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Abstract

Let X be a smooth, projective, geometrically connected curve over a finite field F,, and let G be a split
semisimple algebraic group over Fy. Its dual group Gisa split reductive group over Z. Conjecturally, any
l-adic G-local system on X (equivalently, any conjugacy class of continuous homomorphisms 71 (X) —
G (@Q,)) should be associated to an everywhere unramified automorphic representation of the group G.

We show that for any homomorphism 1 (X) — @(@l) of Zariski dense image, there exists a finite
Galois cover Y — X over which the associated local system becomes automorphic.
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1 Introduction

Let X be a smooth, projective, geometrically connected curve over the finite field Fy, and let G be a split
semisimple algebraic group over F,. Let G denote the dual group of G, considered as a split semisimple
group scheme over Z. Fix a prime [ { ¢ and an algebraic closure Q; of Q;. In the Langlands program, one
considers a conjectural duality between the following two kinds of objects:

e Everywhere unramified automorphic representations of the adele group G(Ak): these appear as irre-
ducible subrepresentations II of the space of functions f : G(K)\G(Ak)/G(]], Ok,) = Q.

e G-local systems on X: equivalently, G (Q,)-conjugacy classes of continuous homomorphisms o : 71 (X) —
G(Q).
(We omit here the extra conditions required in order to get a conjecturally correct statement.) In recent work
[Lafa], V. Lafforgue has established one direction of this conjectural correspondence: he associates to each
everywhere unramified, cuspidal automorphic representation IT of G(Ak) a corresponding homomorphism
o : m(X) — G(Q;). The goal of this paper is to establish the following ‘potential’ converse to this result.

Theorem 1.1. Let o : m(X) = G(Q) be a continuous homomorphism which has Zariski dense image.

Then we can find a finite Galois extension K'/K and a cuspidal automorphic representation I1 = ®, 11, of
G(Oy
G(Ag) satisfying the following condition: for every place v of K’, HU( ;) # 0, and 1L, and olw,., are

matched under the unramified local Langlands correspondence.

One expects that this theorem should be true with K’ = K, but we are not able to prove this.
The theorem is already known in the case G = PGL,,, for then the entire global Langlands correspondence
is known in its strongest possible form, by work of L. Lafforgue [Laf02] (and in this case one can indeed
take K’ = K). Moreover, it is likely that analytic arguments used to establish functoriality for classical
groups over number fields can be extended to function fields. Combined with the results of [Laf02], our main
theorem would then follow easily for split classical groups, again with K/ = K. EI However, for semisimple
groups in the exceptional series, this is the first theorem of this kind. We note that using the deformation-
theoretic techniques that we develop in this paper, one can construct plentiful examples of Zariski dense
representations ¢ to which the above theorem applies, for any group G.

We comment on the hypotheses of the theorem. Zariski density of the representation is convenient at
several points. From the automorphic perspective, taking Arthur’s conjectures into account, it removes the
possibility of having to deal with automorphic representations which are cuspidal but non-tempered. Zariski
density also has the important consequence that o can be placed in a compatible system of G-local systems
that is determined uniquely up to equivalence by the conjugacy classes of Frobenius elements. Without
this density condition, it is not even clear what should be meant by the phrase ‘compatible system’, and
the definition we use here (see Definition should therefore be regarded as provisional. (For a possible

IEither the descent method of Ginzburg, Rallis, and Soudry [GRSTII] or Arthur’s more general approach using the twisted
trace formula [Art13] would yield automorphy under the hypotheses of our main theorem.



solution to these issues, see [Dri].) A related point is that it is subtle to define what it means for a Galois
representation to be automorphic; this is discussed further (along with the simplifying role played by Zariski
density of representations) in

The condition that o be everywhere unramified (or in other words, that X be projective) is less

serious. Indeed, V. Lafforgue’s work attaches Galois representations to cuspidal automorphic representations
with an arbitrary level of ramification, and Theorem immediately implies an analogue where ¢ is allowed
to be finitely ramified at a finite number of points. It seems likely that one could prove the same result
with no restrictions on the ramification of o (other than ramification at a finite number of points), using the
techniques of this paper, but we leave this extension to a future work.

The proof of Theorem uses similar ingredients to existing potential automorphy theorems for

G = GL,, over number fields (see e.g. [BLGGT14]). Among these, we mention:

(i)
(i)
(i)
iv)

(iv

The construction of G-valued Galois representations associated to automorphic forms on G.
Automorphy lifting theorems for G-valued Galois representations.
Existence of local systems with ‘big mod [ monodromy’.

Existence of ‘universally automorphic G-valued Galois representations’.

Once these ingredients are in place, we employ the ‘chutes and ladders’ argument diagrammed in [EI05, pp.
1136-1137] in order to conclude Theorem We now comment on each of these ingredients (i) — (iv) in

turn.

(i)

As mentioned above, V. Lafforgue has constructed the Galois representations associated to cuspidal
automorphic forms on the group G [Lafa]. In fact, he goes much farther, constructing a commutative
ring of endomorphisms B of the space Ag of cusp forms, which contains as a subring the ring generated
by Hecke operators at unramified places, and which is generated by so-called ‘excursion operators’.
Lafforgue then defines a notion of pseudocharacter for a general reductive group (in a fashion gener-
alizing the definition for GL,, given by Taylor [Tay91]) and shows that the absolute Galois group of
K = F,(X) admits a pseudocharacter valued in this algebra B of excursion operators. Furthermore,
he shows that over an algebraically closed field, pseudocharacters are in bijection with completely re-
ducible Galois representations into G, up to G-conjugation. This leads to a map from the set of prime
ideals of B to the set of completely reducible Galois representations. This work is summarized in

A well-known result states that deforming the pseudocharacter of an (absolutely) irreducible represen-
tation into GL,, is equivalent to deforming the representation itself (see e.g. [Car94, [Rou96]). The first
main contribution of this paper is to generalize this statement to an arbitrary reductive group G. The
key hypothesis we impose is that the centralizer in G of the representation being deformed is as small
as possible, i.e. the centre of G. If G = GLy, then Schur’s lemma says that this condition is equivalent
to irreducibility (i.e. that the image be contained in no proper parabolic subgroup of G), but in general
this condition is strictly stronger. Nevertheless, it means that after localizing an integral version of
Lafforgue’s algebra B at a suitable maximal ideal, we can construct B-valued Galois representations,
in a manner recalling the work of Carayol [Car94].

Having constructed suitable integral analogues of Lafforgue’s Galois representations, we are able to
prove an automorphy lifting theorem (Theorem and Corollary using a generalization of the
Taylor—Wiles method. The key inputs here are an understanding of deformation theory for G-valued
Galois representations (which we develop from scratch here, although this idea is not original to this
paper) and a workable generalization of the notion of ‘big’ or ‘adequate’ subgroup (see e.g. [Thol2| for
more discussion of the role these notions play in implementations of the Taylor—Wiles method). It seems
likely that one could get by with a weaker notion than this (indeed, the notion of ‘G-abundance’ that
we introduce here is closer to the ‘enormous’ condition imposed in [CGL [KTb|] than ‘big’ or ‘adequate’),
but it is enough for the purposes of this paper.



(iii) A key step in proving potential automorphy theorems is showing how to find extensions of the base
field K over which two given compatible systems of Galois representations are ‘linked’ by congruences
modulo primes. The reader familiar with works such as [SBT97, [HSBT10] may expect that in order
to do this, we must construct families of G-motives (whatever this may mean). For example, in
[HSBT10Q] the authors consider a family of projective hypersurfaces over ]P’(l@; the choice of a rational
point z € Py(F) (F a number field) determines a compatible family of Galois representations of
I'r = Gal(F*/F) acting on the primitive cohomology of the corresponding hypersurface. By contrast,
here we are able to get away with compatible families of G-Galois representations (without showing
they arise from motives). The reasons for this have to do with the duality between the fields whose
Galois groups we are considering and the fields of rational functions on our parameter spaces of Galois
representations; see for example the diagram below.

(iv) Informally, we call a representation o : I'x — G (Q,) universally automorphic if for any finite separable
extension K'/K, the restricted representation ofr ., : I'xs — G(Q)) is automorphic (in the sense of be-
ing associated to a prime ideal of the algebra B of excursion operators). Of course, this is conjecturally
true for any representation o (say of Zariski dense image), but representations for which this property
can be established unconditionally play an essential role in establishing potential automorphy. We de-
fine a class of representations, called Coxeter parameters, which satisfy the condition of ‘G-abundance’
required to apply our automorphy lifting theorems and which can be shown, in certain circumstances,
to have a property close to ‘universal automorphy’ (see Lemma.

This class of Coxeter parameters generalizes, in some sense, the class of representations into GL,,
which are induced from a normal subgroup with quotient cyclic of order n. Such representations of
absolute Galois groups of number fields into GL,, are often known to be automorphic, thanks to work of
Arthur—Clozel [AC89] which uses the trace formula. In contrast, we deduce the automorphy of Coxeter
parameters from work of Braverman—Gaitsgory on geometrization of classical Eisenstein series [BG02].
Thus the geometric Langlands program plays an essential role in the proof of Theorem although
it does not appear in the statement.

We now describe the organization of this paper. We begin in §3| by reviewing some results from geometric
invariant theory. The notion of pseudocharacter is defined using invariant theory, so this is essential for
what follows. In I we review V. Lafforgue’s notion of G- pseudocharacter and prove our first main result
showing how deforming pseudocharacters relates to deforming representations in good situations. In g5 we
give the basic theory of deformations of G-valued representations. We also develop the KharefWintenberger
method of constructing characteristic 0 lifts of mod [ Galois representations in this setting. This is a very
useful application of the work of L. Lafforgue [Laf02] for GL,, and the solution of de Jong’s conjecture by
Gaitsgory [Gai0T7].

In 3‘.@, we make a basic study of compatible systems of G-valued representations. The work of L.
Lafforgue again plays a key role here, when we cite the work of Chin [Chi04] to show that any G-valued
representation lives in a compatible system. We also make a study of compatible systems with Zariski dense
image, and show that they enjoy several very pleasant properties. In §7] we make some local calculations
having to do with representation theory of p-adic groups at Taylor—Wiles primes. These calculations will be
familiar to experts, and require only a few new ideas to deal with the possible presence of pseudocharacters
(as opposed to true representations). In the longest section of this paper, we finally discuss automorphic
forms on the group G over the function field K, and review the work of V. Lafforgue. We then prove an
automorphy lifting theorem, which is the engine driving the proof of our main Theorem

The remaining three sections are aimed at proving this potential automorphy result. In we
introduce some moduli spaces of torsors; it is here that we are able to avoid the detailed study of families of
motives that occurs in [HSBTI0]. In we give the definition of Coxeter parameters, make a study of their
basic properties, and deduce their universal automorphy from the work of Braverman—Gaitsgory. Finally in
q11| we return to the ‘chutes and ladders’ argument and apply everything that has gone before to deduce our
main results.

At the end of the paper are two appendices, written by Gaitsgory, which establish two key prop-



erties of the automorphic functions attached to the geometric Eisenstein series constructed by Braverman—
Gaitsgory. The role played by these is discussed more in the proof of Theorem [10.11

1.1 Acknowledgments

We all thank Gaitsgory, Labesse, Lemaire, Moeglin, Raskin, Waldspurger, and especially Genestier and
Lafforgue for a number of helpful conversations. In addition, we are very grateful to Gaitsgory for providing
the appendices to this paper, proving properties of the special automorphic functions constructed in his
paper with Braverman; we also thank the referee for pointing out that there were no adequate references for
these facts in the literature. G.B. was supported by the DFG grants FG 1920 and SPP 1489. M.H.’s research
received funding from the European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant agreement no. 290766 (AAMOT). M.H. was partially supported
by NSF Grant DMS-1404769. C.K. was supported by NSF grant DMS-1161671 and by a Humboldt Research
Award, and thanks the Tata Institute of Fundamental Research, Mumbai for its support. This research was
partially conducted during the period J.T. served as a Clay Research Fellow. J.T. received funding from
ERC Starting Grant no. 714405. Both G.B. and J.T. thank M.H. and the THES for an invitation through
AAMOT.

2 Notation and preliminaries

If K is a field, then we will generally write K* for a fixed choice of separable closure and 'y = Gal(K*/K)
for the corresponding Galois group. If K is a global field and S is a finite set of places, then Kg will denote
the maximal subextension of K*, unramified outside S, and I'x ¢ = Gal(Kg/K). If v is a place of K, then
'k, = Gal(K;/K,) will denote the decomposition group, and I'x, — I'x the homomorphism corresponding
to a fixed choice of K-embedding K* — K. If v € S, then Frob, € I'x s denotes a choice of geometric
Frobenius element at the place v. If K = F,(X) is the function field of a smooth projective curve X, then
we will identify the set of places of K with the set of closed points of X. If v € X is a place we write
Gy = #k(v) = #(0Ok, /w,Ok,) for the size of the residue field at v. We write | - |, for the norm on K,,
normalized so that |w,|, = ¢, '; then the product formula holds. We write Artg, : K* — I‘aj(bv for the Artin
map of local class field theory, normalized to send uniformizers to geometric Frobenius elements. We write
Ok = [l,ex Ok, We will write Wi, for the Weil group of the local field K.

In this paper, we consider group schemes both over fields and over more general bases. If k is a
field, then we will call a smooth affine group scheme over k a linear algebraic group over k. Many classical
results in invariant theory are proved in the setting of linear algebraic groups. We will also wish to allow
possibly non-smooth group schemes; our conventions are discussed in A variety over k is, by definition,
a reduced k-scheme of finite type.

If G,H,... are group schemes over a base S, then we use Gothic letters g, 0,... to denote their Lie
algebras, and G, gr,... to denote the base changes of these objects relative to a scheme T — S. If G acts
on an S-scheme X and z € X(T'), then we write Zg(z) or Zg, (x) for the scheme-theoretic stabilizer of x;
it is a group scheme over T. We denote the centre of G by Zg. We say that a group scheme G over S is
reductive if G is smooth and affine with reductive (and therefore connected) geometric fibres.

When doing deformation theory, we will generally fix a prime [ and an algebraic closure Q; of Q;. A
finite extension E/Q; inside Q; will be called a coefficient field; when such a field E has been fixed, we will
write O or Op for its ring of integers, k or kg for its residue field, and w or wg for a choice of uniformizer
of Og. We write Cop for the category of Artinian local O-algebras with residue field k; if A € Cp, then we
write my4 for its maximal ideal. Then A comes with the data of an isomorphism k = A/my4.

2.1 The dual group and groups over Z

In this paper, we will view the dual group of a reductive group as a split reductive group over Z. We now
recall what this means. We first recall that a root datum is a 4-tuple (M, ®, MY, ®V) consisting of the
following data:



e A finite free Z-module M, with Z-dual M. We write (-,-) : M x M — Z for the tautological pairing.

e Finite subsets ® C M — {0} and ®¥ C M"Y — {0}, stable under negation, and equipped with a bijection
a+rav, e PV,

We require that for all @ € @, (a,a¥) = 2, and the reflections s,(z) = z — (x,a")a and s,v(y) = y —
(a,y)a" preserve ® C M and ®V C MV, respectively. In this paper, we also require root data to be
reduced, in the sense that if a,na € ® for some n € Z, then n € {£1}. A based root datum is a 6-tuple
(M, ®, R, MY, ®V RY), where (M,®, MV, ®") is aroot datum, R C ® is a root basis, and RV = {a" | a € R}.
(See [Conl4l §1.4].)

If S is a connected scheme, a reductive group G over S is said to be split if there exists a split
maximal torus T C G such that each non-zero root space g, C g (¢ € M = X*(T)) is a free Og-module of
rank 1. See [Conl4l Definition 5.1.1]. This condition follows from the existence of a split maximal torus if
Pic(S) = 1, which will always be the case in examples we consider. Associated to the triple (G, T, M) is a
root datum (M, ®, MY, ®V), where ® C M = X*(T) is the set of roots and & C MY = X, (T) is the set of
coroots. If N C M is a subgroup containing ®, then there is a subgroup @ C T such that X*(Q) = M/N.
In fact, we have @ C Zg, the quotients G' = G/Q and T = T/Q exist, and T” is a split maximal torus
of the split reductive group G’. The morphism G — G’ is smooth if and only if the order of the torsion
subgroup of M/N is invertible on S. In particular, if we take N to be the subgroup of M generated by ®
then the quotient has trivial centre, and is what we call the adjoint group G®! of G. The formation of the
adjoint group of a split reductive group commutes with base change. (See [Conl4, Corollary 3.3.5].)

The further choice of a Borel subgroup T' C B C G containing the split maximal torus T determines
a root basis R C @, hence a based root datum (M, ®, R, MY, ®V RY). When this data has been fixed, we will
refer to a parabolic subgroup P of G containing B as a standard parabolic subgroup of G. These subgroups
are in bijection with the subsets of R. If I C R is a subset, then the corresponding parabolic P; admits a
semidirect product decomposition P; = M; Ny, where N is the unipotent radical of Py and M7 is the unique
Levi subgroup of P; containing T' (see [ConI4, Proposition 5.4.5].) We refer to My as the standard Levi
subgroup of Py. It is reductive, and its root datum with respect to T is (M, ®;, MY, ®Y), where ®; C ® is
the set of roots which are sums of elements of I. The intersection B N M; is a Borel subgroup of M;, and
the based root datum of T C BN My C My is (M, ®;, I, MV, &Y, IV).

We now define the dual group. Let k be a field, and let G be a split reductive group over k. (We will
only need to consider the split case.) To any split maximal torus and Borel subgroup T - B C G, we have
associated the based root datum (M, ®, R, MV, ®Y, RY). The dual group Gisa tuple (G B T) consisting of
a split reductive group G over Z, as well as a split maximal torus and Borel subgroup TcBc G together
with an identification of the based root datum with the dual root datum (MY, ®Y, RV, M, ®, R). Then G is
determined up to non-unique isomorphism. For any split maximal torus and Borel subgroup 7 ¢ B’ C G,
there are canonical identifications

X*(T") = X*(T) 2 X,(T) and X, (T") = X, (T) = X*(T).

If I C R is a subset, then the standard Levi subgroup MI C G of based root datum (MY, oY, IV, M, ®,1)

contains the split maximal torus and Borel subgroup TcBn M, 1 C M, 1 and can be identified as the dual
group of M;. (See [Bor79, §3].)

2.2 Chebotarev density theorem

At several points in this paper, we will have to invoke the Chebotarev density theorem over function fields.
Since this works in a slightly different way to the analogous result in the number field case, we recall the
statement here. We take X to be a geometrically connected, smooth, projective curve over F,, K = F,(X),
S a finite set of places of K, and I'k s the Galois group of the maximal extension unramified outside S. This
group then sits in a short exact sequence

1 Tk.s ks Z L,




where the quotient Z corresponds to the everywhere unramified scalar extension F, - K/K, and the element
1 € Z acts as geometric Frobenius on F,. The theorem is now as follows (see [Cha97, Theorem 4.1]).

Theorem 2.1. Suppose given a commutative diagram of groups and continuous homomorphisms

1 Tks Tk.s 7 1
S
1 Gy G—"—=T 1,

where G is finite, Ay is surjective, and I' is abelian. Let C C G be a subset invariant under conjugation by
G. Then we have

#{v e X | q, = ¢, A\(Frob,) € C} B #Cﬁm_l(’y")
#{ve X g =q"} T #G,

where the implicit constant depends on X and G, but not on n.

+ O(q—n/Q)’

Corollary 2.2. (i) The set {Frob,} of Frobenius elements, indexed by places of Kg not dividing S, is
dense in 'k g.

(i) Letl be a prime not dividing q, and let p, p' : T s — GL(Q;) be continuous semisimple representations
such that tr p(Frob,) = tr p/(Frob,) for allv & S. Then p = p'.

Proof. The second part follows from the first. The first part follows from Theorem [2.1] applied to the finite
quotients of I'k g. O

3 Invariant theory

In this section we recall some results in the invariant theory of reductive groups acting on affine varieties. We
describe in these terms what it means for group representations valued in reductive groups to be completely
reducible or irreducible. We first consider the theory over a field in §3.1] and then consider extensions of
some of these results for actions over a discrete valuation ring in

3.1 Classical invariant theory

Let k£ be a field.

Lemma 3.1. Let G be a linear algebraic group over k which acts on an integral affine variety X. Let
x € X(k). Then:

(i) The image of the orbit map p, : G — X, g — gz, is an open subset of its closure. We endow the
image G - x with its induced reduced subscheme structure, and call it the orbit of x. It is smooth over
k, and invariant under the action of G on X.

(i) The following are equivalent:

(a) The map G — G - x is smooth.

(b) The centralizer Zg(x) is smooth over k.
If these equivalent conditions hold, then we say that the orbit G - x is separable.

Proof. By Chevalley’s theorem, the image u,(G) C X is a constructible subset of X, so contains a dense
open subset U of its closure Z C X. We can find a finite extension &'/k and g € G(k’) such that gz = y lies
in U(K’). Let z € . (G) be a closed point; then we can find a finite extension k" /k’, a point z” € u,(G)(k")
lying above z, and h € G(k") such that hx = z”. Then hg~'y = 2", and hence hg~'Uy~ is an open subset of



Zy» which contains z”. Its image under the flat morphism Z,» — Z is therefore an open subset containing
the closed point z, which also lies in p, (G). This shows that u, (G) is indeed open in Z. The same argument
using generic flatness shows that the induced map G — G - z is faithfully flat, hence (since G is smooth)
G - x is geometrically reduced. The same argument once more implies that G - z is even smooth over k. The
second part of the lemma now follows from the differential criterion of smoothness. O

Now let G be a reductive group over k, and let X be an integral affine variety on which G acts.
We write X /G = Spec k[X]% for the categorical quotient; since G is reductive, it is again an integral affine
variety, which is normal if X is (see e.g. [BR85, §2]). The quotient map = : X — X /G has a number of
good properties:

Proposition 3.2. Let notation be as above. Then:

(i) Let K/k be an algebraically closed overfield. Then w is surjective and G-equivariant at the level of
K -points.

(is) If W C X is a G-invariant closed set, then w(W) is closed.
(iwi) If W1, Wo C X are disjoint G-invariant closed sets, then w(W1) and 7(Ws) are disjoint.
(iv) For any point x € (X JJG)(k), the fibre 7=1(z) contains a unique closed G-orbit.
(v) For any affine open subset U C X J/G, there is a natural identification U = 7= *(U) J/G.
Proof. See [SesT7, Theorem 3]. O

Richardson studied the varieties G™, with G acting by diagonal conjugation |[Ric88|. His results were
extended to characteristic p by Bate, Martin, and Rohrle [BMRO5]. We now recall some of these results.

Definition 3.3. Let G be a reductive group over k, and let H C G be a closed linear algebraic subgroup.
Suppose that k is algebraically closed.

(i) We say that H is G-completely reducible if for any parabolic subgroup P C G containing H, there exists
a Levi subgroup of P containing H. We say that H is G-irreducible if there is no proper parabolic
subgroup of G containing H.

(i) We say that H is strongly reductive in G if H is not contained in any proper parabolic subgroup of
Za(S), where S C Zg(H) is a maximal torus.

When the overgroup G is clear from the context, we will say simply that H is completely reducible
(resp. strongly reductive).

Theorem 3.4. Let G be a reductive group over k, and suppose that k is algebraically closed. Let x =
(g1,---,9n) be a tuple in G™(k), and let H C G be the smallest closed subgroup containing each of g1, ..., gn-

(i) The G-orbit of x in G™ is closed if and only if H is strongly reductive, if and only if H is G-completely
reducible.

(i) The G-orbit of x in G™ is stable (i.e. closed, with Zg(z) finite modulo Zg) if and only if H is G-
irreducible.

Proof. The characterization in terms of G-strong reductivity or irreducibility is [Ric88), Theorem 16.4, Propo-
sition 16.7]. The equivalence between strong reductivity and G-complete reducibility is [BMR05, Theorem
3.1]. O

We apply these techniques to representation theory as follows.

Definition 3.5. Let I be an abstract group, and let G be a reductive group over k.



(i) A homomorphism p : T' — G(k) is said to be absolutely G-completely reducible (resp. absolutely G-
irreducible) if the Zariski closure of p(T') is G-completely reducible (resp. G-irreducible) after extension
of scalars to an algebraic closure of k.

(ii) A homomorphism p : T — G(k) is said to be absolutely strongly G-irreducible if it is absolutely G-
irreducible and for any other homomorphism p' : T' — G(k) such that for all f € k[G]® and for all
v € I we have f(p(v)) = f(p'(7)), p' is also absolutely G-irreducible.

We observe that the Zariski closure of p(T') is always a linear algebraic group, and that formation
of this Zariski closure commutes with extension of the base field. The notions of G-irreducibility and G-
complete reducibility have been studied by Serre [Ser05]. We will occasionally use the word ‘semisimple’ as
a synonym for ‘G-completely reducible’. The notion of strong G-irreducibility is slightly unnatural, but we
will require it during later arguments.

We now assume for the remainder of that k is algebraically closed and that G is a reductive
group over k. If p: ' — G(k) is any representation, then we can define its semisimplification p* as follows:
choose a parabolic subgroup P containing the image of p(I'), and minimal with respect to this property.
Choose a Levi subgroup L C P. Then the composite p** : I' — P(k) — L(k) — G(k) is G-completely
reducible, and (up to G(k)-conjugation) independent of the choice of P and L (see [Ser05, Proposition 3.3]).
This operation has an interpretation in invariant theory as well:

Proposition 3.6. Let g = (g1,...,9n) € G"(k), let x = w(g9) € (G")G)(k), and let P be a parabolic
subgroup of G minimal among those containing gi,...,9n. Let L be a Levi subgroup of P. Then:

(i) There exists a cocharacter \ : G, — G such that L = Zg(X\) and P = {x € G | limy_,o A(t)z\(t) ™! emists},
with unipotent radical {z € G | limy_o A(t)zA(t)"! = 1}.

(ii) Let g’ = (g},...,49,), where g = lim;_,o A(¢)g:A(t)~t. Then ¢’ has a closed orbit in G™ and w(g') =
7(g). Therefore G - g’ is the unique closed orbit of G in 7—1(x).

Proof. The first part follows from [BT65, Théoréme 4.15]. For the second part, it follows from the definition
of ¢’ that ¢’ € 77 1(x)(k) and that ¢’ equals the image of g € P(k) in L(k) (viewing L as a quotient of P).
The minimality of P implies that the subgroup of L generated by the components of ¢’ is L-irreducible,
hence G-completely reducible (by [Ser05], Proposition 3.2]), hence ¢’ has a closed orbit in G™. O

Proposition 3.7. Let T' C G(k) be a subgroup. Then:

(i) Let P C G be a parabolic subgroup which contains T', and which is minimal with respect to this property.
If T is G-completely reducible, and L C P is a Levi subgroup containing I, then I' C L is L-irreducible.

(i) The parabolic subgroups P C G which contain ', and which are minimal with respect to this property,
all have the same dimension.

Proof. See [Ser(5), Proposition 3.3] and its proof, which shows that if P, P’ are parabolic subgroups of G
containing I', minimal with this property, that P and P’ contain a common Levi subgroup; this implies that
P, P’ have the same dimension, because of the formula dim P = (dim G + dim L). O

We conclude this section with some remarks about separability. A closed linear algebraic subgroup
H C G is said to be separable in G if its scheme-theoretic centralizer Z¢(H) is smooth. If H is topologically
generated by elements gy, ..., g, € G(k), then H is separable if and only if the orbit of (g1,...,g,) inside
G™ is separable.

Theorem 3.8. Suppose that one of the following holds:
(i) The characteristic of k is very good for G.

(i) G admits a faithful representation V' such that (GL(V),G) is a reductive pair, i.e. g C gl(V') admits a
G-invariant complement.



Then any linear algebraic closed subgroup of G is separable in G.
Proof. This is [BMRTTI0, Theorem 1.2] and [BMRTT0, Corollary 2.13]. O

We recall that if G is simple, then the characteristic [ is said to be very good if it satisfies the
following conditions, relative to the (absolute) root system of G:

Condition | Types

ltn+1 A,

l#2 B,C,D,E,F,G
l#3 EF.G

l#5 Eg

Then g is a simple Lie algebra, which is self-dual as a representation of G (because there exists a non-
degenerate G-invariant symmetric bilinear form on Gj; see for example [SS70, Lemma 1.5.3]). In general, we
say that [ is a very good characteristic for G if it is very good for each of the simple factors of G. In this
case g is a semisimple Lie algebra and the map G — G?? is smooth; indeed, its kernel is the centre of G,
which is smooth by Theorem

We will often impose the condition that | = char k is prime to the order of the Weyl group of G;
this is convenient, as the following lemma shows.

Lemma 3.9. Suppose that | = char k is positive and prime to the order of the Weyl group of G. Then I is
a very good characteristic for G.

Proof. Inspection of the tables [Bou68, Planches I — IX]. O

3.2 Invariants over a DVR

Let [ be a prime, and let £ C Q; be a coefficient field, with ring of integers O and residue field k. If Y is
an O-scheme of finite type, and y € Y (k), then we write Y% for the functor Co — Sets which sends an
Artinian local O-algebra A with residue field k to the pre-image of y under the map Y (A) — Y (k). This
functor is pro-represented by the complete Noetherian local O-algebra (/9\y7y. We observe that if f:Y — Z
is a morphism of O-schemes of finite type over O, then f is étale at y if and only if the induced natural
transformation Y — Z//¥) is an isomorphism.

Let G be a reductive group over O. Let X be an integral affine flat O-scheme of finite type on which
G acts, and let z € X (k). We write G® = G for the completion at the identity; it is a group functor, and
there is a natural action

G x XM — XT, (3.1)
We define the categorical quotient X /G = Spec O[X]“ and the quotient morphism 7y : X — X /G. This
space has a number of good properties that mirror what happens in the case of field coefficients:

Proposition 3.10. Let notation be as above.

(i) The space X |G is an integral O-scheme of finite type, and the quotient map w : X — X G is G-
equivariant. If X is normal, then X G is normal.

(i) For any homomorphism O — K to an algebraically closed field, the map © : X(K) — (X/)G)(K)
is surjective and identifies the set (X JG)(K) with the quotient of X (K) by the following equivalence
relation: x1 ~ xo if and only if the closures of the G-orbits of 1 and x2 inside X @0 K have non-empty
intersection.

In particular, each orbit in X (K) has a unique closed orbit in its closure, and w induces a bijection

between the closed orbits in X(K) and the set (X JG)(K).

(i4i) For all closed G-invariant subsets W C X, w(W) is closed; and if W1, Wy are disjoint closed G-
invariant subsets of X, then m1(W1) and m(W2) are disjoint.
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(iv) The formation of invariants commutes with flat base change. More precisely, if R is a flat O-algebra,
then the canonical map O[X]% @ R — R[XRg]“® is an isomorphism. In particular, if G acts trivially
on X then there is a canonical isomorphism (Gx X) /G =2 X (where G acts on itself by left translation).

(v) Let x € X (k) have a closed Gy-orbit, and let U C X be a G-invariant open subscheme containing x.
Then there exists f € O[X]|% such that f(x) # 0. Let Dx c(f) C X//G denote the open subscheme
where f is non-vanishing. Then we can moreover choose f so that Dx(f) = %' (Dx yc(f)) C U, and
there is a canonical isomorphism Dx (f)/G = Dx ya(f).

Proof. We first observe that X admits a G-equivariant closed immersion into V', where V is a G-module
which is finite free as an O-module. Indeed, we choose O-algebra generators f1, ..., f,. € O[X]. Then [SesTT7,
Proposition 3] shows that we can find a G-submodule V' C O[X] containing fi,..., f, which is finite as an
O-module. Since X is flat, V is free over O, and the surjection S(VV) — O[X] then corresponds to the
desired G-equivariant closed immersion X < V. Most of the above now follows from [Ses77, Theorem 3]
and the fact that O is excellent, hence a universally Japanese ring (see [Staldl Tag 07QS]).

