Potential automorphy of G-local systems

Abstract

Vincent Lafforgue has recently made a spectacular breakthrough in the
setting of the global Langlands correspondence for global fields of positive
characteristic, by constructing the ‘automorphic-to—Galois’ direction of
the correspondence for an arbitrary reductive group G. We discuss a result
that starts with Lafforgue’s work and proceeds in the opposite (‘Galois—
to—automorphic’) direction.

1 Introduction

Let I, be a finite field, and let G be a split reductive group over F,. Let X be
a smooth projective connected curve over Fy, and let K be its function field.
Let Ak denote the ring of adeles of K. Automorphic forms on G are locally
constant functions f : G(Ag) — Q which are invariant under left translation
by the discrete group G(K) C G(Ag).! The space of automorphic forms is a
representation of G(A ), and its irreducible constituents are called automorphic
representations.

Let £1 g be a prime. According to the Langlands conjectures, any automor-
phic representation 7 of G(Ag) should give rise to a continuous representation
p(m) : T U) — é(@e) (for some open subscheme U C X). This should be com-
patible with the (known) unramified local Langlands correspondence, which de-
scribes the pullback of p() to 7¢*(F,, ) for every closed point v : SpecF,, < U
in terms of the components 7, of a factorization m = ®/ m, into representations
of the local groups G(K,).

Vincent Lafforgue has given an amazing construction of the representation
p(m), which crystallizes and removes many of the ambiguities in this picture in
a beautiful way. We give a brief description of this work below.

Our main goal in this article is to describe a work due to Gebhard Bockle,
Michael Harris, Chandrashekhar Khare, and myself, where we establish a par-
tial converse to this result [BHKT]. We restrict to representations p : 7$¢(X) —
@(@Z) of Zariski dense image, and show that any such representation is poten-
tially automorphic, in the sense that there exists a Galois cover Y — X such

IThis is not the full definition. In the rest of this article we consider only cuspidal auto-
morphic forms, which are defined precisely below.



that the pullback of p to 7§*(Y) is contained in the image of Lafforgue’s con-
struction. We will guide the reader through the context surrounding this result,
and discuss some interesting open questions that are suggested by our methods.

2 Review of the case G = GL,

We begin by describing what is known about the Langlands conjectures in the
setting of the general linear group G = GL,,. In this case very complete results
were obtained by Laurent Lafforgue [Laf02]. As in the introduction, we write I,
for the finite field with g elements, and let X be a smooth, projective, connected
curve over ;. The Langlands correspondence predicts a relation between rep-
resentations of the absolute Galois group of K and automorphic representations
of the group GL,,(Ax). We now describe each of these in turn.

Let K* be a fixed separable closure of K. We write I'x = Gal(K*/K) for the
absolute Galois group of K, relative to K*. It is a profinite group. If S C X is a
finite set of closed points, then we write Kg C K* for the maximal extension of
K which is unramified outside S, and I'x g = Gal(Kg/K) for its Galois group.
This group has a geometric interpretation: if we set U = X — S, and write 7 for
the geometric generic point of U corresponding to K®, then there is a canonical
identification T'x s = 754 (U, 7) of the Galois group with the étale fundamental
group of the open curve U.

Fix a prime ¢ { ¢ and a continuous character w : I'x — @Z of finite order.
If n > 1 is an integer, then we write Gal, ., for the set of conjugacy classes of
continuous representations p : I'xr — GL,,(Q,) with the following properties:

1. pfactors through a quotient I'x — I'k g, for some finite subscheme S C X.
2. det p = w.
3. p is irreducible.

To describe automorphic representations, we need to introduce adeles. If
v € X is a closed point, then the local ring Ox , is a discrete valuation ring,
and determines a valuation ord, : K* — Z which we call a place of K. The
completion K, of K with respect to this valuation is a local field, which can
be identified with the field of Laurent series F,, ((¢,)), where F,, is the residue
field of Ox , and t, € Ox , is a uniformizing parameter. We write O, C K,
for the valuation ring.

The adele ring Ak is the restricted direct product of the rings K,, with
respect to their open compact subrings Ok, . It is a locally compact topological
ring. Taking adele points of GL,,, we obtain the group GL,,(Ak), which is a
locally compact topological group, and which can itself be identified with the
restricted direct product of the groups GL,(K,) with respect to their open
compact subgroups GL,(Ok, ).

If n =1, then GL; (Ag) = A and class field theory gives a continuous map
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which is injective with dense image. We write A,, , for the Q-vector space of
functions f : GL,(Ag) — Q, satisfying the following conditions:

1. f is invariant under left translation by the discrete subgroup GL,,(K) C
GL,(Ak).

2. For any z € Ay, g € GL,(Ak), f(92) = w(Artx(2))f(g).

3. f is smooth, i.e. there exists an open compact subgroup U C GL,(Ak)
such that for all w € U, g € GL,(Ak), f(gu) = f(9).

Then the group GL,, (A k) acts on A, ,, by right translation. We write A, o cusp C
A, for the subspace of cuspidal functions, i.e. those satisfying the following
additional condition:

4. For each proper parabolic subgroup P C GL,, of unipotent radical N, we
have
/ flng)dn =20
neEN(K)\N(Ak)
for all g € GL,,(Ag). (Note that the quotient N(K)\N(Ag) is compact,
so the integral, taken with respect to a quotient Haar measure on N(Ag),
is well-defined.)

With this definition, A, o cusp C An.o is an Q;[GL,, (A )]-submodule. The fol-
lowing theorem describes the basic structure of this representation of GL, (Ax).

