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Abstract

We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms
on GLn. This gives a systematic way to construct irreducible Galois representations whose residual
representation is reducible.
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1 Introduction

Let N be a positive integer, and let f be an elliptic modular newform of weight 2 and level Γ0(N). If l is a
prime and ι is a choice of isomorphism Ql

∼= C, then there is an associated Galois representation

rι(f) : GQ → GL2(Ql),

unramified outside Nl, uniquely characterized by the requirement that the trace of Frobenius at a prime
p - Nl equal the pth Fourier coefficient of f (or rather, its image in Ql under ι).

∗This research was partially conducted during the period the author served as a Clay Research Fellow.
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After possibly making a change of basis, we may assume that rι(f) takes its values in GL2(Zl). We
may then consider the reduced representation rι(f) : GQ → GL2(Fl), which we assume to be irreducible.
Let p be a prime not dividing Nl, and let α1, α2 ∈ F×l denote the eigenvalues of Frobp. If α1 = p±1α2 then
there exists a lift of rι(f)|GQp

to a representation

ρ : GQp → GL2(Zl)

such that ρ ⊗Zl Ql corresponds, under the local Langlands correspondence for GL2(Qp), to an unramified
twist of the Steinberg representation, which has conductor p. It therefore makes sense to ask if there exists
an elliptic modular newform g of weight 2 and level Γ0(Np) such that rι(g) ∼= rι(f), there being in this
instance no obstruction from local-global compatibility.

This question was first posed and answered by Ribet [Rib84], and the theme of congruences between
algebraic automorphic representations has been developed in many different directions since that work.
In particular, an understanding of such congruences plays a fundamental role in the proofs of all known
automorphy lifting theorems.

The aim of this work is to prove new level raising theorems for automorphic representations π of
GLn(AE), where E is a CM field satisfying some additional hypotheses. Suppose that π is regular algebraic
and conjugate self-dual. In this case, it is known that there exists a Galois representation rι(π) : GE →
GLn(Ql), and one can formulate the question of level-raising in much the same way as we have done for
elliptic modular forms above. Broadly speaking, there are two main approaches. The first is to try to
understand directly the natural integral structures appearing in spaces of algebraic automorphic forms. In
this case, one can attempt to generalize Ribet’s original argument. For unitary groups this rests on the
still unproven ‘Ihara’s Lemma’ of [CHT08]. If the residual representation rι(π) has large image (and in
particular, is irreducible), a second approach is possible. A trick due to Richard Taylor [Tay08] allows one
to use automorphy lifting theorems to construct automorphic representations π′ congruent to π modulo l,
and such that π′ has essentially any local behavior away from l not ruled out by the existence of a lifting ρ
as above, cf. [Gee11].

In this work we therefore restrict focus to regular algebraic, conjugate self-dual automorphic rep-
resentations π of the form π = π1 � π2, where πi are cuspidal automorphic representations of GLni(AF )
and n1 + n2 = n. By the theory of endoscopy, these representations often admit a descent to discrete au-
tomorphic representations of unitary groups. In this paper we exploit this fact to find congruences between
representations of this form and cuspidal automorphic representations on GLn(AE), by studying the integral
structure of spaces of algebraic automorphic forms on unitary similitude groups.

As an example of the kind of thing we can prove, suppose that E is a CM imaginary field with
totally real subfield F , and let p be a rational prime which is inert in F . Let w0 denote a place of E above
p, and suppose that w0 is split over F . We assume that [F : Q] is odd. Let n1, n2 be distinct even integers,
and let π1, π2 be cuspidal, conjugate self-dual automorphic representations of GLn1(AE) and GLn2(AE),
respectively, such that π1 � π2 is regular algebraic of strictly regular weight (cf. (2.1) below).

Theorem 1.1. Suppose that π1,w0 and π2,w0 are isomorphic to unramified twists of the Steinberg representa-
tion. Then there exists a set L of rational primes l of Dirichlet density one such that for all l ∈ L and for all
isomorphisms ι : Ql

∼= C, there exists a finite order character ψ : GE → C× with ψψc = 1, a CM quadratic
extension E1/E and a RACSDC automorphic representation Π of GLn(AE1) satisfying the following:

• rι(Π) ∼= rι(π1 � (π2 ⊗ ψ))|GE1
.