The fact that formation of quotient commutes with flat base change is [Ses77, Lemma 2]. For the
final part, we observe that the complement X — U is a G-invariant closed subset disjoint from the orbit of
z, 50 mx(X —U) C X /G is a closed subset not containing mx (z). We can therefore find f € O[X] such
that Dx y(f) has trivial intersection with 7x (X — U). Then Dx(f) satisfies the desired properties. O

Note that (ii) shows that for any homomorphism O — K to an algebraically closed field, the natural
map Xk Gk — (X J/G)k induces a bijection on K-points. This observation will play an important role in
our study of pseudocharacters below. However, the algebras O[X]|% @ K and K[X ]9k are not in general
isomorphic.

We must now establish a special case (Proposition of Luna’s étale slice theorem ([BR&5,
Proposition 7.6]) in mixed characteristic. It seems likely that one can prove a general version of this result
using the arguments of op. cit., but to do so here would take us too far afield. We will therefore use these
arguments to prove just what we need here.

Lemma 3.11. Let X,Y be normal affine integral O-schemes, flat of finite type, on which G acts. Let
¢ Y — X be a finite G-equivariant morphism, and let y € Y (k) be a point satisfying the following
conditions:

(i) ¢ is étale at y.

(i) The orbit Gy, -y is closed in Y.
(iii) The orbit G, - ¢(y) is closed in Xj.

(iv) The restriction of ¢ to Gy, -y is injective at the level of geometric points.
Then the induced morphism ¢JJG Y JG — X |G is étale at Ty (y).

Proof. Let E = Frac H*(Y,Oy), let K = Frac H%(X,Ox), and let L denote the Galois closure of E/K.
Let G = Gal(L/K) and H = Gal(L/FE). We observe that Y is identified with the normalization of X in
E; we write Z for the normalization of X in L. Then Z is a normal integral flat O-scheme. It is of finite
type, because O is universally Japanese. We also note that Y /G is identified with the normalization of
X /G in E. Indeed, the normality of X implies the normality of X /G, and similarly for Y, by Proposition
and the morphism Y /G — X /G is finite, because it is integral and of finite type. We give the
argument for integrality: let a € H(Y, Oy )Y, and let f(T) = T" + a;T" "' + --- + a, € K[X] denote the
characteristic polynomial of multiplication by @ on E. Since a € H°(Y,Oy) is integral over H°(X,Ox),
all of the a; lie in H°(X, Ox) ([Boud8, Ch. 5. §1.6, Cor. 1]). We also see that the a; lie in K¢, hence in
KN HYX,0x) = H°(X,0x)Y, showing that a is integral over H°(X,Ox)%.

We write Z’ for the normalization of X /G in L. Then Z’ is also a normal integral flat O-scheme
of finite type. Both Z,Z’ receive natural actions of the group G, and there is a natural map Z — Z’
respecting this action. Moreover, we can identify O[Y] = O[Z]*, O[X] = O[Z]9, O]Y JG] = O[Z']"* and
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O[X)G] = O[Z']9. (Here we need to use the fact that O[X]¢ is integrally closed in O[X], and similarly for
Y'; compare [BR85], 4.2.3].) In order to show that the map Y /G — X J/G is étale at the point 7y (y), we will

make appeal to the following lemma (cf. [BR85, 2.3.1], where it is stated for varieties of finite type over a
field):

Lemma 3.12. Let A be an excellent normal domain with field of fractions K, and let L/K be a Galois
extension of group G. Let H C G be a subgroup, and let E = L™, B the integral closure of A in E, C the
integral closure of A in L. Let ¢ be a geometric point above a closed point of Spec C, and let b, @ denote its
images in Spec B and Spec A, respectively. Then the morphism Spec B — Spec A is étale at b if and only if
Stabg (E) CH.

Proof. For such extensions, being étale is equivalent to being unramified [Stal5l Tag 0BTF]. The desired
characterization then follows from [Bou98, Ch. V, §2.3, Prop. 7]. O

We fix a geometric point z of Z above y, and write z’ for its image in Z’, ¥’ for its image in Y /G,
and T’ for its image in X J/G. We let z = ¢(y). We get a commutative diagram

7z =7

'

Y —%Y)G

A

X2 X)G.

Since ¢ is étale at the point y, Lemma implies that Stabg(Z) C #H. On the other hand, we have
¥(Stabg(Z') - Z) C 7y (@) N ¢~ (G, - ). Since ¢ is finite, Gj - @ = ¢(Gy, - y) is a closed orbit, hence
¢~ 1 (G}, - ) is closed, and a union of finitely many Gx-orbits each of which has the same dimension as G, - z.
Therefore ¢~ (G}, - ) is a disjoint union of closed Gj-orbits. The inverse image 7y (7') contains a unique
closed Gy-orbit, namely Gy, - y, so we find that ¥ (Stabg(z’) - zZ) C Gk - y.

By assumption, the restriction of ¢ to Gy - y is injective at the level of geometric points. Since
o)(Stabg(Z') - z) = {z} = {&(y)}, it follows that ¢ (Stabg(z’) - Z) = {y}. The group H acts transitively on
the fibre 1 ~!(y) ([Stal5, Tag 0BRI]), so we find Stabg(z’) -z C H - z, hence Stabg(z') C Stabg(Z)H = H.
The result now follows from one more application of Lemma [3.12 O

Proposition 3.13. Suppose that X is an integral affine smooth O-scheme on which G acts. Let x € X (k)
be a point with Gy, - x closed, and Zg, (x) scheme-theoretically trivial. Then:

(i) The action G" x X — XM (as in above) is free (i.e. free on A-points for every A € Co ).
(i) The natural map 7 : X — X G induces, after passage to completions, an isomorphism

X/\,ac/G/\ ~ (X//G)/\,ﬂ'(m)

Proof. We apply [BR85l Proposition 7.6] to obtain a locally closed subscheme Sy C X}, such that z € Sy (k)
and the orbit map Gy x Sg — X is étale. In particular, Sy is smooth over k, and we can find a sequence
fi,--+, fr € Ox, » of elements generating the kernel of Ox, , — Og, » and with linearly independent image
in the Zariski cotangent space of Oy, ,. We lift these elements arbitrarily to fi,...,fr € Ox,. Let U be
a Zariski open affine neighbourhood of = in X such that fi,...,f. € Ox(U), and let S = V(f1,..., fr)-
After possibly shrinking U, S is an integral locally closed subscheme of X, smooth over O, such that
Os.4/(A) = Og, 5. In particular, the action map G x S — X is étale at x: it is unramified at x, by
construction, and flat at @ by the fibral criterion of flatness [Stal5sl Tag 039B]. This shows the first part of
the proposition.

After possibly shrinking .S, we can assume that ¢ : G x S — X is étale everywhere; in particular,
it is quasi-finite. We let G act on G x S be left multiplication on G; then the map ¢ is G-equivariant. Let
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X' denote the normalization of X in G x S. Then i : G x S — X’ is an open immersion (by Zariski’s main
theorem [Stald, Tag 03GS]) and 7 : X’ — X is finite. Moreover, X’ is integral, affine, and flat of finite type
over O. There is a unique way to extend the action of G on G x S to an action on X’ (the key point being
that normalization commutes with smooth base change [Stal5, Tag 03GV], so the action map G x X' — X'
exists by normalization).

We now apply Lemma to the point i(1,2) of X’(k); it follows that the induced morphism
)G : X'JG — XJ/G is étale at i(1,z). In order to be able to apply the lemma, we must check that
Gy - i(1,2) is closed inside X’'. Indeed, Gy - ¢(x) is closed inside X, by hypothesis, and 7 is finite, so
n Gy - ¢(z)) is a closed subset of X}, consisting of finitely many Gj-orbits, each of the same dimension.
They must therefore all be closed, implying that Gy, - i(1, z) is itself closed.

This also shows that 7x/(i(1,2)) & mx/(X'—i(GxS)) (using the third part of Proposition[3.10). The
set Tx/ (X' —i(Gx8)) C X')/G is closed, so we can find a function f € O[X']¢ such that f(X'—i(GxS)) =
and f(i(1,z)) # 0. It then follows that i : Dgxs(f) — Dx/(f) is an isomorphism, and Dx/jq(f) =
Dx/(f))G = Daxs(f) G = Ds(f), hence i//G induces an open immersion Dg(f) — X’ /G. The set Dg(f)
contains mgxs(1, ), so this completes the proof that ¢/G = (n/G) o (i/G) is étale at mgxs(1,x). O

In the next section, we will apply this proposition in the following situation: Gisa split reductive
group over O, X = G™ for some n > 1, and G = G2 acts on X by simultaneous conjugation. If g1,...,g, €
G (k) are elements which generate a G—lrreduc1ble subgroup with scheme-theoretically trivial centralizer in

G#4, then the point 7 = (91,---,9n) € X(k) satisfies the conclusion of the proposition.

4 Pseudocharacters and their deformation theory

In this section, we define what it means to have a pseudocharacter of a group valued in a split reductive
group G. We also prove the fundamental results that completely reducible representations biject with
pseudocharacters (when the coefficient ring is an algebraically closed field); and that representations biject
with pseudocharacters (when the coefficient ring is Artinian local) provided the residual representation is
sufficiently non-degenerate.
Let G be a split reductive group over Z.

Definition 4.1. Let A be a ring, and let I' be a group. A é—pseudachamcter O of T over A is a collection
of algebra maps ©,, Z[G"] — Map(T'™, A) for each n > 1, satisfying the following conditions:

(i) For each n,m > 1 and for each map ¢ : {1,...,m} = {1,...,n}, f € Z[@m]a, and v1,...,7 €T, we
have

where fS(gu,...,qn) = F(geys -5 9¢m))-

(i) For each n > 1, for each y1,...,VYnt1 € I, and for each f € Z[@"]é, we have

@n-l‘l(f)(’}/h s a’y’ﬂ-i-l) = @n(f)(fyla s a’Yn’Yn-l—l)a

where f(gl7 e 7g’ﬂ+1) = f(gla cee 7gngn+1)-
Remark 4.2. Let O be a flat Z-algebra, and suppose that A is an O- algebra Then it is equivalent to give a

pseudocharacter © over A or a collection of O-algebra maps O/, : 0[G"% — Map(F” A) satlsfylng the same

axioms with respect to f € O[G"]G Indeed, this follows from the fact that O[G"]¢ = Z[G"]C @7 O ([SesT7,
Lemma 2]). It is important to note that this may fail to be true when O is no longer flat (for example, if O
is a field of characteristic p > 0), but nevertheless Theorem below is still true in this case.

The following lemma justifies our initial interest in pseudocharacters.

Lemma 4.3. Let A be a ring, and let I be a group. Suppose given a homomorphism p : ' — é(A) Then
the collection of maps On(f)(y1,---,7n) = f(p(11),-- -, p(n)) s a pseudocharacter, which depends only on
p up to G(A)-conjugation.
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Proof. Immediate from the definitions. O

If p is a homomorphism as in the lemma, then we will write trp = (©,),>1 for its associated
pseudocharacter.
We can change the ring and the group:

Lemma 4.4. Let A be a ring, and let T be a group.

(i) Let h : A — A’ be a ring map, and let © = (0,),>1 be a pseudocharacter over A. Then h.(©) =
(ho©Oy)n>1 is a pseudocharacter over A'.

(i) Let ¢ : A — T be a homomorphism, © a pseudocharacter of T over A. Then the collection ¢*© =
(O, 0¢)n>1 is a pseudocharacter of A over A.

(ii) Let N C T be a normal subgroup, and let ¢ : T' — T'/N be the quotient homomorphism. Then the
map © — ¢*O defines a bijection between the set of pseudocharacters of I'/N over A and the set
of pseudocharacters = = (E,)n>1 of I' over A such that for all n > 1, the map =, takes values in
Map((T'/N)™, A) C Map(I'™, A).

Proof. Immediate from the definitions. O

Theorem 4.5. Let " be a group, and let k be an algebraically closed field. Then the assignment p — © = trp
induces a bijection between the following two sets:

(i) The set of é(k‘)—conjugacy classes of G-completely reducible homomorphisms p : T — @(k;)
(ii) The set of G-pseudocharacters © of T over k.

Proof. The proof of this theorem is due to Lafforgue [Lafbl §5]; we review it here as preparation for the
infinitesimal version of the next section, and because some modifications are required in the case of positive
characteristic. Before reading the proof, we invite the reader to first become reacquainted with Proposition
2.2l

We first show how to construct a representation from a pseudocharacter (0,,),>1. For any n > 1, the
map G"(k) — (G"J/G)(k) induces a bijection between the set of G(k)-conjugacy classes of tuples (g1, ..., gn)
which generate a G-completely reducible subgroup of G, and the set (G"/G)(k) (as follows from part (iv)
of Propositi(ln and Theorem [3.4]). The datum of O,, determines for each tuple v = (y1,...,7,) € I a
point &, € (G"/G)(k), these points satisfying certain compatibility relations corresponding to conditions (i)
and (ii) of Definition u We write T'(y) for a representative of the orbit in G"(k) corresponding to &

Let H(7) denote the Zariski closure of the subgroup of @(k) generated by the entries of T'(y). For
every v € I'", we define n(v) to be the dimension of a parabolic P C @k minimal among those containing
H(~); by Proposition this is independent of the choice of P satisfying this condition.

Let N = sup,>; ,ern n(y). We fix a choice of integer n > 1 and element 6 = (dy,...,d,) € '
satisfying the following conditions:

(i) n(d) = N.
(ii) For any n’ > 1 and &' € I also satisfying (i), we have dim Zg, (H(0)) < dim Zg (H(0")).
(iii) For any n’ > 1 and ¢’ € I also satisfying (i) and (i), we have #m0(Zg, (H(6))) < #m0(Zg, (H(5"))).

Write T'(6) = (g1, . .-, 9n). We are going to show that for every v € T, there exists a unique element g € CAY'(k:)
such that (g1,...,9n,9) is @(kz)-conjugate to T(61y .-y Onyy)-

We first show the existence of such an element g. Let T'(d1,...,0n,7) = (h1,..., hn, h). We claim
that in fact (hq,...,h,) has a closed @k—orbit in @Z, this is equivalent, by Theorem to the assertion
that the elements hq, ..., h, € é(k) generate a é—completely reducible subgroup. Note that (hy,...,h,) lies

14



~

above & € (G™/G)(k) (by (i) of Definition [4.1), so this claim will show that (hq, ..., hy) is G(k)-conjugate
to T(9).

To this end, let P C @k be a parabolic subgroup minimal among those containing H(d1,...,0n,,7).
We can find a Levi subgroup Mp of P which contains H(d1,...,d,,7). Let Np denote the unipotent radical
of P, and let ) be a minimal parabolic of Mp containing h1, ..., h,. Let Mg be a Levi subgroup of @, and let
Ry, ... k!, € Mg(k) denote the images of the elements hi,...,h, in Mg(k). Then the elements hf,..., A,
generate an Mg-irreducible subgroup, which is therefore @-completely reducible (by [Ser05l Proposition
3.2]). It follows from Proposition [3.6] that the tuple (h},...,h.) is G(k)-conjugate to T(8) = (g1, - .., gn).

In particular, @ contains a conjugate of T'(¢), which implies that @ Np contains a conjugate of T'(9).
Since QNp is a parabolic subgroup of G, we obtain

n(d) = N <dimQNp < dim P < N.

It follows that equality holds, QNp = P, and hence Q = Mp and h; = h} for each ¢ = 1,...,n. This shows
that (hy,...,h,) has a closed Gr-orbit in @Z Consequently, we can find an element z € @(k) such that
x(hi,...,hn)x"t = (g1,...,9,). We can now take g = xhx~!.

This shows the existence of an element g € G(k) such that (g1,...,gn,9) is G(k)-conjugate to
T(61,...,0n,7). To show that this element is unique, suppose ¢’ is another such element. Then we can find
y € @(k) such that y(g1,...,9n,9)y* = (91,--.,9n.9'). In particular, we have y € Z5(g1,...,90)(k). We
therefore need to show that

The first group obviously contains the second. The defining properties (i), (ii) and (iii) of 6 € I'* then show
that these groups must in fact be equal. R

This establishes the claim, and defines a map v € T' — g = p(y) € G(k). We must now show that
this map p : ' — CAY'(k:) is a homomorphism. Let ,7" € T'. We claim that there exist g,¢9’ € G(k) such
that (g1,...,9n,9,9") is é(k’)—conjugate to T(01,...,0n,7,7"), and that the pair (g, ¢’) is unique with this
property.

Let (h1,...,hn,h,R') = T(61,...,0n,7,7), and let P be a parabolic containing the elements
hi,...,hy, h, b, and minimal with respect to this property. Let Mp be a Levi subgroup of P also containing
these elements, Np the unipotent radical of P. Then we have dim P = n(dy,...,0,,7,7) < n(d1,...,0n).
Let @ be a minimal parabolic of Mp containing hq, ..., h,, and let Mg be a Levi subgroup, hf,...,h] the
images of 1, ..., h, in Mg(k). Then the tuple (hf,...,h}) is G(k)-conjugate to (g1, . .. , gn) (again by Propo-
sition and (i) of Definition ; it follows that n(d1,...,d,) = N < dimQNp < dim P < N, so equality
holds, Mg = Q = Mp and QNp = P, and we can find y € CA;'(k) such that y(hi,...,hn)y~t = (91, -+, Gn)-
We then take (g,¢’) = y(h,h')y~!. The argument that this pair is unique is the same as above.

We claim that the tuples (g1,...,9n,9), (91,---+9n,9"), and (g1,...,gn,gg") all have closed orbits
in G"*1. This claim will show, together with parts (i) and (i) of Definition that p(v) =g, p() = ¢,
and that p(yy') = gg’. We just show the claim in the case of (g1,...,9n,99’), the others being similar.
Let P C @k be a parabolic subgroup minimal among those containing gi,...,gn,9,9’. Then P contains
G1s-+->0n, S0 n(d) = N < dim P < N. Therefore equality holds, and P is also minimal among those
parabolic subgroups of @k containing g1, ..., gn.

Let Mp be a Levi subgroup of P also containing glj\...,gn,g,g’. Then the tuple g1,...,g, is
M p-irreducible, hence g1, ..., gn, 99" is M p-irreducible, hence G-completely reducible. It then follows from
Theorem that g1,...,9n, 99" has a closed orbit in G"*1. This shows that p(vy') = p(7)p(v).

We have now shown how, given a pseudocharacter © over the algebraically closed field k, to construct
a representation p : I' — G(k). This representation moreover satisfies the condition tr p = ©, or equivalently

that for any m > 1, v = (y1,...,7m) €™, and f € Z[é”]a7 we have the formula
flo(m), -, p(vm)) = Om (f)(7)-

The proof of this is very similar to the verification that p is a homomorphism, so we omit it. In order to com-
plete the proof of the theorem, it remains to show that if p, p’ are two G-completely reducible homomorphisms
with trp = tr p/, then they are in fact G(k)-conjugate.
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Let us therefore fix a @—completely reducible homomorphism p : I' — C:'(k) We will show that we
can recover p from its associated pseudocharacter © = tr p; given the constructive argument above, this is
no longer surprising. We let the elements &, € (G"/G)(k), T(y) € G"(k) be as defined above. By [BMRO3,
Lemma 2.10], we can find elements d1,...,d, € ' such that for any parabolic subgroup P C @k, and for
any Levi subgroup L C P, P contains p(T") if and only if P contains p(d1),...p(d,), and likewise for L.
In particular, our assumption that p is @-completely reducible implies that (p(d1),...,p(0,)) = (91, -, 9n)
(say) has a closed @k—orbit in éz After possibly augmenting the tuple (41, ..., d,), we can assume moreover
that Zg(g1.- -, g0)(K) = Z5(p(D)) (k).

Let v € . We claim that p(y) = ¢ is uniquely determined by the condition that (g1,...,gn,9)
is G-conjugate to T(61,...,0n,7). It satisfies this property because (g1, ...9gn,g) has a closed orbit, by
construction, and because p has associated pseudocharacter ©. On the other hand, if ¢’ is another element
with this property, then we can find x € Zz(p(I')) such that rgr~! = ¢'. Since g € p(I'), this implies that
g = ¢, as required. O

Definition 4.6. Let R be a topological ring, and let T' be a topological group. A pseudocharacter © = (0,)n>1
over R is said to be continuous if for each n > 1, the map O, takes values in the subset Map,,,(I'™, R) C
Map(T'™, R) of continuous maps.

Proposition 4.7. Suppose that I' a profinite group, that k is an algebraically closed topological field, and
that p : T — G(k) is a G-completely reducible representation with trp = ©. Then:

(i) If p is continuous, then © is continuous.

(ii) If k admits a rank 1 valuation and is of characteristic 0 (e.g. k = Q,;) and © is continuous, then p is
continuous.

(iii) If k is endowed with the discrete topology (e.g. k = ;) and © is continuous, then p is continuous.

Proof. The first part is clear from the definition of tr p. The proof of the second part is contained in the proof
of [Lafbl Proposition 5.7]. For the third part, we mimic the proof of uniqueness in Theorem to show that
p factors through a discrete quotient of I'. First, we can find elements v1,...,7, € I' such that if g; = p(v;),
i=1,...,n, then p(T') is contained in the same Levi and parabolic subgroups of ék as (g1,-.-,9n), and we
have Zz(g1,...,9n) = Zg(p(I')). The proof of Theorem shows that we can then recover p uniquely as
follows: for each v € I, p(7) is the unique element g € G(k) such that (g1,...,9gn,g) has a closed orbit in
G (k) and for all f € Z[G"+1)%, we have f(g1,- -, 0n,9) = Ons1 (F) (Y1, - > Yms7)-

We now observe that for any f € Z[@"H]é, the map I' — k, v — Opni1()(y1,--+,Vn,7y), 18
continuous. On the other hand, Z[@”H]@ is a Z-algebra of finite type ([Ses77, Theorem 3]). It follows
that we can find an open normal subgroup N C I' such that for all f € Z[@”“]@ and for all v € N,

we have O, 11(f) (71, ¥n:Y) = Oni1(F)(V1y--+,Vn, 1), hence f(g1,...,9n,0(¥)) = f(g1,---,9n,1). The
above characterization of p now shows that this forces p(y) = 1, hence p factors through the finite quotient

T'/N, and is a fortiori continuous. O
Theorem 4.8. Let | be a prime, and let I' be a profinite group.

(i) Let © be a continuous é—pseudochamcter of I over Q,. Then there erists a coefficient field E C Q,
such that © takes values in OF.

(i) Let p : T — G(Q,) be a continuous homomorphism. Then after replacing p by a G(Q,)-conjugate, we
can find a coefficient field E C Q, such that p takes values in G(Op).

(iii) Let p: T — é(@l) be a continuous homomorphism. Choose a conjugate p’ with values in @(C’)E) for
some coefficient field E C Q. Then the semisimplification p: T — G(F;) of p’ mod wOpg is continuous
and, up to G(F})-conjugacy, independent of any choices.
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Proof. The first part of the theorem follows from the second: given ©, we can find a continuous representation
p: I = G(OFg) such that ©® = trp, hence © takes values in Og. To prove the second part, we will use
Bruhat-Tits theory (see [Tit79]). Let us first note that a standard argument using the Baire category
theorem shows that p(I') is contained in G(E) for some finite extension E/Q;. (Indeed, p(T') is a Baire space
which is exhausted by the closed subgroups p(I') N G(E), as E varies over all finite extensions of Q; inside
Qy; therefore one of these contains an open subgroup of p(I"), therefore of finite index. Enlarging E, it will
then have the desired property.)

Let DG denote the derived subgroup of G. Then G(E) acts on the building l’)’(l?@7 E). Let G(E)°
denote the subgroup of elements g € G(E) such that for all x € X *((A?), x(9) € Of. The maximal compact
subgroups of @(E) can all be realized as stabilizers in é(E)O of vertices in B(’Dé,E). There is a unique
hyperspecial point xy € B(Dé, E) such that Stabg )0 (x0) = é((’)E)

If E'/E is a finite extension, then there is an inclusion ig g : B(DG,E) < B(DG,E') that is
equivariant for the action of G(E) C G(E'). According to [Lar95, Lemma 2.4], we can find a totally ramified
extension E'/E and a point x € B(Dé, E) such that ig g (x) is hyperspecial and stabilized by p(I"). Since
all hyperspecial vertices are conjugate under the action of éad(E’ ), this means that after replacing p by a

Q;-conjugate, and possibly enlarging E’ further, p(T') C é(OE/). This establishes the second part of the
theorem.

After reducing modulo the maximal ideal of O/ and semisimplifying, we get the desired represen-
tation p : I' — G(TF;). It remains to check that this representation is continuous and, up to G(IF;)-conjugacy,
independent of any choices. It is continuous because p’ mod mg is continuous. Its isomorphism class is
independent of choices by Theorem and because trp = © depends only on the original representation
p. O

Definition 4.9. Let [l be a prime, and let I be a profinite group.

(i) If p : T — @(@1) is a continuous representation, then we write p : I' — CAY'(E) for the semisimple
residual representation associated to it by Theorem[[.8, and call it the reduction modulo I of p.

(i) If © is a continuous pseudocharacter over Q,, then we wm’te§ for the continuous pseudocharacter over
F; which is the reduction of © modulo the maximal ideal of Z;, and call it the reduction modulo I of ©.

If G = GL,,, then these notions of reduction modulo [ are the familiar ones.

4.1 Artinian coefficients

Now fix a prime [, and let E C Q, be a coefficient field. Let I' be a profinite group. Let p : I' — (A?(k)
be a representation with associated pseudocharacter © = trp. In this situation, we can introduce the
functor PDefg : Co — Sets which associates to any A € Co the set of pseudocharacters © over A with

O mod my = O. We also introduce the functor Def; : Co — Sets which associates to any A in Co the
set of conjugacy classes of homomorphisms p : [' — CAY'(A) such that p mod mq = p under the group
ker(G*d(A) — G*4(k)). (This deformation functor will be studied further in §5| below.)

We then have the following infinitesimal version of Theorem which is an analogue of Carayol’s
lemma for pseudocharacters valued in GL,, [Car94]:

Theorem 4.10. With notation as above, suppose further that the centralizer of p in G‘gd is scheme-

theoretically trivial and that p is absolutely é—completely reducible. Then the map p — trp induces an
isomorphism of functors Def; — PDefg.

Proof. If n > 1, let X,, = @’é, Y, = Xn//@%d, m: X, — Y, the quotient map. We will use the following
consequence of Proposition [3.13

o Let x = (Gy,...,0,) € Xn(k) be a point with scheme-theoretically trivial centralizer in @Zd and closed
G-orbit in G}}. Then G?Qd’/\ acts freely on X/-*, and the map X" — Y2 ™) factors through an
isomorphism X/ /Gad oy, M),
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Suppose that A € Cp, and let © € PDefg(A). We will construct a preimage p : I' — @(A) Let v1,...,v €T
be elements such that g, = p(71),...,9, = P(vn) cover p(I'). Then Zgz.4(gy,-..,9,) = {1}. Let z =

(G1,---,9,). Then O, determines a point of ¥;" 7T(QL)(A), and we choose (g1,...,9,) € X/V*(A) to be an
arbitrary pre-image of this point. By the above bullet point, any other choice is conjugate to this one by a
unique element of G?gd’/\(A).

Let v € T be any element, and let y = (g4, ...,7,,7(7)). We have a commutative diagram, given by
forgetting the last entry:

Ay A, (y)
Xn+1 Y;L-i-l

T

XT/L\,I 5 Y;{\’ﬂ(m)

The horizontal arrows are both (/}\'ad’A torsors, which implies that this diagram is even Cartesian, hence

there is a unique tuple (g1, ..,gn,9) € Xo¥ (A) which lifts (g1,...,9,) and which has image in Y, (1)
corresponding to O,11 (Y1, -+, Vn, Y)-

It is now an easy verification that the assignment v ~» g = p(7) is a homomorphism p : I — G(A)
with tr p = ©. This shows that the natural transformation Def; — PDefg is surjective. It is clear from the
construction that it is also injective, so this completes the proof. O

5 Galois representations and their deformation theory

Let G be a split semisimple group over Z. We fix a prime [ which is a very good characteristic for @7 as well
as a coefficient field E C Q;. Let T' be a profinite group satisfying Mazur’s condition ®; [Maz89]. In this
section, we consider the deformation theory of representations of I' to G with [-adic coefficients. We first
describe the abstract theory, and then specialize to the case where I' = I'k 5 is the Galois group of a global
field of positive characteristic.

In this case there are many effective tools available, such as the Galois cohomology of global fields,
the work of L. Lafforgue on the global Langlands correspondence for GL,, [Laf02], and Gaitsgory’s solution of
de Jong’s conjecture [Gai07]. We will apply these results to get a good understanding of Galois deformation
rings, even before we begin to make a direct connection with automorphic forms on G (see for example

Theorem [5.14)).

5.1 Abstract deformation theory

We start with a fixed absolutely G-irreducible homomorphism 5 : T’ — G(k).
Lemma 5.1. The scheme-theoretic centralizer of p(T') in (A?gd is étale over k, and H°(T',g;) = 0.

Proof. Since H°(T',gx) can be identified with the group of k[e]-points of the scheme-theoretic centralizer
Zgaa(p(1)), it is enough to show that this centralizer is étale. By Theorem [3.8] this happens exactly when
this centralizer is finite; and this is true, by Theorem [3.4] O

Definition 5.2. Let A € Co. A lifting of p over A is a homomorphism p : T’ — @(A) such that p mod my =

p. Two liftings p,p’ are said to be strictly equivalent if there exists g € ker(G(A) — G(k)) such that

gpg~ ! = p'. A strict equivalence class of liftings over A is called a deformation over A.

Remark 5.3. In the definition of strict equivalence, 1t would be equivalent to consider conjugation by
ker(G*d(A) — G24(k)), since the natural map GA — G " is an isomorphism (because G is semisimple and
we work in very good characteristic).

Definition 5.4. We write Defz : Co — Sets for the functor which associates to A € Co the set of deforma-
tions of p over A.
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Proposition 5.5. The functor Defy is pro-represented by a complete Noetherian local O-algebra Ry.

Proof. Let DefﬁD denote the functor of liftings of p. Then the group functor @?Qd’/\ acts freely on DefﬁD7
by Lemma and there is a natural transformation DefﬁD — Def5 that induces, for any A € Cp, an
isomorphism DefﬁD (A)/CA??Qd’A(A) = Def;(A). It is easy to see that the functor DefﬁD is pro-represented by

a complete Noetherian local O-algebra with residue field k. It now follows from [KWO09, Proposition 2.5]
(quotient by a free action) that Def; is itself pro-representable. O

Proposition 5.6. There exists a presentation Ry = O[Xq,..., Xg]/(f1,-.., fr), where g = dimy H (T, g,)
and r = dimy H*(T,g1). (These dimensions are finite because we are assuming that the group T satisfies
Mazur’s property ®,.)

Proof. This follows from a well-known calculation with cocyles, which exactly parallels that done by Mazur
[Maz89]. O

We now suppose that we are given a representation i : G — GL(V) of finite kernel (V a finite free
Z-module) such that ip: I' - GL(V},) is absolutely irreducible and [ > 2(dim V' — 1).

Lemma 5.7. With these assumptions, gl(Vy) is a semisimple k[U']-module and the map g, — gl(Vi) is split
injective.

Proof. The semisimplicity of gl(V}) follows from [Ser05, Corollaire 5.5], the irreducibility of ip, and our
hypothesis on [. Since ip is absolutely irreducible, we see that Vg is an irreducible highest weight module of
CA?@. Our hypothesis on [ then implies that it is of low height, in the sense that for a given set of positive
roots T such that Vg has highest weight A, we have Y acaot (A a¥) < 1. (This condition can be checked on
the principal SLy, and we have an explicit bound on the dimension of the SLa-submodules that can occur.)

This, together with our hypothesis that 4 has finite kernel, implies that the map g — gl(V) is injective
(apply for example [LS96 Lemma 1.2]). O

The map p — ip leads to a natural transformation Def; — Def;5, hence (by Yoneda) a map
Rip — Rﬁ.
Proposition 5.8. The map R;z — Ry is surjective.

Proof. Since we deal with complete local O-algebras with the same residue field, this can be checked on the
level of tangent spaces: we must show that the map H*(I',gx) — H (T, gl(V%)) is injective. This follows
from Lemma O

We record a lemma which generalizes an observation of Wiles for GLy (see [Wil95 Proposition 1.2]).

