-transform? One could give se-

mantics for the λc-calculus and the computational meta-language that look quite

different to each other, the former in terms of closed Freyd-categories [42,44],

and the latter in terms of monads. One might focus on the first-order fragment

of the λc-calculus: Lawvere theories immediately provide models, and one can

readily produce a sound and complete class of them [44].
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