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1 Introduction
Consider the family of elliptic curves with 2-isogeny
Ep :y? =2 — Dux,
for D € Q*. The 2-isogeny in question is the morphism ¢ : Ep — E_4p given by the formula
¢(x,y) = (y* /2%, y(=D — 2*) /2?).

These are the elliptic curves with j-invariant 1728. (The curves Ep, Eps are isomorphic over Q if and only
if D/D" € (Q*)*)

Associated to each curve Ep is its ¢-Selmer group, the definition of which we recall in §2| below. It
fits into an exact sequence

0——E_4p(Q)/¢Ep(Q)—— Sely(Ep) ——1I(Ep)[¢] —0,

and can be easily calculated. Computing the groups Sely(Ep) and Selg(E_4 DE is thus an efficient way to
give an upper bound for the rank of the finitely generated abelian group Ep(Q).

*During the period this research was conducted, this author was supported by an NSF postdoctoral research fellowship.

fDuring the period this research was conducted, the author served as a Clay Research Fellow.

1We are saved here from an abuse of notation by the observation that the dual isogeny qAS : E_4p — Ep is naturally identified
with the isogeny ¢ : E_4p — Ejp defined above.



In this note we study the behaviour of the groups Sels(Ep) as D varies. In order to do this, we
organize the curves Ep according to their relative Tamagawa numbers

TD = #Sel¢(ED)/# Sel¢(E,4D) = 2_tD.

As was first observed by Cassels, Tp may be expressed as a product of local factors, and the integer tp € Z
can take on any value. If t € Z>(, then we define a probability distribution (m;(t))52, on {0,1,2,...} by the
formula

2T . (1 — 92— (k+1)
Wi(t) _ - Hk:l( ) )
[[j=a (2F =DM = 1)
If t € Z<o, then we define a probability distribution (7;(¢))s°_, on {0,1,2,...} by the formula m;(t) =
mirt(—t) if i+t > 0, and 7;(t) = 0 otherwise. (See Table [3.3| below for some numerical values.) We can now
state our first main result.

Theorem 1.1 (Theorem . Let t € Z, and for each X > 0 let S¢(X) denote the set of fourth-power free
integers D such that tp =t and —X < D < X. Then for each k > 1, the limit

lim #{D € St(X) | dim]p2 Se1¢(ED) = k}
X—o0 #5:(X)

exists, and is equal to m_1(t).

The above result is derived from another, which is in a sense more precise. Fix a non-zero integer F,

and let Sy denote the set of primes dividing £, together with the prime 2. Fix a class C € [[ g, Z, /(Z) )4

Theorem 1.2 (Theorem . If X > 0, let Spc(X) denote the set of integers —X < D < X of the form
D = Fp;y...pn, where p1,...,pN are pairwise distinct primes, coprime to Sy, such that the image of the
product p1...pn i [[,cq, Ly (L)) is equal to C. Then:

1. The relative Tamagawa number Tp = 272 is independent of the choice of D € Spc(X).
2. For each integer k > 1,

lim #{D S Sch(X) | dimp, Sel¢(ED) = /4;}
X—o0 #Spc(X)

exists and is equal to T_1(tp).

The proof of Theorem follows similar lines to that of [Kanl, Theorem 3]. We first prove a result
(Theorem modeled after the main theorem of [SD08|. Given an integer D = Fp;...py € Spc(X),
the ¢-Selmer group can be represented as the kernel of a (#So + N +tp) x (#So + N) matrix A = Ap
with Fa-coefficients, whose entries can be written down explicitly in terms of Legendre symbols involving the
primes of SoU{p1,...,pn}. Supposing these entries to be independently and uniformly distributed, subject
only to the constraints coming from quadratic reciprocity, gives a probability distribution on the quantity
dimp, ker(A). We first show that for each k& > 1, the limit

lim P(dimp, ker(A) = k)
N—o0
exists and is equal to mx_1(tp). This is done by showing that, as more rows and columns are added to the
matrix A, the quantity dimp, ker(A) evolves, with high probability, according to a Markov process. As N
tends to infinity, the probability of being in any given state converges to the invariant distribution of this
Markov process, which is exactly (m;(tp))52,-
To upgrade this to a result about natural densities, we argue as in [Kan|. The moments of # Sel,(Ep)
are closely related to the average values taken by Dirichlet characters at product of primes. We first establish
the following result concerning these moments.



Theorem 1.3 (Proposition [5.2). Let m > 0 be an integer. Let Sy o(X) be the set of D in Spc(X) so that
w(D), the number of distinct prime divisors of D satisfies |w(D) — loglog(X)| < loglog(X)3/*. Then the

limat
i ZDes'Fc(X)(# Sely(Ep))™
1m -
X —o0 #S%',C(X)

erists, and equals
o0 m m
Z2mkﬂ'k71(t> =92 <1+Z2—nt|: :| ) )
k=1 =1 g

(Here we write m]q for the usual g-binomial coefficient; see Proposition |3.2| below.) It should be

noted that as X — oo, the density of S -(X) within Spc(X), goes to 1. We expect that this result should
hold with S .(X) replaced by Src(X), but are unable to prove this for technical reasons. We can then
deduce the statement of Theorem [[.2] above. Taking m = 1 in Theorem we obtain:

Corollary 1.4. The limit

i ZDES};YC(X)(# Sely(Ep) —2)/Tp
Poe #5p0(X)
exists, and is equal to 2. In particular, it does not depend on the choice of F or C.

The consideration of this weighted average is natural from the perspective of the calculations ap-
pearing in the work of Bhargava and his collaborators; compare, for example, the proof of [BS, Proposition
5.12|. One can interpret the number # Sels(Ep) — 2 as the number of ‘non-trivial’ elements of the ¢-Selmer
group, the ‘trivial’ ones being represented by the identity and the image of the 2-torsion point (0,0) (which
is almost always non-zero.)