Lemma 5.9. Let E'/E be a finite extension, and suppose given a homomorphism f : Rz[1/l] — E’ of
E-algebras. Let py : I' — G(E') denote the specialization along f of a representative of the universal
deformation of p, and let p = ker f. Then there is a canonical isomorphism

p/p? @ppy B’ = H' (T, 5pr)Y
of E'-vector spaces. In particular, if H*(T',gg/) = 0 then Spec R;[1/1] is formally unramified over Spec E at
p.

Proof. Let R’ﬁ denote the universal deformation ring as defined on the category Co,,. Then there is a
canonical isomorphism R’ﬁ = R;®0, Opr, and a calculation shows that after this extension of scalars, we are
free to assume that the prime ideal p € Spec R5[1/1] has residue field k(p) = E = E’. Let q = ker(R; — E);
then q[1/l] = p and q/q? is a finite O-module. For any n > 1, there is an isomorphism

Homo(q/qQ, O/(wn)) = Hl(FaaO/(w”'))v

both sides being identified with the set of O-algebra maps R5/q?> — O @ eO/(w"). The result now follows
on passing to the inverse limit and inverting I. O
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5.2 The case I' =TIk

We keep the assumptions of and now make a particular choice of I'. Let IF; be a finite field of characteristic
not [, and let X be a smooth, projective, geometrically connected curve over F,, K =F,(X), and S a finite
set of places of K. We now take I' = 'k s to be the Galois group of the maximal extension of K unramified
outside S (see . This group satisfies Mazur’s condition ®;, so we immediately obtain:

Proposition 5.10. The functor Defs of deformations [p : Tk s — @(A)] is represented by a complete
Noetherian local O-algebra R 5.

We add S to the notation since we will later want to vary it.

We note that if M is a discrete k[I'k s|-module, finite-dimensional as k-vector space, then there are
two natural cohomology groups that can be associated to it: the usual Galois cohomology H'(I'k s, M),
and the étale cohomology H!(X — S, M) of the associated sheaf on X — S. These groups are canonically
isomorphic if either S is non-empty or X is not a form of P!. Since we are assuming that p exists, one of
these conditions is always satisfied. In particular, we have access to the Euler characteristic formula and the
Poitou-Tate exact sequence for the groups H*(I'k g, M), even in the case where S is empty.

Proposition 5.11. There is a presentation R5 s = O[X1,... X 1/(f1,---, fy), where g = dimy H (T 5, G%)-

Proof. Let h' = dimy H'. The Euler characteristic formula ([Mil06, Theorem 5.1]) says h°(Tk.s, k) —
h'(Tk s,8xk) + h*(Tk 5,8xk) = 0. Lemma implies that h° = 0. The result then follows from Proposition
0.6l O

Proposition 5.12. Let E'/E be a finite extension, and suppose given a homomorphism f : Rs g[1/l] — E’
of E-algebras. Let py : I' — G(E') denote the specialization along f of a representative of the universal
deformation of p, and let p = ker f. Then Spec R; s[1/1] is formally unramified over Spec E at p.

Proof. We can again assume that £’ = E. By Lemma it is enough to show that the group H' Tk 5,98)
vanishes. We will show this using the theory of weights. Let K = F, - K, a subfield of K*, and let
I'k s = Gal(Kg/K). Then we have a short exact sequence of profinite groups

1 Tk.s ks Z L

where the element 1 € Z is the geometric Frobenius. Corresponding to this short exact sequence we have an
inflation restriction exact sequence

0—=H"(Z, H*(Tk 5,80)) —=H"'(T'k s, 58)—=H' Tk 5,35)-
Let X = XFQ» S C X the divisor living above S. Then there are canonical isomorphisms for j = 0, 1:
Hj(fK,SvaE) = ‘E[](y - ?,J_‘.)’

where F is the lisse E-sheaf on X — S corresponding to the representation gg of 71 (X — S) 2 Tk s. (The
implicit geometric point of X — S is the one corresponding to the fixed separable closure K* of the function
field of X.) We note that the representation ps is absolutely G-irreducible, because p is. Let H denote
the Zariski closure of p;(I'x g) C é(E) It follows that the identity component of H is a semisimple group.
Indeed, H is reductive, because py is absolutely @—irreducible; and then semisimple, because G is semisimple.
In particular, the irreducible constituents of the E[I'k g]-module gg have determinant of finite order.

We find that the sheaf F is punctually pure of weight 0 [Laf02, Théoreme VIIL.6], so Deligne’s proof
of the Weil conjectures [Del80] shows that each group H’(T'k s,gr), endowed with its Frobenius action,
is mixed of weights > j. In particular, we get HO(Z,Hl(fK,S,ﬁE)) = 0. On the other hand, the space
Hl(ZHO(fK,S,ﬁE)) is isomorphic to the space of Frobenius coinvariants in H°(Tk s, gr), which can be
non-zero only if the space of Frobenius invariants, otherwise known as H°(T'x 5, 8E), is non-zero. However,
this space must be zero because the space H(I'k s, gx) is zero, by Lemma O
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Theorem 5.13. Suppose that G = SLy. Then Rp s is a reduced finite flat complete intersection O-algebra.

Proof. If n = 1, the result is trivial, so we may assume n > 2, hence [ > 2 (because we work in very good
characteristic). We first show that Rj g is finite flat over O. By Proposition it suffices to show that
R5 s/(w) is a finite k-algebra, as then Rj g/(w) is a complete intersection and w is a non-zero divisor on
R5 s, hence Rp g is finite over O and O-torsion-free, hence flat (see for example [BH93| Theorem 2.1.2]).
We follow a similar argument to [dJ01, §3]. We first observe that de Jong’s conjecture, [dJO1, Conjecture
1.1], was proved for [ > 2 by Gaitsgory in [Gai07, Theorem 3.6]. It asserts that the image of the group I'k g

under any continuous representation p : ', s — GL, (k((t))) is finite.

Suppose for contradiction that R5 g/(w) is infinite. After perhaps enlarging k, we can (as in [dJO1}
3.14]) find a k-algebra homomorphism « : R; g/(w) — k[t] with open image. Let p : I' — SL,,(k[t]) be the
pushforward of a representative of the universal deformation. By the above theorem of Gaitsgory, p factors
via a quotient I'x ¢ — I'g that fits into a commutative diagram of groups with exact rows

1 Tks Tk.s T 1
1 T, Ty Z 1,

where T'g is finite. In particular, the second row of this diagram is split and the centre Zr, C I'g is open. By
the absolute irreducibility of p the centre of 'y is mapped to the centre of SL, (k[t]) under p. This centre
is finite, so we deduce that p(T'g) is finite, hence (applying [dJOIl Lemma 3.15]) that p is strictly equivalent
to the trivial deformation of p to k[t]. From the universality of Rj5 g/(w) for deformations to complete
Noetherian local k-algebras with residue field &, one deduces that « factors via k, contradicting the openness
of the image of « in k[t].

We have shown that Rj5 5 is a finite flat complete intersection O-algebra. In particular, it is reduced
if and only if it is generically reduced, e.g. if R5 g[1/1] is an étale E-algebra. This follows from Proposition
and this completes the proof. O

We now combine this theorem with Proposition to obtain the following result for a general
semisimple group G.

Theorem 5.14. Suppose that there exists a representation i : G — GL(V) of finite kernel such that ip :
I'k,.s = GL(Vk) is absolutely irreducible and | > 2(dimV — 1). Then R5 s is a reduced finite flat complete
intersection O-algebra. In particular, there exists a finite extension E'/E and a continuous homomorphism
p: ks — é((’)E:) such that p mod (wg') = p.

Proof. Our assumptions imply that [ is a very good characteristic for SL(V'). Theorem implies that
R 5 is a finite O-algebra. Proposition then implies that Rj; s is a finite O-algebra. Proposition
then implies that R g is in fact a finite flat complete intersection O-algebra. Proposition then implies
that R5 g[1/1] is an étale E-algebra; in particular, it is reduced. Since a complete intersection ring is reduced
if and only if it is generically reduced, we find that Rj g is in fact reduced. (This is the same argument we
have already applied in the case G = SL,, in the proof of Theorem ) This completes the proof. O

5.3 Taylor—Wiles places

We continue with the notation of i Thus G is semisimple, S is a finite set of places of K = F,(X), and
p:T'xs — @(k) is absolutely G-irreducible. We can and do assume, after possibly enlarging F, that for
every regular semisimple element h € p(I'k ), the torus Z5(h)° C G is split. Let ps : I'x,g — é(Rﬁys)
denote a representative of the universal deformation. We fix a split maximal torus TC @7 and write T for

~

the split torus over Z with X, (T) = X*(T).

Lemma 5.15. Let v € S be a prime such that p|r, is unramified, q, = 1 mod I, and p(Frob,) is reqular

o

semisimple. Let T, = Zz(p(Frob,))®, and choose an inner isomorphism ¢ : Ty = T, (there are #W possible

choices). Then:
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(i) There exists a unique torus T, C~@Rﬁ,s lifting T, such that ps|r,. takes values in TU(R@S), and a
unique isomorphism ¢ : Tg_ o =T, lifting .

1

(ii) The homomorphism ¢~ o pslry, : Ir, — f(RﬁS) has finite l-power order.

Proof. Any two split maximal tori of Gy, are G'\(k)—conjugate7 so we can choose g € é(k‘) such that ¢Tyg~! =

T, (this is what we mean by an inner isomorphism). We take ¢ to be conjugation by this element.

The representation pglr,, factors through the tame quotient I'y of I',. Let ¢, € I'% be an
(arithmetic) Frobenius lift and ¢, € I‘%U a generator of the [-part of tame inertia, so that ¢,t,¢, " = tiv.
Then there exists a unique maximal torus T, C G R, containing the element pg(¢,) € G(Rp,s) (apply
IABD™64, Exp. XIII, 3.2]). This torus is split, and we can even (JABD"64, Exp. IX, 7.3]) find an element
g€ @(Rp,s) lifting g such that EfRﬁsﬁfl =T,. We take @ to be conjugation by this element. We will show
that ps(T'k,) takes image in TU(R@S). In particular, this image is abelian, and the first part of the lemma
will follow. The second part will then follow by local class field theory. B

To do this, we will show by induction on i > 1 that pg(t,) mod m’ lies in T, (R5 s/m’), where m
denotes the maximal ideal of R; 5. The case ¢ = 1 is clear, as p is unramified at v. For the inductive step, we
assume that pg(t,) mod m‘ lies in T}, and show that the same is true mod mi+!. Let ¢/, € fv(Rp,s/miH) be
an element with pg(t,) = t,, mod m‘. Thus ps(¢,) mod m**! and ¢, commute. We can write t/ = pg(t,)e,
for some element R N

€ € ker(G(R; s /m™) = G(R; 5/m")) = g @ m’/m*T1h,
(For the existence of this isomorphism, see for example [Pin98, Proposition 6.2].) The conjugation action of
G(Rj.5/m"™) on the subgroup g ®x m’/mi*t! factors through the adjoint action of G(k) on gx. Thus the
elements ¢/, and € commute, because ¢, mod m = p(¢,) is trivial.

In particular, we see that the relation ¢,t,¢; 1 = t% implies a relation

PS(@;)PS(%)PS(@;)il = pS(@))t;EilPS(va)il = t;pS(d’v)eilpS(‘ﬁv)il = pS(tv)qv = (tijeil)qv = (t;)qveila

hence (t/)9 =1 = pg(dy)e Lps(py)te. We write € = X, for some X € gi ®; m’/m'T1 and decompose
X =X+, ca(Cr T,,)XOC with respect to the Cartan decomposition of gy (with respect to the torus

T, C Gy,). We finally get

ps(du)e tps(py) e = —Adp(d)(X) + X = ()71,

and the a-component of this is (1 — a(p(¢y)))Xa = 0. Since p(¢,) is regular semisimple, we find that
X, = 0 for each a € ®(Gy, Ty,), or equivalently that € € t, ®;, m*/mi*! where t, = LieT,,. It follows that
ps(t,) mod m™*t € T, (R; s/m*™1). This is what we needed to prove. O

With this lemma in hand, we make the following definition.
Definition 5.16. A Taylor—Wiles datum for p: 'k g — é(k) is a pair (Q,{pv}veq) as follows:

(i) Q is a finite set of place K, disjoint from S, such that for each v € Q, p(Frob,) is reqular semisimple
and ¢, =1 mod [.

(ii) For each v € Q, @, : Ty = Z&(p(Froby)) is a choice of inner isomorphism. In particular, the group
Zz(p(Frob,)) is connected.

If Q is a Taylor-Wiles datum, then we define Ag to be the maximal I-power order quotient of the group

[Toeq T(k(v))-

Lemma 5.17. If (Q,{¢v}veq) is a Taylor-Wiles datum, then Rj suqg has a natural structure of O[Ag]-
algebra, and there is a canonical isomorphism Rz suq ®oja, O = R s.
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Proof. Let psug denote a representative of the universal deformation. Lemma shows that for each
v € Q, inertia acts on pguq via a character x, = @, ' 0 psuglix, : Ik, — f(RﬁSUQ) which has finite [-power
order and which is uniquely determined by ¢,,.

This homomorphism Yy, factors through the quotient Iy, — k(v)* given by local class field theory.
The homomorphism x, : k(v)* — f(Rp,SuQ) corresponds, by a simple version of Langlands duality (cf.
Lemma below), to a character x, : T(k(v)) — R;’SUQ. After taking products we get an algebra
homomorphism O[Ag| = R; suq. The quotient Rj sy ®0o[ag] O is identified with the maximal quotient
over which psyg is unramified, hence with Rj; 5. This completes the proof. O

The following definition plays the role of ‘big’ or ‘adequate’ subgroups of GL, (k) in previous works
on automorphy lifting (compare [CHTO08, [Thol2]).

Definition 5.18. We say that a subgroup H C @(k) is G-abundant if it satisfies the following conditions:

(i) The groups H°(H,gy), H°(H,g)), H'(H,8)) and H'(H,k) all vanish. For each regular semisimple
element h € H, the torus Zg(h)° C Gy, is split.

(ii) For every simple k[H|-submodule W C g/, there exists a regular semisimple element h € H such that
Wh 0 and Zz(h) is connected. (We recall that Zg(h) is always connected if Gy, is simply connected. )

Proposition 5.19. Suppose that the group p(I'k(c,)) C @(lc) is G-abundant and that for each v € S, the
group HY(K,,g) (1)) is trivial. Then for each N > 1, there exists a Taylor-Wiles datum (Q,{¢y}veq)
satisfying the following conditions:

(i) For eachv € Q, ¢, =1 mod IV, and #Q = h*(Tk,s,8x) = h'(Tk s, 8) (1)).

(it) We have h¢_,.(Tx.s,8{ (1)) = 0. (By definition, this is the dimension of the kernel of the map
H'(Tk.s,9¢ (1) = GveH (Ky, 5y (1)).)

(i41) There_exists a surjection OlX1,...,X,] = Rpsug with g = W' (T s,8k) + (r — 1)#Q, where r =
rank G.

Proof. The proof is a variation on the usual themes. Fix an integer N > 1. We claim that it suffices to find
a Taylor-Wiles datum (Q, {¢y }veq) satistying just the following conditions:

e For each v € Q, ¢, =1 mod IV, and #Q = h'(T'k.s,8) (1)).
e We have hé_triv(I‘K,s,ﬁ}g(l)) =0.

Indeed, given a Taylor—Wiles datum, the Cassels—Poitou-Tate exact sequence takes the form (see [Cesl
Theorem 6.2]):

OHHé-triv(FK,SUQa/g\\k/(1))HH2(FK,SUQ7ﬁk)H@UEQHQ(KUaﬁk)HO'

Combining this with the Euler characteristic formula (already used in the proof of Proposition [5.11f), we
obtain the formula R
W (T k,50Q: 8) = hy v (Trs, 81 (1)) = Y (rank G) = r#Q.
vEQR

)) =7 (veQ)and k(T (e, 8k) = 0.) In particular,

(We have used the equalities h?(K,, gx) = h°(K,,8) (1
1Tk,s,8)(1)). For Q satisfying the above two bullet

the case @ = ) gives the equality h'(T'k s,8k) = h
points, we obtain
h'(Cx,suq, 8k) = r#Q = ' Tk suq, 8k) + (r — 1)#Q,

hence the third point in the statement of the proposition.
By induction, it will suffice to show that for any non-zero cohomology class [¢)] € H'(T'k.s,8) (1)),
we can find infinitely many places v € S of K such that ¢, = 1 mod IV, p(Frob,) is regular semisimple with
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connected centralizer in @k, and resk, [¢)] # 0. Indeed, we can then add one place at a time to kill off all
the elements of the group H'(I'k 5,8y (1)). By the Chebotarev density theorem, it will even suffice to find
for each non-zero cohomology class [¢)] € H'(I'k 5,8y (1)) an element o € L'k (¢,v) such that p(o) is regular

semisimple with connected centralizer in @k, and the o-equivariant projection of (o) to g/ (1) is non-zero.

To this end, let Ky = K((;~), and let Ly denote the extension of K cut out by p. Our hypothesis
that Hl(ﬁ(FK(Q)), k) = 0 (part of Deﬁnition implies that we have p(T'x,) = p(T'k ). In particular, the
group p(T'k,) is G-abundant, which implies (by inflation-restriction) that the element Resy , [¢] determines
a non-zero, I' ik -equivariant homomorphism f : 'y, — @)/ (1). Let W be a simple k[I'k ]-submodule of the
k-span of f(I'z, ), and choose g € I'k,, such that p(og) is regular semisimple with connected centralizer in
G, and W9 £ 0. We write Doy © 81 (1) — §)Y(1)7° for the op-equivariant projection. Then the condition
Weo £ 0 is equivalent to the condition p,, W # 0.

If poytp(0g) # 0, then we’re done on taking o = og. Otherwise, we can assume that this projection
is zero, in which case we consider elements of the form o = 7rog for 7 € I'r,,. For such an element, we
have (o) = f(7) + ¥(00) and p(c) = p(0g), so the proof will be finished if we can find 7 € 'y, such that
Poo f(T) # 0. Suppose for contradiction that there is no such 7, or equivalently that p,, o f = 0. Then the
image of f is contained in the unique op-invariant complement of g (1)?° C g) (1), implying that we must
have p,, W = 0. This is a contradiction. O

6 Compatible systems of Galois representations

Let IF, be a finite field, and let X be a smooth, projective, geometrically connected curve over Fy, K = F (X).
Let G be a split reductive group over Z, and fix an algebraic closure Q of Q.

Definition 6.1. A compatible system of @—representations is a tuple (S, (px)a) consisting of the following
data:

o A finite set S of places of K.

e A system of conlinuous and @—completely reducible representations py : 'k ¢ — @(@/\), indexed by
the prime-to-q places A of Q, such that for any place v ¢ S of K, the semisimple conjugacy class of
pr(Froby,) in G is defined over Q and independent of the choice of A.

If \o is a prime-to-q place of Q and o : T — @(@)\O) is a continuous, almost everywhere unramified
representation, we say that the compatible system (S, (pa)a) contains o if there is an isomorphism o = py,
(i.e. these two representations are G(Q,,)-conjugate).

The semisimple conjugacy class of an element g € @(@A) is by definition the conjugacy class of
the semisimple part in its Jordan decomposition g = g°¢". The condition of being defined over Q in this
definition can be rephrased as follows: for any f € Z[G]%, the number f(px(Frob,)) € @, in fact lies in Q
and is independent of . R

If G # GL,, then compatible systems of G-representations are not generally determined by individual
members. For this reason, Definition should be regarded as provisional. Our main observation in this
section is that we recover this uniqueness property if we restrict to compatible systems of G-representations
where one (equivalently, all) members have Zariski dense image.

Definition 6.2. Let (S, (pa)r) and (T, (ox)x) be compatible systems of G-representations.

(i) We say that these systems are weakly equivalent if for allv & SUT, the semisimple conjugacy classes
of pa(Frob,) and oy (Frob,) in G(Q) are the same.

(ii) We say that these systems are equivalent if for all prime-to-q places \ of Q, the representations py, ox
are G(Qy)-conjugate.

It is clear from the definition that equivalence implies weak equivalence. Note that if p is a given
representation, then any two compatible systems containing p are, by definition, weakly equivalent.
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Lemma 6.3. Let (S,(px)x) and (T, (ox)x) be compatible systems of Galois representations. Then the fol-
lowing conditions are equivalent:

(i) These systems are weakly equivalent.

(ii) For every representation R : @@ — GL(V) of@ over Q, and for every prime-to-q place A of Q we have
Ropy = Rooy.

(iii) For every representation R : é@ — GL(V) of G over Q, and for some prime-to-q place \g of Q we
have Ro py, 2 Rooy,.

Proof. The condition that each p) is é—completely reducible is equivalent to asking that the Zariski closure
of the image of each p) has reductive connected component (see [Ser05, Proposition 4.2]). This implies
that for any representation R, the representation R o py is semisimple, and is therefore determined up to
lbOmOI‘phlbm by its character. The lemma now follows immediately from Corollary [2:2]and the fact that the
ring Q[G ] is generated by the characters of the irreducible representations of G O

Proposition 6.4. Let \ be a prime-to-q place of Q, and let p,p' : T — @(@A) be continuous almost
everywhere unramified homomorphisms. Suppose that p has Zariski dense image and that for all but finitely
many places v of K, the semisimple conjugacy classes of p(Frob,) and p'(Frob,) are the same. Then p’ also
has Zariski dense image and p, p’ are é(@,\)-conjugate.

Proof. We can assume without loss of generality that p’ is G- completely reducible. Fix a finite set .S of places
of K such that both p, p’ factor through I'x 5. We first observe that for any v € 'k g, the elements ()

and p'(y) have G(Q,)-conjugate semisimple part. Indeed, it suffices to show that for all f € Z[G ] we have
f(p(7)) = f(p'()). This follows from the corresponding statement for Frobenius elements, by Corollary 22
Choose a faithful representation R : Gf — GL(V) of G, and let G/ = (G ). Then the image

R(p(T'k,s)) is Zariski dense in G', and Rop, Ro p' are isomorphic. For dimension reasons, we therefore find
that R(p/'(T'k,s)) is Zariski dense in G', and hence that p’ has Zariski dense image in G.

We now show that the representations R o p and Ro p are G’ (Q,)-conjugate, as homomorphisms
into é’(@k) Let g € GL(V)(Q,) be such that g(Ro p)g~* = Rop'. Then g € NGL(V)(CA}”)(@A), and we
need to show that ¢ induces an inner automorphism of G'. Let 6 : G' — G’ denote the automorphisms
induced by conjugation by g. We know that if Frob, € I' 5 is a Frobenius element, then ¢ leaves invariant
the semisimple conjugacy class of p(Frob,). This implies that 6 leaves invariant all semisimple conjugacy
classes of G'. Indeed, these semisimple conjugacy classes are in bijection with points of the quotient G’ / G’ ,
and the Q,-points corresponding to elements p(Frob,, ) are Zariski dense (as follows from an I-adic variant of
the Chebotarev density theorem).

We therefore need to show that if 6 is an automorphism of a reductive group H over an algebraically
closed field of characteristic 0, and 6 acts trivially on H/H, then € is an inner automorphism. After
composing 6 with an inner automorphism, we can assume that 6 preserves a pinning (T, B, {X, }acr),
where ' C B C H are a maximal torus and Borel subgroup, R C ®(H,T) is the corresponding set of simple
roots, and X, (a € R) is a basis of the a-root space h, C h. Then 6 corresponds to a symmetry of the
Dynkin diagram of H; in particular, it is the trivial automorphism if and only if its restriction to 7" is the
identity (see [Bou05, Ch. VIII, §5, No. 2]). Let W denote the Weyl group of G, let A = Z®(H,T) C X*(T)
denote the root lattice, and let Aut(A) denote the group of automorphisms of A which leave ®, ® invariant.
Then there is a split short exact sequence

1 w Aut(A) Out(A)——1,

where the splitting is given by lifting a class of “outer” automorphisms to the unique one which leaves R
invariant. In particular, the image of § in Aut(A) lies in the image of this splitting, by construction. It follows
that the restriction of 6 to T is non-trivial if and only if its restriction to the quotient T/W is non-trivial.
Our assumption that 6 acts trivially on the quotient H /H = T /W then implies that 6 is indeed the identity
automorphism. This completes the proof. O
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Theorem 6.5. Suppose that G is semisimple. Let Ao be a prime-to-q place of Q, and let p: Tk 5 — @(@/\0)
be a continuous homomorphism with Zariski dense image. Then:

(i) There exists a compatible system (S, (px)x) containing p. Moreover, each constituent representation py
has Zariski dense image.

(i) Any other compatible system containing p is equivalent to (S, (pa)x)-

Proof. We first show the existence of the compatible system. We apply [Chi04, Theorem 1.4], which along
with the other results of that paper (in particular, [Chi04, Theorem 6.12]) says the following:

o Let (S, (ax)r) be a compatible system of GLj-representations, each pure of weight 0. For each prime-
to-g place A of Q, let G\ denote the Zariski closure of the image of ay. Suppose that G, is connected.
Then there exists a reductive group Go over Q and for each prime-to-g place A an isomorphism ¢y :
G\ = Gy, with the following property: for any irreducible representation ¢ : Go — GL(V), the
system (S, (6, © ¢ 0 ax)a) is a compatible system of GL(V')-representations.

To apply this, let R : @@ — GL(V) be a faithful representation, and let cy, = Rop. Then a, is semisimple,
and we have a tautological isomorphism jg : CA}'@k = (),. Each irreducible constituent of ), has trivial

determinant (because p has Zariski dense image and G is semisimple, hence has no non-trivial characters).
By [Laf02, Théoreme VIL.6], ay, lives in a compatible system (S, (ax)x) of GL,,-representations, each pure
of weight 0. Let us apply Chin’s results, and define o) = ¢ o ay. We claim that (.S, (o)) is a compatible
system of Gg-representations.

Since the ring of invariant functions on Gy is generated by characters, it is enough to show that for
any irreducible representation ¢ of Go, and for any place v ¢ S of K, the number tr fg (o (Frob,)) lies in Q
and is independent of \. However, this is exactly the statement that the representations G@A ooy = 9@ oproay
lie in a compatible system. R R

To obtain a compatible system of G-representations, we choose an isomorphism kg : G@ =~ Gy which
is in the inner class of ¢y, o jo, and define py = ko_,a oox. Then (S, (px)x) is a compatible system of
@—representations, and py, is (A?(@)\O )-conjugate to p.

This completes the construction of the compatible system containing p, and shows that each con-
stituent has Zariski dense image. We now show that any other compatible system containing p is equivalent
to (S, (pa)r). If (T, (ph)x) is such a compatible system, then for every prime-to-q place A of Q, the rep-
resentations py and p) are weakly equivalent, by Lemma Moreover, py) has Zariski dense image. By
Proposition px and p), are @(@/\)—conjugate. This implies that the two compatible systems are in fact
equivalent. O]

The following proposition is an application of results of Larsen [Lar95|.

Proposition 6.6. Suppose that G is semisimple and simply connected. Let (S, (px)r) be a compatible
system of @-representations such that some (equivalently, every) representation py has Zariski dense image
mn é(@,\) Then, after passing to an equivalent compatible system, we can find a number field E C Q with
the following properties:

(i) For every prime-to-q place A of Q, the image of py is contained inside é(EA)

(#i) There exists a set L' of rational primes of Dirichlet density 0 with the following property: if I splits in
E/Q and 1 &€ L', and X is a place of Q above I, then py has image equal to G(Z;).

Proof. Let R : é@ — GL(V) be a faithful representation. Then ([Chi04, Theorem 4.6]) we can find a number

field E C Q such that for every prime-to-¢ place A of Q, and for every place v € S of K, the characteristic
polynomial of (R o py)(Frob,) has coefficients in £ C E) and is independent of . By [Chi04, Lemma 6.4],
we can find a place vy € S of K such that for every prime-to-¢q place A of QQ, the Zariski closure of the group
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generated by (R o py)(Frob,,)® is a maximal torus of R(CAT'@A); in particular, it is connected, and py(Frob,,)

is a regular semisimple element of G(Q, ).

After possibly enlarging F, we can assume that for every place v ¢ S of K, the conjugacy class of
pa(Frob,) in G(Q,) is defined over E and independent of \. We can moreover assume that the characteristic
polynomial of each (Ro py)(Frob,,) has all of its roots in F, and that the conjugacy class of py(Frob,,) has a
representative in G (E). Choose a place wg of Kg lying above vg. After passing to an equivalent compatible
system, we can suppose that px(Frob,,,) € @(E) is independent of A; the Zariski closed subgroup it generates
is a split maximal torus of @E

Let 0 € T'g, = Gal(Q,/E)). The representation p§ is equivalent to py, by Proposition so there
exists a (necessarily unique) g € Gad (Q,) such that gpg\g_1 = px. In particular, we have gpy(Frob,,)g~! =
pa(Froby,), hence g lies in the centralizer Zgz.q(pa(Froby,)) = T, say. We have thus defined a 1-cocycle
o +— g with values in T(Q,). (We note that this 1-cocycle is continuous when T(Q,) is endowed with the
discrete topology, since py can be defined over a finite extension of Q;, by the second part of Theorem )
Since T is a split torus over E, the group H 1(E)\, T(Q,)) is trivial, showing that we can conjugate py by an
clement of T(Q,) to force it to take values in G(E,), as desired. This completes the proof of the first part
of the proposition.

__ For the second part, we can assume that E is Galois over O, and that the faithful representation
R : Gg — GL(V) is defined over E. We will apply [SWl Proposition 7.1] to the compatible system
(S, (R o px)a). This result is deduced from the main theorem of [Lar95], and implies the following: there
exists an open normal subgroup A C I'ir and a set £’ of rational primes of Dirichlet density 0, such that if A is
a place of Q above a prime I spht in B, and | € L', then p)(A) is a hyperspecial subgroup of G(E)) = G(Q).
All hyperspecial subgroups of G(Ql) are conjugate under the action of Gad((@l) so we can further assume
(after replacing (S, (px)) by an equivalent compatible system) that for any such place A, px(A) actually
equals é(Zl).

Then p)(I'k) is a compact subgroup of é(@l) which contains the hyperspecial subgroup é(Zl) as a
subgroup of finite index. Since hyperspecial subgroups can be characterized as those compact subgroups of
G(Q;) of maximal volume, it follows that we in fact have p)(T'x) = G(Z;). This completes the proof of the
proposition. [

The following proposition will later be combined with the results of §5]and §6]to produce compatible
systems of representations with Zariski dense image (see Proposition below).

Proposition 6.7. Suppose that G is simple and simply connected, and let | be a very good characteristic
for G. Let E C Q, be a coefficient field, and let H C G(O) be a closed subgroup such that its image in G( )

contains G(F;). Suppose that | > 2dimg, gr,- Then H contains a conjugate of G(Z)). In particular, H is
Zariski dense in Gg,

Proof. Results of this type will be studied exhaustively in [BAdR]. After shrinking H, we can assume that
the residue image of H equals G(F;). By the argument of [KTal Lemma 4.2], it suffices to establish the
following claims:

(i) The group Hl(@(Fl),ﬁyl) is zero.
(ii) The group homomorphism @(Z/ ’7) — @(Fl) is non-split.
(iii) The module gF, is an absolutely irreducible F; [G(F)]-module.

We observe that our assumption [ > 2dimp, gr, implies in particular that [ > 5. (We can assume that G
is not the trivial group.) Claim (i) therefore follows from the main theorem of [V6I89]. Claim (iii) follows
because the characteristic I is very good for G (see the table in §3.1)). Claim (i) is implied by the following:

(iv) Let v € G(F;) be an element of exact order . Then no pre-image of v in G(Z/I2Z) has exact order I.
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To show (iv), we note that the adjoint representation G — GL(g) has kernel Zg, which has order prime
to I (because we work in very good characteristic). It is therefore enough to show that if I > 2n and
v € GL,(F;) has exact order [, then no pre-image of v in GL,(Z/I?Z) has order I. (We are applying this
with n = dimg, gr,.)

We show this by direct computation. After conjugation, we can assume that v = 1 + uw, where @
is an upper-triangular matrix in M, (F;) with 0’s on the diagonal. Any pre-image of v in GL,,(Z/I?Z) has
the form 4 = 1 + u + lv, where u is an upper-triangular matrix with 0’s on the diagonal in M,,(Z/I*Z), and
v € M, (Z/I?Z) is arbitrary. Moreover, u # 0 mod IZ (since v # 1, by assumption). We calculate

11— 1)
2

F =14 1(u+v)+ (w+)?2+-+lu+ )+ (u+ ) =1 +u) —u + (u+ ) mod I*Z.