• If w1 is a place of E1 above w0, then Πw1 is an unramified twist of the Steinberg representation.

• Π has the same infinity type as the base change of π1 � π2 to E1 and is unramified at the primes
dividing l.

Moreover, if π1 � π2 is ι-ordinary in the sense of [Ger, Definition 5.1.2], then we can assume that Π is also
ι-ordinary.
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For our main theorem, see Theorem 7.1 below. It is worth noting that at the same time as proving
our main result, we also establish the analogue of Ihara’s lemma in the simplest possible non-trivial case.
This is a new result even when we localize at a non-Eisenstein maximal ideal, and would presumably allow
one to establish the first non-minimal R = T theorems for Galois representations of unitary type, when our
hypotheses are satisfied, although we have not pursued this here.

Our main interest in proving such theorems is the applications to automorphy lifting theorems for
RACSDC automorphic representations with residually reducible Galois representations. We note that for
applications of this type it is essential to be able to find congruences to automorphic representations which
have the same l-adic Hodge type at the primes dividing l. By combining the theorems of this paper with the
main theorem of [Tho], one can often prove the automorphy of Galois representations r : GE → GLn(Ql)
satisfying the following kinds of conditions:

• r is ordinary, and there exists a place w of E at which r looks like it corresponds to the Steinberg
representation.

• The residual representation r is reducible, and the Jordan-Hölder factors of r are residually automor-
phic.

We now come to a description of the contents and main ideas of this paper. In sections §§2–3 we first set up
notation and recall some background results.

Let I be a definite unitary group over Q associated to the extension E/F as above. Then the
Z-arithmetic subgroups of I(R) are essentially trivial, but if p is a prime such that I(Qp) is non-compact,
then the Z[1/p]-arithmetic subgroups of I(Qp) are highly non-trivial. If one knows that the cohomology of
these arithmetic subgroups is torsion-free, then one can prove level-raising results for automorphic forms on
I. This is essentially the content of §4.

In order to show such torsion vanishing, we compare the cohomology of these arithmetic groups with
the cohomology of a PEL-type Shimura variety S(G,U) obtained by ‘switching primes’, which is associated
to an inner form G of I which has the type U(1, n−1)×U(n)d−1 at infinity and looks like a division algebra
locally at p. According to a theorem of Rapoport-Zink [RZ96], these varieties admit a p-adic uniformization
by the Drinfeld upper half plane. It turns out that the weight spectral sequence (whose definition we recall
in §5) describing the cohomology of these Shimura varieties can be written down, at least at the E1 page,
in terms of spaces of algebraic modular forms on the definite group I. We remark that the weight spectral
sequence of varieties uniformized by the Drinfeld upper half plane has been studied previously by Ito [Ito05].

Lan and Suh [LS12] have proved torsion vanishing results for the cohomology of local systems on
Shimura varieties of sufficiently regular weight, using geometric methods. When the weight spectral sequence
of S(G,U) degenerates at E2, we deduce from their results that the the cohomology of our arithmetic groups
with corresponding coefficient systems has trivial torsion subgroup. We can prove this degeneration when l is
a banal characteristic for GLn(Ew0) by using a trick inspired by the use of weights to show that the spectral
sequence with rational coefficients degenerates at E2. The comparison of cohomologies and the study of the
weight spectral sequence is made in §6. Finally, we deduce our main theorems in §7.

1.1 Acknowledgements

The idea of using the weight spectral sequence together with the p-adic uniformization of unitary Shimura
varieties in order to prove cases of Ihara’s lemma is due to Michael Harris, cf. [CHT08, Introduction]. Richard
Taylor suggested to me that it might be possible to use these ideas to prove new cases of level-raising. I
am grateful to both of them for allowing me to pursue these ideas here. I would also like to thank Laurent
Clozel for a number of useful comments.