Theorem 2.1. 1. Ap . cusp is a semisimple admissible Q,[GL,, (A )]-module.
FEach irreducible constituent m C Ay o cusp appears with multiplicity 1.

2. If 1 C Ay w,cusp 15 an irreducible submodule, then there is a decomposition
T = Q)T of T as a restricted tensor product of irreducible admissible
representations m, of the groups GL,(K,) (where v runs over the set of
all places of K ).

If 7 is an irreducible constituent of A, , cusp, then we call 7 a cuspidal auto-
morphic representation of GL,, (Ag). We write Aut,, , for the set of isomorphism
classes of cuspidal automorphic representations of GL,,(Ak).

We can now state Langlands reciprocity for GL,,.

Theorem 2.2. There is a bijection Gal,, o, <> Auty, .

In order for this theorem to have content, we need to describe how to charac-
terize the bijection whose existence it asserts. The most basic characterization
uses restriction to unramified places. Let v be a place of K. If p € Gal, ., then
we can consider its restriction p, = plw,, to the Weil group Wy, C T 2 If
m € Aut, ,,, then we can consider the factor m,, which is an irreducible admis-
sible representation of the group GL,,(K,).

2Here I', = Gal(KJ/K,) is the absolute Galois group of K, with respect to a fixed
choice of separable closure. An embedding K* — K extending the map K — K, determines
an embedding 'y, — I'xx. The Weil group Wk, C ', is the subgroup of elements which
act on the residue field by an integral power of the (geometric) Frobenius element Frob,; see
for example [Tat79] for a detailed discussion.



Definition 2.3. 1. A continuous homomorphism p, : W, — GL,(Q,) is
said to be unramified if it factors through the unramified quotient Wy, —
7.

2. An irreducible admissible representation of the group GL,(K,) is said to

be unramified if the subspace WSL"(OK”) of GL,, (O, )-invariant vectors is

non-zero.

These two kinds of unramified objects are related by the unramified local
Langlands correspondence, which can be phrased as follows:

Theorem 2.4. Letv be a place of K. There is a canonical® bijection m, +— t(m,)
between the following two sets:

1. The set of isomorphism classes of unramified irreducible admissible repre-
sentations 7, of GL,(K,) over Q,.

2. The set of semisimple conjugacy classes t in GL,(Qy).

Proof (sketch). The proof, which is valid for any reductive group G over F,,
goes via the Satake isomorphism. If G is split then this is an isomorphism

H(G(K,),G(Ok,)) 2 Zlgr ?] — Z|GI° ® Z[q; 7],

Tv,f = f
where H is the Hecke algebra of G(Ok, )-biinvariant functions f : G(K,) — Z of

-~

compact support, and Z[G]% is the algebra of conjugation-invariant functions on

the dual group G (which is GL,, if G = GL,,). If 7, is an irreducible admissible

representation of G(K,) over Q, and r§Or) # 0, then 7O g g simple

H ®7 Q;-module, which therefore determines a homomorphism Z[é]G — Q.
The geometric invariant theory of the adjoint quotient of the reductive group
G implies that giving such a homomorphism is equivalent to giving a conjugacy
class of semisimple elements in G(Q,). O

Let S be a finite set of places of K. We write Gal, ., s C Gal,, for the
set of p such that for each place v ¢ S of K, plw,, is unramified (we say
that ‘p is unramified outside S’). We write Aut, ., s C Auty, for the set of
T = ®! m, such that for each place v € S of K, m, is unramified (we say that ‘w
is unramified outside S’). We can now state a more precise version of Theorem
2.2:

Theorem 2.5. Let S be a finite set of places of K. Then there is a bijection
T = p(m) @ Auty, 5 — Gal, s with the following property: for each place
v &S, p(r)(Frob,)® € t(m,)*.

3 As the proof shows, we need to fix as well a choice of a square root of ¢ in @Z-
4Here and elsewhere, we write %% for the semisimple part in the Jordan decomposition
x = x%z" of an element = of a linear algebraic group.



This defining property uniquely characterizes the bijection, if it exists. In-
deed, the isomorphism class of any representation 7 € Aut,,, s is uniquely
determined by the representations m, (v € S): this is the strong multiplicity
one theorem. Similarly, any representation p € Gal, ., s is uniquely determined
by the conjugacy classes of the elements p(Frob,)* (v ¢ S): the irreducible
representation p is uniquely determined up to isomorphism by its character tr p.
This continuous function tr p : Tk s — Qy is determined by its values at a dense
set of elements, and the Chebotarev density theorem implies that the Frobenius
elements Frob, (v ¢ S) form such a set.

L. Lafforgue proved Theorem 2.5 using an induction on n. If the theorem
is known for n’ < n, then the ‘principe de récurrence de Deligne’ (see [Laf02,
Appendice B]) reduces the problem to constructing, for any = € Aut,, g, the
corresponding Galois representation p(7) € Gal, ., s, as well as proving that cer-
tain L— and e-factors are matched up under the correspondence. The three main
ingredients that make this possible are Grothendieck’s theory of L-functions of
Galois representations, Laumon’s product formula for the e—factors of Galois
representations, and Piatetski-Shapiro’s converse theorem, which can be used
to show that an irreducible admissible representation of GL,(Ax) with suffi-
ciently well-behaved associated L-functions is in fact cuspidal automorphic. We
note that in carrying this out Lafforgue actually obtains a much more precise
result than Theorem 2.5, in particular re-proving the local Langlands correspon-
dence for GL,, and showing that the global correspondence is compatible with
the local one.