We also have
(u+ ) =u! + 10 v +u'2vu+ - 4 vu! 1) mod 1?Z.

Since I > 2n and u™ = 0, we find (u + (v)! = 0 mod [?Z and hence ' = (1 + u)'. Since u is not zero mod
I, (1 4+ ) has exact order (? in GL,(Z/I*>Z), showing that 5! # 1, as claimed. This shows claim (iv) and
completes the proof. O

7 A local calculation

In this section, we will analyse Hecke modules of the type that arise when considering Taylor—Wiles places.
Some of the calculations are quite similar to those of [KThl §5].

Let K be a non-archimedean local field with residue field I, of characteristic p, and fix a choice of
uniformizer wg. Fix a prime [ # p and a square root p'/2 of p in @, as well as a coefficient field E C Q;
with ring of integers O and residue field k.

Let G be a split reductive group over Ok, and fix a choice of split maximal torus and Borel subgroup
T C B C G (defined over Of); this determines a set @ C ® = ®(G,T) of positive roots, a root basis
A C @, and sets X.(T)" C X.(T) and X*(T)* C X*(T) of dominant cocharacters and characters,
respectively. We write N for the unipotent radical of B. We set W = W(G,T). We write T c Bcd for
the dual group of G, viewed (as usual) as a split reductive group over Z. We establish the following running
assumptions, which will hold throughout §7

e ¢g=1mod .
o [tH#W.

We introduce open compact subgroups U = G(Ok), Uy = pre-image of B(F,) under U — G(F,), and Uy =
maximal pro-prime-to-l subgroup of Uy. Thus Uy is an Iwahori subgroup of G(K), and there is a canonical
isomorphism of Uy/U; with the maximal I-power quotient of T'(F,). We have the following simple case of
Langlands duality:

Lemma 7.1. Let A be a ring. Then there is a canonical bijection x <+ xV between the following two sets:
(i) The set of characters x : T(K) — A*.

(ii) The set of homomorphisms x" : Wi — T(A).

~

It is uniquely characterized as follows: if A € X,(T) = X*(T), then Ao x¥ o Artr = x o X as characters
K* — A*.

Proof. Tt suffices to note that if S is a split torus over a field k, and A is a ring, then there are canonical
isomorphisms

-~

Hom(S(k), AX) 2 Hom (X, (S) @z k<, A*) = Hom(k*, Hom(X*(S), A¥)) = Hom(k*, S(A)).
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If V. G(K) is an open compact subgroup, then we write Hy for the convolution algebra of
compactly supported V-biinvariant functions f : G(K) — O, with respect to the Haar measure that gives
V volume equal to 1. If R is an O-algebra, then we write Hy, r = Hy ®o R. This can be interpreted as a
double coset algebra; see [NT] §2.2] or §8| below. In particular, it has a basis consisting of the characteristic
functions [V gV] of double cosets. If II is any smooth R[G(K)]-module, then IT" has a canonical structure of
Hy, g-module. If V' C V' is another open compact subgroup, then there is an inclusion Hy+ C Hy. However,
this is not in general an algebra homomorphism (it does not preserve the unit unless V= V").

We will be concerned with the actions of the algebras H, and Hr,. We now make some comments
on these in turn. The Iwahori-Hecke algebra Hp, is extremely well-studied. It has a presentation, the
Bernstein presentation, which is an isomorphism

Hu, = O[X.(T)]20[U\U/Uy). (7.1)

The subalgebra O[Up\U/Us] C Hy, of functions supported in U is finite free as an O-module, having a basis
consisting of the elements Ty, = UgwUy (w € W), because of the existence of the Bruhat decomposition of
G(F,). (Here w denotes a representative in U of the Weyl element w € W.) The other terms appearing are
defined as follows. (We refer the reader to [HKP10] for more details.)

o O[X.(T)] is the group algebra of X, (T), a free Z-module. The embedding O[X.(T')] — Huy, is defined
as follows: if e is the basis element in O[ X, (T)] corresponding to a dominant cocharacter A € X, (T)*,
then we send ey to ¢~ *N [UgA\(wwx)Up], where p is the usual half-sum of the positive roots. One can
show that this defines an algebra homomorphism O[X, (T)*] — Hy,, which then extends uniquely to
a homomorphism O[X.,(T)] — Huy,-

e The tensor product @ is the usual tensor product as O-modules, but with a twisted multiplication,
which is characterized on basis elements by the formula (for « € A, A € X, (T)):

€s, N\ — 5%

Tsae,\:esa()\)Tsa—&—(q—l) T e

(7.2)

We note that the fraction, a priori an element of the fraction field of O[X,(T')], in fact lies in O[X,.(T)].

The subalgebra O[X,(T)]"W C Hy, is central. We define T'(K)q = T(K)/T(Ok). In what follows, we will
use the identification T(K)o = X,.(T), so that if, for example, II is a smooth O[G(K)]-module, then TV
gets the structure of O[T(K)g]-module (via the inclusion O[T(K)o] = O[X.(T)] C Hu,)-

Ifxy:T(K)— @IX is a smooth character, then we write iy for the normalized induction. Explicitly,
we have

iG%x = {f : G(K) — @, locally constant | Vb € B(K),g € G(K), f(bg) = 5(b)1/2x(b)f(g)},

with G(K) acting on f € i%y by right translation, and §(tn) = |2p(t)|x the usual modulus character. The
Iwahori subgroup Uy C G(K) has the following well-known property:

Lemma 7.2. Let w be an irreducible admissible Q,[G(K)]-module. Then:

(i) ™Y £ 0 if and only if © is isomorphic to a submodule of a representation iGx, where x : T(K)o — @lx
is an unramified character. In this case, x is determined up to the action of the Weyl group, and the
characters of O[T (K)o| which appear in w7° are among the w(x), w € W.

(ii) If there exists an O-lattice M C V0 which is stable under the action of O[T(K )|, then x in fact takes
values in ZX. Let X = x mod mgz, denote the reduction modulo of x. If x:T(K)oy — le has trivial
stabilizer in the Weyl group, and m,,(x) is the kernel of the homomorphism O[T (K )o] — F; associated

to the character w(X), for some w € W, then (WUO)mu’(Y) has dimension either 0 or 1 as a Q;-vector
space.
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Uo T(Ok)

Proof. If 7 is any admissible Q;[G(K)]-module, then there is a canonical isomorphism 7V 2 7y (7)
of Q[T (K)o]-modules, where 7y (7) = 7y ® 6~/2 is the normalized Jacquet module. Indeed, [Cas80,
Proposition 2.4] says that the projection map p : 70 — rx(m)T(OK) is a vector space isomorphism,
and [Cas80, Proposition 2.5] says that for any A € X.(T)F, v € 7%, we have p([UgA(wk)Uslv) =
32 (N@x))(Mwk) - p(v))-

If 7 is any irreducible admissible Q;[G (K )]-module, and x : T(K) — @lx is a smooth character, then
Frobenius reciprocity gives a canonical isomorphism

Homg (g (m, igx) = Homyp(g)(rn (), X)-

We see that if 790 # 0, then m embeds as a submodule of i§x for an unramified character x. Conversely, if
7 is a submodule of a representation igx, then 7Y° has y as a quotient, hence is in particular non-zero.

It follows from [BZ77, 2.9, Theorem]| that two representations ig x and zg X’ have a common Jordan—
Holder factor if and only if x, X’ are conjugate under the action of the Weyl group. On the other hand,
the Jordan—Holder factor Q[T (K )o]-modules of rx(i%x) are, with multiplicity, the w(x) (w € W), so the
factors of 70 must be among the w(x). This shows the first part of the lemma. Everything in the second
part now follows easily. O

Ifx:T(K)y — EX is a character, we will henceforth write my C O[T(K)o] for the maximal ideal
which is the kernel of the homomorphism O[T(K )] — F; associated to the character Y, as in the statement
of the lemma.

We now consider the algebra Hr,. We define T(O)! C T(Ok) to be the maximal pro-prime-
to-1 subgroup of T(Ok), T(Ok);, = T(Ok)/T(Ok)!, and T(K); = T(K)/T(Ok)". There is a canonical
isomorphism Uy /Uy = T(Of);. We define a submonoid T(K);” C T(K),; as the set of elements of the form
tT(Ok)! with tT(Ok) = Mwk)T(Ok) for some dominant cocharacter A\. Observe that the choice of wx
determines an isomorphism T(K); & X.(T) x T(Ok);, and that A is uniquely determined by the coset
tT(Ok).

Lemma 7.3. (i) The assignment e, € O[T(K)]'] — ¢~ »M[UitU,] € Hy, determines an algebra homo-
morphism O[T(K);"] — Hu,, which extends uniquely to an algebra homomorphism O[T (K),] — Hu, .

(ii) Let I1 be a smooth O|G(K)]-module, t € T(K);, and v € IY°. Then [UptUplv = [UitUs]v. In other
words, the inclusion TIV0 C TIYt is compatible with the algebra map O[T(K);] — O[T (K)).

Proof. Let U, C U denote the maximal pro-p-subgroup; then U, C Uy C Uy and U/U, = T(F,). The
Hecke algebra Hy, enjoys many of the same properties as the Iwahori-Hecke algebra Hy,; in particular, it
admits Iwahori-Matsumoto- and Bernstein-style presentations, see [Vig05| [FIil1]. The proofs of many of
these properties can be transposed word-for-word to the algebra Hy;,. This is in particular the case for the
first part of the current lemma; see e.g. |[Flilll Lemma 2.3] and the remark immediately following [FLil1l
Proposition 4.4].

For the second part, we can assume without loss of generality that ¢t € T(K )l+ Recall that the
action of these Hecke operators can be given as follows: if v € IIV, then we decompose VgV = 1L gV,
and set [VgV]v = 3. g; - v. It is therefore enough to show that given ¢t € T(K);", we can find elements
g1,---,9n € G(K) such that UptUy = [],; g;iUo and UitU; = [[, g;Ui. It even suffices to show that the
natural map Uy /Uy NtUt~ — Uy /Uy NtUGt ! is bijective. It is surjective, because Uy = U1T(Of) and
T(Ok) C Uy NtUst ™.

To show injectivity, suppose that u,v € U; have the same image in Uy/Uy NtUpt~t. Then we can
write u = vw with w € Uy NtUpt ™!, hence w € Uy NtUyt~!. To finish the proof, it is therefore enough to
show that Uy NtUt™' = Uy NtU ;™. Let N denote the unipotent radical of B, N the unipotent radical
of the opposite Borel. We set Uy = N(K) N Uy, Uy = N(K) N Uy, and define U;", U; similarly. Then we
have the Iwahori decomposition: the product map U; x T(Ok) x U0+ — Up is a bijection. Similarly the
map U; x T(O)! x U — Uy is a bijection and we have Uy = U;", Uy = U; . Since ¢ normalizes N (K)
and N(K), the result now follows from the existence of the Iwahori decomposition and the fact that the
multiplication map N x T x N — G is an open immersion: we have

tUpt ™ = tUy t " T (O )tUSt ™ = tU t ' T (O )tU 1,
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hence U; ﬁtUot_l =U; ﬂtUlt_l. O

Lemma 7.4. Let 7 be an irreducible admissible Q,[G(K)]-module. Then:

(i) ™1 # 0 if and only if T is isomorphic to a submodule of a representation i%y, where x : T(K) — @lx
is a smooth character which factors through T(K) — T(K);. In this case, x is determined up to the
action of the Weyl group, and the characters of O[T(K);| which appear in 71 are among the w(x),
weW.

(ii) If 7V+ # 0 and there exists an O-lattice M C ©Uv which is stable under the action of O[T(K),], then

X in fact takes values in le. In this case the reduction modulo | X : T(K); — EX is unramified; if it
has trivial stabilizer in the Weyl group, and m,,x) is the kernel of the homomorphism O[T (K)] — IF;

associated to w(X), for some w € W, then (x!1) has dimension either 0 or 1 as a Q;-vector space.

Mw(x)

(iii) If 7Vr # 0, there exists an O-lattice M C 7Yt which is stable under the action of O[T(K)], X has
trivial stabilizer in the Weyl group, and (ﬂUl)mwm = 0, then the action of T(K); on this 1-dimensional
vector space is by the character w(x).

Proof. The last two points follow easily from the first. For the first, we observe (cf. the proof of [FIilll
Theorem 2.1]) that for any admissible Q;[G(K)]-module , the projection 7Vt — ry (m)7(©x)" is an isomor-

phism of Q;[T'(K);]-modules. The remainder of the lemma then follows from [BZT77] in the same way as in
the proof of Lemma O

If X : T(K)o — F, is an unramified character, then we will write my C O[T(K);] for the maximal
ideal which is the kernel of the homomorphism O[T'(K);] — F; which is associated to the character Y. This
is an abuse of notation, since we have used the same notation to denote a maximal ideal of O[T(K)y].
However, we hope that it will not cause confusion, because there is a canonical surjective homomorphism
O[T(K);] — O[T (K)p] which induces a bijection on maximal ideals.

With these preliminaries out of the way, we can now start our work proper. Our assumption that
¢ = 1 mod [ has the following important consequence:

Lemma 7.5. There is an isomorphism Hy, ®o k =2 E[X.(T) x W].

Proof. This is just the reduction modulo [ of the Bernstein presentation (7.1, on noting that k[Up\U/Uy] =
k[W], and that the twisted tensor product ([7.2) becomes the defining relation of the semidirect product
X.(T) x W, because ¢ =1 in k. O

Lemma 7.6. Let II be a smooth O[G(K)]-module, flat over O, such that IV is a finite free O-module.
Suppose that there is exactly one mazimal ideal of O[X.(T)]W in the support of IV ¢ k, corresponding to

the W-orbit of an unramified character X : T(K) — le with trivial stabilizer in W. Then:

(i) There is a decomposition I1V0 = @weW(HUO)mw@-

(it) The map [U] : 1IY — 1Y induced by the element [U] =Y, oy [UowUo] € Huy, restricts to an isomor-
phism (I1V0),_ — 11V,

Proof. Since I1Y° is finite free as an O-module, we have a direct sum decomposition TTIY0 = @, (I1V0),,,
where the direct sum runs over the set of maximal ideals of O[T(K)g] which are in the support of I10;
equivalently, the set of maximal ideals of k[T'(K)g] which are in the support of II"° ®x k. By assumption,
if m is a maximal ideal in the support corresponding to a character ¢ : T(K) — EX , then its pullback to
O[X.(T)]" equals the pullback of my. This in turn implies that ¢ is a W-conjugate of X.

For the second part, we note that both (HU‘J)mY and I1Y are finite free O-modules. To show that
the given map is an isomorphism, it therefore suffices to show that the map

[U]: (7). ®0 k — 1Y ®0 k (7.3)
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is an isomorphism. Since [U : Up] = #W mod [, and [ { #W by assumption, we have IV = [U]1IY°, and
[U : Uy ~HU] is a projector onto IIYV. Writing M =TIV ®¢ k, a Hy, ®o k-module, it is therefore enough to
show that the map

(U] : My, — [UIM (7.4)

is an isomorphism. To show this, we note that if w € W, then Lemma implies that the action of
w € Hy, ®o k sends My isomorphically to My, . Since [U] corresponds to the element >y w €
E[W] C k[X.(T) x W] under the isomorphism of Lemma. [7.5] this finally shows that the map given by (7.4)
is indeed an isomorphism. O

Lemma 7.7. Let Q be an algebraically closed field, and let 1, ' : Wx — f(Q) be smooth characters, and
suppose Zg () = Tq. Let 1 : T — G denote the natural inclusion. Then the following are equivalent:

(i) The characters ¢ and v’ are W -conjugate.

(i) The @-pseudochamcters treup and tr)’ of Wi are equal.

Proof. The first condition clearly implies the second. For the converse direction, we note that both ¢ and
Y’ are G-completely reducible, so it follows from Theorem 4.5/ that we can find g € G(Q2) with gy/g~! = 1.
In particular, the centralizer of the image of ¥’ is a maxunal torus of GQ, since the image is contained
inside T( ), by assumption, we find that Zz(¢') = To. It then follows that g normalizes Tq, hence that g
represents an element of W. O

The following proposition, which is of a technical nature, will be used in our implementation of the
Taylor-Wiles method below; compare [Thol2), Proposition 5.9].

Proposition 7.8. Let R be a complete Noetherian local O-algebra with residue field k, and let I1 be a smooth
R[G(K)]-module such that for each open compact subgroup V C G(K), IV is a finite free O-module, and
I ®o Q; is a semisimple admissible Q;[G(K)]-module. If V C G(K) is an open compact subgroup, define
Ry to be the quotient of R that acts faithfully on IV . It is a finite flat local O-algebra.

Suppose that there exists a homomorphism py, : 'k — G(Ry,) satisfying the following conditions:

(i) puslwy mod mp,, : Wi — G(k) is the composztwn of an unramified character ¥ : W — T(k) with

trivial stabilizer in W with the inclusion 1 : T — G.

(i) For each irreducible admissible Q;|G(K)]-module 7 which is a submodule of a representation i%xr,
where xr : T(K) — @lx is an unramified character, let V; denote the m-isotypic component of 1o Q,,
and let Ry, denote the quotient of Ry, which acts faithfully on TIV° N V,. Let p(r) denote the

representation I'i — é(RUO) — G(RUM). Then the G-pseudocharacter of p(m)|w, takes values in
the scalars o o
Ql C RUUJT ®O Ql C End@l (VWUO),

where it is equal to the @—pseudochamcter of the representation vxY.
Then there is a canonical isomorphism (HUO)mY =TIV of Ry,-modules.

Proof. The result will follow from Lemma if we can show that the only maximal ideal of O[X,(T)]" in
the support of II° ®¢ k is the one corresponding to the W-orbit of ¥. This follows from the existence of
pu, and the compatibility condition on its pseudocharacter, as we now explain.

By |[ABD'64, Exp. IX, 7.3] and the argument of Lemma we can assume, after perhaps

conjugatlng pu, by an element of G(RU) with trivial image in G(k) that py,|w, = tx" for some character
: Wi — T(Ry). If 7 is an irreducible admissible Q;[G(K )]-module such that 7V # 0, then it can be

written as a submodule of i§, for some character x, : T'(K)o — Q. If further (1Y% ®p Q;) NV # 0, then
the image of IV under the Hy,-equivariant projection IV @0 Q, — VY0 is an O-lattice. This implies that
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X~ must in fact take values in le . We need to show that x» mod myz and X are W-conjugate as characters
T(K) > F,.

Let x(7) : T(K) — Ry, . denote the image of x under the quotient Ry;, — Ru,,». The point (ii)
above means that the compositions

Y Wi = T(Zy) — G(Zy)
and - ~
ox(m)Y s Wi — T(Ry,.») = G(Ruy =)

have the same associated pseudocharacter, which therefore takes values in Z; (viewed as a subring of the scalar
endomorphisms inside Endg (V,7°)). This implies in particular that txy mod mz and tx" mod mp, =

tx(m)Y mod mp,, . have the same associated @—pseudocharacter over F;; and this implies by Lemma
that they are in fact W-conjugate. Applying again the bijection of Lemma [7.1|now concludes the proof. [

%

We now state another proposition, analogous to [Thol2, Proposition 5.12], that will be used in our
implementation of the Taylor—Wiles method. A similar argument has been used by Guerberoff [Guell].

Proposition 7.9. Let R be a complete Noetherian local O-algebra with residue field k, and let IT be a smooth
R[G(K)]-module such that for each open compact subgroup V C G(K), IV is a finite free O-module, and

O ®0 Q; is a semisimple admissible Q;|G(K)]-module. If V. C G(K) is an open compact subgroup, define
Ry to be the quotient of R that acts faithfully on IV, a finite flat local O-algebra.
Suppose that there exists a homomorphism py, : T'x — G(Ry,) satisfying the following conditions:

(i) pu,lwy mod mp, : Wi — G(k) is the composition of an unramified character X¥ : Wi — T/(k) with
trivial stabilizer in W with the inclusion v : T — G. (After conjugating py, by an element of @(RUI)

with trivial image in @(k), we can then assume that py, |w, = tx" for a uniquely determined character
x:T(K)— Rél.)

(i4) For each irreducible admissible Q;[G(K)]-module T which is a submodule of a representation iGxr,

where x» : T(K) — @lx is a character which factors through the quotient T(K) — T(K), let Vi
denote the m-isotypic component of Il ®o Q;, and let Ry, » denote the quotient of Ry, which acts

faithfully on TIV' N V,. Let p(x) denote the representation T — G(Ry,) — CA?(RUl,w). Then the
pseudocharacter of p(m)|w, takes values in the scalars

Q, C Ry, »®0Q C Emd@l(VﬂUl)7
where it is equal to the pseudocharacter of the representation Lxy.

Consider the two actions of the group T(Ok); on (1Y) w_ defined as follows. The first is via the canonical
isomorphism T(Og); =2 Uy /Uy. The second is defined as in Lemma using the restriction of the character
X : T(K); — Ry, to T(Ok);. Under the above conditions, these two actions are the same.

Proof. The proof is similar to, but not exactly the same as, the proof of Proposition [7.8] Let m be an

irreducible admissible Q,;[G (K )]-module, submodule of i§x, where x, : T(K); — @IX is a character. Let
x(m) denote the image of x under the quotient Ry, — Ry, ». To prove the proposition, it is enough to show
that the two actions of T(Ok); on (IIV")m_N Vi, one via the inclusion T(Ok); — T(K); and the other via
the map x(7)|7(0x), : T(Ox )i — Ry, ,, are the same. We can assume that (ITY" ). NV # 0, which implies

. X
that x, takes values in Z, .
The point (ii) above says that the compositions

Y Wi — T(Zy) — G(Zy)

and ~ ~
wx(m)Y : Wi — T(Ry, =) = G(Ru, =)
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have the same associated é—pseudocharacter In particular, Lemman shows that there exists a (necessarily
unique) element w € W such that ¥ = w(X, ), and hence my = m, (5 ). By Lemma the action of T'(K);
on (ITV1 )Jmy N V7 is via the character w(x,). Another application of Lemma n shows that for any projection
p: Ry, » ®0 Q; — Qy, the two characters px () and pw(x,) are equal. We must show that x(m T)|7(0k), and
w(Xx)|r(0x), are equal as characters T(Ok )1 = (Ru, = ®0 Q)*

To see this, let A, denote the maximal étale Q;-subalgebra of Ry, » ®o Q; it maps isomorphically
to the maximal étale quotient Q;-algebra of the Artinian Q;-algebra Ry, » ®o Q;, over which we have shown
that x(7)|7r(ox), and w(xx)|r(ox), are indeed equal. The proof is now complete on observing that these
characters, being of finite order, in fact take values in AX. O

8 Automorphic forms

In this section, the longest of this paper, we discuss spaces of automorphic forms with integral structures and
prove an automorphy lifting theorem. We fix notation as follows: let X be a smooth, projective, geometrically
connected curve over the finite field F, of residue characteristic p, and let K = F,(X). Let G be a split
semisimple group over [y, and fix a choice of split maximal torus and Borel subgroup T'C B C G. We write
G for the dual group of G (con51dered as a split reductive group over Z); it is equipped with a split maximal
torus and Borel subgroup TcBc G and there is a canonical identification X, (T') = X*(f) (see -)

The section is divided up as follows. In §8.1] we establish basic notation and describe the Satake
transform (which relates unramified Hecke operators on G and on its Levi subgroups). In we summarize
the work of V. Lafforgue, constructing Galois representations attached to cuspidal automorphic forms, in a
way which is suitable for our intended applications. In we prove an auxiliary result stating that under
suitable hypotheses, certain spaces of cuspidal automorphic forms with integral structures are free over rings
of diamond operators. Finally, in §8:4] we combine Lafforgue’s work with the Taylor-Wiles method, using
the technical results established in §8.3] to prove our automorphy lifting result.

8.1 Cusp forms and Hecke algebras
Proposition 8.1. (i) G(K) is a discrete subgroup of G(Ak).

(i) For any compact open subgroup U C [[, G(Ok, ), and for any g € G(A), the intersection gG(K)g~'N
U (taken inside G(Ag)) is finite.

Proof. The discreteness of G(K) in G(Ag) follows from the discreteness of K in Ag (note that G is an affine
group scheme). This implies that all intersections gG(K)g~!* NU are finite. O

We will define spaces of automorphic forms with integral coefficients. If R is any Z[1/pl]-algebra and
U C G(Ak) is any open compact subgroup, then we define Xy = G(K)\G(Ak)/U and:

e C(U, R) to be the R-module of functions f : Xy — R;

e C.(U,R) C C(U,R) to be the R-submodule of functions f which have finite support;

e and Ceusp(U, R) C C(U, R) to be the R-submodule of functions f which are cuspidal, in the sense that
for all proper parabolic subgroups P C G and for all g € G(Ag), the integral

/ f(ng)dn
neN(K)\N(Ak)

vanishes, where NV is the unipotent radical of P.

This last integral is normalized by endowing N(K)\N(Ag) with its probability Haar measure. It makes
sense because we are assuming that p is a unit in R.
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Proposition 8.2. Suppose that R is a Noetherian Z[1/p]-algebra which embeds in C. For any open compact
subgroup U C G(Ak), we have Ceysp(U, R) C Co(U, R), and Cysp(U, R) is a finite R-module. In particular,
cuspidal automorphic forms are compactly supported in Xy .

Proof. If R = C, then the stronger statement that there exists a finite subset Z C Xy such that all
functions f € Ceysp(U, C) are supported in Z is proved in [Har74, Corollary 1.2.3]. In general this shows
that Cousp(U, R) is contained in the finite free R-module consisting of functions supported on Z, and is
therefore itself a finite R-module. O

Let © be an algebraically closed field of characteristic 0. The Q-vector space

CCUSIJ(Q) = h_1>n CCUSP(U7 Q)
U
has a natural structure of semisimple admissible Q[G(Ag)]-module. A cuspidal automorphic representation
of G(Ak) over Q is, by definition, an irreducible admissible Q[G(Ax)]-module which is isomorphic to a
subrepresentation of Ceygsp(£2). We observe that any cuspidal automorphic representation over C or @; can
in fact be defined over Q.

If H is any locally profinite group and U C H is an open compact subgroup, then we write H(H, U)
for the algebra of compactly supported U-biinvariant functions f : H — Z, with unit [U] (the characteristic
function of U). The basic properties of this algebra are very well-known, and can be found (for example) in
[NT, §2.2]. In particular, if M is a smooth Z[H]-module, then the set MY of U-fixed vectors has a canonical
structure of H(H,U)-module. We will use this most often when H = G(Ag) and U C G(Ak) is an open
compact subgroup: thus H(G(Ag),U) acts on all the spaces C(U, R), C.(U, R), Cousp(U, R) via R-module
homomorphisms, in a way compatible with the natural inclusions.

If v is a place of K, then the Satake isomorphism gives a complete description of the algebra
H(G(K,),G(Ok,)) (see [Gro9g]): it is an isomorphism

H(G(K,),G(Ok,)) ©z Zlgt"?) = Z[X* (D)W ED oy Z(gEV?). (8.1)

Let © be an algebraically closed field of characteristic 0. If V' is an irreducible representation of GQ, then
the restriction of its character yy to T is an element of Z[X *(T)]W (and these elements form a Z-basis
for Z[X*(T)] as V varies). If we fix a choice of square-root p'/? of p (and hence of ¢,) in ©, then the
Satake isomorphism determines from this data an operator Ty, € H(G(K,),G(Ok,)) ®z Q. We can
characterize it uniquely using the following property: let x : T(K,) — € be an unramified character. Then
the space (i%x)%(©x) is a H(G(K,), G(Ok,)) @z Q-module, 1-dimensional as -vector space, and we have
the equality (w, € Ok, a uniformizer, ¥V as in Lemma :

xv (x" (Frob,)) = eigenvalue of Ty, on (i§y)¢(©xv). (8.2)

The Satake isomorphism has a relative version that we will also use. Let P = M N be a standard parabolic
subgroup of G with its Levi decomposition. We can define a map (the Satake transform)

Sg : H(G(Kv)’ G<0Ku)) Rz Z[q;‘:l/z] — H(M(Kv)? M(OKU)) Xz Z[qq:)tl/Q]

by the formula (S f)(m) = 61> (m) J

n

EN(KY) f(mn)dn, 6p(m) = |det Ad(m)|ny, |o. (The Haar measure
on N(K,) is normalized by giving the subgroup N(Ok,) volume 1.) This is transitive, in the sense that if
Q C P is another standard parabolic subgroup, then 8§ = 8j,,, 0 S§. If P = B, then S§ agrees with the
usual Satake isomorphism under the identifications H(T'(K,),T(Ok,)) = Z[X.(T)] = Z[X*(T)]. For any
choice of P the map S§ fits into a commutative diagram

H(G(K,),G(Ok,)) ®z Zlgs ] _%, ZIX*(TWED g, 7[¢E?

sgl l (8.3)

H(M(K,), M(Ox,)) @2 Zla ) 2% 20 (D) Y000 @, 7] 2),
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where the right-hand arrow is the obvious inclusion. The Satake transform has the following compatibility
with normalized induction: let 7 be an irreducible admissible Q[M (K, )]-module such that 7M(Cx.) £ (.
Then this space is 1-dimensional and H(M (K,), M (Ok,)) acts on it via a character ¢ : H(M (K,), M(Ok,)) —
Q. Moreover, the normalized induction IT = & satisfies dimg IT%(©%) = 1, and the algebra H(G(K, ), G(Ok,))
acts on this space via the character ¢081§. Specializing once more to the case P = B, we recover the relation
B2).

The existence of the Satake isomorphism leads to the unramified local Langlands correspondence,
as a consequence of the following proposition.

o~

Proposition 8.3. Let M be a standard Levi subgroup of G. Then the natural restriction map Z[M|M —
ZITIW T s an isomorphism.

Proof. This is Chevalley’s restriction theorem over Z. The injectivity can be checked after extending scalars
to Q. The surjectivity follows from the fact that the ring Z[T]"W*.T) is spanned as a Z-module by the
restrictions to 7' of the characters of the irreducible highest weight representations of Mg; and these rep-

resentation admit M-stable Z-lattices (see [Jan03, 1.10.4, Lemma]), so their characters lie in Z[]\//.T]M. This
completes the proof. O

The isomorphism classes of irreducible admissible C[G(K,)]-modules 7 with 7¢(©xu) £ 0 are in
bijection with the homomorphisms H(G(K,), G(Ok,)) — C (see [BH06, Ch. 1, 4.3]) . The above proposition,
combined with the Satake isomorphism, shows that these are in bijection with the set (G/G)(C), itself in
bijection (see with the set of @((C)—conjugacy classes of semisimple elements of é((C), or equivalently
the equivalence classes of Frobenius-semisimple and unramified homomorphisms Wg, — @((C): this is the
unramified local Langlands correspondence. The same discussion applies over any algebraically closed field
Q of characteristic 0 which is equipped with a Z[qil/ 2)-algebra structure. If 7 is an irreducible admissible
Q[G(K,)]-module with non-zero G(Of, )-invariants, then we will write S(7) € (G//G)(€) for the image in
this quotient of the corresponding semisimple conjugacy class. We will also use the same notation with G
replaced by a standard Levi subgroup M.