1.2 Notation

If F is a number field then we write GF for its absolute Galois group. If v is a finite place of F , then we
write GFv for a choice of decomposition group at v and qv for the cardinality of the residue field at v.
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We fix for every prime l an algebraic closure Ql of Ql. If ρ : GF → GLn(Ql) is a continuous
representation then the semisimplification of the reduction modulo l of ρ with respect to some invariant
lattice depends only on ρ, up to isomorphism, and we will write ρ : GF → GLn(Fl) for this reduced
representation.

If p is a prime and K is a finite extension of Qp, then there is a bijection

recK : AdmC GLn(K)↔WDn
CWK ,

characterized by a certain equality of epsilon- and L-factors on either side, cf. [HT01], [Hen02]. Here we write
(for Ω = C or Ql) AdmΩ GLn(K) for the set of isomorphism classes of irreducible admissible representations
of this group over Ω, and WDn

ΩWK for the set of Frobenius-semisimple Weil-Deligne representations (r,N)
of WK valued in GLn(Ω). We define recTK(π) = recK(π| · |(1−n)/2). This is the normalization of the local
Langlands correspondence with good rationality properties; in particular, for any σ ∈ Aut(C) and any
π ∈ AdmC GLn(K) there is an isomorphism

recTK(σπ) ∼= σ recTK(π).

This can be seen using, for example, the characterization of recK and the description given in [Tat79, §3] of
the action of Galois on local ε- and L-factors. As a consequence, recTK gives rise to a well-defined bijection

recTK : AdmΩ GLn(K)↔WDn
ΩWK .

Suppose instead that K is a finite extension of R. Then there is a bijection

recK : AdmC GLn(K)↔ RepnCWK .

Here we write AdmC GLn(K) for the set of infinitesimal equivalence classes of irreducible admissible repre-
sentations of GLn(K) and RepnCWK for the set of continuous representations of WK into GLn(C). We define
recTK(π) = recK(π| · |(1−n)/2).

2 Automorphic representations

2.1 GLn

Let E be an imaginary CM field with totally real subfield F , and let c ∈ Gal(E/F ) denote the non-trivial
element. We say that an automorphic representation π of GLn(AE) is RACSDC if it satisfies the following
conditions:

• It is conjugate self-dual: πc ∼= π∨.

• It is cuspidal.

• It is regular algebraic. By definition, this means that for each place v|∞ of E, the representation
recTEv (πv) is a direct sum of pairwise distinct algebraic characters.

If π is a regular algebraic automorphic representation of GLn(AE), then for each embedding τ : E ↪→ C, we
are given a representation rτ : C× → GLn(C), induced by recEv (πv), where v is the infinite place induced
by τ , and the isomorphism E×v

∼= C× induced by τ . This representation has the form

rτ (z) = ((z/z)aτ,1 , . . . , (z/z)aτ,n) ,

where aτ,i ∈ (n − 1)/2 + Z. We will refer to the tuple a = (aτ,1, . . . , aτ,n)τ∈Hom(E,C), where for each τ we
have aτ,1 > aτ,2 > · · · > aτ,n, as the infinity type of π. More generally if π is any automorphic representation
of GLn(AE) and the parameters rτ (z) associated to π are given by the above formula for some real numbers
aτ,i ∈ R, we use the same formula to define the infinity type a of π. We will say that the infinity type of π
is strictly regular if for each embedding τ : E ↪→ C, we have

aτ,i > aτ,i+1 + 1 (2.1)
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for each i.
Suppose that π1, π2 are conjugate self-dual cuspidal automorphic representations of GLn1(AE),

GLn2(AE), respectively, and that π = π1 �π2 is regular algebraic. Then the representations πi| · |(ni−n)/2 are
regular algebraic. We call a representation π arising in this way a RACSD sum of cuspidal representations.
In this case, define ai = (aiτ )τ∈Hom(E,C) by the requirement that (aiτ,1 + (ni − n)/2, . . . , aiτ,ni + (ni − n)/2)
equal the infinity type of πi| · |(ni−n)/2, and define b = (bτ )τ∈Hom(E,C) by the formula

(bτ,1, . . . , bτ,n) = (a1
τ,1, . . . , a

1
τ,n1

, a2
τ,1, . . . , a

2
τ,n2

).