We now describe the organization of this paper. In §2] below, we recall some basic facts about the
arithmetic of the curves Ep. In particular, we give the definition of the group Sels(Ep), and a formula
for the relative Tamagawa number T, as a product of local factors. In we study the basic properties
of the distributions (m;(¢))$2,, and their interpretation in terms of certain Markov chains. Inspired by the
work of Poonen and Rains [PR12], we also give a heuristic interpretation of these distributions in terms of
linear algebra; in this optic, the quantity dimp, Sely(Ep) is distributed as if the ¢-Selmer group (modulo
the image of the 2-torsion point (0,0)) were the kernel of a random homomorphism F§ — F5*? for some
indeterminate s. This model also explains the origins of the Markov chains in the description of the evolution
of the ¢-Selmer group.

In §4] we prove our first approximation to Theorem Finally in we prove Theorem and
Theorem and deduce Theorem [I.1] as a consequence.

1.1 Acknowledgements

The second author would like to thank Manjul Bhargava and Arul Shankar for useful conversations. This
collaboration was begun at the ‘Arithmetic of abelian varieties in families’ workshop at EPFL in November
2012, and we thank the organizers for the stimulating environment.

2 Background

We consider again the curves
Ep :y* =2® — D,

now assuming for simplicity that D is a fourth-power free integer. The point (0,0) € Ep(Q) is a 2-torsion
point, and generates the kernel of the isogeny ¢ : Ep — E_4p of the introduction. For more information
about the objects under consideration here, we refer the reader to [Sil09, Ch. X].

Proposition 2.1. 1. The curve Ep has good reduction at all primes p{2D.



2. Suppose that D # —4 and D is not a square. Then Ep(Q)iors is generated by (0,0).

The ¢-Selmer group Sely(Ep) is defined as the kernel of the natural map of Galois cohomology
groups:

H'(Q, Epl¢)) — [[ H'(Qu, Ep),

the product running over all places v of Q. The reason for studying this group is the existence of the
‘Kummer’ exact sequence associated to ¢:

0— ED[(;5] — ED — E,4D — 0.

Thus there is an injection E_4p(Q)/¢Ep(Q) — H*(Q, Ep[¢]), with image contained in the (finite) subgroup
Selg(Ep). Writing Wp,, C H'(Q, Ep[¢]) for the image of the group of local points E_4p(Q,)/dEp(Qy),
we can define equivalently

Sely(Ep) = ker |[H'(Q, Ep[¢]) — [ [ H'(Qu, Ep[¢])/Wp..

The following observation is basic to what follows.

Proposition 2.2. 1. There is a canonical isomorphism of finite group schemes Ep|¢] = ua, and hence
for any extension k/Q a canonical identification H'(k, Ep[¢]) = kX /(k*)2.
2. Suppose that v =oco. If D <0, then Wp, = (1) C R*/(R*)2. If D > 0, then Wp, is trivial.
3. Suppose that v is the place corresponding to an odd prime p, and let p* be the largest power of p
dividing D. Then we have

<Z;> a:()ora:zpzlm0d4andD¢(@;)2

W (D) a=1or3
Do =Y (£vD) a=2and D € (Q))*
(1) a=2,p=3mod4 and D & (Q))*

4. Suppose that v is the place corresponding to the prime 2. Then we have

(2,5) D =1 mod 16

(—1,5) D =3,11 mod 16
W (5) D =5,9 mod 16
Pv = (~1,2,5) D=7,15 mod 16
(=2,5) D =13 mod 16
(D) D s even.
Proof. The first part is immediate. The rest is contained in [Got01l §3]. O

The variation of the Selmer groups Sel,(Ep) and Sely(E_4p) is subject to one major constraint.
We define the relative Tamagawa number of ¢ as the quotient

TD = #Sel¢(ED)/# Se1¢(E,4D) = 2_tD.
A theorem of Cassels [Cas65] implies that this is a purely local quantity:

Tp = [ [ Wp.l/2,

where Wp,, C H(Q,, Ep[¢]) is the subspace of local conditions. Comparing with Proposition see that
the factor |Wp ,|/2 can be non-trivial only if v = 00,2, or p, where p = 3 mod 4 and p?||D. We make two
further remarks. First, the parity of tp is the same as that of the root number of Ep:

(1) = w(Ep).

For the curves Ep, this is a theorem of Birch-Stephens [BS66]. Second, as long as |D| is not a square, the
torsion point (0, 0) has non-trivial image in Sely(Ep) and Selg(E_4p). If one further assumes that tp < 0,
we obtain the inequality # Sel,(Ep) > 2'7t2. (This is the reason that the probability distributions of the
introduction are supported in {—tp,1 —tp,2 —tp,...} when tp <0.)



3 Probabilities

In this section we define and study the probability distributions introduced in We then introduce some
related Markov chains, and realize the distributions as the invariant distributions of the Markov chains.
Finally, we give an interpretation of all of these objects in terms of linear algebra.

3.1 A probability distribution
We begin by recalling some remarkable identities.

Lemma 3.1. We have the following equalities of formal power series:

;l_Il<1qu> 71+ZHJ 1q3—1)(qﬂz—1) (3.1)
and
00 qrx” B 0 (x—l)(x—q)_”(x_qn—l)
B <1 +; H?:l(qj —1)(¢7z — 1)) =1 +n§::1 2n(qn — 1) (¢ —q) ... (q" — qn_1)7 (3.2)
where
- 1
s=1] (1 - q%)

Proof. The first of these identities is [Jac29] §64, (1)]. We leave the second as an exercise for the reader. [

We fix for this section an integer ¢. (Later, the parameter ¢ will play the role of the exponent of the
relative Tamagawa number Tp = 27%.) Let us first suppose that t > 0. Let ¢ = 2 and z = 2 in the above
identities. Then taking # = 1 in equation [3.2] gives

<1+ZH7 12J_1(2J+t_1)>=1,

where now by definition 8 = [];~,(1 — 27"~*). Define m(¢) = 3 and for each i > 1,

23
[T, (2 — 1@+t —1)

Then ;2 m(t) = 1, and this does indeed define a probability distribution.