We now discuss twisting of unramified representations. Let €2 be an algebraically closed field of
characteristic 0. For any standard parabolic subgroup P = M N of G, the dual torus of the split torus Cy,
(the cocentre of M) is canonically identified with 45 (the connected component of the centre of M). We
write M (K,)! ¢ M(K,) for the subgroup {m € M(K,) | Vx € X*(Cun),|x(m)|, = 1}. Since M is split,
M(K,) — Cp(K,) is surjective and the quotient M (K, )/M(K,)! is isomorphic to the quotient of Cys(K,)
by its maximal compact subgroup. There is a canonical isomorphism

M(K,)/M(K,)' = X, (Cu) = X*(Z3), (8.4)
hence
Hom(M (K,)/M(K,)", Q%) = Z2(9). (8.5)

This isomorphism has the following reinterpretation in terms of the unramified local Langlands correspon-
dence. The centre Zg; acts on M by left multiplication in a way commuting with the adjoint action of M;

this action therefore passes to the quotient M / M. Suppose that 7 is an irreducible admissible Q[M (K,)]-
module with 7M(Oxv) £ 0, and let ¢ : M (K,)/M(K,)* — Q* correspond to the element 2z, € Z2-(§2) under

the isomorphism (8.5)). The representation 7 ® v also has non-zero M (O, )-fixed vectors, and we have the
equality
§(n ® ) = 2y - S(r) (5.6)

inside (M J/M)(Q).
There is also a global version of this twisting construction. Let || - || : K*\Ak — Rso denote the
norm character, and define for any standard Levi subgroup M of G

M(Ag)' ={m e M(Ax) | ¥x € X*(Cu), Ix(m)l| = 1}.
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The pairing (m, x) = —log, |[x(g)| gives rise to an isomorphism M (Ag)/M(Ak)" = Hom(X*(Cy), Z) =
X.(Cy) = X’“(Z}%)7 hence an isomorphism

Hom (M (Ax)/M(Ax)', Q%) = Z5(Q). (8.7)

The compatibility between the local and global isomorphisms (8.5) and (8.7)) is expressed by the commuta-
tivity of the following diagram:

Hom(M (A)/M(Ag)", Q%) —— Z2.()

|

Hom(M(K,)/M(K,)!, Q%) — 22 (Q),

where the left vertical arrow is given by restriction and the right vertical arrow is given by multiplica-
tion by the degree [k(v) : Fy]. In particular, if 7 is an irreducible admissible Q[M (Ag)]-module and
¥ M(Ag)/M(Ak)' — Q% is a character corresponding to the element zy, € ZJOVA[(Q) under the isomor-

M(OKv

phism 1| and v is a place of K such that ) # 0, then we have the equality

S((r@),) = 2T S(r,) (8.8)
inside (J/\/[\ / M )(€2), which is the global version of the equation .

8.2 Summary of V. Lafforgue’s work

We continue with the notation of the previous section, and now summarize some aspects of the construction
of Galois representations attached to automorphic forms by V. Lafforgue [Lafa]. Let [ { ¢ be a prime. Let
N =3 n,-v C X be an effective divisor, and let U(N) = ker(][, G(Ok,) — G(On)). Let T denote
the set of places v of K for which n, is non-zero. Lafforgue constructs for each finite set I, each tuple

(7:)ier € Tk, and each function f € Z[@I]é, an operator Sy (y,),,.f € End@l(C’cusp(U(N),@l)), called an
excursion operator.

Proposition 8.4. The excursion operators enjoy the following properties:

(i) The Q;-subalgebra B(U(N),Q;) of End@l(C’cusp(U(N),@l)) generated by these operators (for all I,

(vi)ier, and f) is commutative. (Note that it is necessarily a finite Q,-algebra, because it acts faithfully
on the finite-dimensional Q;-space Crysp(U(N),Q;).)

(i) The action of excursion operators on Cyus,(U(N),Q;) commutes with the action of the abstract Hecke
algebra H(G(Ak),U(N)).

(iii) Ifv €T and xv € Z[@]é is the character of an irreducible representation V- ofé@l , then S{o} Frob =

vy XV
Ty, is the unramified Hecke operator corresponding to V and v under the Satake isomorphism. In

particular, the algebra of excursion operators contains the algebra generated by all the unramified Hecke
operators.

(i) If N C N’ is another effective divisor, then the action of excursion operators commutes with the
inclusion Ceysp(U(N),Q;) C Ceusp(U(N), Q).

Proof. These properties follow from the constructions given in [Lafa]. Note that our notation is slightly
different (since we take f € Z[@"]G rather than f € Z[@nH]GxG)' L)

The most important feature of the excursion operators is the following:
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Theorem 8.5. Define for each n > 1 a map Oy, Z[@”]é — Map(T'%, B({U(N),Q,)) by

Oun)n(F)(V1s -+ 37n) = S,y (), f-

Then Oy(ny = (Ou(n)n)n>1 is a B(U(N),Q;)-valued pseudocharacter, which factors through the quotient
Q

i — k. It is continuous when B(U(N),Q,) is endowed with its l-adic (Q;-vector space) topology.
Proof. See [Lafal Proposition-Definition 11.3]. O
Corollary 8.6. Let p C B(U(N),Q,) be a prime ideal. Then:

1) There exists a continuous, a—completely reducible representation o, : 'k — é Q) satisfying the
p l
following condition: for all excursion operators Sy (~,),c,,f, we have

f((UP ('Yi))ie[) = SI,(“{i)ieI,f mod p. (89)

(i1) The representation oy, is uniquely determined up to é(@l)—conjugacy by .

(tii) The representation oy is unramified outside the support T of N. If v &€ T, then it satisfies the expected
local-global compatibility relation at v: for all irreducible representations V' of @@Z, we have Ty, €
B(U(N),Q;) and

xv (op(Frob,)) = Ty, mod p.

Proof. The first two parts follow from Theorem [8.5| and Theorem The third part follows from the third
part of Proposition O

Definition 8.7. We say that a continuous, a—completely reducible representation o : 'y — é(@l) is
automorphic if there exist N and p C B(U(N),Q;) as above such that o and o, are G(Q;)-conjugate.

We warn the reader that the defining property here implies, but is not a priori implied by, the
existence of an automorphic representation with the correct Hecke eigenvalues at unramified places (because

of the possible existence of homomorphisms o, 0’ such that o|r, and o’|r, are é(@l)—conjugate for every

place v of K, but nevertheless o and ¢’ are not é(@l)—conjugate). However, things are well-behaved in this
way at least when o has Zariski dense image:

Lemma 8.8. Let 0 : ' — é(@l) be a continuous representation with Zariski dense image. Then o is
automorphic if and only if there exists a cuspidal automorphic representation m of G(Ax) with the following
property: for almost every place v of K such that 7¢(©xv) £ 0, olry, is unramified, and we have the relation

(V an irreducible representation of @@l )

xv (o(Frob,)) = eigenvalue of Ty, on g (O, (8.10)

If these equivalent conditions hold, then ol|r, —is unramified at every place v of K such that 7GOry) £,
and satisfies the relation there.

Proof. As we have already noted, if o is automorphic then 7 exists: if ¢ = o,, we can choose 7 to be the
representation generated by a non-zero vector in Ceusp(U(N),Q;)[p]. Suppose conversely that there exists
a cuspidal automorphic representation m as in the statement of the lemma, and let N be minimal with
7UN) £ 0. Then we can find a maximal ideal p C B(U(N),Q;) such that (7V¥)), # 0. It then follows from

Proposition that o and o, are (A?(@l)—conjugate representations. O

Next, we state a theorem of Genestier and V. Lafforgue [GLb], which gives a partial description
of the restriction of the pseudocharacter O () to decomposition groups at ramified places. They actually
prove a much more general result, but in the interest of simplicity we state here only what we need. This
result will be used to understand the ramification of the pseudocharacter Oy () at Taylor-Wiles places.
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Theorem 8.9. Let v be a place of K, and let 7, be an irreducible admissible Q,[G(K,)]-module which is a
submodule of ing for some smooth character x, : T(K,) — @lx Let Vi, C Ccusp(@l) be the m,-isotypic
part, and let Oy (N, x, denote the image of Oy (n) along the projection B(U(N),Q,) — End@l(VW[i(N)). Then

(N))

Ou(NY x| Wi, takes Ualues in the scalars Q, C End ( g , where it coincides with the pseudocharacter

associated to the representation Lx, .

The notation is as in v: T — @ is the natural inclusion, and Xy i Wk, — T(Q,) is the character
dual to x, under the local Langlands correspondence for split tori (Lemma. Finally, we need to extend
slightly the definition of the algebra of excursion operators. Our first observation is that if U = [[, U, C
[1, G(Ok,) is any open compact subgroup, then we can define an operator St (4,),,,r € Endg (Ceusp(U, Q)
as follows: choose N such that U(N) C U, and restrict the action of the operator in Ceusp(U(N), Q). Tt
follows immediately from Proposition [8:4] that this is well-defined and independent of the choice of N, and
that the Q;-subalgebra B(U,Q;) C Endg, (Ceusp(U, @,)) generated by all excursion operators is commutative
(it is a quotient of B(U(N),Q;)). We write O for the associated pseudocharacter valued in B(U, Q;) (image
of C—)U(N))

Our next observation is that the excursion operators preserve natural rational and integral structures.
We fix a choice of coefficient field E C Q.

Proposition 8.10. Let U = [[, U, C [[, G(Oxk,) be an open compact subgroup. Let I be a finite set,

(vi)ier € T, and f € Z[GI]G. Then the operator Sp (v,yic;.s 0N Ceusp(U, Q) preserves the O-submodule
Ccusp(Ua O)

Proof. This will follow from [Lafal Proposition 13.1] if we can show that any function f € Z[G"]9*C (where
G x G acts on G by diagonal left and right translation) is of the form f(g1,...,9n) = f((gl7 ceesGn) - T),
where W is a representation of G" on a free Z-module and z : Z — W and § : W — Z are G- -equivariant
morphisms (where G acts via the diagonal G — G")

We can show this using the recipe of [Lafal Lemme 10.5]. Let f € Z[G"]¢*C and let W C Z|G"]
denote the submodule generated by the left translates of f. This can be constructed as the intersection
W = (G"(C) - f) N Z|G™]. In particular, every element of W is invariant under diagonal right translation.
Let 2 = f, and let £ : W — Z be the restriction to W of the functional ‘evaluation at the identity’. Then x
and £ are both G-invariant, and together they give the desired representation of the function f. O

We write B(U, O) for the O-subalgebra of Endo(Ceusp(U, O)) generated by all excursion operators.
It follows from Proposition [8.10] that it is a finite flat O-algebra, and it follows from the definitions that the
pseudocharacter O in fact takes values in B(U, O).
Corollary 8.11. Let m C B(U,O) be a mazimal ideal, and choose an embedding B(U, O)/m — F,. Then:
(i) There is a G-completely reducible representation G : I'x — é(Fl) satisfying the following condition:
Jor all excursion operators Sy ( ¢, we have

Vi)iel,

f((Em('Yi))iEI) = SI,(’ﬁ)igI,f mod m. (811)

(i) The representation Ty, is uniquely determined up to G(E)—conjugacy by (8.11)).

(iii) If v is a place of K such that U, = G(Ok,), then o is unramified at v and satisfies the expected local-

global compatibility relation there: for all irreducible representations V. of @@L, we have Ty, € B(U,O)
and
XV (Gm (Frob,)) = Tv,, mod m.

We note that the expression in (#i4) makes sense, because the character of the reduction of V' mod
[ is defined independent of any choices.

Proof. Proposition implies that Oy is in fact a B(U, O)-valued pseudocharacter. The result follows on
applying Theorem to the projection of Oy to the quotient B(U, O)/m. O
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8.3 Automorphic forms are free over O[A]

Our goal in the remainder of §8]is to prove an automorphy lifting theorem. We will accomplish this in §8:4] as
an application of the Taylor-Wiles method. This requires us to first establish as a key technical input that
certain integral spaces of automorphic forms are free over suitable integral group rings of diamond operators;
this will be accomplished in the current section (see Theorem below), as an application of the principle
outlined in [BK06, Appendix] (which appears here as Lemma [3.18)).

8.3.1 Construction of an unramified Hecke operator

We first consider an abstract situation. The setup is as at the beginning of Suppose given the following
data:

e A subring R C C which is a discrete valuation ring, which contains ¢'/2, and with finite residue field
k of characteristic | # p.

e A finite set S of places of K and an open compact subgroup U = [[, U, C G(Ag) such that for all
ve S, U, =GOk,).

e For each standard parabolic subgroup P = M N of G (including G itself) a finite set Ip of irreducible
admissible C[M (A )]-modules (7;);ez, such that (i%m;)V # 0. This implies that for each i € Ip and

for each v € S, the space 7TM( Ko’ is non-zero. We ask further that the associated homomorphism

Giw : H(M (K ) M(Ok,)) — C giving the action of the Hecke algebra on this space takes values in R.

e For each ¢ € Ip, a continuous homomorphism p; : I'x — M (k), unramified outside S, and such that
for each v ¢ S, the homomorphism H(M(K,), M(Ok,)) — k associated to the conjugacy class of
p;(Frob,) (which exists by Proposition is equal to the reduction of ¢;, modulo mg.

e An element ig € Ig such that p;, : I'x — @(k) is absolutely strongly é—irreducible, in the sense of
Definition B.5

We can associate to each ¢ € Ip a homomorphism f; , : H(G(Ky), G(Ok,)) ®z R — R[Z2], which represents

the formula z,, — S(i% (7, ® ¢)) (notation as in §8.1). If ¥ is a finite set of places of K, disjoint from S,
then we write Ty = ®,exH(G(K,),G(Ok,)) ®z R and fi s, = Quesnfin : Ty — R[Z;?].

Proposition 8.12. With notation and assumptions as above, we can find ¥ and t € Ty satisfying the
following conditions:

(i) For every standard parabolic subgroup P # G and for every i € Ip, we have f; x(t) = 0. In particular,
for every character 1 : M(Ag)/M(Ag)* — C*, we have t(i%(r ® 1))V = 0.

(i1) We have f;, »(t) #0 mod mg.

Proof. Given a finite set ¥ of places of K, disjoint from S, let zx € SpecTg(k) be the (closed) point
corresponding to p; . We want to show that we can choose X so that for any standard parabolic subgroup
P = MN # G and for any i € Ip, the image of ZO under the corresponding finite map Spec f; 5 : Z° e

Ty, does not contain zyx;. Indeed, the union of thebe ﬁmtely many images is closed, so if this union misses xx
then we can find ¢ € Ty such that the distinguished affine open D(t) = {p € SpecTyx, | t € p} contains zyx
but has empty intersection with this union. This element ¢ then has the desired properties (i) and (ii).

Let L'/K be the compositum of the extensions cut out by all of the p,, i € Ip. Let L = L' - ]Fg,
where d is the exponent of the group 1, and [/k is the compositum of all extensions of degree at most #W.
We choose ¥ so that every conjugacy class of the group Gal(L/K) contains an element of the form Frob,,,
v € 3. We claim that this choice of ¥ works.

Suppose for contradiction that xy is the image under some f; 5; of a point y € Z 2 Where P=MN

is a proper standard parabolic subgroup of G. The residue field of y is a finite extenmon of k of degree at
most #W. It follows that there is a continuous character A : T — Gal(K - F,/K) — Z;}(l) such that
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for each v € ¥, the elements p; (Frob,) and (p; ® A)(Frob,) € é(l) determine the same homomorphism
H(G(K,),G(Ok,)) — l. Moreover p; ® A factors through Gal(L/K).

Since the elements Frob, (v € ) cover Gal(L/K), we find that for all f € Z[@]é and for all y € Tk,
we have f(p; (7)) = f(p; ® A(7)). Applying the strong irreducibility property of p,,, we conclude that
P; ® A has image contained in no proper parabolic subgroup of ék. However, it has (by construction) image
contained inside M\k. This contradiction concludes the proof. O

8.3.2 Interlude on constant terms and Eisenstein series

We now want to apply Proposition to construct unramified Hecke operators which kill compactly
supported automorphic forms which are not cuspidal. This will be accomplished in Lemma below, but
we must first recall some basic notions from the complex theory of automorphic forms. Our reference is the
book of Moeglin-Waldspurger [MW95]. The additional ‘automorphic’ notation introduced here (especially
any object in script font o/, Z,%,...) will be used only in this

Fix a place vy of K, and let 3 denote the Bernstein center of the group G(K,,). (This auxiliary
choice of place is used in the definition of spaces of automorphic forms in the following paragraphs. However,
the objects constructed are independent of this choice, and it plays no role in our arguments; see [MW95|
§1.3.6].) Let Uy = G(@K). For each standard parabolic subgroup P = M N of G, there is a map mp :
G(Ag) — M(Ag)/M(Ak)! which sends g = nmu with n € N(Ag), m € M(Ak), u € Up, to the element
mp(g) = mM(Ag)t. This is well-defined because M (Ax) N Uy C M(Ag)t. The composite

has image of finite index, and compact kernel. We define
Re ayr = HomZ(X*(C’M),R) = M(AK)/M(AK)I ®z R.

If P = MN is a standard parabolic subgroup of G, then we define a space o (N(Ag)M(K)\G(Ak)) of
automorphic forms as the set of locally constant functions ¢ : N(Ag)M(K)\G(Ag) — C satisfying the
following conditions:

e ¢ has moderate growth (see [MW95| 1.2.3]).
e ¢ is Uy-finite and 3-finite.

We write € (N (Ag)M(K)\G(Ak)) for the space of all continuous functions N(Ax )M (K)\G(Ag) — C, and
C.(N(Ax)M(K)\G(Ag)) for its subspace of continuous functions of compact support.

If P = MN is a standard parabolic subgroup of G and ¢ : N(K)\G(Ag) — C is a continuous
function, then we define the constant term of ¢ along P by the integral

op(g) = / $(ng) dn.
neEN(K)\N(Ak)

Note that N(K)\N(Ag) is compact and so has its canonical probability measure, induced from a left-
invariant Haar measure on N(Ag). This means that the integral is well-defined. If P’ C P are standard
parabolic subgroups of G and ¢ € &7 (N (Ag)M(K)\G(Ak)), then in fact ¢pp € & (N'(Ax)M'(K)\G(AKk)).

A function ¢ € & (N(Ag)M(K)\G(Ak)) is said to be cuspidal if for all proper standard parabolic
subgroups P’ C P, the constant term ¢ps vanishes. We write @7 (N (Ag )M (K)\G(Ak)) for the subspace of
cusp forms. If x : Zp (K)\Zp(Ag) — C* is a character, then we define

A (N(A)M(K)N\G(Ak))x C o/ (N(Ar)M(K)\G(Ak))

and
o(N(Ag)M(K)N\G(Ak))y C @o(N(Ax)M(K)\G(Ak))
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to be the subspaces of functions satisfying the relation ¢(zg) = x(2)¢(g) for all z € Zp;(Ak). The group
G(Ak) acts on all of the above-defined spaces of functions by right translation, and we have isomorphisms
of C[G(Ak)]-modules

o (N(Ax)M(K)\G(Ak)) = Indg; ) o (M(K)\M(Ax))

and
(N (Ax)M(K)\G(Ak)) = Ind ") ot (M (K)\M(Ax)),

where the spaces of automorphic forms on M are defined in the same way as for G (see [MW95, 1.2.17]).

Proposition 8.13. Let P = M N be a standard parabolic subgroup of G, and let U C Uy be an open compact
subgroup. Then there exists a compact subset C C G(Ag) such that any function

¢ € (N(Ax)M(K)\G(Ak))Y

has support contained in Zp(Ar)N(Ag)M(K)C. In particular, for any character x : Zpy(K)\Zy(Ag) —
C*, the space

(N (Ag)M(K)\G(Ak))Y
is finite-dimensional, and for any ¢ € (N(Ag)M(K)\G(Ax))Y, the support of ¢ is compact modulo
Zy(Ak)P(K).

Proof. If P = G, then @ = Ceusp and this follows from Proposition The general case can be reduced to
Proposition or rather its generalization [Har74, Theorem 1.2.1] to reductive (and not just semisimple)
groups, as we now explain. After possibly shrinking U, we can assume that U is normal in Uy. Then for all u €
Uy, the function ¢, : m +— ¢(mu) defines an element of @/ (M (K)\M (Ag))V"M(Ax) - Applying the analogue
of Proposition to the reductive group M, we get a compact subset C/ C M(Ak) such that any such
function ¢,, has support in Zp (Ax)M(K)C'. 1t follows that ¢ has support in N(Ag)Zpy (Ax)M(K)C'Uy.
We can therefore take C = C'Uy. O

Proposition 8.14. Let P = M N be a standard parabolic subgroup of G.

(i) Given characters x : Zy(K)\Zy(Ag) — C* and ¢ : M(Ag)/M(Ag)' — C*, there are canonical
isomorphisms
A (N(Ag)M(K)\G(Ak))y = o (N(Ag)M(E)\G(Ak))xw

and

(N (A )MENG(Ak))y = (N (Ai)MENG(AK))
given by the formula ¢ = (g = ¥(mp(9))$(g))-

(ii) Let C[Re apr] denote the ring of polynomials on the real vector space Re ap; with complex coefficients.
Then there are canonical isomorphisms

ClRe an] @c &y (N (A )M (K)\G(Ak))y = o (N(Ax)M(K)\G(Ak))

and

ClRe ay] ®c &y (N(Ax)M(K)N\G(AK))y = (N (Ax)M(K)\G(Ak))
gwen by the formula Q ® ¢ — (g — Q(mp(g))d(g)).
Proof. See [MW95] 1.3]. O

Let P = M N be a proper standard parabolic subgroup of G. We write 63(N (Ax )M (K)\G(Ak)) for
the space of functions N (Ag )M (K)\G(Ag) — C spanned by functions of the form g — b(mp(g))p(g), where
¢ € d(N(Ag)M(K)\G(Ak)) and b : M(Ag)/M(Ak)' — C has compact support (see [MWO95] 1.3.4]). It

42



follows from Proposition that any function ¢ € 6o(N(Ax)M(K)\G(Ak)) has compact support modulo
P(K). We can therefore define a linear map

Eisp : Go(N(Ax)M(K)\G(Ak)) = 6.(G(K)\G(AK))

¢ (EiSpcb tge Y ¢(vg)) :

YEP(K)\G(K)

This is G(Ag)-equivariant. If ¢ : G(K)\G(Ag) — C is any locally constant function, then we have the
formula

() (z) dr = / Eisp(6)(9)(g) dg. (8.12)

/meN(AK)]\/[(K)\G(AK) 9EG(FK)\G(AK)
In particular, if 1 € 2% (G(K)\G(Ak)), then these integrals both vanish.

Lemma 8.15. Let S be a finite set of places of K, and let U = [[, U, C G(Ak) be an open compact
subgroup such that U, = G(O,) if v € S. Let t € H(G(AY),U®) @z C be an operator such that for any
character x : Zy(K)\Zn(Ax) — C%, tah(N(Ax)M(K)\G(AK))Y = 0. Then t%,(G(K)\G(Ak))V C
o (G(K)\G(Ak))Y.

Proof. We introduce the Hilbert space 5 = L*(G(K)\G(Ak)/U), which is the completion of the space
6.(G(K)\G(AK))Y with respect to its natural pre-Hilbert structure given by the inner product

(6,9) = / 3(g)v(g) dg.
gEG(K)\G(AK)

The operator t induces a continuous linear endomorphism of .7 which leaves invariant the finite-dimensional
closed subspace @ (G(K)\G(Ak))Y. To prove the lemma, it suffices to show that ¢ acts as 0 on a dense
subspace of the orthogonal complement of #(G(K)\G(Ak))Y. By [MWO95, Proposition 1.3.4] and the
relation (8.12), Y pc Eisp o (N (Ax) M (K)\G(A))Y is such a subspace.

¢ therefore need show that for each proper standard parabolic P = M N of G, we have

t6o(N(Ag)M(K)\G(Ag))V = 0.
There is a Hermitian pairing
() p  Go(N(AK)ME)\G(AK))” x €(N (A ) M(K)\G(Ax))” = C,

given by the formula (¢,¢)p = fxeN(AK)M(K)\G(AK)a(m)z/)(x) dx. Let (-)* denote the anti-involution of
H(G(AY),U?) @z C given by the formula s*(g) = s(g~1). Then for any s € H(G(A%),U”) ®z C we have
the formula (s¢,¥) = (¢, s*9).

For any ¢ € 6o(N(Ag)M(K)\G(Ak)) and any finite subset X C M(Ag)/M(Ak)!, we can find
Y € By (N(Ax)M(K)\G(Ak))y such that ¢(g) = ¢(g) whenever mp(g) € X. Indeed, this follows from
Proposition and the definition of the space €(N (Ax )M (K)\G(Ak)). To finish the proof of the lemma,
we choose ¢ € €o(N(Ax)M(K)\G(Ak)). We can find ¢ € @, (N(Axg)M(K)\G(Ak))y such that the
restriction of ¢ to the support of t*t¢ equals ¢. We then obtain

(tg,tg) = ("1, ¥) = (te, 1)) =0,

since t annihilates v, by hypothesis. This forces t¢ = 0. Since ¢ was arbitrary this shows the desired
vanishing. |

In the statement (but not the proof) of the following lemma, we use the notation of

Lemma 8.16. Let S be a finite set of places of K, and let U C G(@K) be an open compact subgroup such
that U, = G(Ok,) if v ¢ S. Let 1l be a prime and let E C Q; be a coefficient field. Let m C B(U,O) be a
mazximal ideal such that T : ' 5 — @(Fl) is strongly irreducible. Then, after possibly enlarging E, we can
find t € H(G(A3),U®) @z O such that t mod m # 0 and tC.(U, O) C Cusp(U, O).
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Proof. It P = M N is a standard parabolic subgroup of G, say that two characters x, x' : Zy (K)\Zy(Ag) —
C* are twist equivalent if they differ by multiplication by an element of the image of the map

Hom(M (Ax)/M(Ax)*, C*) — Hom(Zar (K)\Zas (Ax ), C¥).

There are finitely many twist equivalence classes of characters x : Za (K)\Zy(Ak)/(U N Zy(Ag)) — C*,
and each equivalence class contains a character of finite order. This being the case, we can find the following
data:

e A number field L C C.

e For each standard parabolic subgroup P = M N C G, a finite set Xp of representatives
X : ZM(K)\ZJW(AK)/(U n ZM(AK)) — C*
of the twist equivalence classes, each y € Xp taking values in Of and being of finite order.

After possibly enlarging L, we can assume that for each y € Xp and for each of the finitely many irreducible
constituents 7 C 4 (N(Ag)M(K)\G(Ak))y with non-zero U-invariants, the unramified Hecke operators
Ty, (v ¢ S) on 7V have all eigenvalues in O[1/p]. Indeed, there is an isomorphism of admissible C[G (A )]-
modules

(N (Ax) MK )N\G(Ax))y = IndZG5) o (M(K)\M(Ax))y,

and o/ (M (K)\M (Ak)), has a natural Op[1/p]-structure which is preserved by the Ty, (consisting of those
functions ¢ : M(K)\M (Ag) — C which take values in Or[1/p]).
Let A be a place of L of residue characteristic [, and let R = Oy, (yy C C. Fix an isomorphism
Q, = C which induces the place A of L. After possibly enlarging E, we can assume that E contains L
under this identification. If P = M N is a standard parabolic subgroup of G, let Ip denote the set of all
irreducible constituents of .o (N (Ax)M (K )ﬁAK))X with non-zero U-invariants, as x ranges over Xp.
8.1

We are now in the situation of Proposition [8.12] so we obtain a Hecke operator t € H(G(A%),U®) @z R
such that ¢ has non-zero image in B(U, O)/m and t acts as 0 on any representation iggﬁig(ﬂ' @) (w € Ip,

b € Hom(M (A)/M(Ag)',C*)) when P is a proper standard parabolic subgroup of G, hence on
®XM)(N(AK)M(K)\G(AK));]~

It now follows from Lemma[8.15] that ¢ has the properties claimed in the statement of the current lemma. [

8.3.3 Application to freeness of integral automorphic forms

We now come to the main result of We fix a prime [ and a coefficient field E C Q.

Theorem 8.17. Let U = [[, U, be an open compact subgroup of G(@K), and let V = [[, Vo, C U be an
open normal subgroup such that U/V is abelian of I-power order. Let vy be a place of K, and let I denote
the order of an I-Sylow subgroup of G(Fy, ). Let V.C W C U be a subgroup such that /v cwy/v.

Finally, let m C B(W, Q) be a mazimal ideal such that G, is strongly G-irreducible. Then Cousp(W, O) s
a finite free O[U/W]-module.

The starting point for the proof is the following lemma.

Lemma 8.18. Let U =[], U, be an open compact subgroup of G(@K), and let V = [[, Vi, C U be an open
normal subgroup such that U/V is abelian of l-power order. Let vy be a place of K, and let IM denote the
order of an I-Sylow subgroup of G(Fy, ). Let V.C W C U be a subgroup such that (U/V)[IM] C W/V. Then
the quotient U/W acts freely on Xw = G(K)\G(Ar)/W.
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Proof. For any place v of K and for any g € G(Ax), the finite group gG(K)g~! N U injects into U, under
projection to the v-component. Consequently, the I-part of its order divides [M.

The group U acts on the discrete sets Xy and Xy by right translation. We want to show that if
g € G(Ak), then Staby (G(K)gW) = W. We have Staby (G(K)gW) = Staby (G(K)gV') - W, so it suffices
to show that Staby (G(K)gV) C W. On the other hand, we have Staby (G(K)gV) = (UN g 1G(K)g) -V,
so it even suffices to show that U N g~ 1G(K)g C W.

Let u € UNg~1G(K)g. We must show that u lies in the kernel of the composite group homomorphism

Ung'G(K)g—2>U/V—"suw.

The element a(u) has I-power order, hence satisfies al(u)!" = e, hence (by hypothesis) (3 o a)(u) = e. This
completes the proof. O

The lemma implies in particular that C.(W, O) is a free O[U/W]-module (although of infinite rank).
In order to prove Theorem we will show that Ceysp(W, Q) can be realized as a direct summand
O[U/W]-module of C.(W,0). Let S be a finite set of places of K such that U, =V, = G(Ok,) if v € S.
By Lemma, we can find an operator t € H(G(A%),U®) @z O such that tC.(W,0) C Ceusp(W, O) and
t has non-zero image in B(W,O)/m. Since B(W, Q) is a finite O-algebra, we can find s € B(W, O) such
that sCeusp(W, O) = Ceusp(W, Q) and s has non-zero image in B(W,O0)/m. Let z = s ot, viewed as an
endomorphism of C.(W, Q). Then we have

ZCC(VV, O) = ZCcusp(VVa O)m = cusp(Wa O)I‘m

and the restriction of z to Ceysp (W, O)m is an automorphism. Since the action of z commutes with the action
of O[U/W], we conclude that Ceusp(W, O)n is a direct summand O[U/W]-module of C.(W, ), and hence
that Ceusp(W, O)m is a finite free O[U/W]-module, as required. This completes the proof of Theorem m

8.4 Automorphic forms are free over I?;

We now show how to use our work so far to prove an ‘R = B’ theorem, which identifies in certain cases part of
the integral algebra B(U, O) of excursion operators with a Galois deformation ring of the type introduced in
Let [ be a prime not dividing g, let E C Q; be a coefficient field, and let U = G(Ok). Let m C B(U, O)
be a maximal ideal, and let 7, : ' — @(FZ) denote the representation associated to the maximal ideal m
by Corollary We can assume, after possibly enlarging E, that &, takes values in @(k) We make the
following assumptions:

(i) 1+#W. This implies in particular that [ is a very good characteristic for G.
(ii) The subgroup Zg..(Gm(I'x)) of Gy, is scheme-theoretically trivial.
(iii) The representation &, is absolutely strongly G-irreducible (Definition .
(iv) The subgroup om(I'k(¢,)) of G(k) is G-abundant (Definition .

We note that assumptions (i) and (iii) together imply that Zz..(m(I'x)) is a finite étale group (by Theorem
and Theorem [3.8)). Point (ii) can therefore be checked at the level of geometric points.

The universal deformation ring Rz ¢ is then defined (see . We write Oy for the projection
of the pseudocharacter Oy to B(U,O)n, and o'V : 'y — @(Rgm@) for a representative of the universal
deformation.

Lemma 8.19. There is a unique morphism fu : Rz ¢ — B(U,O)w of O-algebras such that fu . tr o™ =
Ou,m. It is surjective.
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Proof. The existence and uniqueness of the map follows from Theorem and our assumption on the
centralizer of the image of &y, in the group G®!. The map is surjective because, by definition, the ring
B(U,O)y, is generated by the excursion operators ST.(vi)ier.f» and each such operator can be explicitly
realized as the image of the element f(c"™V(v;)icr) € Rz, ¢- O

The rest of this section is now devoted to proving the following result.

Theorem 8.20. With assumptions as above, fu is an isomorphism, Ceusy(U, O)m is a free Rz g-module,
and Rz ¢ is a complete intersection O-algebra.