One would like to generalise Theorem 2.5 to an arbitrary reductive group G
over F,. However, there are a number (!) of difficulties. To begin with, it is not
even clear what the correct statement should be: it is easy to write down the
naive analogues of the sets Aut,, ., and Gal, ,, but we will see some reasons why
they cannot be related by a simple bijection. Moreover, no converse theorem is
known for a general group G, which means there is no apparent way of proving
that a given admissible representation of G(Af) is in fact cuspidal automorphic.
This is the motivation behind proving a result like our main theorem.

3 Pseudocharacters

Let us now pass to the case of a general reductive group G' over F,. In order
to simplify the discussion here, we will assume that G is split. In this case
one can associate to G its dual group G, a split reductive group over Z, which
is characterized by the property that its root datum is dual to that of G (see
e.g. [Bor79]). If G = GL,, then G = GL,, so our discussion will include
n-dimensional linear representations as a special case.

We will describe the results of Vincent Lafforgue’s construction in the next
section. First, we make a detour to describe the notion of G-pseudocharacter,
which was introduced for the first time in [Laf]. This is a generalization of the
notion of the pseudocharacter of an n-dimensional representation (to which it
reduces in the case G = GL,,).



Let T be a group, and let 2 be an algebraically closed field of characteristic
0. We recall that to any representation p : I' = GL,(£2), we can associate the
character trp : I' — €; it clearly depends only on p up to conjugacy and up
to semisimplification. We have the following theorem, the second part of which
was proved by Taylor using results of Procesi [Tay91, Pro76].

Theorem 3.1. 1. Let p,p' : T — GL,(Q) be semisimple representations.
Then they are isomorphic if and only if tr p = trp’.

2. Lett:T — Q be a function satisfying the following conditions:
(a) t(1) =n.
(b) For all v1,72 € T, t(y172) = t(y2m1)-

(¢) For all v1,...,vn41 € T, Zaesn+1 to(V1s-- > Yne1) = 0, where if o
has cycle decomposition

O':(al...akl)(bl...bk2)...

then we set
to (Y155 Ynt1) = t(Vay « - Yar, E(Vor - Vory) - - -

Then there exists a representation p: I' — GL,(Q2) such that trp = t.

We can call a function ¢ : I' — € satisfying the condition of Theorem 3.1 a
pseudocharacter of dimension n. Then the theorem says that sets of conjugacy
classes of semisimple representations p : I' — GL,, () and of pseudocharacters
of dimension n are in canonical bijection.

Here is Lafforgue’s definition of a G-pseudocharacter. Let A be a ring.

Definition 3.2. Lett = (¢,),>1 be a collection of algebra maps t,, : Z[@”]é —
Fun(I'™, A) satisfying the following conditions:

1. For each n,m > 1 and for each ¢ : {1,...,m} = {1,...,n}, f € Z[@m]@,
and v = (71,...,%) € I'™, we have

where fS(g1,...,9n) = JF(ge@ys - 9¢em))-

2. For eachn >1,v=(y1,...,Yns1) €™ and f € Z[@”]é, we have

tn-i—l(f)('Yl, e a7n+1) = tn(f)(’h, e 7’Yn—17’7n’7n+1)7

where f(gi,. .., gnt1) = (91, In—1,nGnt1)-

Then t is called a @—pseudochamcter of T' over A.



Note that G acts on G™ by diagonal conjugation. The subring Z[é”]é C
Z[@"] is the ring of functions invariant under this action. We observe that if
p: T — @(A) is a homomorphism, then we can define a G-pseudocharacter
trp = (tn)n>1 of I over A by the formula

ta(F)(v1, -5 m) = flp(1)s - -5 p(n))-

It is clear that this depends only on the é(A)-conjugacy class of p.
Theorem 3.3. Let I' be a group, and let Q) be an algebraically closed field.

1. Let p,p’ : ' — G( ) be é—completely reducible representations.® Then
p,p are G( )-conjugate if and only if trp = trp’.

2. Let t be a é—pseudochamcter, Then there exists a representation p: I' —
G(Q) such that t = trp.

The proof of Theorem 3.3 is based on Richardson’s results about the geomet-
ric invariant theory of the action of G on G™ by diagonal conjugation [Ric88].

In the case where I' is profinite, we want to impose continuity conditions
on its G-pseudocharacters. Fortunately, G-pseudocharacters are well-behaved
from this point of view.

Definition 3.4. Let A be a topological ring, and let T' be a profinite group.
We say that a G-pseudocharacter t of I' over A is continuous if each map
Z[G™ME — Fun(I'™, A) takes values in the subset of continuous functions

Fun.(T'", A).

Proposition 3.5. Let £ be a prime, and let T be a profinite group. Let Q = Q,
(wlth its £-adic topology) or Fy (with the discrete topology). Let p : T — G( )
be a G- completely reducible representation. Then p is continuous if and only if
tr p s continuous.

Finally, we note that @—pseudocharacters are well-behaved from the point of
view of reduction modulo £. We will need this in our discussion of the deforma-
tion theory of pseudocharacters later on.

Proposition 3.6. Let ¢ be a prime, and let T' be a profinite group. Then:

1. Lett be a continuous é—pseudachamcter of T over Q,. Then t takes values
in Zy and t, its reduction modulo ¢, is a continuous G-pseudocharacter
over IFy.