If t <0, when we define m;(t) = m;4+(—t). Then again (m;(t))2, defines a probability distribution
on {0,1,2,...}, and we have m;(t) > 0 if and only if ¢ > ¢. Here is a table showing the value of m;(t) for
some small values of 7 and ¢

7To(t) 7'&'1(25) 7T2(t) 7T3(t) 7T4(t)

0.288788 0.577576 0.128350 0.005239 0.000047
0.577576 0.385051 0.036672 0.000699 0.000003
0.770102 0.220029 0.009779 0.000090 0.000000 (3.3)
0.880116 0.117349 0.002524 0.000011 0.000000
0.938791 0.060567 0.000641 0.000001 0.000000
0.969074 0.030764 0.000161 0.000000 0.000000

7T2(t) =

TR W N~ O

Proposition 3.2. Define a random variable X valued in {0,1,2,3,...} by P(X = i) = m;(t). Then the

m*-moment of 2% exists and is equal to

2mX =1+ Zz—nt[ :| )

2Values are shown here to 6 decimal places.



m

In particular, E(2%) exists and is equal to 1 +27%. (Here we write [’g]q =11, % for the

usual g-binomial coefficient.)

Proof. Apply equation [3.2] with x = 2™. O

3.2 A Markov chain

If t € Z>(, we define a Markov chain (X, (t)),>0 with state space N = {0,1,2,...}, and transition probabil-
ities given by:
27(2k+t+1) ] —i+1
P(Xnp1 =7 Xp=10)=1¢ (1-27F)(1-201) j=i—1 (3.4)
(L4270 42 FFD) =,
If t = —s € Z<o, then we define a Markov chain (X, (t)),>0 with state space {s,s +1,s +2,...}, and
transition probabilities given by the same formulae. We observe that in this case Xo(t) is a Markov chain of

type s + Xo(—t). (We refer the reader unfamiliar with Markov chains to [Nor98§].)
The object of this section is to prove the following result.

Theorem 3.3. 1. The distribution 7;(t) of the previous section is an invariant distribution for the
Markov chain (X, (t))n>0-
2. Let g = (fm)m>0 be an initial probability distribution for (X, (t))n>0. Then there exist constants
co,c1 > 0 depending only on t such that

B (Xn(t) = i) —m| S co/ntcr/n- Y mypy.

m>0

Corollary 3.4. Let 1 = (ftm)m>0 be an initial probability distribution for (X, (t))n>0 which is supported in
the range 0 < m < «, for some o > 1. Then

[Pu(Xn(t) = i) — m| = O(a/m),
where the implied constant depends only on t.

The rest of this section is devoted to the proof of Theorem [3:3] By symmetry, we can assume that
t > 0. For simplicity, let us in fact assume that ¢t = 0, since this is the ‘least recurrent’ Markov chain in the
family. We now write m; = m;(0) and X,, = X,,(0).

Lemma 3.5. (m;)2, is the invariant distribution of the Markov chain (X,)n>0. The chain is positive
recurrent.

Proof. Tt is easy to check that (m;)$2, satisfies the detailed balance equations, which implies that it must be
a invariant distribution. The existence of the invariant distribution implies that (Xy,),>0 is indeed positive
recurrent. |

Now introduce a Markov process (X,,,Y,)n>0 on N x N, where X,,, Y,, are independent Markov
chains with the same transition matrices. We assume that the initial distributions of X, and Y,, are y and
m, respectively, and define a random variable

To=inf{n>0| X, =Y, =0}.

Since (X, )n>0 is positive recurrent, the same is true for this joint chain, and Ey(7y) < co. (For this and the
proof of the next lemma, compare [Nor98| §1.8].)

Lemma 3.6. With notation as above, we have

By (X0 = ) — il < E,(T0)/(n —1).



Proof. Let Z, = X,, if n < T, and Z, =Y, if n > Ty. Then (Z,)n>0 is a Markov chain with the same
transition probabilities as (X,,),>0 and initial distribution . We then have

Pu(Xn =) = il = [Pu(Zn = i) = Pu(Yn = 1)
=P (X, =i,n <Tp) + P, (Y, =i,n>Tp)) — (Pu(Y, =i,n < Tp) + Pu(Y, =i,n>Tp))|
=|P.(X, =t,n<Tp) —P,(Yn=4,n<Ty)| <Pu(n <Tp) <E,(Tp)/(n—1),
by Markov’s inequality. O

Corollary 3.7. Let 0,, denote the Dirac distribution centered at m: Ps, (Xo = 1) = im. Let o, = Es,, (T0).-
Then

IPu(Xn =) —mi| < Zumgm /(n—1).

m>0

To prove Theorem [3.3] it therefore suffices to show that there exist constants C, D > 0 such that
0m < C +mD (and in particular, o, < c0). We now show this by calculating o, explicitly. We first
introduce the auxiliary variable Sy = inf{n > 0 | X,, = 0}, and define 7,,, = E;,_(Sp), the expected first

passage time from m to 0. As is well-known, the expected return time Es, (S) equals 1/mg.
A well-known calculation for birth-death processes shows that

oo kal 9—2i+1
71:44—2 —kizl : < b < 00,
=2 \ iz (1 —277)2

while for m > 1

00 Hls:l o 9—2i+1
T+l = Tm + Z Hk 2 < 7Tm+2.

_9—1
k=m+1 i:erl(l 2

On the other hand, conditional expectation and the strong Markov property show that

Om = Z(Tm + (k—=1)/m0)(1 — m0)* 1wy = T Z(l — 7o)t + Z(k; —1)(1 —m)* L
k=1 k=1 k=1

It is now clear that o, < oo, and satisfies a bound of the desired type.

3.3 Interpretation in terms of linear algebra

Let D be a fourth-power free integer, and let S denote the set of places of Q dividing D, together with 2
and co. The group Sel,(Ep) is, by definition, the kernel of the natural map

Q(S,2) = [[ Vo/Wp.w,

veSs

where Q(S,2) C Q*/(Q*)? is the subgroup of elements which are unramified outside S, V, = Q/(QX)?,
and Wp, C V, is the subspace of local conditions at v, as described in Now, Q(S,2) is an Fay-vector
space of dimension #.5, while [[,.g Vi/Wb,, is an Fo-vector space of dimension #S +tp, by the expression
for Tp = 27'P as a product of local factors. It therefore makes sense to ask if the quantity dimp, Sels(Ep)
behaves as if Sel,(Ep) were the kernel of a random homomorphism F§ — F3™? | for some s > 0.