Before giving the proof of Theorem we explain the role played by our hypotheses (i) — (iv)
above. The first condition (i) is convenient; it removes the need to deal with some technical issues (such
as possible non-smoothness of the map G — @ad). The condition (ii) is absolutely essential, since it is
only in this case that the pseudocharacter in B(U, O) constructed by Lafforgue can be upgraded to a true
representation, as in Lemmal[8:19] Since we know how to control deformations of representations using Galois
cohomology, but not how to control deformations of pseudocharacters, we do not see a way to avoid this at
the present time.

The condition (iii) is used to establish an essential technical lemma (Lemma below, which is
a reformulation of Theorem . We note that the @—irredueibility of Ty, is already implied by (ii), so it
is the strong irreducibility that is important here. Finally, the condition (iv) is used to construct sets of
auxiliary Taylor—Wiles places of K. Some condition of this type is essential. It is possible that this could
be weakened in the future (as the notion of ‘bigness’ has been replaced by ‘adequacy’ in analogous theorems
for GL,,), but the condition of G-abundance is sufficient for our purposes.

Corollary 8.21. Let p : T — é(E) be a continuous, everywhere unramified representation such that
P = Gw. Then there exists a cuspidal automorphic representation I1 of G(A) over Q; such that IIV # 0
and for every place v of K, and every irreducible representation V' of G@L, we have

xv (p(Frob,)) = eigenvalue of Ty, on T1J.

Fiz a choice of character ¥ : N(K)\N(Ag) — ZX, and suppose further that there exists a minimal prime
ideal p C B(U,O)m and f € Crusp(U, O)mlp] satisfying

/ f(n)y(n)dn # 0 mod mz .
nEN(K)\N(Ax)

Then we can moreover assume that I1 is generated by a vector F' € Clysp(U, Q,) satisfying

/ Fn)i(n)dn £ 0.
neN(K)\N(Ak)

In particular, if 1 is a generic character, then I is globally generic.

Proof. The representation p determines a homomorphism Rz ¢ — O; let q denote its kernel. Then
Ceusp(U, O)wq] is a non-zero finite free O-module. If € Cousp(U, O)mlq] is a non-zero element, then
for every place v of K and for every irreducible representation V' of @@l, we have Ty .,z = xv (p(Frob,))z.
We can take II to be the irreducible Q;[G(A)]-module generated by x. This establishes the first claim.

For the second, we note that we are free to enlarge ©. We can therefore assume that B(U, O)m/p = O
(i.e. that the eigenvalues of the excursion operators on f all lie in O) and that the functional

U : Conep (U, OV — T, F s U(F) = / F(n)(n) dn,
neN(K)\N(Ak)

in facts takes values in O, and therefore defines an element of Homo (Ceusp (U, O)m, O) = Hj, say.
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By Theorem both Hy and H{ are free B(U, O)y-modules. The duality Hy x Hj — O induces

a perfect duality
(Ho/wHy)[m] x Hy /mH; — k.

Since f € Hglp] and p + (w) = m, the element f = f mod wHy lies in (Hy/wHp)[m]. Moreover, we have
W(f) # 0, showing that ¥ defines a non-trivial element of H/mH. Let ¥ = W¥y,..., ¥, be elements of
H{ which project to a basis of Hf/mH{; by Nakayama’s lemma, they are actually free B(U, O)yn-module
generators for Hj. This shows that for any minimal prime ideal ¢ C B(U, O)n, the restriction of ¥ to Hplq]
is non-zero. For the second part of the corollary, we can therefore take II to be the irreducible Q;[G(Af)]-
module generated by an element of Hy[q] which does not lie in the kernel of W. O

Proof of Theorem[8.20, We will use the Taylor-Wiles method. We first introduce some notation. We recall
(Definition [5.16) that a Taylor—Wiles datum for o, is a pair (Q, {¢w}veq), Where:

e () is a finite set of places v of K such that &, (Frob,) is regular semisimple and ¢, = 1 mod .
e Foreachv € Q, ¢, : 1) 2 Z &(@m(Frob,)) is a choice of inner isomorphism.

We recall that we have fixed a choice ' C B C G of split maximal torus and Borel subgroup of G. If
Q is a Taylor-Wiles datum, then we define Ay to be the maximal [-power order quotient of the group
[I,eq T(k(v)). According to Lemma the ring Rz, o then has a canonical structure of O[Ag]|-algebra.
We will write ag C O[Ag] for the augmentation ideal; the same lemma shows that there is a canonical
isomorphism Rz, ¢/(ag) = Rz, ¢

If @ is a Taylor—Wiles datum, then we define open compact subgroups Ui (Q) C Up(Q) C U as
follows:

e Up(Q) = [I, Uo(Q)v, where Up(Q), = U, = G(Ok,) if v € Q, and Up(Q), is the Iwahori group Uy
defined in {7]if v € Q.

e U1(Q) =11, U1(Q)v, where Ui(Q), = Uy, = G(Ok,) if v € Q, and U;(Q), is the group U; defined in
g7if v € Q.

Thus Uy C Uy is a normal subgroup, and there is a canonical isomorphism Uy /U; = Ag.

We now need to define auxiliary spaces of modular forms. We define H) = Ceusp(U, O)m. If Q is a
Taylor-Wiles datum, then there are surjective maps B(U1(Q), O) — B(Up(Q), O) — B(U,O), and we write
m as well for the pullback of m C B(U, Q) to these two algebras. Just as in Lemma we have surjective
morphisms

Rger — B(Ul, O)m — B(Uo, O)m

We define H, ; = Ceusp(U1(Q), O)m and Hy o = Ceusp(Uo(Q), O)m-

There is a structure of Rz, o[[[,cq X«(T)]-module on Hy, ,, where the copy of X,(T') corresponding
tov € Q acts via the embedding O[X..(T)] — Hy, (@), described in Lemmaand the preceding paragraphs.
We write ng,0 C O[[[,,cq X«(T)] for the maximal ideal which is associated to the tuple of characters (v € Q):

oot 0 Tmlwi, : Wi, = T(k), (8.13)

as in the paragraph following Lemma Then H( g, , is a direct factor Rz, g-module of Hp , and
Proposition @ shows that there is a canonical isomorphism Hé),O,HQ,O ~ H), of Rz, g-modules. (We note
that the key hypothesis in Proposition [7.8] of compatibility of two different pseudocharacters is satisfied in
our situation by Theorem [8:9] We note as well that we assume in 7] that if v € @, then the stabilizer in the
Weyl group of the regular semisimple element p,, (Frob, ) € G(k) is trivial; this is equivalent to the condition
that the centralizer in Gy, of Pm (Froby) is connected, which is part of the definition of a Taylor-Wiles datum.)

Similarly, if v € @ then we write T(K,); for the quotient of T(K,) by its maximal pro-prime-to-
subgroup. Then there is a structure of Rz, o[[[,cq 7' (Kv)iJ-module on Hy, ;, where the copy of T'(K,),
corresponding to v € @ acts via the embedding O[T(K,);] — Huy, (), described in Lemma We write
ng,1 C O[[[,eq T(Ky)i for the maximal ideal which is associated to the tuple of characters (8.13)) as in the
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paragraph following Lemma Then Hg | , 0. 1s a direct factor Rz, g-module of Hg, 1, and Proposition
shows that the two structures of O[Ag]-module on Hy, ., one arising from the homomorphism
O[Aq| = Rz, @ and the other from the homomorphism O[Aq] — O[[[,cq T'(Ky)i], are the same. (We are
again invoking Theorem to justify the application of Proposition )

It follows from the second part of Lemma [7.3] that the natural inclusion

Ccusp(UO(Q)v O) C Ccusp(Ul (Q), 0)

induces an identification Hé?’o}ano = (Hb’l’uQ)l)AQ. In order to complete the proof, we will require one more
key property of the modules H, é),l'

Lemma 8.22. Fiz a place vy of K, and let IM denote the order of the I-Sylow subgroup of G(quo). Let Q

be a Taylor-Wiles datum, and suppose given an integer N > M such that for each v € Q, ¢, = 1 mod IV .
-M

Then (Hém)lN YAq s g free O[Ag /1IN =M Ag]-module.

Proof. This follows from Theorem (This is the point in the proof where we use our assumption that
Tm is strongly G-irreducible.) O

This property implies in turn that (Hg ; ., l)leMAQ is a free O[Ag /1N =M Ag]-module. Observe
that the abelian group Ag/IN "M Ag is a free Z/IN =M Z-module of rank r#Q), where r = rank G.

Henceforth we fix a place vy of K and let ™ be as in Lemma If Q is a Taylor—Wiles datum
as in Lemma we will then define Hg = Homo((Hé’l’nQ,l)leMAq(’)) and Hy = Home(H},O), and
endow these finite free O-modules with their natural structures of Rz, g ®oja,) O[Aq/IN M Ag)- and
Rz, p-module, respectively. We can summarize the preceding discussion as follows:

e The module Hy, is a finite free O[Ag /1M =M Agl-module, where O[Ag /1N~ Ag] acts via the algebra
homomorphism

O[AQ/ZNﬁMAQ] — Rﬁm,Q ®O[AQ] O[AQ/ZNﬁMAQ}.

e There is a natural surjective map Hg — Ho, which factors through an isomorphism (Hq)a, — Ho,
and is compatible with the isomorphism Rz, o/(ag) = Rz, ¢-

Indeed, the freeness of (Hg ; 1)leMAQ implies that Hg is itself a free O[Ag /I =M Ag]-module, and that
there is a natural isomorphism

N-M
(HQ)AQ = HomO((H{Q,l,nQﬁl)l AQ)AQvo) = HomO(HéQ,O,nQ,Oa O) = HOmo(H(,), O) = HO-

Let ¢ = h*(T'k ¢, 9k ). By Proposition we can find for each N > 1 a Taylor-Wiles datum (Qn, {¢w }veqy)
which satisfies the following conditions:

e For each v € Qu, we have ¢, = 1 mod (VM and #Qn = q¢.

e There exists a surjection O[X1,...,X,] = Rz, Qy, Where g = gr.

We now patch these objects together. Define Ry = O[X1,..., Xy, Ao = Z{, Ay = A /I A, Soo =
O[Ax], Sy = O[AN]. We define by = ker(Soo — Sn), by = ker(Se — O) (i.e. by is the augmentation ideal
of this completed group algebra). We choose for each Taylor—-Wiles datum @ a surjection Ay, — Agy;
this endows each ring Rz g, with an S-algebra structure, and hence each ring Rz, g, /(bn) with an Sy-
algebra structure. The discussion above shows that Hg, has a natural structure of Rz, g, /(bn)-module,
and that Hg, is free as an Sy-module, when Sy acts via the map Sy — Rz, .o /(bn). We also fix a choice
of surjection Roo = Rz, .Qn-

Let a = dimy (Ho ®o k), and if m > 1 set r,, = g(g+ 1)aml™. This integer is chosen so that for any
N > 1, we have

erjém,QNHQN C wNHQN.

If m > 1 is an integer, then we define a patching datum of level m to be a tuple (R, Himn, Qm, Bm) consisting
of the following data:
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e R,, is a complete Noetherian local O-algebra with residue field k. It is equipped with a homomorphism
Sm — Ry, and a surjective homomorphism R, — R,, (both morphisms of O-algebras).

e H,, is a finite R,,-module.

® ap is an isomorphism Ry, /(bo) = Rz, g/mpy"  of O-algebras.

m,0
® [, is an isomorphism H,,/(bg) = Hy/(w™) of O-modules.
We require these data to satisfy the following conditions:
e The maximal ideal of R,, satisfies m%"; =

e H,, is a free S,,/(ww™)-module, where S,, acts via S, = R.

e The isomorphisms a,,, #,, are compatible with the structure of Rz _ ¢/mp" ,~module on Hy /(@™).

We define a morphism between two patching data (R, Hym, Qm, Bm), (R, H. ol Bl) of level m to be a
pair of isomorphisms ¢ : R, — R., j : H,, — H}, satisfying the following conditions:

e i is compatible with the structures of R.o- and Sy,-algebra, and satisfies oy, = o, i.
e j is compatible with the structures of R,,- and R, -module via i, and satisfies 3,, = ,.7.

Then the collection D, of patching data of level m forms a category (in fact a groupoid). This category has
finitely many isomorphism classes of objects: indeed, our conditions imply that R,, and H,, have cardinality
bounded solely in terms of m, and the finiteness follows from this. For any m’ > m, there is a functor
Frrm : Dy — Dy, which sends (R, Hyn/ s Gy, By ) to the datum (Ryyy Hyy G, Bin) given as follows:

o Weset R, = Ry /(by, mp" ).
o We set H,,, = Hy, [/ (b, ™).

e We let o, = v,y mod m;{” , and B, = Bp mod w™, noting that there are canonical isomorphisms
Rm/(bo) = Rm//(bo,m;{;,) and Hm/(bo) = Hm//(bo, wm).

For any 1 <m < N, we can write down a patching datum Py, v = (Rm,~N, Hm N, @m.N, Bm,n) of level m as
follows:

o We set R,,, v = Rz, qn/(MpE"

on’ b,,). Our choices determine maps Roo — Ry v and Sy, — Ry N
om, &N

o Weset Hy, v = Hgy / (b, @™).

~

e We let a,, n denote the reduction modulo m%’;n“QN of the canonical isomorphism Rz, ¢ /(bo) =
Rz, 0.

e We let 3, n denote the reduction modulo w™ of the canonical isomorphism Hg, /(bo) = Ho.

Using the finiteness of the skeleton category of D,, for each m > 1, we find that we can choose integers
Ny < Ny < N3 <... and for each m > 1 an isomorphism Fy,1,m(Pm+1,Ns1) = Pm,n,, of patching data.
This means that we can pass to the inverse limit, setting

R>* = l.&an,vaHoo = yLnHm,Nma

to obtain the following objects:

e R a complete Noetherian local O-algebra with residue field k, which is equipped with structures of
Sso-algebra and a surjective map R,, — R™.

e H,, a finite R°°-module.
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® (oo, an isomorphism R /(by) = Rs_ g.

e B, an isomorphism H.,/(bg) = Hy.
These objects have the following additional properties:
e H_ is free as an S,.-module.
e The isomorphisms ., o are compatible with the structure of Rz  g-module on Hy.

We find that
dim R* > depthpe Hoo > depthg  Hoo = dim S = dim R, > dim R,

and hence that these inequalities are equalities, Ro, — R is an isomorphism, and (by the Auslander—
Buchsbaum formula) H is also a free R>-module. It follows that H./(bg) = Hy is a free R*/(bg) = Rz, -
module, and that Rz g is an O-flat complete intersection. This in turn implies that Ceusp(U, O)m =2
Home(Ho, O) is a free Rz g-module (complete intersections are Gorenstein). This completes the proof of
the theorem. O

9 Application of theorems of L. Moret-Bailly

In this section we make some simple geometric constructions regarding torsors under finite groups. We first
recall some basic facts. Let H be a finite group. We recall that an H-torsor over a scheme S is an S-scheme
X, faithfully flat and of locally finite type, on which H acts on the left by S-morphisms, and such that the
natural morphism Hg xs X — X xg X, (h,z) — (hx,x), is an isomorphism. (Here H ¢ denotes the constant
group over S attached to H.)

Two torsors X, X’ over S are said to be isomorphic if there exists an H-equivariant S-isomorphism
f:X — X'. The étale sheaf Isomg g (X, X’) of isomorphisms of H-torsors is representable by a finite étale
S-scheme. If X = H g is the trivial H-torsor over S, then we have a canonical identification Isomg g (X, X') =
X'.

Now suppose that S is connected, and let s be a geometric point of S. If X is an H-torsor over .S,
then the choice of a geometric point Z of X above 5 determines a homomorphism ¢x 7 : m1(S,3) — H, given
by the formula v- T = px z(y) - T (v € m1(S5,3)). A different choice of T replaces px z by an H-conjugate.
This assignment X — px z determines a bijection between the following two sets (see [SGAO3, Exp. V, No.

5]) :
e The set of H-torsors X over S, up to isomorphism.
e The set of homomorphisms 7 (S,35) — H, up to H-conjugation.

We will apply these considerations in the following context. Let XY be smooth, geometrically connected
curves over F,, and set K = Fy(X), F = Fy(Y). Let 7x,7y be the geometric generic points of X and
Y, respectively, corresponding to fixed choices of separable closures K*/K and F*/F. We write Fq for the
algebraic closure of F, inside K.

Let p: m(X,7x) = H, ¥ : m(Y,7y) — H be homomorphisms. We now consider the pullbacks of
these homomorphisms to various different (although closely related) fundamental groups. The curve Y is a
smooth, geometrically connected curve over K, and the given data determines two torsors X, and X, over
Yi. We define Zy, , = Isomy, g(X,, Xy). Let Q denote a separable closure of the function field of Y-,
and let 77 denote the corresponding geometric generic point of Yx-. Fix a choice of F-embedding F° — Q).
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We then have a commutative diagram of fundamental groups:
1(Yks,7m)
K>7)

N

71 (Spec K,7x) (Y, y)

7 Ny

H

]F ,nY)
(9.1)

We recall ([SGA03| Exp. V, Proposition 6.9]) that if S’ — S is a morphism of connected schemes, then the
surjectivity of the map m(S’,7¢,) — m1(S5,7g) is equivalent to the following statement: for each connected
finite étale cover Z — S, Zg: — S’ is still connected. This condition is easily checked for the morphisms
leading to the surjective arrows in the above diagram. For example, let Y’ — Y be a connected finite étale
cover, and let Fys denote the algebraic closure of F, in Fy(Y”). Then Y is geometrically connected over F,/,
which shows that Y}, is connected.

Lemma 9.1. Let notation be as above.

(i) Suppose that 1 is surjective, even after restriction to Wl(Yﬁq,ﬁy), Then Zy., s a geometrically con-
nected finite étale K-scheme.

(i) Let K'/K be a finite separable extension, which is contained inside K°, and let z € Zy, ,(K'). Let
y € Yx(K') = Y(K') denote the image of z, and suppose that y ¢ im(Y (F, N K') — Y (K')). Then z
determines an Fy-embedding 3 : F' — K' such that f*1) and |, are H-conjugate as homomorphisms
FK’ — H.

Proof. For the first part, it suffices to note that Zy , x+ = Xy g = Xy ., is connected. Indeed, the
diagram (9.1) shows, together with our assumption, that |, (v 7) : 71(Yxs,7) — H is surjective.

For the second part, we first note that 5*v¢ depends on a choice of a compatible embedding F* — K*;
however, its H-conjugacy class is independent of any such choice, so the conclusion of the proposition makes
sense. The point z determines a morphism y : Spec K’ — Zy, , — Yxg — Y. Our assumption that y does
not come from Y (F,) says that the point of Spec K’ is mapped to the generic point of Y, hence determines

an Fg-embedding 3 : F' — K’, and a commutative diagram (where we now omit base points for simplicity):

B

71 (Spec K')

.
PN

m1(Spec K)

e N

H H.

71(Spec F)

The existence of the point z then says that the homomorphisms 5*¢ and ¢|r ., are H-conjugate, as desired.
O

We can now apply a well-known theorem of Moret-Bailly (see [MB89]) to deduce the following
consequence.
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Proposition 9.2. Let X,Y be smooth, geometrically connected curves over F,, and set K = Fy(X), F =
F (Y). Let ¢ : m(X,Tjx) — H, ¢ : m(Y,Ty) = H be homomorphisms such that 1 is surjective, even after
restriction to m (Y?q,ﬁy). Let L/K be a finite Galois extension. Then we can find a finite Galois extension
K'/K and an F,-embedding 5 : F — K’ satisfying the following conditions:

(i) The extension K'/K is linearly disjoint from L/K, and K' NF, =TF,.
(ii) The homomorphisms ¢|r,., and *1) are H-conjugate.

Proof. By the first part of Lemma Zy,o is asmooth, geometrically connected curve over K. By spreading
out and the Weil bounds, the set Zy (K, ) is non-empty for all but finitely many places v of K. Let S be a
finite set of places of K such that if L/M/K is an intermediate field Galois over K, with Gal(M/K) simple
and non-trivial, then there is v € S which does not split in M; and if v € S, then Z, ,(K,) is non-empty
(it is easy to construct such a set using the Chebotarev density theorem, i.e. Theorem . We see that S
has the following property: any Galois extension K’/K which is S-split is linearly disjoint from L/K. After
adjoining two further places to S of coprime residue degrees, we see that K’/K will also have the property
that K’ NF, = F,.

By Lemma [0.I] the proposition will now follow from the following statement: there exists a finite
Galois extension K’/K satisfying the following conditions:

(i) The extension K'/K is S-split.
(ii) The set Zy ,(K’) contains a point which does not lie above Y (IF,).
It follows from [MB89, Théoreme 1.3] that such an extension exists. This completes the proof. O

We conclude this section by recalling another useful result of Moret-Bailly and applying it to the
existence of compatible systems (see [MB90]).

Theorem 9.3. Let X be a smooth, geometrically connected curve over Fy, and let K = Fyo(X). Let S be
a finite set of places of K. Suppose given a finite group H and for each v € S, a Galois extension M, /K,
and an injection @, : Gal(M,/K,) — H. Then we can find inside K* a finite extension K'/K and a Galois
extension M/K', satisfying the following conditions:

(i) K'/K is S-split and there is given an isomorphism ¢ : Gal(M/K') — H.

(#i) For each place w of M above a place v of S, let v/ = w|k+, so that there is a canonical isomorphism
K, = K],. Then there is an isomorphism M,, = M, of K,-algebras such that the composite map

Gal(M,/K,)—=Gal(M,, /K!,)—=Gal(M/K')—2~H
equals p,,.

Remark 9.4. The main theorem of the article |[GLa] of Gan and Lomeli contains a strong automorphic
analogue of this theorem.

Proposition 9.5. Let G be a split simple adjoint group over Fy, and let 1 be a prime such thatl > 2dimG.
Let K = Fy(X), where X is a smooth, geometrically connected curve over F,, and let S be a finite set of
places of K. Then we can find the following data:

1) A finite extension K'/K inside K*® which is S-split.
() p

(ii) A coefficient field E C Q; and a continuous, everywhere unramified homomorphism p : T' i — G(OE)
such that p = p mod mg has image G(F,).

The representation p = py fits into a compatible system (j continuous, everywhere unramified representations
(@, (pA)r), each of which has Zariski dense image in G(Q,).
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Proof. The last sentence will follow from the results of §6| once we establish the rest, the Zariski density of
the image of p being a consequence of (ii) and Proposition We first apply Theorem to obtain the
following data:

e A finite extension K'/K inside K*®, which is S-split.

e A continuous, S-unramified and surjective homomorphism p : ' — @(IFZ)

After replacing K’ by an extension K’ - K and restricting p to the Galois group of this extension, we can
further assume:

e p is everywhere unramified.

The result will now follow from Theorem (applied to the ring R; ) if we can show that the following
conditions are satisfied:

e [ is a very good characteristic for G.
e p is absolutely G-irreducible.

e There exists a representation i : G — GL(V) of finite kernel such that ip : I'x» — GL(Vf,) is absolutely
irreducible and [ > 2(dimV — 1).

Our hypothesis on [ implies that it is a very good characteristic for @, and that [ is larger than the Coxeter
number of G. Consequently, G(IF;) is a G-absolutely irreducible subgroup of G (because its saturation
equals G(IF;), see [Ser05] §5.1]). We can then satisfy the third point above by taking V to be the adjoint

A~

representation of G. O

10 A class of universally automorphic Galois representations

In this section we introduce a useful class of Galois representations, which we call Coxeter parameters, and
which can, in certain circumstances, be shown to be “universally automorphic”; see the introduction for a
discussion of the role played by this property, or Lemma below for a precise formulation of what we
actually use. We first describe these Coxeter parameters abstractly and establish their basic properties in
§10.1] and then relate them to Galois representations and study their universal automorphy in We
learned the idea of using Coxeter elements of Weyl groups to build Langlands parameters from the work of
Gross and Reeder (see for example [GR10]).

10.1 Abstract Coxeter parameters

Let G be a split, simply connected and simple group over Z of rank r. Let T c B c G be a choice of split
maximal torus and Borel subgroup, and let ® = ®(G,T) denote the corresponding set of roots, R C ® the
corresponding set of simple roots. We write W = W(G,T) = N@(f)/f for the Weyl group. Let k be an
algebraically closed field. We will assume throughout §I0] that the characteristic of & is either 0 or [ > 0,
where [ satisfies the following conditions:

(i) 1 > 2h — 2, where h is the Coxeter number of G (defined in the statement of Proposition below).
(ii) ! is prime to #W. (In fact, this condition is implied by (i).)

These conditions are satisfied by any sufficiently large prime /. Under these assumptions, it follows that if
H is a group and ¢ : H — G(k) is a homomorphism, then ¢ is G-completely reducible if and only if gy is a
semisimple k[H]-module (see [Ser05, Corollaire 5.5]).

Definition 10.1. We call an element w € W a Cozeter element if it is conjugate in W to an element con-
structed as follows: choose an ordering o, ..., of R, and take the product so, ... Sq, of the corresponding
simple reflections in W.
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The properties of Coxeter elements are very well-known. We recall some of them here:

Proposition 10.2. (i) There is a unique conjugacy class of Cozeter elements in W. Their common order
h is called the Coxeter number of G.

(i) If w € W is a Cozeter element, then it acts freely on ®, with r = #R orbits. In particular, we have
#b =rh.

(iii) Let w € W be a Coxeter element, and let w € N@(f)(k) denote a lift of w. Then the é(k)-conjugacy
class of w is independent of any choices and f,g” =Zg, - The element w is reqular semisimple and

W' € Zg(k). We write I for the order of 1, which depends only on G.

(iv) Suppose that t is a prime number not dividing char k or #W and such that t =1 mod h, and let w € W
be a Cozeter element. Let q € F be a primitive h'™ root of unity. Then T(k)[t]*= is a 1-dimensional
F;-vector space, and every non-zero element v of this space is reqular semisimple in @(k‘) Conversely,
ifw € W and v € T(k)[{]*=7 — {0}, and w'v = av for some a € F}, then w' is a power of w. In
particular, if w'v = qu, then w' = w.

Proof. The first two points can be checked after extending scalars to C, in which case see [Cox34] and
[Kosh9l, respectlvely For the first assertion of the third part, it is enough to show that if «’ is another lift
of w to NG(T) (k), then w and ' are G( )-conjugate. We will show that they are in fact T(k) conjugate
Indeed, if z € T(k), then we have ziz~! = 2!=%u; on the other hand, we have @' = yu for some y € T(k).
We therefore need to show that the map T'(k) — T(k),z — 2!~ is surjective. This will follow if we can
show that the scheme-theoretic centralizer of w in fk is equal to Zék' To show this, it suffices to observe
that the map 1 — w : X*(T) — X*(T) is injective, with cokernel of order equal to Zg(k). This can again
be checked in the case k = C, in which case it is a known fact; see e.g. [GR10, Lemma 6.2]. For the second
assertion of the third part, we observe that in the Cartan decomposition

" acts trivially on % and leaves invariant each root space o, by definition of the Coxeter number h. On
the other hand, w permutes these root spaces freely (by the second part of the proposition). It now follows
from the facts that t2 = 0 and that dimy, Or > r that dimy ﬁ}f = #R = r, hence that 1 is regular and w"
acts trivially on gr. We deduce that b is regular semisimple and that w" € Zg(k).

We now come to the fourth point. We first prove the analogous claims for the Lie algebra /{Qti
if ¢ € Q) is any primitive h*® root of unity, then the eigenspace %fc is 1-dimensional, and all of its
non-zero elements are regular semisimple. Indeed, it follows from [Spr74, Theorem 4.2] (and the fact that
Coxeter elements are regular and have a(h) = 1, in the notation of op. cit.) that the eigenspace %f
1-dimensional and is spanned by regular semisimple elements, and that the centralizer of w in W is the
cyclic group generated by w. It then follows from [Spr74] Proposition 3.5] that the only elements of W which
preserve the eigenspace /%ffg are the powers of w.

We must now deduce the corresponding statement for the group f(k) Since t { #W, X*(f) ®z Ly
is a projective Z;[W]-module, and we have isomorphisms of Z,[W]-modules X, (T) ®z pi(k) = T(k)[t] (by
evaluation), X, (T) ®z Q, >, (via the canonical isomorphism X, (G,,) = Z = LieG,,). The characteristic
polynomial in F,[X] of w acting on T(k)[t] has distinct roots. There is a unique h™ root of unity ¢ € Q;
lifting q. Let v be a non-zero element of f(k)[t]wzq, a 1-dimensional F;-vector space, and suppose that v
is not regular semisimple, hence that the stabilizer of v in W is non-trivial (because G is assumed simply
connected). Let H, = Staby (v); then H, is normalized by w, and we write H, for the subgroup of W
generated by H, and w. Thus fIv acts on v by a character. By lifting this character to characteristic 0,
we can find ¥ € (X, (T) ®z Z¢)*= such that H, C Staby (7), which contradicts the above paragraph after
passage to Q;. This shows that Staby (v) is trivial and that v is in fact regular semisimple.
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Finally, let w’ € W, and let v be a non-zero element of T'(k)[t]*=7. Suppose that v is a w'-eigenvector.
Let H/, denote the stabilizer in W of the line Fy - v = T'(k)[¢]*=7 (so that both w,w’ lie in H/). Then F, - v
is a 1-dimensional subrepresentation of f(k:)[t] which occurs with multiplicity 1 (because ¢ appears with
multiplicity 1 as an eigenvalue of w). By lifting this character of H! to characteristic 0, we can find a lift
¥ € (X,(T) ®z Z4)"=S of v, such that the line Z; - ¥ is invariant by H/,. Appealing once more to the case of
Lie algebras now shows that w’ is a power of w. O

Definition 10.3. Let I' be a group. We call a homomorphism ¢ : I’ — @(k‘) an abstract Cozeter homomor-
phism if it satisfies the following conditions:

(i) There exists a mazimal torus T C Gy, such that ¢(I') C Ng, (T), and the image of $(I') in W (G, T) is

the cyclic group generated by a Cozeter element w. Let ¢°¢ denote the composite T' — G(k) — G(k),
T the image of T in G4

(ii) There exists a prime t = 1 mod h not dividing char k or #W and a primitive h'* root of unity q € F)
such that ¢2(T) N T (k) is cyclic of order t and wow™' = v? for any v € ¢*4T) N T*(k).

The definition includes some useful technical conditions that we can ensure are satisfied in appli-
cations. We will soon see (Proposition [10.7)) that the maximal torus T' appearing in this definition is the
unique one with the listed properties.

Lemma 10.4. Let ¢ : ' — G(Q) be an abstract Coxeter homomorphism. Let \ be a place of Q, ¢y : T’ —
G(Q) — G(QA) the composite, and ¢y : ' — G(IE‘Z) the reduction modulo I. Suppose that | > 2h —2 and that
I does not divide the order of ¢(I'). Then ¢, is an abstract Cozeter homomorphism.

Proof. If ¢ : T' — é(@) is an abstract Coxeter homomorphism, we can assume (after conjugation) that the
torus appearing in the definition is T. Since every element of the Weyl group W(G T) admits a representative
in G( ), this means we can even assume that ¢ takes values in G( ) (i-e. the points of G with values in the
algebraic integers in Q), and that ¢*d takes values in G( [¢¢])- Then the “physical” reduction of mod X (i.e.
composition with G( [¢]) — G(IFA)) of ¢*? has image of order prime to [, so is é—completely reducible, so is

G IF;)-conjugate to ¢, (i-e. the reduction modulo A of ¢, defined using the pseudocharacter as in Definition
4.9). This implies that ¢, is itself an abstract Coxeter homomorphism. O

Lemma 10.5. Let ¢ : I' — 6’(/{) be an abstract Coxeter homomorphism, and let the torus T be as in
Definition [10.3. Then:

(i) Let A = (¢*)=1(T*(k)). Then T'/A is cyclic of order h. We write w € W(Gy,T) for the image

of a generator. Then w is a Coxeter element, and there are isomorphisms ¢**(T) = ¢*¢(A) x (w) =
ZJtZ x Z/hZ, where 1 € Z/hZ acts on the cyclic normal subgroup as multiplication by q.

(i1) Let t = LieT, g, the a-root space inside gy, corresponding to a root « € @(@k,T). Then there is an
isomorphism of k[T']-modules:

W te EB Ind\ Ga,
a€d(Gy,T)/w

where each summand Ind\ G, is an irreducible k[T']-module.