2. Let P r —» G(@E) be a continuous representation. After replacmg p
by a G(Qg) -conjugate, we can assume that p takes values in G(Z,g) Let
p:T'— G(IF@) denote the semisimplification of the reduction of p modulo
L. Then p depends only on p up to é(@g)-conjugacy, and trp = trp.

5A representation p_is said to be G-irreducible if its image is contained in no proper
parabolic subgroup of GQ, and G- completely reducible if for any parabolic subgroup P C GQ
containing the image, there exists a Levi subgroup L C P such that p(I') C L(2). See e.g.
[Ser05].



We now come back to our original case of interest, namely pseudocharacters
of the group I' = I',5. We can define a compatible family of pseudocharacters
of I',s of dimension n to consist of the data of a number field £ and, for each
prime-to-g place A of F, a pseudocharacter ¢y : I'x s — E) of dimension n.
These should satisfy the following property:

e For each place v € S of K, the number ¢, (Frob,) lies in £ C E) and is
independent of the choice of \.

Thus, for example, [Del80, Conjecture 1.2.10] asks that every pseudocharacter
te : I'x,5 — Qy satisfying certain conditions should be a member of a compatible
family. This leads us to our first question:

Question 3.7. Is it possible to define a notion of ‘compatible family of G-
pseudocharacters’, generalizing the above notion for GL, ¢

If we are willing to consider instead compatible families of representations,
then Drinfeld [Dri] gives a satisfying (positive) answer to Question 3.7 using the
results of [Laf02]. The question remains, however, of whether we can phrase
this for pseudocharacters in elementary terms and, in particular, whether it is
possible to make sense of compatible families when K is instead a global field
of characteristic 0 (i.e. a number field).

Here is one case it is easy to make sense of the notion of compatible family:

Proposition 3.8. Let £t q be a prime, and let p: Tx g — é(@l) be a continu-
ous representation of Zariski dense image. Assume that G is semisimple. Then
we can find a number field E and an embedding E — Q,, inducing the place Ao
of E, with the following properties:

e For each place v € S of K and for each f € Z[é]é, f(p(Frob,)) € E. In
other words, the conjugacy class of p(Frob,)% is defined over E.

e For each prime-to-q place A of E, there exists a continuous homomor-
phism py : T g — G(Ey) of Zariski dense image such that for each place
v &S of K and for each f € Z[G]%, f(pa(Frob,)) lies in E and equals
f(p(Froby,)). In other words, py(Frob,)* lies in the same geometric con-
Jugacy class as p(Frob,)*.

Furthermore, for any prime-to-q place X\ of E and for any continuous homo-
morphism p\ : T'x g — G(E\) such that for each place v ¢ S of K and for
each f € Z[a}@, f(p5\(Frob,)) lies in E and equals f(p(Frob,)), p is G(E»)-
conjugate to px. In particular, p and py, are é(@g)-conjugate.

The proof makes use of the proof of the global Langlands correspondence
for GL,, by L. Lafforgue [Laf02], together with Chin’s application of this work
to the analysis of compatible families [Chi04]; see [BHKT, §6].



4 The work of V. Lafforgue

Having introduced the notion of a—pseudocharacter, we can now describe the
basic shape of Vincent Lafforgue’s results in [Laf]. We recall that G is a split
reductive group over F,. In order to simplify statements, we are now going to
impose the further assumption that G has finite centre (i.e. is semisimple).® We
write Ag for the Q,-vector space of functions f : G(Ax) — Q, satisfying the
following conditions:

1. f is invariant under left translation by the discrete subgroup G(K) C
G(Ak).

2. f is smooth.

Then the group G(Ak) acts on Ag by right translation. We write Ag cusp C
Ag for the subspace of cuspidal functions, i.e. those satisfying the following
condition:

3. For any proper parabolic subgroup P C G of unipotent radical N, we have

/ f(ng)dn =0
neEN(K)\N(Ax)

for all g € G(Ak).

With this definition, Ag cusp is a semisimple admissible Q,[G(Ak)]-module. In
general, understanding the constituents of this space is much more complicated
than for the group GL,,. For example:

e Multiplicity one does not hold: there can exist representations 7 of G(Ak)
which appear in Ag cusp With multiplicity greater than 1.

e Strong multiplicity one does not hold: there can exist representation m, 7’
of G(Ak) which have positive multiplicity in Ag cusp, such that m, = 7,
for all but finitely many places v of K, but such that © 2 «’.

These phenomena are reflected in what happens on the Galois side. For example:

e There can exist everywhere unramified homomorphisms p,p T —
G(Qy) such that p(Frob,) and p’(Frob,) are conjugate for every v, but
such that p, p’ are not conjugate.

e There can exist homomorphisms p, p' : T — G and a place vy of K such
that for all v # vy, p and p’ are unramified at v and p(Frob,), p’(Frob,) are
é(@g)-conjugate; but p|1~KUO 3 pl|1"Kv0. (Another reason for the failure of
strong multiplicity one, not related to this Galois—theoretic phenomenon,
is the existence of non-trivial L-packets.)

6By contrast, the paper [Laf] does not impose any restriction on G; see in particular §12
of op. cit.



We refer the reader to [Wan12] for a survey of how the relation between these
phenomena can be understood in terms of Arthur’s conjectural decomposition
of the space of automorphic forms in terms of A-parameters [Art89].