Given the theorems of the introduction, we can rephrase this by asking if the distributions (m;(t))$2,
admit such an interpretation. We now show that this is indeed the case. By symmetry, we can assume that
t > 0. Given an integer n > 1, let (n) denote the set of (n+t) xn matrices A with Fa-coefficients. We endow
Q(n) with the uniform probability measure. If k > 0 is an integer, we let py ,,(t) = Po(dimp, ker(A4) = k).



Proposition 3.8. The limit
lim pg . (t)

n—oo

exists and is equal to mi(t).

For each 1 < m < n, let A,, denote the upper-left (m + ¢) x m submatrix of A. We define random
variables Z,, : Q(n) — Z>¢ by the formula Z,, = dimg, ker(A4,,).

Lemma 3.9. The sequence of random variables (Z,,)%_1 is a Markov chain of type Xo(t).

Proof. Let Z,, = dimg, ker(A4,,) = k. We write

A, w
Am+1<tv $>’

where v € FJ*, w € Fy'"™* and x € Fo. A calculation shows that we have the following possibilities for
Zm41 = dimp, ker(Ap,41):

1. w€im(A,,), v € ker(4,,)*. Then dimg, ker(A,, 1) = k+1if z € v- A} (w), and dimp, ker(A,, 1) =

k otherwise.

2. w € im(Ap,), v € ker(A;,)*. Then dimg, ker(A,,41) = k.

3. w¢im(An), v € ker(A,,)*. Then dimg, ker(A,,+1) = k.

4. w ¢ im(A,,), v € ker(A,,)*. Then dimg, ker(A,,+1) =k — 1.
We have P (w € im(A4,,)) = 275 and Po(v € ker(A,,)*) = 27F. It is now easy to see that the sequence
Z, satisfies the Markov property, with transition probabilities given by equation [3.4] O

Proposition now follows from the lemma. Indeed, in the notation of we have pg,(t) =
Ps, (X (t) = k). This quantity tends to 7 (t) as n — oo, by Corollary

4 Markov density

We now come to our first main theorem. We fix a non-zero integer F, and set So = {2,00} U {p|F} =
{2,00,¢1,...,qs}, say. Fix a class C in the group

I zir@

v€So\ {0}

We write S(C, N) for the set of integers of the form Fp;...py, where the p; are distinct prime numbers,
coprime to Sy, and the product p;...py is of class C. We will study the ¢-Selmer groups Sel,(Ep) for
D e §(C,N), as C is fixed and the integer N is allowed to vary. (In what follows, we will view the Legendre

symbols

Z) as taking values in the Fo, this group being identified with {£1} in the natural way.)

Theorem 4.1. 1. The quantity dimSely(Ep), D € S(C, N) depends only on the following data:
(a) The Legendre symbols (;1> and (2), 1<i<N.

pi
(b) The Legendre symbols (2)]), 1<j<s,1<i<N.

(¢) The Legendre symbols (zj), 1<i<j<N.
Moreover, for any choice of assignment of these values, subject to the constraint that p1...pn be of
class C, there exists D € S(C, N) realizing them.

2. Let k > 0 be an integer, and let pi,(N) denote the probability that dimr, Sely(Ep) = k, the above Leg-
endre symbols being distributed according to the uniform probability measure. Then limp_ o pr(N)
exists and equals mj,—1(t), where (m;(t))32, is the probability distribution constructed in {3, with pa-
rameter t = —logy, Tp. Here Tp is the relative Tamagawa number of the isogeny ¢ : Ep — E_yp,
which depends only on F and C.



The rest of this section is devoted to the proof of the above theorem. We first note that, replacing
F by —4F, we can assume that F' > 0. We now write the quantity Sel,(Ep) in terms of a morphism of
[Fo-vector spaces. Let S = So U {p1,...,pn}, and let X5 = ©yes\ (oo} Vo /W, where V,, = QX /(QX)? and
W, = Wp, is the subspace of local conditions. The Fa-vector space Ug = {A € Q(S,2) | A > 0} has a basis
consisting of the elements 2,¢1,...,¢s,p1,...pn. We choose for each v € Sy a basis of the quotient V,,/W,,.
For each i = 1,..., N, we take the basis element of V},, /W), corresponding to a non-square in Z .

Lemma 4.2. 1. The space Sely(Ep) C Us may be identified with the kernel of the following (s +1 +
t+ N) x (s+ 1+ N) matriz Ay:

CR R

Here M is an (s +1+1t) X (s + 1) matriz which depends only on F and C and not on p1,...,pN, and
the b; are column vectors of length s + 1 + t.
2. There exist matrices S, T and a vector v depending only on F and C such that

=1 ()6 )
b= st () G- 60)

if pi =3 mod 4. Moreover, viewing M and T as homomorphisms IF;H — IF;HH, we have im(M) +
im(7) + (b;) = F5T' for any i such that p; = 3 mod 4.

if p; =1 mod 4 and

Proof. 1. The given matrix represents the homomorphism Ug — Xg, where Us and Xg are given the
above bases.

2. The existence of the matrices S, T and v follows from quadratic reciprocity. For the spanning

statement, it is enough to observe that for any p € Sy \ {oo}, the space V), is spanned by the images

of D, p;, and the images of all primes p’ which are congruent to 1 mod 4.
O

It is apparent from Lemma [£.2] that, the integer F' and class C having been fixed, the quantity

dimp, Sely(Ep) depends only on the Legendre symbols (_1), (——%—)7 (,q;;,) and (;’;) In particular, this proves

Pi Di Pi
the first part of Theorem We now write

) < fepsa )" x [ Te/my| <1 T w057

i=1j=i+1

for the subset of elements such that the product of the first IV elements is the equal to the image of the class
C. There is an obvious surjective map S(C, N) — Q(N), and the map D — dimp, Sels(Ep) factors through
this one.

In particular, it makes sense to endow (N) with the uniform probability measure and ask for
the distribution of the random variable X = dimg, Sel3(Ep), viewed as a function Q(N) — Z>o. This
distribution is given by the quantities py(N) described in the second part of Theorem



Lemma 4.3. Let A denote the submatriz of Ay obtained by deleting the last column and row, and let
n=N —1. Then:
1. LetY = dimg, ker A. Then for all k € Z, we have Po(X =k) =Po(Y =k —1).