Proof. We note that w is a Coxeter element, because it generates the same cyclic group as a Coxeter element
([Spr74, Proposition 4.7]). Let o € T be an element which projects to w, and let w = ¢*(0) € G*4(k).
Proposition shows that w has order h, and this implies the existence of the semidirect decomposition
in the first part of the proposition. R

To finish the proof of the lemma, we must show that for any o € ®(Gy, T'), there is an isomorphism

aa @aaw b @ﬁawhﬂ = Indiﬁa
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of irreducible k[T']-modules. By Frobenius reciprocity, it is enough to show that the induced representation
is irreducible; and this is a consequence of the fact that the representations gy, gaw, . . - ,aawh—l are pairwise
non-isomorphic. Indeed, if § € A has ¢*(5) # 1, then ¢*4(§) generates T'(k)[t]*=9, hence is regular
semisimple, by Proposition hence satisfies a(¢(8)) # 1, showing that a(¢(d)) is a primitive ¢*! root of
unity. Then a® (6(8)) = a(6(6))?, and these elements are distinct as i = 0,1,...,h — 1. O

Lemma 10.6. Let ¢ : I' — G(k) be an abstract Cozeter homomorphism. Then H(T,gy) = H(',g))=0
and for every simple non-trivial k[['|-submodule V. C @), there exists v € T' such that ¢(v) is regular

semisimple with connected centralizer in @k and V7Y # 0.

Proof. The vanishing follows easily from Lemmal[I0.5} To show the second part, we again apply Lemmal[I0.5
which tells us what the possible choices for V' are. Under our assumptions the k[[']-module gy, is self-dual,
so it is enough to show that for any simple k[[']-module V C gy, there exists v € T such that ¢(v) is regular
semisimple and V7 #£ 0. If V C t, then we can choose v € A. If V C Dcd(Gp,T)/w Indg o, then we can

choose 7 so that ¢() projects to a Coxeter element. It follows from the second and third parts of Proposition
that ¢(y) has non-trivial invariants in V. O

Proposition 10.7. Let ¢ : T — @(k) be an abstract Cozeter homomorphism.

(i) ¢ is G-irreducible and Z@Zd(qb(l")) is scheme-theoretically trivial.
(ii) There is ezactly one mazimal torus T C Gy, such that (T') C Ng, (T).

(iii) Suppose that ¢ : ' — @(k) is another homomorphism, and for all v € T, the elements ¢() and ¥ ()
of G(k) have the same image in (GJG)(k). Then ¢ and i are G(k)-conjugate.

Proof. Since ¢(T") has order prime to the characteristic of k, it is é—completely reducible. In particular, if it

is not G-irreducible then it is contained in a Levi subgroup of a proper parabolic of G}, so centralizes a non-

trivial torus. To show the first part, it is therefore enough to show that Zz..(¢(I')) is scheme-theoretically
k

trivial, or even that Zg (¢(I')) is equal to Zg . (We note that this really depends on the fact that G is
simply connected, and would be false in general otherwise, as one sees already by considering the example

~

G = PGLsy.)

Let T be a maximal torus of G, and w € W(ék, T') a Coxeter element as in the definition of abstract
Coxeter homomorphism. Since @k is simply connected, the centralizer of a regular semisimple element of
T is T itself [Hum95, Ch. 2]. The definition of Coxeter homomorphism shows that the centralizer of ¢(I")
is therefore contained inside T%. By Proposition we have TV = Z@k, and this group is étale over k
(because we work in very good characteristic). This shows the first part of the proposition.

For the second part, suppose that 7" is another maximal torus such that ¢(I') C N, e (T"), and let
A = (¢*))~Y(T(k)). Then ¢*(A) has trivial projection to W (G, T") (because it has t-power order, and ¢
does not divide the order of the Weyl group). It follows that ¢*(A) C 77, hence T = Zg, (™ (A) =T".

For the third part, we observe that the given condition means that for all v € T', ¢(y) and ¥ (7)
have the same semisimple part, up to G(k)-conjuation. Let gz o ¢ and @ o ¢ denote the two k[[')-modules
coming from the adjoint representation of G. They have the same character, so they are isomorphic (up to
semisimplification). This implies that 1 is also G-irreducible. Indeed, if not then we can replace ¥ by its
semisimplification to obtain a é—completely reducible representation which centralizes a non-trivial torus;
this would imply that gz o 1 = @i o ¢ contains a non-trivial subspace on which I' acts trivially, which is not
the case. It follows ([Ser(05, Corollaire 5.5], and the assumptions at the beginning of that g o ¢ is
a semisimple k[[']-module, hence there is an isomorphism g o ¢ = g o 1. This shows that 1(T") has finite
order prime to the characteristic of k. In particular, every element of the image of 1 is semisimple, so we
find that for all v € T, ¢(y) and v (v) are G(k)-conjugate, hence ker ¢ = ker 1) and ker ¢*? = ker 2.

Let H = ¢(T), Hy = ¢*4(T"). We identify both ¢ and ¢ with homomorphisms H — G(k). Let g € H
be an element that maps to a generator of Hy N T24(k), a 1-dimensional F;-vector space. After replacing )
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by a (A?(k)—conjugate, and g by a power, we can assume that ¢(g) = ¥(g) € T(k)[t]. In particular, g € H has
order t. Let v = ¢(g). Let ¢’ € H be a pre-image of w € W(@k, T). Then there exists a primitive h*™® root
of unity ¢ € F}* such that wow=! = v9, hence ¢'g(g') ! = g%.

We have (g') € Ng (T)(k). Let w' denote the image of 1(¢') in W(Gr,T). Then we have
w'v(w )™ = (g?) = ¥(g)? = v, so Proposition implies that w’ = w. After replacing ¢ by a T'(k)-
conjugate, we can therefore assume that ¥(g') = ¢(g’), without disturbing our assumption that ¥ (g) = ¢(g).
Since g, g’ generate Hy, this shows that ¢*¢ = 124 (equality, not just isomorphism). It follows that there
exists a character w : H — Zz(k) such that for all z € H, we have ¢(z) = w(x)(x). To finish the proof,
we must show that w = 1. However, the elements ¢(x), ¥(x) are @(kz)—conjugate so for any x € H we can
find w, € W(Gy, T) such that ¢(z) = w(z)Ld(z) = ¢(x)*=, hence w(z) = ¢(z)!~¥=. If ¢(x) € T(k), then
¢(x)' "= has order t, implying that w(z) = 1 (since ¢ is prime to the order of Z5(k)). To complete the
proof, we now just need to observe that ¢(g') = ¥(¢’), and H is generated by ¢, together with the subgroup
o) NT(k). O

Corollary 10.8. Let ¢ : ' — CAY'(/{) be an abstract Coxeter homomorphism. Then ¢ is strongly G-irreducible
and ¢(I') C G(k) is a G-abundant subgroup.

Proof. The G-abundance follows from Lemma and the strong irreducibility follows from Proposition
1oa O

10.2 Galois Coxeter parameters

We now continue with the assumptions of §10.1] and specify a particular choice of I'; as follows: we take
X to be a smooth, projective, geometrically connected curve over F, of characteristic p, K = F,(X), and
I' =T'k,s, where S is a finite set of places of K.

Definition 10.9. Let k be an algebraically closed field of characteristic 0 or l > 2h —2. A Coxeter homo-
morphism over k is a homomorphism ¢ : I'x ¢ — G(k) which is an abstract Cozeter homomorphism, in the

sense of Deﬁm’tion and which is continuous, when @(k) is endowed with the discrete topology.

Proposition 10.10. Let ¢ : T'x g — CAY'(@) be a Cozxeter homomorphism, and let X be a place of Q of residue
characteristic | # p. Let ¢y be the composite of ¢ with the inclusion G(Q) C G(Q,). Then:

(1) If Y : Tk g — é(@x) is a continuous homomorphism such that for every place v € S of K, ¢(Frob,)
and 1 (Frob,) have the same image in (G)/G)(Qy), then ¢, ¥ are G(Qy)-conjugate.

(ii) If 1 is prime to #¢(Uk s) and 1 > 2h—2, then the residual representation ¢, : T'x — G(F)) is a Cozeter
homomorphism. In particular, it is strongly G-irreducible and é,(T'x) is a G-abundant subgroup of
G(F)).

(iii) Let L/K denote the extension cut out by ¢*¢, and let K'/K be a finite separable extension linearly
disjoint from L. Then ¢|r,., is a Cozeter homomorphism.

Proof. The representations ¢, ¢ determine continuous maps ' g — (CA}’ / é) (Q,) which agree on the set of
Frobenius elements. This set is dense in I'k g, by Corollary so the first part of the proposition follows
from Proposition The second part follows from Lemma and Corollary For the third part, it
is enough to show that ¢*(T'x+) = $*4(I'k). This follows immediately from our hypothesis. O

We now come to the most important result of this section. Let G denote a split reductive group
over K, and let us suppose that G is in fact the dual group of G. We recall that we are assuming that G is
simply connected, so this implies that G is in fact an adjoint group.
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Theorem 10.11. Let ¢ : ' g — @(@) be a Coxeter homomorphism, and let X be a place of Q of residue
characteristic | # p. Suppose that ¢(FK-E) is contained in a conjugate of T(Q). Then there exists a
cuspidal automorphic representation T over Q, such that 7G(Ox) # 0 and which corresponds everywhere
locally to (b‘WKU (under the unramified local Langlands correspondence). In other words, for every irreducible

representation V- of @@A, and for every place v of K, we have the relation

xv (éx(Frob,)) = eigenvalue of Ty, on 7G(Ox),

Proof. |[BGO2, Theorem 2.2.8] implies the existence of a spherical automorphic function

f:GE)\G(AK)/G(OK) — Q,

with unramified Hecke eigenvalues which correspond to ¢|w,  under the unramified local Langlands corre-
spondence. (It is assumed in this reference that G is a reductive group with simply connected derived group;
the general case can be reduced to this one using z-extensions [Kot82].) If we knew that this function was
cuspidal and non-zero, then we could take 7 to be the representation generated by f. These properties of
the function f are established in the two appendices to this paper by Gaitsgory. We note that the proof that
f is non-zero shows in fact that the first Whittaker coefficient is non-zero, implying that 7 is in fact globally
generic. O

Lemma 10.12. Suppose gwen a prime t { p#W such that ¢ mod t has exact order h. Then we can find a
Cozeter parameter ¢ : ' g — G(Q) with the following properties:

(i) 6(Tx) C G(Z[C)).

(ii) For any prime-to-p place A\ of Q, and for any finite separable extension K'/K, linearly disjoint from
the extension of K cut out by ¢*?, and such that Plr,., is everywhere unramified, the representation
Aalr, T — CA?(@)\) is automorphic in the sense of Deﬁm’tion being associated to a prime ideal
p of the excursion algebra B(G (OK/) Q).

Proof. Let a € K be an element that has valuation 1 at some place of K, let f(Y) = Y — a, and let
Eo/K denote the splitting field of f(Y). Then f(Y) € K[Y] is irreducible, even over K -F,, and there is an
isomorphism Gal(EO/K) > uy X Z/hZ, where 1 € Z/hZ is a lift of Frobenius, which acts on u; by ¢ — (2.
Let w € W(G T) be a Coxeter element, and let w € G( ) be a lift to G. Let h denote the order of i, and
E = Eg-F . Then there is an isomorphism Gal(E/K) = i x 7./hZ, where again 1 € Z/hZ acts on p; by
¢ ¢t . .

By Proposition the Fy-vector space T(Z[¢])[t]*=? = T(Q)[t]*= is 1-dimensional; let v be a
non-zero element. Let ¢ : Gal(E/K) — G(Z[(;]) be the homomorphism which sends a generator of j; to v
and 1 € Z/hZ to . Then ¢ is a Coxeter homomorphism into G(Q) which takes values in G(Z[(]).

For any place A and any extension K'/K as in the statement of the lemma, ¢x|r,, is an everywhere
unramified Coxeter parameter, which takes values in f(@/\) after restriction to the geometric fundamental
group. Theorem implies the existence of an everywhere unramified cuspidal automorphic represen-
tation 7 which corresponds to ¢ everywhere locally, hence an everywhere unramified automorphic Galois
representation o, (associated to a prime ideal p of the algebra of excursion operators at level G(Ok)) such
that for every place v of K', ¢, (Frob,) and o, (Frob ) have the same image in (@//@)(@/\) Proposition
then implies that ¢x|r,., and o}, are in fact G(Q,\) -conjugate, showing that ¢, |r,., is automorphic, as
requ1red O

11 Potential automorphy

Let X be a smooth, geometrically connected curve over Fy, and let K =F,(X). Let G be a split semisimple
group over F,. Our goal in this section the following result, which is the main theorem of this paper.
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Theorem 11.1. Let l { g be a prime, and let p : T — é(@l) be a continuous, everywhere unramified
representation with Zariski dense image. Then there exists a finite Galois extension K'/K such that p|r,, is

automorphic: there exists a cuspidal automorphic representation I1 of G(Ag) over Q; such that T1G(Ox) #0
and for every place v of K', p|WK, and I, are matched under the unramified local Langlands correspondence

at v. In other words, for every irreducible representation V of CAT'@L, and for every place v of K’', we have the

relation N
xv (p(Frob,)) = eigenvalue of Ty, on % ©Ox"),

Proof. Let H denote the adjoint group of G, n: G — H the canonical isogeny. Then H is a product of its
snnple factors, and the theorem is therefore true for H by Theorem [11.4] below. We have a dual isogeny
n: H — G which presents H as the slmply connected cover of G. By [Con Theorem 1.4], the representation
p lifts to a representation py : ' — H((@l) such that 7o pg = p. Then py has Zariski dense image as well,
and becomes unramified after a finite base change. Moreover, it lives in a compatible system, by Theorem

We can therefore apply Theorem to find a finite Galois extension K'/K and a cuspidal automorphic
H(Ok/)

representation I g of H(Ag) over Q; such that for every place v of K, Iy, # 0, and Iy, and pg|w,,

are matched under the unramified local Langlands correspondence.

We let fg : H(K')\H(Ag')/H(Ok/) — Q; be a cuspidal function which generates Ilz, and set
fa = faon Then fo : G(K')\G(Ak)/G(Ok/) — Q is a cuspidal function, and if fo # 0 then its
Hecke eigenvalues are matched everywhere locally with p (because the Satake isomorphism is compatible
with isogenies). The proof of the theorem will be finished if we can show that fg # 0 (as then we can
take II = Il to be the cuspidal automorphic representation generated by f¢). This non-vanishing follows
immediately from Proposition [11.2 O

Proposition 11.2. Let n: G — H denote the adjoint group of G, and let 1 1 q be a prime. Let p : T'x —
)i (Q,) be a continuous, everywhere unramified representation with Zariski dense image, and suppose that
there erists a non-zero cuspidal function f : H(K)\H(AK)/H(@K) — Q, such that for every place v of K
and every irreducible representation V of ﬁ*l, we have

Tv,o(f) = xv (p(Froby))f.

Then flycag)) is not zero.

Proof. The idea of the proof is as follows: if f(n(G(Ak))) = 0, then the automorphic representation generated
by f should be a lift from a twisted endoscopic group of H. This would contradict the Zariski density of the
image of p. To implement this idea, we must get our hands dirty.

Let T be a split maximal torus of G, and let Ty denote its image in H. Then we have a commutative
diagram of F,-groups with exact rows

1 Zc Te Tur 1
i l l (11.1)
1 Z G H 1.

We observe that n(G(Ak)) is a normal subgroup of H(Af) which contains the derived group of H(Ag),
which implies that the subgroup of H(Ag) generated by n(G(Ak)), H(K), and H(@K) actually equals
H(K)-n(G(Ak)) - H(Ok), and is normal. Let Y = H(Ag)/(H(K)-n(G(Ak)) - H(Ok)), and let * denote
the group of charactersw : Y — @IX If w € Y*, we define a new function f®w : H(K)\H(AK)/H(@K) - Q
by the formula (f ® w)(h) = f(h)w(h). Then f ® w is also cuspidal. The proposition will follow from the
following two claims:

(i) The group Y is finite.

(i) The set {f ® w}oey~ is linearly independent over Q;.
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Indeed, (i) implies that we can find (unique) constants a,, € Q; such that for h € H(A), we have

Z auw(h) = 1 if A maps to the trivial element in Y;
“ 1 0 otherwise.

wey*

If f(n(G(Ak))) = 0, then we have ) _y. a,(f ®w) = 0, which contradicts (ii).
We therefore have to establish the claims (i) and (ii) above. Taking K-points in the diagram (11.1))
and applying Theorem 90 leads to a commutative diagram

1—=Z6(K) ——=Tg(K) —=Ty(K) —— (K’ZG)%I
| — > Zo(K) G(K) H(K) — H(K, Z¢) — H\(K, ),

where the cohomology is flat cohomology. We find that the connecting homomorphism induces an isomor-
phism H(K)/n(G(K)) = HY (K, Zg). The same is true if K is replaced by K, or O, (for any place v of
K). We obtain an isomorphism

) H(K,) HNEy, Za)
= I?mH(OK,S)\ [H n(G(K,)) H(Ox,) H HY(Ok,,Zg)

> liny H (O, 5)\ [

S veS

~ KU?ZG
= (Hresv)( (K,Zg)) [@ H(Ox.. Z0)

v

This group is finite. Indeed, Z¢ is a finite Fy-group with constant dual, so it suffices to show that for any
n > 1, the group

Hresv YK, pn)\ [@ M] ~ KX\A% /(’)X (AR)" = Pic(X) ®z Z/nZ

is finite, and this is true. This shows claim (i) above. In order to show claim (ii), let ZZ denote the
Cartier dual of Zg, and let X denote the group of everywhere unramified characters x : ' — Z& (a
subgroup of HY(K,Zk)); note that Z is a constant étale group scheme. Let inv, : H*(K,,G,,) —
Q/Z be the isomorphism of class field theory. For each place v of K, local duality gives a perfect pairing
HY(K,,ZE) x H'(K,, Zg) — Q/Z, defined explicitly by the formula (x,h) + inv,(x Uh). The Cassels—
Poitou-Tate exact sequence (|Ces, Theorem 6.2]) gives an exact sequence

0—— Y2 Hom(¥, Q/2) — H*(K, Ze) %o, H (K, Zc),

where QY is defined by QY(h)(x) = >_,inv,(x U h). The last map is injective (we can again reduce to
the analogous statement for u,, where it follows from class field theory), so after dualizing we obtain an
isomorphism Q : X — Hom(Y,Q/Z).

We now fix an isomorphism Q/Z = @IX [tors]. Then there is a canonical isomorphism
ZE 2 ker(Zg(Q) = Zg(@)), (11.2)
which allows us to identify the inverse of @ with an isomorphism
P YV* = Hom(Tg g, ker(Z5(Q) = Z5(Q)).
Let V' be an irreducible representation of ff@l of highest weight A € X *(fH) (with respect to the fixed

Borel subgroup B r C H ). Let v be a place of K. We note that Ty, considered as a compactly supported
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function on H(K,), is supported on double cosets of the form H(Og)u(w,)H(Ok), where p € X,(Ty)
has the property that A — g is a sum of positive coroots, hence lies in the image of X,(T¢) — X.(Th).
In particular, for any character w € Y*, we have w(A(w,)) = w(u(w,)). This allows us to calculate for
g e H(AK):

(Tvo(f ®w))(g) = / o, a0 gh)(gh)d
A (11.3)

= oJ(g)/ Tv,o(h) f(gh)w(A(wy)) dh = w(A@y))xv (p(Froby)) (f ® w)(g).
heH(K,)

We now observe that claim (ii) above follows from the following:

(iii) For any place v of K, for any irreducible representation V' of Ef@l of highest weight A € X, (Ty) =
X*(TA“H), and for any w € Y*, we have the equality

wAM(@y)) = A(P(w)(Frob,)). (11.4)

Indeed, the equations (|11.3) and (11.4)) together imply the identity
Ty, (f ®@w) = A(P(w)(Froby,))xv (p(Froby,)) = xv((p ® P(w))(Frob,)), (11.5)

showing that the function f ® w has unramified Hecke eigenvalues matching p ® P(w) under the unramified
local Langlands correspondence.

To show that the f®w (w € Y*) are linearly independent, it suffices to show that they have pairwise
distinct sets of Hecke eigenvalues. However, if two forms f ® w, f ® w’ have the same Hecke eigenvalues, it
follows from Proposition [6.4] and our assumption that p has Zariski dense image that p® P(w) and p@P(w’)
are actually H(Q,)-conjugate, hence there exists g € H(Q,) such that g(p @ P(w))g™' = p ® P(w'). In

particular, g ¢ Z5(Q;). If L/K denotes a finite extension such that w, w’ are trivial on ', then p(I'z) is

still Zariski dense in H(Q;) and we have gplr, 97" = plr,, implying that g € Z5(Q;). This contradiction

shows (conditional on the claim (iii) above) that no two forms f®w, f ®w’ have the same Hecke eigenvalues,
hence that claim (ii) is true.

To finish the proof of the proposition, we therefore just need to establish claim (iii). After unwinding
the definitions, this is equivalent to the conclusion of Lemma below. This concludes the proof of the
proposition. O

Lemma 11.3. Let v be a place of K, and consider an exact sequence

0—=Z— =Ty, (11.6)

where f is an isogeny of split tori over K,. Let v be the map defined by the dual exact sequence
0—=2ZP—L > X*(T") ® Q/Z—X*(T) ® Q/Z—=0. (11.7)
Let x € HY(K,, ZP) be an unramified element. Then for any A € X* (f’) = X.(T"), we have the formula
inv, (x U (6A(wy))) = A(ex(Froby,)), (11.8)

where the connecting homomorphism § is defined by the exact sequence .

Proof. The desired formula is linear in A\. We can choose isomorphisms 7' = G, T’ = G, such that X*(f)
is given by a diagonal matrix (because of the existence of Smith normal form). We can therefore reduce to
the case T = T' = Gy, f(z) = 2™ for some non-zero integer m, A : G,, = G,, the identity map. In this
case we must show the identity

inv, (x Ud(w,)) = x(Frob,).
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In fact we have for any b € KX, x : ', — Z/mZ:

inv, (x Ud(b)) = —inv,(bUd(x)) = x(Artk, (b)),

using [Ser62, Ch. XIV, §1, Proposition 3] (and noting that Artg, is the reciprocal of the reciprocity map
defined there). This is the desired result. O

We have now reduced Theorem to the case where G is a simple adjoint group over F,. This is
the case treated by the following theorem.

Theorem 11.4. Suppose that G is simple and simply connected, and let (B, (pA)r) be a compatible system of
representations py : ' g — @(@A), each of which has Zariski dense image. Then there exists a finite Galois
extension K'/K and a cuspidal automorphic representation 11 of G(Af) over Q such that T1G(Ox) #0
and for every place v of K', and for each prime-to-q place X of Q, pxlw,, andIL, are matched under the
unramified local Langlands correspondence. ’

Proof. Let Y be another geometrically connected curve over Fy and let F' = F,(Y"). After possibly replacing
Y by a finite cover, we can find a compatible system (@, (Rx)x) of everywhere unramified and Zariski dense
G-representations of I' (apply Proposition . By Proposition we can replace (py)x and (Ry)x by
equivalent compatible systems and find a number field E and a set £’ of rational primes with the following
properties:

e For each place A of Q, both py and R, take values in @(EA)

e The set £’ has Dirichlet density 0. If [ # p is _a rational prime split in F, and | ¢ L', and X lies above
[, then both Ry and py have image equal to G(Z;).

We recall that h denotes the Coxeter number of G. The group Gal(E((y)/E) embeds naturally (via the
cyclotomic character) as a finite index subgroup of Hr| n 2, we fix an integer b > 1 such that it contains
the subgroup of elements congruent to 1 mod h®. Let t > #W be a prime such that h**! divides the
multiplicative order of ¢ mod ¢; there exist infinitely many such primes, by the main theorem of [Mor05].
By the Chebotarev density theorem, we can find primes ly,l; not dividing ¢ and satisfying the

following conditions:
e [y splits in F, lg > #W, and Iy ¢ L.
e [y splits in E(¢;), 1 >t, and I; & L.
e If r|h is a prime, then [; = 1 mod h® but I; # 1 mod rh®.
e The groups @(Flo) and G(F,,) are perfect and have no isomorphic non-trivial quotients.

In particular, [y and [y are both very good characteristics for G. Ifrisa prime and g is an integer prime to
7, let 0,.(g) denote the order of the image of g in FX. Thus o;(q) is divisible by h**1. Let o = 0;(q)/h, so
that o;(¢®) = h and ¢® mod ¢ is a primitive A" root of unity, and « is divisible by h*. We now observe that:

e The degree [Fyo (¢, ) : Fge] is prime to h.

Indeed, the degree of this field extension equals oj, (¢%), which in turn divides oy, (qhb), which itself in turn
divides (I; — 1)/h®. This quantity is prime to h, by construction.
Let Ko = K -Fyo. We can now apply Lemma [10.12] to obtain a Coxeter parameter ¢ : T'x, — G(Q)

satisfying the following conditions:
e ¢ takes values in @(Z[Ct]).

e For any prime-to-p place A of Q and for any separable extension K’/Kj linearly disjoint from the
extension of K cut out by ¢? such that ¢|r s is everywhere unramified, the composite ¢x|r,, : ['xr —

@(Z[g}]) — @(@A) is automorphic (that is, associated to a prime ideal p of the algebra B(G(Ok), Q)
of excursion operators).
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Fix places Ao, A1 of Q of characteristics Iy, l;, respectively. We see that the following additional condition is
satisfied:

e Let K'/Kj be a separable extension, linearly disjoint from the extension of Ky cut out by ¢*¢. Then
oy, (I'r(¢,,)) 1s a G-abundant subgroup of G(F,), and ¢, |r,., is strongly G-irreducible.

Indeed, it suffices to show that the extension K'((;,)/Kp is linearly disjoint from the extension M/K, cut
out by ¢*1, as then Al ., ) is a Coxeter parameter (Proposition [10.10) and we can appeal to Corollary
1

10.8l To show this disjointness, note that the map I'xr — Gal(M/Kj) is surjective, by construction;
the image of I'g/(¢, ) in Gal(M/Kp) is a normal subgroup with abelian quotient of order dividing oy, (¢%).
The abelianization of Gal(M/Ky) is cyclic of order h. Using that the o, (¢%) is prime to h, we find that
Lrr(e,,) — Gal(M/Ko) is surjective and hence that the extensions K'(, )/ Ko and M/Kj are indeed linearly
disjoint, as required.

Let Fy = F' - Fga. We now apply Proposition @ with the following data:

o H=G(F,) xG(F,).
i QO = ﬁ)\O‘FKO X a)q'

o ) = R, Ipp X R Irr.. Note that 1 is surjective, by Goursat’s lemma. It is even surjective after
oll'ry 11'Fy
restriction to the geometric fundamental group, because H is perfect.

e /K is the extension cut out by .

We obtain a finite Galois extension K’/K, and an Fga-embedding § : Fy < K’ satisfying the following
conditions:

e The extension K'/K is linearly disjoint from L/Kp, and K' NF, = Fya.
e The homomorphisms py,|r,, and 8*Ry, are @(Flo )-conjugate.

e The homomorphisms ¢, |r,, and 8*R,, are G(Fll)—conjugate.
e The homomorphism ¢y, |r L 18 everywhere unramified.

The first three points follow from Proposition after possibly enlarging the field K’, we can ensure the
fourth point also holds. Consequently ¢y, |r ., is automorphic.

We are now going to apply our automorphy lifting theorem to ¢y, |r,,. We first need to make sure
that the hypotheses (i) — (iv) at the beginning of are satisfied. The first condition (I; 1 #W) is satisfied
by construction. The remaining conditions are satisfied because ¢|r,, is a Coxeter parameter, and remains
so after restriction to I' K/(C,)s by construction. Corollary now applies, and we deduce that there exists
an everywhere unramified cuspidal automorphic representation II of G(Ag/) over Q which corresponds
everywhere locally to the representation S*R),, hence to the representation S*R),. The representation
B*Ry, : T — @(@Ao) has Zariski dense image, so Lemma implies that 5*R), is automorphic in the
sense of Definition [R.7 R

On the other hand, the residual representation of 8*R,, is G(F;,)-conjugate to that of PaolTsers
which has image é(IFlO). We can again apply Corollary [8.21| to deduce the existence of an everywhere
unramified cuspidal automorphic representation 7 of G(Ag) over Q which corresponds everywhere locally
to the representation py,|r,,. Since every representation in the compatible family (0, pa|r,.,) has Zariski
dense image, the theorem now follows from the existence of 7 and another application of Lemma [8:8] O

11.1 Descent and a conjectural application

In this section, we discuss informally a conjectural application of Theorem that links descent and the
local Langlands conjecture, and which was our initial motivation for studying these problems. Let G be a
split semisimple group over Iy, and let [ be a prime not dividing g.
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Let K = F,(X) be the function field of a smooth, geometrically connected curve, and let v be a
place of K. If 7 is a cuspidal automorphlc representation of G(Ak), then the work of V. Lafforgue see .
associates to m at least one continuous, G- completely reducible representation p, : I'y — G(Ql) which is
unramified at those places where 7 is, and which is compatible with 7, under the unramified local Langlands
correspondence at such places. R

If v is a place at which 7, is ramified, then we still obtain a G-completely reducible representation
pﬂ?}}m : Wk, — G(Q;). It is natural to expect that this representation depends only on 7,, and not on
the choice of cuspidal automorphic representation 7 which realizes 7, as a local factor; and also that this
representation depends only on K, as a local field, and not on its realization as a completion of the global
field K.

These expectations have been announced by Genestier—Lafforgue [GLb]. We have already cited part
of this work in Theorem which played an essential role in the proof of our main automorphy lifting
theorem (Theorem [8.20)). If F' = F,((t)), then this leads to a map

LLCS - { Irreducible admissible representations } . @—completglyﬁreducible IE)momorphisms
of G(F), up to isomorphism Wr — G(Q,), up to G-conjugation
which deserves to be called the semisimple local Langlands correspondence over F'. The question we would
like to answer is whether or not this map LLC% is surjective. The most important case is whether all of the

G-irreducible homomorphisms Wr — CAT'(@Z) appear in the image; one expects to be able to reduce to this
case. In this case, we have the following proposition.

Proposition 11.5. Assume Conjecture below. Then the image of the map LLCS contains all G-
irreducible homomorphisms.

Conjecture [11.6]is as follows:

Conjecture 11.6. Let E/K be a cyclic extension of global fields, as above, and let p : T — @(@l) be a
continuous, almost everywhere unramified homomorphism of Zariski dense image. Suppose that there exists
a cuspidal automorphic representation g of G(Ag) over Q; such that at each place of E at which 7 and
plr, are unramified, they correspond under the unramified local Langlands correspondence.

Then there exists a cuspidal automorphic representation w1 of G(Ak) such that at each place of K
at which g and p are unramified, they correspond under the unramified local Langlands correspondenec.

We now sketch the proof of Proposition m Let 09 : Wgp — @(@l) be a G-irreducible homo-
morphism. Using similar techniques to those appearing in the proof of Proposition [9.5 one can find the
following:

o A global field K =TF,(X), together with a place vy and an Fg-isomorphism F' = K.

e A continuous representation o : ' — @(@l) of Zariski dense image which is unramified outside vy
and which satisfies ‘7|WKv0 = gy.

A slight generalization of Theorem then allows us to find as well:
e A Galois extension K'/K such that o|r,, is everywhere unramified.

e An everywhere unramified cuspidal automorphic representation m of G(Ag-) such that at each place v
of K', m and olr,, are related under the unramified local Langlands correspondence.

Let wg be a place of K’ above vg, and let K denote the fixed field inside K’ of the decomposition group
Gal(K,,,/K.,). Let ug denote the place of K¢ below wy. Then the extension K’/ Ky is Galois; wy is the unique
place of K" above uo; the inclusion K,, — Koy, is an isomorphism; and the inclusion Gal(K}, /Ko u,) —
Gal(K'/Ky) is an isomorphism. In particular, the extension K’/Kj is soluble.

We can now repeatedly apply Conjecture[I1.6]to the abelian layers of this soluble extension to obtain
the following:
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e A cuspidal automorphic representation 7y of G(Ak,) such that at every place where my and olry, are
unramified, they are related by the unramified local Langlands correspondence.