Lafforgue’s construction, quite remarkably, gives a decomposition of the
space Ag cusp Of cusp forms on G which is quite close in appearance to that
predicted by Arthur. He defines for each n > 1, function f € Z[@"]G, and tuple
of elements v = (y1,...,7v,) € I'l, an operator S, s € End@’Z (Ag cusp). He
calls these ‘excursion operators’, and proves the following two theorems:

Theorem 4.1. 1. The operators Sy, 5~ commute with each other and with
the action of G(Ak).

2. Let B C End@[ (Ag,cusp) denote the Qy-subalgebra generated by the oper-
ators Sy, f~ for all possible choices of n, f, and ~. Then the system of
maps t = (tp)n>1 given by

tn : Z[G™MC — Fun(I., B),

f = (’y = Snmf)"/)

s a a—pseudochamcter of 'k wvalued in B.

Theorem 4.2. Let S be a finite set of places of K, and let U C G(Ak) be an
open compact subgroup such that for each place v & S of K, U, = G(Ok,). Let
By denote the quotient of B which acts faithfully on Ag cusp,u. Then:

1. The pushforward of t along B — By is pulled back from a @—pseudochamcter
ty of I'k.s valued in By .

2. If v &S, then the image of Si_fFrob, in By equals the unramified Hecke
operator T, y (defined as in the proof of Theorem 2.4, via the Satake iso-
morphism).

Since the algebra By contains the unramified Hecke operators, it can be
viewed as an enlargement of the usual Hecke algebra.

Corollary 4.3. Let 7 be a cuspidal automorphic representation of G(Ak), and
let Vi C Ag,cusp be the m-isotypic component. Let Br denote the quotient of
B which acts faithfully on V.. Then By is a finite-dimensional Q,-algebra and
for each maximal ideal p, one can associate a continuous representation oy p :

Ik — @(@4) with the following properties:
1. trogp =tx mod p.
2. Let S be a finite set of places of K such that ﬂf(oK’J) £0ifv & S. Then
Oxp is unramified outside S and if v ¢ S, then o ,(Frob,)* € t(m,).

3. Ifp#yp, then orp 2 oy

10



Proof. Since V; has finite length as a Q,[G(A)]-module and By is contained
inside Endg ¢ AK)](V,r), Br is a finite-dimensional Q,-algebra. Since B is a

quotient of B, it carries a @—pseudocharacter t,. Each maximal ideal p C B,
has residue field Q,, and the pushforward of t, along the map B, — B, /p = Q,
therefore corresponds, by Theorem 3.3, to a continuous @—completely reducible
representation 0., : I'x g — é(@e) satisfying the following property: for all
n>1, f¢€ Z[@"]a, ¥=,---,7m) € 'k g, we have

f(Orp(M), -0 p(m)) = Sn,f, mod p.

From this identity it is apparent that o, , determines p. Specializing to n =1
and v = Frob, for some v & S, this identity reduces to the formula

f(o"n-,p(FI'Oby)) = Tvyf mod p,
or equivalently that o ,(Frob,)® is in the conjugacy class ¢(m,). O

Question 4.4. The space Vi can be defined over Q. Is there a sense in which
its decomposition V; = ®Vy , is independent of €%

Presumably a positive answer to this question must be tied up with a positive
answer to Question 3.7.

We can now define what it means for a Galois representation to be cuspidal
automorphic, in the sense of the algebra B.

Definition 4.5. We say that a representation p : I'x — é(@g) is cuspidal
automorphic if there exists a cuspidal automorphic representation © of G(Ak)
and a mazimal ideal p C B such that p = oy p.

Note that this definition depends in an essential way on Lafforgue’s excursion
operators!
We are now in a position to state the main theorem of [BHKT]:

Theorem 4.6. Letp: 'y — é’(@e) be a continuous representation of Zariski
dense image. Then p is potentially cuspidal automorphic: there exists a finite
Galois extension L/K such that plr, ., s cuspidal automorphic in the sense of
Definition 4.5.

Corollary 4.7. Letp: ' g — é(@g) be a continuous representation of Zariski
dense image. Then there exists a finite Galois extension L/ K and an everywhere
unramified cuspidal automorphic representation © of G(ArL) such that for each
place w of L, plw,, and m, are related under the unramified local Langlands
correspondence for G(Ly,).

(In fact, Proposition 3.8 implies that the theorem and its corollary are equiv-
alent.) In the remainder of this article we will sketch the proof of Theorem 4.6.

11



5 An automorphy lifting theorem for G

How can one show that a Galois representation p : I'g g — @(@e) is automor-
phic, in the sense of Definition 4.57 For a general group G, we no longer know
how to construct automorphic forms using converse theorems.

We pursue a different path which is inspired by the proofs of existing po-
tential automorphy results for Galois representations 'y — GL,,, where E is a
number field. These are in turn based on automorphy lifting theorems, which
are provable instances of the following general principle:

Principle 5.1. Let p,p' : Ty — é(@e) be continuous representations and
letp, p' Ty — G(F;) denote their reductions modulo . Suppose that p, 7'

are a(m)—conjugate and G-irreducible. Suppose that p is cuspidal automorphic.
Then p' is also cuspidal automorphic.

The first theorem of this type was stated by Wiles on his way to proving
Fermat’s Last Theorem [Wil95]. Our proof of an analogous result is inspired by
Diamond’s elaboration of the Taylor—Wiles method [Dia97], which gives a way
to construct an isomorphism R = T, where R is a Galois deformation ring and
T is a Hecke algebra acting on cuspidal automorphic forms. By contrast, we
prove an ‘R = B’ theorem, where B is a suitable ring of Lafforgue’s excursion
operators.