2. Let § denote the set of functions Q(N) — Fo consisting of the Legendre symbols (—]—%—), 1<i<n,

(g’), 1<i<n, 1<j<s, (—&—), 1<i<j<mn, and (—Q—/—??—), 1 < i < n. Then the elements of S
are mutually independent, identically distributed random variables, each taking the value 0 or 1 with
equal probability 1/2.

Proof. 1. We show that X =Y + 1. The element D € Sel,(Ep) gives an element of ker(Ag) with last
entry non-zero. It suffices, therefore, to show that jker(A) C ker(Ag), where j : F5™ — F3HHV is
the natural inclusion with image consisting of elements with last entry zero. Equivalently, we must
show that if v € Ugs maps to W, for all v € S\ py, then it also maps to W), . This follows from
the product formula for the Hilbert symbol (here a sum formula, since we write Legendre and Hilbert
symbols additively). Indeed, we have

(N) = (u,pN)px = (4, =D)py = Z (u, = D).
veES\pN

Since —D annihilates the subspace W, C V, = Q/(QX)? of local conditions under the Hilbert
symbol, each individual term in the above sum is equal to 0. This gives the result.
2. We must show the independence of the quantities (1 <3 < n):

equal probability.

O

In studying the behavior of ¥ = dimp, ker A, we may assume without loss of generality that the

primes pi,..., Py, are congruent to 3 mod 4, and the primes pp,41,...,Pn,+nys N1 + N2 = n, are congruent
to 1 mod 4. This choice having been fixed, the entries of the matrix A are uniformly random subject to

the constraint imposed by quadratic reciprocity, namely that (;’J) = () unless 7,j < ni, in which case

Let us therefore introduce the finite set w(ny,na) of such (s +14+t+ny +n2) X (s+ 1+ ny + n2)
matrices, endowed with the uniform probability measure.

Lemma 4.4. Let A € w(ny,na), and let 1 < m < n. Let C denote the upper-left (s+1+t+m)x (s+1+m)
submatriz of A, and let v € F3T+™\ {0}. Then P, (Cv = 0) < 27™.

Proof. Let C denote the submatrix of C' obtained by deleting the first s 4 1 +¢ rows. We bound P,,(Cv = 0)
by P,,(Cv = 0). Let us assume, for simplicity, that the last entry v,, of v is non-zero.

Let D denote the submatrix of C obtained by deleting the last row and column. Conditioning on the
choice of D, it is clear that amongst the 275*! possible choices for C, each occurring with equal probability,
there are 25! that give Cv = 0. Thus P, (Cv = 0) = 27™. O

If 1 <m < n, we write T, for the (s + 1+t +m) X (s + 1 + m) matrix given as follows:
T 0
Tn = ( 0 1 ) '

10



Lemma 4.5. Let A € w(ny,ng), and let ny < m < n. Let C denote the upper-left (s+1+t+m) X (s+1+m)
submatriz of A. Then P, ([T;1im(C)] + ker(C)*+ # FytHm) < gs+2tt-—m,

Proof. Let S, = [T, im(C)]l Nker(C)\ {0}. By Markov’s inequality, we have

m

P, ([T, im(C)] + ker(Mo)* # F5t ™) = P, (S,, # 0) < Ey, (#Sm)-

On the other hand, we have [T);! irn(C’)}l = '"T,, ker(*C), hence S, C 'T,, ker(C'T,, + T,,'C) \ {0}. The

m
matrix C'Ty, + T,'C has rank at least n; — 1 (consider the lower-right m x m submatrix). We then have

By, (#8,,) < 28T1Htm=(n—1)  g=m _ gs+2+t—n

by Lemma [£.4] This completes the proof. O

Lemma 4.6. 1. Let C denote the upper-left (s+1+t+n1) X (s+14n1) submatric of A. Let k € Z>o.
Then P, (dimg, ker(C) > k) < 25+1-F,
2. Letny <m < n, and let C denote the upper-left (s+1+t+m) x (s+14+m) submatriz of A. Suppose
that ny > 0. Then im(C) + im(T},) = FyTiH+m,

Proof. 1. By Markov’s inequality and Lemma [4.4]
P, (dimp, ker(C) > k) < E,, (#ker(C))/2% < 25F2Fm . g7m 9=k — gs¥2-k

2. This follows immediately from the second part of Lemma [1.2]
O

We now fix an integer n; < m < n — 1 and a choice of upper-left (s + 1 +¢+m) x (s + 1+ m)
submatrix C of A, and find the distribution of the upper-left (s+1+t+m+1) x (s+ 1+ m+ 1) submatrix
C’ of A, conditioned on this choice of C. We can write

o — cC T,v
t"U T ’
where v € FJ* and € Fy. The choice of C being fixed, there are 2571+m+1 choices of pair (v,z), each
occurring with equal probability.
Lemma 4.7. Suppose that [T,,;" im(C)] + ker(C)* = F3tH™ . Let k = dimgy, ker(C). Then we have
2~ (2k+t+1) s=k+1

P,(dimker(C’) = s | C) = 27Ck+1) 42027k _272k) g
(1—27F)1 -2y 5=k -1

Proof. A calculation shows that we have the following possibilities:
1. Tpv € im(C’), v € ker(C’)*. Then dimker(C) =k + 1 if z € v- C'~Y(T,,v), and k otherwise.

2. Tyv €im(C’), v ¢ ker(C")L. Then dimker(C) = k.
3. Tmv ¢ im(C"), v € ker(C’)*. Then dimker(C) = k
4. Tpv ¢ im(C"), v & ker(C")L. Then dimker(C) = k — 1.

We have P, (v € ker(C)* | C) = 27%. Using that im(C) 4 im(T},) = F3™ ™ we have P, (T;,v € im(C) |
C) = 2=+ Under the assumption [T),;!im(C)] + ker(C)*+ = F5*'*™, these two events are independent,
leading to the probabilities described in the statement of the lemma. O

Theorem 4.8. . We have for all integers k > 0:

Pq(dimy, ker(A) = k) — 7 (t) as N — oo.