In particular, if po : ', — @(@l) denotes one of the representations associated to my by V. Lafforgue, then
po has Zariski dense image, is uniquely determined by g, and is G(Q,)-conjugate to o|r Ko (see Lemma .
We can now conclude. The above discussion shows that the representation O’ﬁ;[S/KO is the image of

To,u, Under the map LLC??O o Now pulling back along the isomorphisms F' = K,, = Ky ,, and using the
identification o =2 aﬁj,Ko shows that the representation og is in the image of LLC%, as desired.
,uQ

11.2 Existence of Whittaker models

In this final section we sketch a variant of our main theorem. As usual, we let X be a smooth, geometrically
connected curve over F,, and let K = F,(X). Let G be a split semisimple group over F,, and fix a split

maximal torus and Borel subgroup T' C B C G. We recall that a character ¢ : N(Ag) — @X is said to
be generic if it is non-trivial on restriction to each simple root subgroup of N(Agk)/[N(Ak), N(Ak)] (cf.
[JS07)).

Definition 11.7. Let m be a cuspidal automorphic representation of G(Ax) over Q. We say that T is
globally generic if there exists an embedding ¢ : m — Clrysp(Q), a function f € ¢(w), and a generic character

P : N(K)\N(Ag) — Q" such that the integral

/ F(n)b(n) dn
neN(K)\N(Ak)

1S NON-2€r0.

Globally generic automorphic representations play an important role in questions such as multiplicity
one or the construction of L-functions. We are going to sketch a proof of the following result.

Theorem 11.8. Suppose given a @-compatible system (0, (px : T — @(@)\)),\) of continuous, everywhere
unramified representations with Zariski dense image. Then there exists a finite extension K' /K and a globally
generic, everywhere unramified, cuspidal automorphic representation 11 of G(Ag) over Q such that pIr
and I are matched everywhere locally under the unramified local Langlands correspondence.

The two main points in the proof are Corollary and the following strengthening of Theorem
M0.ITH

Theorem 11.9. Suppose that G is simple and adjoint. Let ¢ : ' g — é(@) be a Cozxeter homomorphism,
and let X\ be a place of Q of residue characteristic 1 { q. Suppose that qﬁ(FK_Fq) is contained in a conjugate of

f(@) Then we can find the following:
(i) A coefficient field E C Q.
(ii) A cuspidal automorphic representation m of G(Ax) over Q; such that 7G(Ox) #0.

(iii) An embedding ¢ : m — Ceysp(Q;) and a function f € CCUSP(G(@K), O) such that f spans ¢(m)¢(Ox).

(iv) A generic character v : N(K)\N(Ag) — ZX such that

/ F(n)yb(n) dn =1, (11.9)
nEN(K)\N(hx)

In particular, m is globally generic.
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Proof. This is the same as Theorem [10.11] except we now require the existence of an O-valued function f
satisfying the identity . The existence of a function f satisfying this condition is proved in Appendix
B of this paper; the same computation has already been used in the proof of Theorem to show that
the function f considered there is in fact non-zero. O

We now sketch the proof of Theorem [11.8

Proof of Theorem[11.8 We can reduce, as in at the beginning of to the case where G is a simple adjoint
group. By Proposition we can find, after passing to an equivalent compatible system, a number field
M C Q and a set £’ of rational primes of Dirichlet density 0, all satisfying the following conditions:

e For each prime-to-g place A of Q, py takes values in G(M,).
e If [t ¢ is a rational prime split in M, and [ ¢ £’, and X lies above [, then p) has image equal to @(Zl).

Let h denote the Coxeter number of G. The group Gal(M((y~)/M) embeds naturally as a finite index

subgroup of HT‘ n L) ; we fix an integer b > 1 such that it contains the subgroup of elements congruent to

1 mod hb. Let t > #W be a prime such that h®*! divides the multiplicative order of ¢ mod t. By the
Chebotarev density theorem, we can find a prime [ 1 ¢ satisfying the following conditions:

e [ splits in M (), I >t,and [ & L.
e If r|h is a prime, then [ = 1 mod h® but [ # 1 mod rh®.
e The group G(F;) is perfect.

If r is a prime and g is an integer prime to r, then we write 0,.(g) for the order of the image of g in FX, as
in the proof of Theorem Let a = 04(q)/h, so that 0;(¢®) = h and ¢® mod t is a primitive A" root of
unity, and « is divisible by h°. Then the degree [Fga ((;) : Fgo] is prime to h.

We can now apply Theorem and similar arguments as in the proof of Lemma to obtain
the following:

o A smooth, projective, geometrically connected curve Y over Fyo with function field F' = Fga (Y).

e An everywhere unramified Coxeter parameter ¢ : I'y — G(Q) which in fact takes values in G(Z[(]).

e For any place A of Q above I and for any finite separable extension F'/F linearly disjoint from the

extension of F cut out by ¢*!, a coefficient field E C Q,, a function f : G(F’)\G(Apr)/G(@F/) - O
which is matched everywhere locally with ¢, under the unramified local Langlands correspondence,

and a generic character ¢ : N(F")\N(Ap/) — le such that

/ Fm)b(n) dn = 1.
neEN(F')\N(Apr)

Let Ko = K -Fya, and fix a choice of place A of Q above I. We now apply Proposition with the following
data:

o H=G(F).
° w:%-
° ¢:ﬁ,\|FKO~

e L/F is the extension cut out by ¢,.

In order to avoid confusion, we note that the roles of F' and K here are reversed relative to their roles in the
statement of Proposition We obtain a finite Galois extension F”/F and an Fye-embedding 5 : Ky < F’
satisfying the following conditions:
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e The extension F'/F is linearly disjoint from L/F, and F' NF, = Fa.
e The homomorphisms ¢, |r,, and 3*p, are @(Fl)—conjugate.

Let E C Qy, f: G(F)\G(Ap)/G(Op) — O, and ) : N(F')\N(Ap) — Z, be the objects associated to
®alr,, above. The representation 3*py takes values in @(Zl) and has residual representation conjugate to
the Galois Coxeter homomorphism ¢,|r,, .

Let U = G(@FI). There is a unique maximal ideal m C B(U,O) such that f € Ceusp(U, O)m;
indeed, this follows from Proposition [I0.7] We can then apply Theorem [8:20] to deduce that the natural map

R@Ir 9 — B(U,O)n is an isomorphism, and that both of these rings are finite flat complete intersection
oy

O-algebras. It then follows from Proposition[5.12] that they are even reduced, hence B(U, Q) [1/1] is an étale
FE-algebra.

It follows from Proposition [10.7] and these observations that there is a unique minimal prime ideal
p C B(U,O)n such that f € Ceusp(U, O)[p]. We can now apply Corollary to deduce the existence of a
function f’ € Ceusp(U, Q) such that

/ £ (m)(n) #0
nEN(F')\N(Ags)

and such that f’ is matched everywhere locally with 3*p, under the unramified local Langlands correspon-
dence. Since the space Ceusp(U, Q) with its Hecke action is defined over Q, we can even assume that f’ lies
in Ceysp(U, Q). The proof of the theorem is now complete on taking 7 to be the cuspidal automorphic repre-
sentation generated by the function f’, and K’ to be F’, viewed as an extension of K via |k : K — F'. O

Appendix A. Cuspidality of Eisenstein series, by D. Gaitsgory

1. We assume being in the setting of [BG0O2, Theorem 2.2.8]. We are given a T-local system E4 on X, such
that the induced G-local system )
Eg = Indg (Ef)

is equipped with a Weil structure, and as such is irreducible.

According to [BGO2, Proposition 2.2.9], Ey is reqular (i.e., the G,,-local system a(Ez) is non-
constant for all roots a of ), and there exists an element w € W and its lift w € N(T') such that

Fr*(E;) ~ Ef, (11.10)

and the identification

(11.10j 5 —w

mdS(E;) ~ By, ~ Fr(Bg) ~ d$ (Fr*(E;)) = d$(Ey)
is induced by w.

2. Consider the object
.G
Autg = Eisp (AutET).

We define the structure of Weil sheaf on Autg by

11.10
Fr*(Bis§ (Auty ) ~ Eis§ (Aut .., )) "2 Eis(Autgy) ~ Eisf(Autg ), (11.11)

where the last isomorphism is the Functional Equation for Eisenstein series ([BG02, Theorem 2.2.4]).

Our goal is to show that the spherical automorphic function corresponding to Autfc with the above
Weil structure is cuspidal.
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3. First, we claim that we can assume that E is strongly regular, i.e., F; is non-isomorphic to E; for any
w e W.

G) . _
Indeed, embed G into Gy := G x T', where T" is a torus. There exists a G'j-local system Ey ,
equipped with a Weil structure so that E (equipped with its own Weil structure) is induced from E¢, by
means of the homomorphism G; — G.

Let ET1 be the corresponding 7'-local system over X. We claim that ET1 is automatically strongly
regular. This follows from the fact that the derived group of G; is simply connected. Now, if we know the
cuspidality assertion for (G1, the cuspidality assertion for G follows.

4. For a parabolic P with Levi quotient M let
CTS, : Sh(Bung) — Sh(Bunyy)
be the corresponding constant term functor, i.e.,

CTS; = (ap)ro (pp)”

Consider the object
CT%(Eisg(AutET)) € Sh(Buny), (11.12)

with the Weil structure induced by the Weil structure on Eisg(Au‘cET)7 given by (|11.11)).

We need to show that the function on Bunj,(F,) corresponding to (11.12) is zero.

5. Let
'Eis}! : Sh(Bunr) — Sh(Buny,)

be the non-compactified Eisenstein series functor (see [BG0O2, Sect. 2.2.10]).

The standard calculation of the constant term applied to Eisenstein series (see [BGO8| Proposition
10.8] for the case P = B) says that the functor

CT§, o EisG (11.13)
can be canonically written as an extension of functors
8" : Sh(Buny) — Sh(Buny,),
where each S’ is an extension of functors
5 some Hecke functor =5 w’ 5 'Eisy! 5
Sh(Bunry) — Sh(Bunz) — Sh(Buny) —+% Sh(Bunyy),

and w’ runs over a set of representatives of Wi \W.
6. Now, the assumption that E; is strongly regular implies that

RHom(S8"1 (Autg_), 8" (AutE? ))=0 (11.14)

unless wj = wh - w mod Wy, see [BGOS|, Proposition 10.6].

In particular, taking in (11.14) w} = 1, we obtain that the object (11.12) is canonically a direct sum:

CTG (Eisf (Autg ) ~ & S (Autg, ). (11.15)
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6. In terms of the isomorphism ((11.15]) the Weil structure on ((11.12)) is an isomorphism

W’ m W’ ~ S (At
(@S (Autg_) S AutE)_?S (Autg_).

Applying (11.14) again, we obtain that this isomorphism is given by a collection of isomorphisms
Fr (S (AUtET)) - S 1(AUtET~)v

where w] is such that w} = w’ - w mod Wjy.

Note, however, that for no w’ do we have w’ = wj. Indeed, this would mean that w belongs to a
subgroup conjugate to Wy, contradicting the irreducibility of £/~ as a Weil local system.

7. Now, the required vanishing of the function follows from the next general claim: let ) be a stack, and let
F be an object of Sh(}), equipped with a Weil structure. Assume that F is written as a direct sum

F=&F, (11.16)
i€l

where [ is some finite set.

Assume that in terms of ((11.16)), the Weil structure on F corresponds to a system of isomorphisms
Fro(Fi) = Fogy,
where ¢ : I — I is an automorphism of I.

Assume that ¢(i) # ¢ for all ¢ € I. Then the function on Y(F,) corresponding to F vanishes.

Appendix B. Non-vanishing of Whittaker coefficients, by D. Gaits-
gory

Temporary notation: For a stack/scheme ) over F,, we will denote by Y its base change to F,. We
will denote by Sh(Y) the derived category of sheaves on )/, and by Sh(Y) the category of objects in Sh(Y),
equipped with a Weil structure, i.e., pairs (F € Sh(Y), a : Fr},(F) ~ F)).

Note that for ) = pt := Spec(F,), the category Sh(pt) is that of objects of Vect (=graded Q,-vector
spaces) equipped with an automorphism.

1. We assume being in the setting of [BG02]. We are given a T-local system Ef on X, and let
Autg_ € Sh(Bung)

be the 1-dimensional local system that corresponds to it by geometric Class Field Theory. Consider the
object
S NN €} 7 P
Autg = ElST(AutET) € Sh(Bung).

Assume that AUtEG is equipped with a Weil structure. Our goal is to prove:

Theorem. The function on Bung(F,) that corresponds to Autfc is non-zero.

We will prove Theorem 1 by showing that its first Whittaker coefficient is non-zero.

2. Pick a square root w)%( of the canonical line bundle wx on X. Let p(wx) denote the T-bundle on X

1
induced from w} using the cocharacter 2p : G,,, — T
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Let Bunf\gUfX) be the stack
Bung- x {p(wx)};

Bunp

this is a twisted version of Buny-. We have a canonical map
B~ — 1 B,
i€l

where I is the set of vertices of the Dynkin diagram, and B; the negative Borel subgroup of the adjoint
quotient of the corresponding subminimal Levi. The above homomorphism defines a map of stacks

Bun' p(wX) — I Bun”“¥) .
el Ny

Note that each Bunf\;(,wX) is the stack classifying extensions
0—>wx & — Ox —0,

and hence admits a canonical map to A'. Let A-Sch denote the Artin-Schreier sheaf on A!. Let y denote
the *-pullback to BuanX) of A-Sch along the map

Bunf\;fx) — _HI Bun]p\j(_wx) — _HI Al AT
1€ i 1€

We define the functor
Whit : Sh(Bung) — Sh(pt)
to be the composition

Sh(Bung) — Sh(Bun“¥)) =2 Sh(Bunf“*)) = Sh(pt),

where the first arrow is *-pullback with respect to the natural projection Bunféfx N Bung, the the last

arrow is the functor of cohomology with compact supports. We will use the same symbol Whit to denote
the corresponding functor
Sh(Bung) — Vect

(i.e., when we ignore the Weil structure).

It is clear that for 7 € Sh(Bung) and the corresponding function f on Bung(F,), the first Whittaker
coefficient of f equals the trace of the Frobenius on Whit(F).

Hence, Theorem 1 follows from the next result:

Theorem. There is an isomorphism -

up to a cohomological shift.

Notation change: From now on we will work over F,, and we will omit putting the bar over the objects
involved. So, for example, from now on X is a curve over Fq, and By is a T-local system on X, etc.

2’. We will in fact prove the following generalization of Theorem 2:

Theorem. The functor
Whit o Eis$ : Sh(Buny) — Vect

identifies canonically with the functor of *-fiber at the point p(wx) € Bunr.
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3. Consider the diagram

’

Bunf\;fx) X Bunp p_‘) Bunpg L) Bunr
Bung
$l lﬁ (11.17)
Bun’;\;‘f){) LN Bung .

By base change, the functor Whit o Eis? is calculated as follows

F o, (Buntf) o Buig, (19%)"(F) @ (37)" (Coiz, ) @ (5)° (1) ) |- dim(Buny)].

Bung

The fiber product Bun%‘fx ) % Bun B admits a decomposition into locally closed substacks
Bung

(Bun?v(‘f)‘) x Bung)V, weW

Bunc

indexed by the relative position of the N~ -reduction and the B-reduction of a given G-bundle over the
generic point of X.

We have the following basic assertion:
Proposition. For any w # 1 and F € Sh(Buny), the cohomology

H, <(Bunfjv<wx) x Bung)®, (G0 'p7)"(F) @ (p7) (Cxm,, ®(’p)*(x)>

Bung

vanishes.
The proof is obtained by repeating the argument of [BGOS8| Sect. 10.9].
4. Denote
Z = (Bun%‘fX) x Bunp)';
Bung

this is the open stratum, where the two reductions are mutually transversal. The stack Z is known to be a
scheme and is called the Zastava space, see [BEGMO02, Sect. 2.2].

From Proposition 3, we obtain that Whit o Eisg can calculated be calculated by
F He (2,(@0"p7)"(F) @ (7)) (ICx5,) @ (9)" (1)) [~ dim(Bunr)],
where by a slight abuse of notation we continue to denote by ‘p~ and 'p the maps from ([11.17)), restricted
to Z.

The scheme Z splits into connected components, indexed by the elements of AP, the semi-group
of coweights of G’ equal to non-negative linear combinations of positive simple coroots; for A € AP, let Z*
denote the corresponding connected component.

Let X* denote the corresponding partially symmetrized power of the curve. Le., if A = ‘EI n; - Qy,
1€

then
XA =1 x™.
i€l
According to [BEGMO02], Sect. 2.2], there is a canonical map

o Z2d 5 XA,
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such that the composition

go'p : 2* - Buny
equals

A

22X T X2 A Bung,

where AJ is a version of the Abel-Jacobi map that sends
D e X* — plwx)(=D).
In addition, according to [BFGMO02], we have:
('p7)*(ICqm, ) = ICz[dim(Bung) — dim(Bunfy **))).

Applying the projection formula, we obtain that Whit o Eis% (F) is the direct sum over A € AP of
the expressions

He (X, 7 o ('B)*(x) © AJ*(F))[dim(Bung) — dim(Bun®“*)) — dim(Bunz)]. (11.18)

5. We now apply the following result of [Ras, Theorem 3.4.1]:
Theorem. For \ # 0, the object

o ('B)*(x) € Sh(X?)
18 zero.

Thus, we obtain that among the summands in (11.18]), only the one with A = 0 is non-zero. In this
case Z° = pt, and the assertion of Theorem 2’ follows.

References

[ABD*64] M. Artin, J. E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud, and J.-P.
Serre. Schémas en groupes. Séminaire de Géométrie Algébrique de I'Institut des Hautes Etudes
Scientifiques. 1962-1964.

[ACS89] James Arthur and Laurent Clozel. Simple algebras, base change, and the advanced theory of
the trace formula, volume 120 of Annals of Mathematics Studies. Princeton University Press,
Princeton, NJ, 1989.

[Art13] James Arthur. The endoscopic classification of representations, volume 61 of American Math-
ematical Society Colloguium Publications. American Mathematical Society, Providence, RI,
2013. Orthogonal and symplectic groups.

[BAdR] Gebhard Bockle and Sara Arias-de Reyna. Deformation rings and images of Galois representa-
tions. In preparation.

[BGO2] A. Braverman and D. Gaitsgory. Geometric Eisenstein series. Invent. Math., 150(2):287-384,
2002.

[BGOS] A. Braverman, D. Gaitsgory. Deformations of local systems and Eisenstein series. Geometric

and functional analysis, 17 (2008), 1788-1850.

[BFGMO02] A. Braverman, M. Finkelberg, D. Gaitsgory and I. Mirkovié. Intersection cohomology of Drin-
feld’s compactifications. Selecta Mathematica N.S. 8 (2002), 381-418.

[BH93] Winfried Bruns and Jiirgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

72



[BHO6]

[BKO06]

[BLGGT14]

[BMRO5]

[BMRT10]

[Bor79]

[Bou68]

[Bou9s]

[Bou05]

[BRSS5]

[BT65]

[BZ77]

[Car94)

Colin J. Bushnell and Guy Henniart. The local Langlands conjecture for GL(2), volume 335
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 2006.

Gebhard Bockle and Chandrashekhar Khare. Mod [ representations of arithmetic fundamental
groups. II. A conjecture of A. J. de Jong. Compos. Math., 142(2):271-294, 2006.

Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor. Potential automorphy
and change of weight. Ann. of Math. (2), 179(2):501-609, 2014.

Michael Bate, Benjamin Martin, and Gerhard Rohrle. A geometric approach to complete
reducibility. Invent. Math., 161(1):177-218, 2005.

Michael Bate, Benjamin Martin, Gerhard Réhrle, and Rudolf Tange. Complete reducibility and
separability. Trans. Amer. Math. Soc., 362(8):4283-4311, 2010.

A. Borel. Automorphic L-functions. In Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos.
Pure Math., XXXIII, pages 27-61. Amer. Math. Soc., Providence, R.I., 1979.

N. Bourbaki. Eléments de mathématique. Fasc. XXXIV. Groupes et algébres de Lie. Chapitre
IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendrés par des réflecions.
Chapitre VI: systémes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann,
Paris, 1968.

Nicolas Bourbaki. Commutative algebra. Chapters 1-7. Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English trans-
lation.

Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 7-9. Elements of Mathematics (Berlin).
Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew
Pressley.

Peter Bardsley and R. W. Richardson. Etale slices for algebraic transformation groups in
characteristic p. Proc. London Math. Soc. (3), 51(2):295-317, 1985.

Armand Borel and Jacques Tits. Groupes réductifs. Inst. Hautes Etudes Sci. Publ. Math.,
(27):55-150, 1965.

I. N. Berns:cein and A. V. Zelevinsky. Induced representations of reductive p-adic groups. I.
Ann. Sci. Ecole Norm. Sup. (4), 10(4):441-472, 1977.

Henri Carayol. Formes modulaires et représentations galoisiennes & valeurs dans un anneau
local complet. In p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston,
MA, 1991), volume 165 of Contemp. Math., pages 213-237. Amer. Math. Soc., Providence, RI,
1994.

W. Casselman. The unramified principal series of p-adic groups. I. The spherical function.
Compositio Math., 40(3):387-406, 1980.

Kestutis Cesnavicius. Poitou-Tate without restrictions on the order. Math. Res. Lett., 22 (6),
1621-1666, 2015.

Frank Calegari and David Geraghty. Modularity lifting beyond the Taylor—Wiles method.
Invent. Math. 211(1), 297-433, 2018.

Nick Chavdarov. The generic irreducibility of the numerator of the zeta function in a family of
curves with large monodromy. Duke Math. J., 87(1):151-180, 1997.

73



[Chi04]

[CHTO8]

[Con]

[Conld]

[Cox34]

[Del80]

[dJo1]

[Dri]

[E1105]
[Fli11]
[Gai07]
[GLa)

[GLb)]

[GR10]

[Gro98]

[GRS11]

[Guell]

[Har74]

[HKP10]

CheeWhye Chin. Independence of [ of monodromy groups. J. Amer. Math. Soc., 17(3):723-747
(electronic), 2004.

Laurent Clozel, Michael Harris, and Richard Taylor. Automorphy for some [-adic lifts of au-
tomorphic mod I Galois representations. Publ. Math. Inst. Hautes Etudes Sci., (108):1-181,
2008. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by
Marie-France Vignéras.

Brian Conrad. Lifting global representations with local properties. Preprint, available at
http://math.stanford.edu/~conrad/papers/.

Brian Conrad. Reductive group schemes. In Autour des schémas en groupes. Vol. I, volume
42/43 of Panor. Syntheéses, pages 93-444. Soc. Math. France, Paris, 2014.

H. S. M. Coxeter. Discrete groups generated by reflections. Ann. of Math. (2), 35(3):588-621,
1934.

Pierre Deligne. La conjecture de Weil. I1. Inst. Hautes Etudes Sci. Publ. Math., (52):137-252,
1980.

A. J. de Jong. A conjecture on arithmetic fundamental groups. Israel J. Math., 121:61-84,
2001.

Vladimir Drinfeld. On the pro-semisimple completion of the fundamental group of a smooth
variety over a finite field. Adv. Math. 327, 708-788, 2018

Jordan S. Ellenberg. Serre’s conjecture over Fg. Ann. of Math. (2), 161(3):1111-1142, 2005.
Yuval Z. Flicker. The tame algebra. J. Lie Theory, 21(2):469-489, 2011.
D. Gaitsgory. On de Jong’s conjecture. Israel J. Math., 157:155-191, 2007.

Wee Teck Gan and Luis Alberto Lomeli. Globalization of supercuspidal representations over
function fields and applications. Journal of the EMS, 20(11), 2813—-2858, 2018.

Alain  Genestier and Vincent Lafforgue. Chtoucas restreints pour les groupes
réductifs et paramétrisation de Langlands locale. Preprint. Available at
https://arxiv.org/abs/1709.00978.

Benedict H. Gross and Mark Reeder. Arithmetic invariants of discrete Langlands parameters.
Duke Math. J., 154(3):431-508, 2010.

Benedict H. Gross. On the Satake isomorphism. In Galois representations in arithmetic algebraic
geometry (Durham, 1996), volume 254 of London Math. Soc. Lecture Note Ser., pages 223-237.
Cambridge Univ. Press, Cambridge, 1998.

David Ginzburg, Stephen Rallis, and David Soudry. The descent map from automorphic repre-
sentations of GL(n) to classical groups. World Scientific Publishing Co. Pte. Ltd., Hackensack,
NJ, 2011.

Lucio Guerberoff. Modularity lifting theorems for Galois representations of unitary type. Com-
pos. Math., 147(4):1022-1058, 2011.

G. Harder. Chevalley groups over function fields and automorphic forms. Ann. of Math. (2),
100:249-306, 1974.

Thomas J. Haines, Robert E. Kottwitz, and Amritanshu Prasad. Iwahori-Hecke algebras. J.
Ramanugan Math. Soc., 25(2):113-145, 2010.

74



[HSBT10]

[Hum95]

[Jan03]

7S07)

[Kosb9]

[Kot82]

[KTa]

[KTh)

[KW09]

[Lafa]

[Lafb]

[Laf02]

[Lar95]

[LS96]

[Maz89)

[MB89)

[MBO]

[Mil06]

[Mor05]

[MW95]

Michael Harris, Nick Shepherd-Barron, and Richard Taylor. A family of Calabi-Yau varieties
and potential automorphy. Ann. of Math. (2), 171(2):779-813, 2010.

James E. Humphreys. Conjugacy classes in semisimple algebraic groups, volume 43 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Providence, RI, 1995.

Jens Carsten Jantzen. Representations of algebraic groups, volume 107 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, second edition, 2003.

Dihua Jiang and David Soudry. The multiplicity-one theorem for generic automorphic forms of
GSp(4). Pacific J. Math., 229(2):381-388, 2007.

Bertram Kostant. The principal three-dimensional subgroup and the Betti numbers of a complex
simple Lie group. Amer. J. Math., 81:973-1032, 1959.

Robert E. Kottwitz. Rational conjugacy classes in reductive groups. Duke Math. J., 49(4):785—
806, 1982.

Chandrashekhar Khare and Jack A. Thorne. Automorphy of some residually S5 Galois repre-
sentations. Math. Zeit., 286(1-2), 399-429, 2017.

Chandrashekhar Khare and Jack A. Thorne. Potential automorphy and the Leopoldt conjecture.
Amer. J. Math. 139(5), 1205-1273, 2017.

Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture. I1. Invent.
Math., 178(3):505-586, 2009.

Vincent Lafforgue. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale.
J. Amer. Math. Soc. 31(3), 719-891, 2018.

Vincent Lafforgue. Introduction to chtoucas for reductive groups and to the global Langlands
parameterization. Preprint. Available at http://arxiv.org/abs/1404.6416.

Laurent Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math.,
147(1):1-241, 2002.

M. Larsen. Maximality of Galois actions for compatible systems. Duke Math. J., 80(3):601-630,
1995.

Martin W. Liebeck and Gary M. Seitz. Reductive subgroups of exceptional algebraic groups.
Mem. Amer. Math. Soc., 121(580):vi+111, 1996.

B. Mazur. Deforming Galois representations. In Galois groups over Q (Berkeley, CA, 1987),
volume 16 of Math. Sci. Res. Inst. Publ., pages 385—437. Springer, New York, 1989.

Laurent Moret-Bailly. Groupes de Picard et problemes de Skolem ,II. Ann. Sci. Ecole Norm.
Sup. (4), 22(2):181-194, 1989.

Laurent Moret-Bailly. Extensions de corps globaux a ramification et groupe de Galois donnés.
C. R. Acad. Sci. Paris Sér. I Math., 311(6):273-276, 1990.

J. S. Milne. Arithmetic duality theorems. BookSurge, LLC, Charleston, SC, second edition,
2006.

Pieter Moree. On primes p for which d divides ord,(g). Funct. Approx. Comment. Math.,
33:85-95, 2005.

C. Moeeglin and J.-L. Waldspurger. Spectral decomposition and Eisenstein series, volume 113
of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1995. Une
paraphrase de ’Ecriture [A paraphrase of Scripture].

75



[NT]

[Pings]
[Ras]

[Ric88]

[Rou96]

[SBT97]

[Ser62]

[Ser05]

[SesTT]

[SGAO3]

[Tit79]

[Vig05]

James Newton and Jack A. Thorne. Torsion Galois representations over CM fields and Hecke
algebras in the derived category. Forum of Math. Sigma., 4, €21, 88 pp., 2016.

Richard Pink. Compact subgroups of linear algebraic groups. J. Algebra, 206(2):438-504, 1998.

S. Raskin, Chiral principal series categories I: finite-dimensional calculations, available at
https://web.ma.utexas.edu/users/sraskin/cpsi.pdf

R. W. Richardson. Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke
Math. J., 1988.

Raphaél Rouquier. Caractérisation des caracteéres et pseudo-caracteres. J. Algebra, 180(2):571—
586, 1996.

N. I. Shepherd-Barron and R. Taylor. mod 2 and mod 5 icosahedral representations. J. Amer.
Math. Soc., 10(2):283-298, 1997.

Jean-Pierre Serre. Corps locauz. Publications de I'Institut de Mathématique de I’Université de
Nancago, VIII. Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962.

Jean-Pierre Serre. Compléte réductibilité. Astérisque, (299):Exp. No. 932, viii, 195-217, 2005.
Séminaire Bourbaki. Vol. 2003/2004.

C. S. Seshadri. Geometric reductivity over arbitrary base. Advances in Math., 26(3):225-274,
1977.

Revétements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris) [Math-
ematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003. Séminaire de
géométrie algébrique du Bois Marie 1960-61. [Algebraic Geometry Seminar of Bois Marie 1960-
61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated
reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50
#7129)].

T. A. Springer. Regular elements of finite reflection groups. Invent. Math., 25:159-198, 1974.

T. A. Springer and R. Steinberg. Conjugacy classes. In Seminar on Algebraic Groups and
Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture
Notes in Mathematics, Vol. 131, pages 167-266. Springer, Berlin, 1970.

The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2015.

Andrew Snowden and Andrew Wiles. Bigness in compatible systems. In Elliptic curves, modular
forms and Iwasawa theory, Springer Proc. Math. Stat., 188, 469—-492, Springer, Cham, 2016.

Richard Taylor. Galois representations associated to Siegel modular forms of low weight. Duke
Math. J., 63(2):281-332, 1991.

Jack Thorne. On the automorphy of l-adic Galois representations with small residual image.
J. Inst. Math. Jussieu, 11(4):855-920, 2012. With an appendix by Robert Guralnick, Florian
Herzig, Richard Taylor and Thorne.

J. Tits. Reductive groups over local fields. In Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc.
Sympos. Pure Math., XXXIII, pages 29-69. Amer. Math. Soc., Providence, R.I., 1979.

Marie-France Vignéras. Pro-p-Iwahori Hecke ring and supersingular F-representations. Math.
Ann., 331(3):523-556, 2005.

76


http://stacks.math.columbia.edu

[V6189) Helmut Volklein. The 1-cohomology of the adjoint module of a Chevalley group. Forum Maith.,
1(1):1-13, 1989.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),
141(3):443-551, 1995.

7



	Introduction
	Acknowledgments

	Notation and preliminaries
	The dual group and groups over Z
	Chebotarev density theorem

	Invariant theory
	Classical invariant theory
	Invariants over a DVR

	Pseudocharacters and their deformation theory
	Artinian coefficients

	Galois representations and their deformation theory
	Abstract deformation theory
	The case = K, S
	Taylor–Wiles places

	Compatible systems of Galois representations
	A local calculation
	Automorphic forms
	Cusp forms and Hecke algebras
	Summary of V. Lafforgue's work
	Automorphic forms are free over O[]
	Automorphic forms are free over R

	Application of theorems of L. Moret-Bailly
	A class of universally automorphic Galois representations
	Abstract Coxeter parameters
	Galois Coxeter parameters

	Potential automorphy
	Descent and a conjectural application
	Existence of Whittaker models

	Appendix A. Cuspidality of Eisenstein series, by D. Gaitsgory
	Appendix B. Non-vanishing of Whittaker coefficients, by D. Gaitsgory