We describe these objects in order to be able to state a precise result. We
will stick to the everywhere unramified case. We first consider the Galois side.
Let k C F;, be a finite subfield, and let p : Ty — G(k) be a continuous
homomorphism. Let Arty denote the category of Artinian local W (k)-algebras
A, equipped with an isomorphism A/m4 = k. We define Lift; : Arty — Sets to
be the functor of liftings of p, i.e. of homomorphisms p4 : ' g — é(A) such
that p4a mod my = p. N R

For any A € Arty, the group ker(G(A) — G(k)) acts on Lift;(A) by con-
jugation, and we write Def; : Arty — Sets for the quotient functor (given by
the formula Def;(A) = Liftﬁ(A)/ker(é(A) — @(k))) The following lemma is
basic.

Lemma 5.2. Suppose that p is absolutely G’-irreducible, and that ¢ does not di-
vide the order of the Weyl group of G. Then the functor Defy is pro-represented
by a complete Noetherian local W (k)-algebra Ry with residue field k.

In order to be able to relate the deformation ring Rz to automorphic forms,
we need to introduce integral structures. We therefore write Cg ) for the set of
functions f : G(Ax) — W (k) satistying the following conditions:

1. f is invariant under left translation by G(K).
2. f is smooth.
We write Cg k,cusp for the intersection Cqx N Agcusp (taken inside Ag). Let

U =1]I,GOk,).
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Proposition 5.3. Suppose that f € Z[@"]@. Then each operator Sy .~ € By C

Endg, (AZ cusp) leaves invariant the submodule Cg 1 -

We write B(U, W (k)) for the W (k)-subalgebra of Endw(k)(ngk’wSp) gen-

erated by the operators S, 7 for f € Z[G")C. Then B(U,W(k)) is a finite
flat W (k)-algebra and there is a CA}'—pseudocharacter ty,wk) of Tk valued in
B(U, W (k)).

Let m be a maximal ideal of B(U, W (k)). Its residue field is a finite extension
of the finite field k. After possibly enlarging k, we can assume that the following
conditions hold:

e The residue field of m equals k.

e There exists a continuous representation p, : ' g — é(k’) such that
trﬁm = tU,W(k) mod m.

Then the ring B(U, W (k))m (localization at the maximal ideal m) is a finite flat
local W (k)-algebra of residue field &, and it comes equipped with a pseudochar-
acter ty w(k),m- A natural question to ask is: under what conditions does this
pseudocharacter arise from a representation pym : ' g — G(B(U, W (k))m) lift-
ing p,? In other words, under what conditions does the analogue of Theorem
3.3 hold when we no longer restrict to field-valued @-pseudocharacters?

Proposition 5.4. Suppose that p,, is absolutely @-irreducible, and that its cen-
tralizer Cent(G,‘jd,ﬁm) is scheme-theoretically trivial.” Suppose that ¢ does not

divide the order of the Weyl group of G. Then there is a unique conjugacy class
of liftings [pm] € Defp_(B(U, W (k))m) such that tr pm = tu,w (k),m-

Under the assumptions of Proposition 5.4, we see the ring R5_ is defined, and
that its universal property determines a canonical map Rz — B(U, W (k))n.
The localized space (Cg,k,cusp)m of automorphic forms then becomes a module
for the deformation ring R;_.
We are now in a position to state a provable instance of Principle 5.1.

Theorem 5.5. Let m C B(U,W(k)) be a mazimal ideal of residue field k, and
suppose that there exists a continuous, absolutely G-irreducible representation
Pm - U0 — G(k) such that trp, = tyw ) mod m. Suppose further that the
following conditions are satisfied:

1. £ > #W, where W is the Weyl group of the split reductive group G.

2. The centralizer Cent(é,%d,ﬁm) is scheme-theoretically trivial.
3. The representation p,, is absolutely strongly G-irreducible.

4. The subgroup py(Tk(c,)) C G(k) is G-abundant.

"Here and elsewhere, é;d denotes the adjoint group of @k, i.e. the quotient of ék by its
centre.
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Then (Cg,k&usp)m is a finite free Ry -module.

Corollary 5.6. With the assumptions of the theorem, let p : I'gc g — @(@4) be a
continuous homomorphism such that p = p,,. Then p is cuspidal automorphic.

Proof. The theorem implies that the map R; — B(U,W(k))m that we have
constructed is an isomorphism. Any representation p as in the statement of the
corollary determines a homomorphism R; — Q. (To show this, we first need

to prove that a conjugate of p takes values in 6(0), where O is a complete
Noetherian local W (k)-subalgebra of Q, of residue field k.) This in turn de-
termines a homomorphism B(U, W (k))m — Q,, hence a maximal ideal p C By

with the property that for eachn > 1, f € Z[é”]é and v = (71,---,7) € gy,

f(p(11),-- s p(1m)) = Sn 4 mod p.

This is exactly what it means for p be cuspidal automorphic. O

__ There are two adjectives in the theorem that have yet to be defined: ‘strongly
G-irreducible’ and ‘G-abundant’. We remedy this now:

Definition 5.7. Let Q be an algebraically closed field, and let T' be a group.
We say that a homomorphism o : T — G(R) is strongly G-irreducible if for any
other homomorphism o' : T — G(Q) such that for all v € T, o(7)* and o’ (v)**
are G(Q)-conjugate, o' is G-irreducible.

Thus a strongly G-irreducible representation is G-irreducible. We do not

know an example of a representation which is G-irreducible but not strongly
G-irreducible.