Then there is a unique tuple w = (wτ )τ∈Hom(E,C) ∈ S
Hom(E,C)
n such that for each τ ∈ Hom(E,C), the infinity

type of π is (bτ,wτ (1), . . . , bτ,wτ (n))τ∈Hom(E,C). We will say that π = π1 � π2 satisfies the sign condition if the
following condition is satisfied. Choose for each place v|∞ of F an embedding τ : E ↪→ C inducing v. Then:∏

v

detwτ(v) = 1. (2.2)

We remark that this condition is always satisfied if, for example, there is an imaginary CM subfield E′ ⊂ E
such that [E : E′] = 2 and π arises as a base change from E′.

Theorem 2.1. Suppose that π1, π2 are cuspidal conjugate self-dual automorphic representations of GLni(AE)
and that π = π1 � π2 is a regular algebraic automorphic representation of GLn(AE). Then for each isomor-
phism ι : Ql

∼= C, there is a continuous semisimple representation

rι(π) : GE → GLn(Ql),

uniquely characterized by the following local-global compatibility property at all primes w of E not dividing l:

WD(rι(π)|F-ss
GEw

) ∼= recTEw(ι−1πw). (2.3)

Proof. Arguing as in the proof of [Gue11, Theorem 2.3], we can find continuous characters ψi : A×E/E× → C×
such that ψψc = 1 and the restriction of ψi to (E ⊗E,τ C)× is given by ψi(z) = (z/zc)δi,τ , where δi,τ = 0
if n − ni is even and δi,τ = 1/2 if n − ni is odd. Then each πiψi is RACSDC, and the representations
rι(πiψi), characterized by a similar local-global compatibilty condition, exist, cf. [Car12, Theorem 1.1]. We
now simply take

rι(π) = rι(π1ψ1)⊗ rι(ψ−1
1 | · |(n1−n)/2)⊕ rι(π2ψ2)⊗ rι(ψ−1

2 | · |(n2−n)/2).

If π is a regular algebraic representation of GLn(AE) of infinity type a, we also define a tuple
λ = (λτ )τ∈Hom(E,C) = (λτ,1, . . . , λτ,n)τ∈Hom(E,C), which we call the weight of π, by the formula λτ,i =
−aτ,n+1−i + (n − 1)/2 − (n − i). Then for each τ : E ↪→ C, we have λτ,1 ≥ · · · ≥ λτ,n, and the irreducible
admissible representation of GLn(C) corresponding to rτ has the same infinitesimal character as the dual of
the algebraic representation of GLn(C) with highest weight λτ . The representation π is strictly regular if
and only if for each τ we have λτ,1 > · · · > λτ,n.

2.2 Algebraic modular forms

Let E be an imaginary CM field with totally real subfield F . We suppose that E = E0 · F , where E0 is a
quadratic imaginary extension of Q, and that E/F is everywhere unramified. Let † denote an involution of
the second kind on the matrix algebra Mn(E) corresponding to a Hermitian form on En. We define reductive
groups I over Q and I1 over F by their functors of points:

I(R) = {g ∈Mn(E)⊗Q R | gg† = c(g) ∈ R×}
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and
I1(R) = {g ∈Mn(E)⊗F R | gg† = 1}

We suppose that I is quasi-split at every finite place and that I1(R) is compact. (This can always be achieved.
Indeed, there is an obstruction from the Hasse principle only if n is even and [F : Q] is odd. However, the
assumption that E/F is everywhere unramified implies that [F : Q] is even, by [Gro03, Proposition 3.1].) If
v = wwc is a place of F split in E and dividing the rational prime p, then there are isomorphisms

ιw : I(Qp) ∼= Q×p ×
∏
w′|p

GLn(Ew′),

ιw : I1(Fv) ∼= GLn(Ew),

the product being over the primes w′ of E above p with the same restriction to E0 as w. We observe that
I(R) is not compact, but that the group I nevertheless satisfies the conditions of [Gro99, Proposition 1.4].
In particular, we can define spaces of automorphic forms on the groups I and I1 with integral coefficients.