11



Proof. The quantity |Pq(dimp, ker(A) = k) — 74 (t)| is bounded above by the expression

Pa(jny —n/2| > n/6) + Z Pq(n1 + ne = n)|Py, (dimy, ker(A) = k) — mx.
ni+ne=n

ny1/2<ny<2n;

The first term here tends to zero as n — oo, by Chebyshev’s inequality; for the second term, we have for
any o > 0:

P, (dimp, ker(A) = k) — m(t)| < Py (dp, > a) + [P, (dimp, ker(A) =k | dn, < ) — gl

Here d,,, is, by definition, the dimension of the kernel of the upper-left (s+1+t+n;) x (s+1+n1)-submatrix
of A. By Lemma we have Py, (d,,, > ) < 2727 On the other hand, we have by Corollary

[P, (dimp, ker(A) = k| dn, < @) — ()] S Pu(E) + O(a/n2) < P,(E) + O(a/n),

where € is the event that [T),1im(C)] +ker(C)* # F5™'*™, C the upper left (s + 1+t +m) x (s+1+m)
submatrix of A, for some n; < m <n —1. Lemma shows that conditional on w(ny,ns) \ £, the quantity
dimp, ker(C) evolves according to the Markov chain (X,,(¢)),>0 described in
On the other hand, we have P,,(£) < ng2°t2Ht=m1 < 3p . 25+2+1-1/3 Ty Lemma We therefore
have
> Po(ni +ng =n)|P,(dimg, ker(A) = k) — mi(t)| = 027 + n27"/3 + a/n),

ni1+n2=n
n1/2<n,<2n;

the implied constant depending only on s and ¢t. Choosing a = y/n and letting n — oo gives the result. [
Theorem now follows immediately from Theorem

5 Natural Density

For F' and C as in Theorem let S(C) = Uxn_oS(C,N). Theoremtells us about the limiting distribution
of ranks of Selg(Ep) for D € S(C), in roughly the same sense that [SDO§| tells us about the densities of
ranks of 2-Selmer groups of twists of a given elliptic curve with full 2-torsion. In the same way that [Kan]
improved the latter result to talk about the natural density of such twists, we will be able to obtain our
results in terms of the natural density as well. In particular, we will show:

Theorem 5.1. For any fixed k, F,C,

i #{|D| < N : D e 5(C),dimg, Sel4(Ep) = d}
N #{D|<N:De S(C)}

= Wdfl(t).

The proof of Theorem will be analogous to the proof of the main theorem of [Kan|. In particular,
our approach will be to prove that the average moments of the size of the Selmer group are correct. In
particular, we will restrict our attention to the case when H = D/F has exactly n prime divisors for
n = loglog N. For convenience of notation, let w(n) be the number of distinct prime factors of n. Also, let
ma,c(n) be pg(n) in the notation of Theorem

Throughout the rest of this section, we consider F' and C to be fixed.

Proposition 5.2. For any integer k > 0,

> |DI<N|F|:DeS(C) / | Sels(Ep)|* -~
: |w(D/F)—loglog(N)|<loglog(N)3/* kd
1 = 2 .
NS5 #{|D| < N|F|: D € S(C), |w(D/F) — loglog(N)| < log log(N)*/4} d; nac

12



Proof. For distinct primes pq,...,p, let A, ., be the matrix given in Lemma for D = Fpy---py.
Letting D = Fp1ps - - - pn, we have that

| Selg(Ep)| = | ker(4y,)

B Z 1 ifA,v=0
N 0 else

veF;+1+t+n
1

= Y = Y (—1){Apivw)
2s+1+n

veFytititn weFy T

= g > (—1){Ani),

UE]F;+1+t+7L7w6]F;+1+1L
Therefore we have that

1 k A vl awd
I8els(Bo)l" = srtrrmy ) (—1) 5= (A ),
Uj6F§+1+t+717wjeF;+1+7t

For fixed n = loglog(N) we wish to compute

Y ISely(Ep)

|DI<N|F|
DeS(C)
w(D/F)=n
1
_ k
= > | Sely (B, -p, )|
" p1,...,pn distinct odd primes
p1opn <N
p1-pn€C
= 1 (Ap v w?
= Z SR 1+m) Z (-1) o1 (A, >
P1,..-,Pn distinct odd primes vl gpstitttn
Pl"'PnSJC\[ wje%s+l+n
P1Pn€ o

1 1 k i i
- = il 1\ =1 (A 07 w?
T 9k(s+1+n) Z nl Z ( 1) ! 1< >

I €F§+1+t+”' " p1,...,pn distinct odd primes
wi cpstiHn p1pn <N
2 p1-pn€C

1 1 _
"y 2 (@ 2 YO

vl Ry It (mod |FI)

w eFy T x'=
1 J i
] 2. Xpr -+ p)(~)Z= (),
n:

P1,..-,Pn distinct odd primes
p1pn <N

The thing to note here is that once the values of v/ and w’ and the values of the p; have been fixed
modulo 4, the inner summand can be written as a product of terms of the form (f)—;) and (—1)c®depe)

(where here ¢(p) = (p — 1)/2), and x;(p;) for quadratic characters x; with modulus dividing |F|. Sums of
this form were dealt with extensively in Propositions 9 and 10 of [Kan)].

13



In order to deal with the dependence modulo 4, let A7l be the matrix

()

if ¢, = 1 mod 4 and

v+st((;),...(;j))

if ¢, = 3 mod 4. Note that if p; = ¢; (mod 4), this matrix is obtained from A4,, by rearranging the rows and
columns. Thus we have that

> |Sely(Ep)l*
|IDI<N|F|
DES(C)
w(D/F)=n

1 1 _
w2 @ 2, O

v E]F;+1+t+" (mod |F|)
w? €F§+1+" xi=1
1 K i
5 Z X(pl .. pn)(_l) j:1<AP1,v W >
" p1,...,pn distinct odd primes
p1pn SN
__ 1 1 oy L
T 9k(st1tn) Z (Z/F)*/(Z]F)")4| Z X( )27 Z Z
v E]F§+l+t+n x(mod |F|) 1i(mod 4) €;(mod 4)
w! Ry xi=1

1:[11/%(61‘)5 > HX(pi)fﬂi(pi)(—l)zfﬁ<A;§Uj’wj>~ (5.1)