Definition 5.8. Let k be a finite field, and let H C é(k) be a subgroup. We
say that H is G-abundant if the following conditions are satisfied:

1. The cohomology groups HY(H,gx), H°(H,8)), H'(H,g)) and H'(H,k)
all vanish. (Here gy denotes the Lie algebra of Gy, and @), its dual.)

2. For each regular semisimple element h € H, the torus Cent(ak,h)o is
split.

3. For each simple k|H]-submodule W C @)/, there exists a reqular semisimple
element h € H such that W" # 0 and Cent(G},, h) is connected.

The roles of these two definitions are as follows: the strong irreducibility
of By, allows us to cut down C§ , to its finite rank W (k)-submodule CZ ; ..p

using only Hecke operators (and not excursion operators). The G-abundance of
Pu(Ci(c,)) is used in the construction of sets of Taylor-Wiles places, which are
the main input in the proof of Theorem 5.5. R

If ¢ is sufficiently large, then the group G(Fy) is both strongly G-irreducible
(inside G(F,)) and G-abundant (inside G(k), for a sufficiently large finite exten-
sion k/F;). However, it is not clear how many other families of examples there
are! This motivates the following question:
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Question 5.9. Can one prove an analogue of Theorem 5.5 with weaker hy-
potheses? For example, can one replace conditions 3. and 4. with the single
requirement that p,, is absolutely G-irreducible and ¢ is sufficiently large, relative
to G?

To weaken the ‘G-abundant’ condition is analogous to weakening the ‘big-
ness’ condition which appeared in the first automorphy lifting theorems for
unitary groups proved in [CHTO8]. It seems like an interesting problem to try,
in a way analogous to [Thol2], to replace this condition with the G-irreducibility
of the residual representation p,.

6 Coxeter parameters

In order to apply a result like Theorem 5.5, we need to have a good supply of
representations p : I' g — G(F¢) which we know to be residually automorphic
(in the sense of arising from a maximal ideal of the excursion algebra B(U, W (k))
acting on cuspidal automorphic forms).

Famously, Wiles used the Langlands—Tunnell theorem to prove the residual
automorphy of odd surjective homomorphisms 7 : I'g — GL2(F3), in order
to be able to use his automorphy lifting theorems to prove the modularity of
elliptic curves. Many recent applications of automorphy lifting theorems (e.g.
to potential automorphy of n-dimensional Galois representations over number
fields, or to the construction of lifts of residual representations with prescribed
properties, as in [BLGGT14]) have relied upon the automorphy of n-dimensional
Galois representations which are induced from a character of the Galois group
of a cyclic extension of numbers fields of degree n. The automorphy of such
representations was proved by Arthur—Clozel, using a comparison of twisted
trace formulae [ACS89).

We obtain residually automorphic Galois representations from a different
source, namely the geometric Langlands program. We first describe the class
of representations that we use. We fix a split maximal torus 7' C G, and write
W = W(G,T) for the Weyl group of G. We assume in this section that G is
simple and simply connected.

Definition 6.1. An element w € W is called a Cozeter element if il is conjugate

to an element of the form sy ...s., where R = {ay,..., .} C ®(G,T) is any
choice of ordered root basis and si,...,s, € W are the corresponding simple
reflections.

It is a fact that the Coxeter elements form a single conjugacy class in W,
and therefore have a common order h, which is called the Coxeter number of G.
They were defined and studied by Coxeter in the setting of reflection groups.
Kostant applied them to the study of reductive groups [Kos59], and his results
form the foundation of our understanding of the following definition:

Definition 6.2. Let I' be a group, and let 2 be an algebraically closed field. We
call a homomorphism ¢ : T — G(Q) a Cozeter homomorphism if it satisfies the
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following conditions:

1. There exists a mazimal torus T C Gq such that ¢(T') € N(Gq,T), and
the image of ¢(T) in W = N(Gq,T)/T is generated by a Cozeter element
w. We write ¢ for the composite of ¢ with projection CA;(Q) — é“d(ﬂ),
and T for the image of T in @gzd.

2. There exists a prime t = 1 mod h not dividing char Q or #W and a
primitive ht*-root of unity q € F}* such that ¢**(T') N T*(Q) is cyclic of
order t, and conjugation by w acts on the image by the map v — v9.8

We recall that if G = SL,,, then W = S,, and the Coxeter elements are
the n-cycles. In this case the Coxeter homomorphisms appear among those
homomorphisms I' — SL,,(£2) which are induced from a character of an index
n subgroup. However, the above definition is valid for any simply connected
simple G and has very good properties:

Proposition 6.3. Let ¢ : T — CA;(Q) be a Coxeter homomorphism. Then:
1. ¢ is G-irreducible.

2. If¢ : T — a(Q) is another homomorphism such that for all v € T,
o(7)* and ¢(v')** are G(Q)-conjugate, then ¢ and ¢’ are themselves G(Q)-
conjugate. In particular, ¢ is even strongly G-irreducible.

3. The itmage ¢(I") is an G-abundant subgroup of @(Q)

Now suppose that ¢ : 'y — @(@5) is a Coxeter parameter. Then there
exists a degree h cyclic extension K’/K such that ¢(I'k/) is contained in a torus
of CA;; the homomorphism ¢[r,, is therefore associated to Eisenstein series on
G(Ak+). One can ask whether it is possible to use this to obtain a cuspidal au-
tomorphic representation of G(A ) (or better, a maximal ideal of the excursion
algebra By) to which ¢ corresponds. One case in which the answer is affirmative
is as follows:

Theorem 6.4. Let ¢ : I'xy — (A;(@) be a Coxeter parameter such that
q’)(I‘K.E) C T(Qy). Then ¢ is cuspidal automorphic, in the sense of Defini-
tion 4.5.