Fix a prime l, and let K be a finite extension of Ql inside Ql with ring of integers O and residue
field k. Let Ul ⊂ I(Ql) be an open compact subgroup, and suppose that M is a finite O-module on which
Ul acts continuously in the l-adic topology. In this case we define A(M) to denote the set of locally constant
functions f : I(A∞) → M such that for all γ ∈ I(Q), f(γg) = f(g). We endow this space with an action
of I(Al,∞) × Ul by setting (g · f)(h) = glf(hg), where gl denotes the projection to the l-component. If
U ⊂ I(Al,∞)× Ul is a subgroup, we set A(U,M) = A(M)U .

Lemma 2.2. Let p 6= l be a prime, and suppose that Up is an open compact subgroup of I(Ap,∞) whose
projection to I(Ql) is contained in Ul. Then A(Up,M) is an admissible representation of I(Qp), in the
following sense: for any open compact subgroup Up ⊂ I(Qp), A(Up,M)Up is a finite O-module.

Proof. Let Up ⊂ I(Qp) be an open compact subgroup. By [Gro99, Proposition 1.4], I(Q) ⊂ I(A∞) is a
discrete cocompact subgroup, and the quotient I(Q)\I(A∞)/UpUp is finite. Let g1, . . . , gs ∈ I(A∞) be
representatives. There is an isomorphism of O-modules

A(UpUp,M) ∼= ⊕si=1M
Γi , f 7→ (f(gi))i=1,...,s,

where Γi = I(Q) ∩ giUpUpg−1
i .

Lemma 2.3. 1. Let σ be an automorphic representation of I(A) such that σ∞ is the restriction of an
algebraic representation of I(R) ⊂ I(C). Then there exists an automorphic representation σ1 of I1(AF )
satisfying the following:

• For each place p of Q split in E0, σ1,p is isomorphic to the restriction of σp to the group I1(F ⊗Q
Qp) ⊂ I(Qp).

• σ1,∞ is isomorphic to the restriction of σ∞ to I1(R).

2. Let σ1 be an automorphic representation of I1(AF ). Then there exists an automorphic representation
σ of I(A) satisfying the following:

• σ∞ is the restriction of an algebraic representation of I(R) ⊂ I(C). The restriction of σ∞ to
I1(R) is isomorphic to σ1,∞.

• For each prime p split in E0, the restriction of σp to the group I1(F ⊗Q Qp) ⊂ I(Qp) is isomorphic
to σ1,p. If σ1,p is unramified then σp is unramified. If σ1,p has an Iwahori-fixed vector, then σp
has an Iwahori-fixed vector.

Proof. Let T = ResE0
Q Gm, and let T1 ⊂ T denote the subtorus of elements of norm 1. Then there is an

exact sequence of algebraic groups

1 //T1
//T × ResFQ I1 //I //1,
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where T1 is embedded diagonally. Let A denote the space of automorphic forms on I, an admissible semisim-
ple representation of I(A). Arguing as in the proof of [HT01, Theorem VI.2.1], we see that given an auto-
morphic representation σ of I(A) appearing in A, there is an element g ∈ I(A) and an irreducible admissible
constituent τ of σ|T (A)×I(AF ) such that τg1 ∼= ψ⊗σ1 is automorphic. The representation σ1 then satisfies the
desired properties.

Suppose conversely that σ1 is as in the second part of the lemma. Arguing as in the proof of [HT01,
Lemma VI.2.10], we can find an algebraic Hecke character ψ : E×0 \A

×
E0

such that the central character
ωσ1 of σ1 satisfies the relation ωσ1(z) = ψ(z−1). If p is a prime split in E0 and σ1,p is unramified or has
an Iwahori-fixed vector, then ωσ1 is unramified at p, and after multiplying ψ by a character of the form
χ ◦ NE0/Q, χ a Dirichlet character, we can assume that ψ is unramified at all such primes.