" p1,...,pn distinct odd primesi=1
p1-pn SN

For fixed v/, w7, x, 1, €;, the innermost sum is now exactly of the form described in Proposition 9 of

Kan|. In particular, we call 1 < i < n, active if for some ¢, the term ( 2t ) appears in the summand without
pe

being canceled by a (%). Let m be the number of active indices. By Proposition 9 of [Kan|, we have that
if (loglog N)/2 < n < 2loglog N that, for any ¢ > 0,

ol > [T x)wi(p)(~1)> (50 = 0 e (er). (5:2)
" pi,...,pn distinct odd primes i=1
p1--pn<N

We would like to show that the contribution from terms with m > 0 is negligible. In order to show
this, we will need to bound the number of v7, w’ with a small number of active indices. To do this, we note

14



that the exponent of (%) appearing in (—1)»%®) is (v; 4 vg)(w; + wy) modulo 2. Given, v/, w’ € F3 let

u; € F2* for 1 <1 < n be given by
1 1.2 2 ko k
i)

w; = (vf,w;, V5, W ... WS

Let ¢ : F3* — Fy be the quadratic form
k
¢((I17y1’ s 7xk7yk)) = leyz
i=1

Then the power of (%) appearing in (—1)Z?=1<Api”j’wj> is @(u; + up).

Claim 1. The set S of values obtained by u; for inactive indices i is contained in a translate of a Lagrangian
subspace for ¢. Furthermore, if m > 0, they lie in a proper subset of this translate of a Lagrangian subspace.
In particular, |S| < 2% with strict inequality if m > 0.

Proof. The first claim comes from noting that if S is translated by wu; for some inactive index ¢, then it is
Lagrangian because ¢(u; +u;) = 0 for 7 and j inactive. The second statement follows by noting that if 5" is
the set of values obtain by the u; for i either inactive or some single particle active index j, then ¢(u+u') =0
for any u,u’ € S, and thus once again S’ is contained in a translate of a Lagrangian subspace. On the other
hand u; ¢ S, or else j would also be inactive. Thus S C S’. This completes the proof. O

Claim 2. If (loglog N)/2 < n < 2loglog N, then the sum in Equation (5.1)) over terms with m > 0 is at
most
).

Proof. We begin by bounding the number of tuples v/, w’ with a given value of m. We note that pick-
ing a sequence of v/ € ]F‘§+t+1+”,wj € IE“Q”H” is equivalent to picking ui,...,u, € F2* along with
kE(2s +2+t+2n) = Okc(l) other coordinates. We bound the number of ways to do this for a given
value of m. There are O (1) ways to pick the set S of values attained by inactive indices. By the previous
claim, |S| < 2% — 1. There are (:L) ways to pick which m indices are inactive. There are then at most
|S|n=m22km ways to pick the values of the u;, and Oy (1) ways to pick the values of the other coordinates
of the v/ and w’. By Equation , once the u; are picked, the summand is O, ¢(Nc¢™) for any ¢ > 0. Also
note that there are only Oy ¢ (1) choices for x,€;, ;. Therefore, the sum over terms in Equation with
m > 0 is at most

2% Z_:OOMC(D <;:L) (2k _ 1)n7m4kmOC(N)cm — OC;T(”]V) Z <:L) (2k _ l)nfm(cllk)m

_o—k-1

Ok.c(N(log(N))

m=0
Ockc(N n
= %(2’“ — 1+ c4k)
Orc(N .
- 7’“;;& )(Qk ~1/2)
= Ok7c(N)(1 — Q_k_l)n
= Opc(N(log(N)) 2" 7).

We will also need some absolute bound on the sum of terms with m = 0:

Claim 3. The number of ways to choose v/, w? in Equation (5.1) so that m = 0 is O ¢(2"). Furthermore,
the sum in Equation (5.1) over terms with m = 0 is at most

Or(#{ID| < N|F|, D € 5(C,n)}).
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Proof. The number of ways of picking v7,w’ with m = 0 is at most the number of ways of picking S, times
the number of ways of picking u; € S, times Oy ¢(1). This is at most O ¢ (2"’“) For each such choice, the
inner sum is at most

#{|D| < N|F|,D € 5(C,n)}
Thus the total sum over terms with m = 0 is

Orc(2""#{|D| < N|F|,D € S(C,n)})
an

— Orc(#{ID| < N|F|, D € S(C.n)}).
O

Note that if m = 0, then the inner summand of Equation is a product of (—1)¢(P)<Pi) terms
of the form x;(p;) where x; is a quadratic character of modulus dividing |F'|, and thus depends only on the
values of p; (mod |F|). Note that by Proposition 10 of [Kan], that v’,w’ are chosen so that m = 0 and if
(loglog N)/2 < n < 2loglog N then

1 - k € i g
nl > T i) () (— 1) i (i)
" p1,...,pn distinct odd primesi=1

p1Pn <N

= #{H < N odd, squarefree : (H,F) = 1,w(D) =n}x

- kA% i i N log log log(N
Ep; (mod F) [11:[1X(Pi)wi(pi)(—1)2j=l<Amv ’ >] o (W) .

Therefore, combining this with Claim [2| we find that when (loglog N)/2 < n < 2loglog N the expression is

Equation (5.1)) is
#{H < N odd, squarefree : (H,F) = 1,w(D) = n}x

1 1 _ 1
[2() 2 T a2, YO 2

S x(mod |F|) ¥;(mod 4)
wl gyt xi=1 €;(mod 4)
- - i 00 i N logloglog(N)
i (€i)Ep, (mo )i (pi) (—1) D= {Api7 ) 0 _—
L[lw (€1)Ep; (mod F) Llj[lx(p )i(pi)(—1) + Oke | orTost)

Where the expectation above is over primes p; so that the Legendre symbols of p; on p; are inde-
pendent and uniformly distributed for ¢ < ¢ as are the values of p; € (Z/|F|)*. On the other hand, this
is:

Nlogloglog(N)
! . _ _ k
#{H < N odd, squarefree : (H,F) = 1,w(D) = n}E,, [17,.ec|ker(4p,)*] 4+ Okc (k)glog(N)
#{H < N odd, squarefree : (H, F) = 1,w(D) = n} <= .44 (Nloglog log(N)>
- ok, o(n) + Ope [ ——2 28280 ) - (53
@/F) /(@ F) ] 2 2 mac(n) + Ore oy 1oy (53)
Furthermore by Claim [3] this is
Ok.c(#{H < N odd, squarefree : (H,F) = 1,w(D) =n}) + Ok c (W)
Applying this result for £ = 0 implies that
#{|D| < N|F|,D € S(C,n)}
equals
#{H < N odd, squarefree : (H, F) = 1,w(D) = n} Lo (Nloglog log(N))
kel =
(Z/F)* | ((Z/ F)* )4 loglog(NV)
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Thus, the expression in Equation (??) simplifies to

ad kd Nlogloglog(N)
#(P| < NIFLD € SiC.m) 32 mdm+om(b@%m0> (5.4)

We know that lim,,_,. m4c(n) — mq(t) pointwise, and would like to be able to say that

(o) o0
lim Z 2k, c(n) = Z 2k, (t). (5.5)
d=0 d=0

To do this, we note by the above (for n ~ loglog(/N)) that
Z deﬂ'd,c (n) = Ok’c(l).
d=0
Applying this result for larger k, we find that
Z 2(k+1)dﬂ'd’c (n) = Ok’c(l).
d=0

Thus,
Tac(n) = Oy c(2~ D)

for all d,n. Therefore,
> sup2mye(n) =D Oke(27%) = Oke(1).
d=0 d=0

Thus Equation (5.6)) follows by dominated convergence.

Summing Equation (5.5) over all n with |n —loglog(N)| < loglog(N)
H < N have a number of divisors in this range, we find that

3/4and noting that almost all

> |D|<N|F|:DeS(C) | Sely(Ep)[*
|w(D/F)—loglog(N)|<loglog(N)3/*

#{IDI < NIF|, D € 5(C), |w(D/F) — loglog(IV)] < log log(N)?/1}

oo
logloglog(N)
_\ " okd
2t + v+ 0r (Lo )

where limpy_. o, 05 = 0. This completes our proof. O
Theorem [5.I]now follows in a straightforward manner from Proposition [5.2) after noting that density

1 of numbers less than N have loglog(N) + loglog(N)3/* distinct prime factors.

5.1 Complements

We now deduce from Theorem the one remaining theorem of the introduction.

Theorem 5.3. Lett € Z, and for each X > 0 let S;(X) denote the set of fourth-power free integers D such
that tp =t and —X < D < X. Then for each k > 1, the limit

lim #{D S St(X) | diHl]F2 Se1¢(ED) = ]{1}
X—o0 #S(X)

exists, and is equal to mp_1(t).
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Proof. Let T (t) be the set of pairs (F,C) that have associated Tamagawa number ¢p = t so that whenever
p|F for p > 2, we have that p?|F. Let S(C, X) be the elements of S(C) of absolute value less than X. We
have that
S(x)= |J sex).
ceT(t)

It should also be noted that each of these terms is of comparable size. In particular,
|8¢(X)| = O(X),
and
|S(C, X)| =deX + o(X)

for some constant dc > 0. Combining these, we find that
1S,(X)] = Qu(X).
Thus, in order to prove our Theorem, it suffices to show that
#{D € Si(X) | dimg, Sely(Ep) = k} = m_1 (1) #8:(X) + 01(X),

Our basic approach will be to approximate S;(X) by a union of finitely many of the S(C, X). In
particular, let 7 (¢,n) be the elements of 7 (¢) for which F' is not divisible by the square of any number more
than n. It is easily seen that this is a finite set. On the other hand, we have

# (S:(X) — Ucer(t,mC)
<#{m € Z:|m| < X, m is divisible by the square of a number more than n}

(X
<> 0 <d2> = 0(X/n).
d=n
Thus by Theorem the quantity #{D € S;(X) | dimp, Sels(Ep) = k} is equal to

> #{D € 5(C,X) | dimg, Sely(Ep) = k}
CeT(t)
= > #{DeS(C X)|dimg, Sely(Ep) = k} + O(X/n)
CeT(t,n)
= > (1S X)|mro1(t) + 0n,4(X)) + O(X/n)
CeT(t,n)

= Y (SC X)) m-1(t) + 0n,:(X) + O(X/n)
CeT(t,n)

= (I8(X)| + O(X/n)) -1 (t) + 0n 4 (X) + O(X/n)

=[St (X)[mr—1(t) + 0n,t(X) + O(X/n)

= [Se(X)[mr—1(t) + 0:(X),

as desired. This completes our proof. O

References

[BS] Manjul Bhargava and Arul Shankar. Binary quartic forms having bounded invariants, and the
boundedness of the average rank of elliptic curves. Preprint.

[BS66] B. J. Birch and N. M. Stephens. The parity of the rank of the Mordell-Weil group. Topology,
5:295-299, 1966.

18



[Cas65|

[Got01]

[Jac29]
[Kan]

[Nor9g]

[PR12]

[SDOS]

[Sil09]

J. W. S. Cassels. Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-
Dyer. J. Reine Angew. Math., 217:180-199, 1965.

Takeshi Goto. A note on the Selmer group of the elliptic curve y? = x> + Dz. Proc. Japan Acad.
Ser. A Math. Sci., 77(7):122-125, 2001.

K. G. J. Jacobi. Fundamenta nova theoriae functionum ellipticarum. Konigsberg, 1829.

Daniel M. Kane. On the ranks of the 2-Selmer groups of twists of a given elliptic curve. To appear
in Algebra and Number Theory.

J. R. Norris. Markov chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, Cambridge, 1998. Reprint of 1997 original.

Bjorn Poonen and Eric Rains. Random maximal isotropic subspaces and Selmer groups. J. Amer.
Math. Soc., 25(1):245-269, 2012.

Peter Swinnerton-Dyer. The effect of twisting on the 2-Selmer group. Math. Proc. Cambridge Philos.
Soc., 145(3):513-526, 2008.

Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathemat-
ics. Springer, Dordrecht, second edition, 2009.

19



	Introduction
	Acknowledgements

	Background
	Probabilities
	A probability distribution
	A Markov chain
	Interpretation in terms of linear algebra

	Markov density
	Natural Density
	Complements