Proof (sketch). Braverman—Gaitsgory construct [BG02] the geometric analogue
of Eisenstein series for the group G: in other words, a Hecke eigensheaf on
BunGFq with ‘eigenvalue’ (b\pKFq. This Hecke eigensheaf is equipped with a
Weil descent datum, which allows us to associate to it an actual spherical au-
tomorphic form f : G(K)\G(Ax) — Q, whose Hecke eigenvalues agree with
those determined by ¢, under the Satake isomorphism. Using geometric tech-
niques (see Gaitsgory’s appendix to [BHKT]), one can further show that this

8 As the notation suggests, in applications we will take ¢ to be the image in F; of the
cardinality of the field of scalars in K.
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automorphic form is in fact cuspidal. The existence of a maximal ideal in the
excursion algebra By corresponding to ¢ then follows from the existence of f
and the good properties of Coxeter parameters (in particular, the second part
of Proposition 6.3). O

To illustrate the method, here is the result we obtain on combining Theorem
6.4 with our automorphy lifting Theorem 5.5:

Theorem 6.5. Let { > #W be a prime, and let p : 'y — @(@E) be a
continuous homomorphism such that p is a Cozeter parameter and E(FK‘F(Z) 18

contained in a conjugate OfT\(Fg). Then p is cuspidal automorphic, in the sense
of Definition 4.5.

Here is a question motivated by a potential strengthening of Theorem 6.5:

Question 6.6. Let ¢ : T'xy — é(@g) be a Coxeter parameter such that
gb(FK@q) C T(Qy), and let T be the everywhere unramified cuspidal automorphic

representation of G(Ax) whose existence is asserted by Theorem 6.4. Can one
show that m appears with multiplicity 1 in the space Ag, cusp?

Taking into account the freeness assertion in Theorem 5.5, we see that a
positive answer to Question 6.6 would have interesting consequences for the
multiplicity of cuspidal automorphic representations.

7 Potential automorphy

We can now describe the proof of Theorem 4.6. Let us therefore choose a
representation p : I'x g = G(Qy) of Zariski dense image. We must find a finite
Galois extension L/K such that p|r, is cuspidal automorphic. It is easy to
reduce to the case where G is simple and simply connected (equivalently: the
group G is simple and has trivial centre), so we now assume this.

By Proposition 3.8, we can assume, after replacing p by a conjugate, that
there is a number field E, a system (py)x of continuous homomorphisms py :
Ikgp— @(EA) of Zariski dense image, and an embedding Ey, < Q, such that
p = px,- If any one of the representations p is automorphic, then they all
are. We can therefore forget the original prime ¢ and think of the entire system
(PA)r-

An application of a theorem of Larsen [Lar95] furnishes us with strong in-
formation about this system of representations:

Theorem 7.1. With notation as above, we can assume (after possibly enlarging
E and replacing each py by a conjugate), that there exists a set L of rational
primes of Dirichlet density 0 with the following property: for each prime ¢ & L
which splits in E and does not divide q, and for each place A\|¢ of E, px(I'k. )

has image equal to G(Zy).
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It follows that for A|¢ (£ & L split in E), the residual representation p, can be
taken to have image equal to G (Fp). It is easy to show that when ¢ is sufficiently
large, such a residual representation satisfies the requirements of our Theorem
5.5.

We are now on the home straight. Using a theorem of Moret-Bailly and
known cases of de Jong’s conjecture [MB90, dJO1], one can construct a finite
Galois extension L/K and (after possibly enlarging F) an auxiliary system of
representations (Ry : T'p g — é(EA))A satisfying the following properties:

1. For each prime-to-q place A of Q, Ry has Zariski dense image in é(@/\)

2. There exists a place A; such that Ry, = P, Ir; 4> and both of these repre-

sentations have image @(Fgl), where ¢ denotes the residue characteristic
of Al .

3. There exists a place Ay such that EAZ is a Coxeter parameter and fy >
#W , where {5 denotes the residue characteristic of \s.

The argument to prove the automorphy of p|r, , is now the familiar one. By
Theorem 6.5, Ry, is cuspidal automorphic. Since this property moves in com-
patible systems for representations with Zariski dense image, R, is cuspidal
automorphic. If ¢; is chosen to be sufficiently large, then we can apply Theo-
rem 5.5 to deduce that py,|r, , is cuspidal automorphic. Moving now in the
compatible system containing py,|r, ,, we obtain finally the automorphy of the
original representation plr, ,, as desired.

One of the main attractions of our arguments is that they are uniform in the
reductive group G. In particular, they are valid for exceptional groups. Using
deformation theory, it is easy to find examples of global fields K = F,(X) and
continuous representations p : ' g — G (Q,) of Zariski dense image. This gives,
for example, the following simple corollary of Theorem 4.6:

Corollary 7.2. Let G be the split simple group over F, of type Eg; then the
dual group G is the split simple group over Z of type Eg. Let £ be a prime not
dividing q. Then there exist infinitely pairs (K, p), where K = Fy(X) is a global
field and p : 'c g — Eg (Qy) is a representation of Zariski dense image which is
cuspidal automorphic, in the sense of Definition 4.5.
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