Now ψ ⊗ σ1 is an automorphic representation of the group T (A) × I1(AF ), and (cf. the proof of
[HT01, Theorem VI.2.9]) it is a subrepresentation of the pullback to T (A) × I1(AF ) of an automorphic
representation σ of I(A), which now satisfies the desired properties.

Proposition 2.4. 1. Let π1, π2 be cuspidal, conjugate self-dual automorphic representations of GLn1(AE),
GLn2(AE), respectively, such that π = π1�π2 is regular algebraic. Suppose that the following conditions
are satisfied:

• If πw is ramified, then w is split over F .

• n1n2 is even.

• π = π1 � π2 satisfies the sign condition 2.2.

Then there exists a cuspidal automorphic representation σ of I1(AF ) of which π is the base change
in the following sense: at every place of E at which π is unramified, the correspondence is given by
the unramified base change. For every place v = wwc of F split in E, we have πw ∼= σv ◦ ιw. The
representation σ∞ is dual of the algebraic representation of I1(F ⊗Q R) of highest weight equal to the
weight of π.

2. Suppose conversely that σ is a cuspidal automorphic representation of I1(AF ). Then there exists a
partition n = n1 + · · ·+nr and discrete automorphic representations πi of GLni(AE) such that at finite
places, π1 � · · ·� πr is the base change of σ in the above sense. If we suppose furthermore that the πi
are cuspidal, then π∞ is the base change of σ∞.

Proof. The first part is proved in [CT]. The second part follows immediately from [Lab11, Corollaire 5.3].

3 Drinfeld’s upper half plane

In this section let F be a finite extension of Qp, and fix an integer n ≥ 2. We write $ for a choice of
uniformizer of F and q for the cardinality of the residue field OF /$. The Drinfeld p-adic upper half plane
over F is a formal scheme over OF whose rigid generic fiber can be identified with the open subspace of
Pn−1
F obtained by deleting all F -rational hyperplanes. It receives a faithful action of the group PGLn(F )

and uniformizes certain Shimura varieties.
We first recall the Bruhat-Tits building BT of PGLn(F ). It is a simplicial complex with vertices

the homothety classes of OF -lattices M ⊂ Fn. A set {M1, . . . ,Mr} of lattices up to homothety represents
a simplex if we can choose representatives such that $Mr ⊂ M1 ⊂ · · · ⊂ Mr. The maximal simplices have
dimension n − 1, and for each k, PGLn(F ) acts transitively on the set of simplices of dimension k with a
marked vertex. We write BT(i) for the set of simplices of BT of dimension i.

We write ΩOF for the Drinfeld upper half plane over OF , see [RZ96, §3.71] or [Mus78]. It is a p-adic
formal scheme, formally locally of finite type over Spf OF , which receives a left action of PGLn(F ). The
irreducible components of the special fiber of ΩOF are geometrically irreducible, and in canonical bijection
with the vertices of BT(0). Moreover, they are smooth, and the special fiber is a strict normal crossings
divisor. In fact, BT can also be described as follows: it is the simplicial complex whose vertices are in
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bijection with the set of irreducible components of the special fiber of ΩOF . Vertices v1, . . . , vr give rise to
a simplex if and only if the corresponding irreducible components have non-trivial intersection.

The irreducible component of the special fiber corresponding to the homothety class of the lattice
M can be described as follows: let Y0 = P(M) ⊗OF (OF /$). For each i, let Yi denote the blowing-up of
Yi−1 along the strict transforms in Yi−1 of the codimension i, OF /$-rational linear subspaces of Y0. Then
(as observed in [Ito05, §6]) the desired variety is Yn−1. In particular:

Proposition 3.1. Let s be a geometric point above the closed point of SpecOF . For each prime l 6= p, the
action of Frobenius on the étale cohomology groups H2i(Yn−1,s,Zl) is by the scalar qi. These groups are
torsion-free. For each odd integer i, Hi(Yn−1,s,Zl) is zero.

Proof. This follows from the calculation of the cohomology of the blow-up of a smooth variety along a smooth
center, cf. [Ito05, §3].

For global applications, we will need to introduce a simple enlargement of ΩOF . We writeMsplit for
the p-adic formal scheme formally locally of finite type over OF given by the formula

Msplit = ΩOF ×Q×p /Z×p ×GLn(F )/GLn(F )0,

where GLn(F )0 ⊂ GLn(F ) is the open subgroup consisting of matrices with determinant a p-adic unit. Here
we identify the sets on the right hand side with the corresponding constant OF -formal schemes. We define
M =Msplit⊗̂OFOF, where F denotes the completion of a maximal unramified extension of OF . The group
Q×p ×GLn(F ) acts on both of these formal schemes on the left.

The set of irreducible components in the special fiber ofM is in bijection with the set BT (0)×Z×Z.
We define a coloring map κ : BT (0)× Z× Z→ Z/nZ by sending (M,a, b) to κ(M,a, b) = logq[M : OnF ] + b.
We observe that κ is equivariant for the action of the group Q×p × GLn(F ), and its fibers are precisely the
orbits of this group.

If we make some more choices, then we can get an even more concrete realization of this set. Let
B ⊂ U0 = GLn(OF ) denote the standard Iwahori subgroup inside the standard maximal compact subgroup.
Let

ζ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 . . . 0 1
$ 0 . . . 0 0

 .

For i = 0, . . . , n − 1, let Ui = ζ−iU0ζ
i. These maximal compact subgroups stabilize the n − 1 distinct

vertices of the closure of the unique chamber of BT fixed by B, and their intersection is exactly equal to
B. Let x0, . . . , xn−1 denote these vertices. Then we have κ(xi, 1, 1) = i, and therefore an isomorphism of
Q×p ×GLn(F )-sets

BT (0)× Z× Z ∼= Q×p /Z×p ×
n−1∐
i=0

GLn(F )/Ui.

For each i = 0, . . . , n− 1 there is then a bijection between the set of non-empty (i+ 1)-fold intersections of
irreducible components of the special fiber of M and the set

BT (i)× Z× Z ∼= Q×p /Z×p ×
∐

E⊂{0,...,n−1}

GLn(F )/UE .

Here the disjoint union runs over subsets E of order i+ 1, and by definition we have UE = ∩i∈EUi. Finally,
we have the following.

Lemma 3.2. 1. Let Γ ⊂ GLn(F )0 denote a discrete cocompact subgroup, and suppose that for all x ∈
BT(0), the stabilizer ZΓ(x) is trivial. Then for all x ∈ BT(0) and for all γ ∈ Γ, γ 6= 1, we have
d(x, γ · x) ≥ 2.
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The quotient Γ\ΩOF exists, and has a canonical algebraization, which is a projective algebraic variety,
strictly semistable over OF . The irreducible components of its special fiber are geometrically irreducible
and globally smooth.

2. Let Γ ⊂ Q×p ×GLn(F ) denote a discrete cocompact subgroup, and suppose that for all x ∈ BT(0)×Z×Z,
the stabilizer ZΓ(x) is trivial. Then the quotient Γ\Msplit exists, and has a canonical algebraization,
which is a projective algebraic variety, strictly semistable over OF . The irreducible components of its
special fiber are geometrically irreducible and globally smooth.

Proof. For the first part, we note that if d(x, y) = 1 then there exists a chamber in BT whose closure contains
x, y. Then x, y are represented by OF -lattices Mx ⊂My. If γ ∈ Γ and γx = y then we must therefore have
x = y and hence γ = 1. The formal scheme ΩOF has a covering by Zariski open subsets, formally of finite
type over OF , which are in bijective correspondence with the set BT(0). Two Zariski opens intersect if and
only if the corresponding vertices are connected by an edge. Thus Γ acts discontinuously with respect to
this covering, and the quotient formal scheme can be obtained by simply gluing these Zariski opens. The
ample line bundle which defines the algebraization is the relative dualizing sheaf over Spf OF , cf. [Mus78,
Theorem 4.1].

For the second part, let Γ0 = Γ ∩ (Z×p × GLn(F )0). The quotient Γ\Msplit is a finite union of
quotients of the form Γ0\ΩOF .

4 A level raising formalism in banal characteristic

Let p 6= l be distinct prime numbers. Let K be a finite extension of Ql inside Qlwith ring of integers O
and residue field k, and let F be a finite extension of Qp with ring of integers OF and uniformizer $. We
write q for the cardinality of the residue field OF /$. We fix throughout a choice of square-root of q in K.
Throughout this section we make the following assumption:

• l is a banal characteristic for GLn(F ). By definition, this means that l is coprime to the pro-order of
GLn(F ).

In this section we show how one can prove level-raising results for GLn(F )-modules under the assumption
that suitable cohomology groups are torsion free. Let G = GLn(F ). Let T ⊂ P ⊂ G denote the standard
maximal torus and Borel subgroup, and R ⊂ Φ+ ⊂ Φ the corresponding subsets of simple roots, positive
roots, and roots of GLn. Let T0 ⊂ T denote the unique maximal compact subgroup, and B ⊂ G for the
Iwahori subgroup. In this section, all admissible representations of G will be considered as being defined
over Ql.

If χ : T → Ql
×

is a continuous character, we define

IndGP χ = {f : G→ Ql | f(bg) = χ(b)f(g)∀b ∈ P},

the un-normalized induction. The normalized induction is defined as

n-IndGP χ = IndGP δ
1/2
P χ,

where δP : P → Ql
×

is the modulus character sending tn to |tn−1
1 tn−3

2 · · · t1−nn |. In particular, n-IndGP δ
−1/2
P =

IndGP 1 = C∞(G/P ) may be identified with the space of locally constant functions G/P → Ql. If π is an
admissible representation of G, then we define the normalized restriction

rGP π = δ
−1/2
P ⊗ πN .

This is an admissible representation of T , and the functor rGP is left adjoint to n-IndGP . If π is an admissible
representation of G and α ∈ Ql

×
, then we write π(α) = π⊗ (det ◦λα), where λα is the unramified character

satisfying λα($) = α.
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We describe the decomposition of n-IndGP δ
−1/2
P = C∞(G/P,Ql). Let I ⊂ R. We write PI for the

group generated by P and the subgroups U−α for α ∈ I. Thus P∅ = P and PR = G. For each I ⊂ J there
is an injection C∞(G/PJ ,Ql) ↪→ C∞(G/PI ,Ql). We define

πI = C∞(G/PI)/
∑
I(J

C∞(G/PJ).

Proposition 4.1. The πI are irreducible and pairwise non-isomorphic, and exhaust the composition factors
of n-IndGP δ

−1/2
P .

Proof. See [BW00, Chapter X]. A convenient reference for this and for some facts below is [Orl05].

The πI may be described in terms of the Zelevinsky classification [Zel80] as follows. The irreducible
constituents π(

−→
Γ ) of n-IndGP δ

−1/2
P are in bijection with the orientations

−→
Γ of the graph Γ with vertices

corresponding to the characters | · |(1−n)/2, . . . , | · |(n−1)/2, and edges joining two characters whose quotient is
| · |±1. The elements of R are αi = εi− εi+1, for i = 1, . . . , n−1. Given an orientation

−→
Γ , we write I(

−→
Γ ) ⊂ R

for the subset of roots αi such that the edge connecting | · |(1−n)/2+i−1 and | · |(1−n)/2+i starts at the former
and ends at the latter.

Proposition 4.2. We have π
I(
−→
Γ )
∼= π(

−→
Γ ). In particular, π∅ = Stn is the Steinberg representation and πR

is the trivial representation of G.

We now introduce part of the theory of the Bernstein center. If π is any admissible representation
of G over Ql, then we can endow the Iwahori invariants πB with an action of the algebra Ql[T/T0] ∼=
Ql[X1, X

−1
1 , . . . , Xn, X

−1
n ] as follows. Let U ⊂ T/T0 denote the submonoid consisting of those elements

($a1 , . . . , $an)T0 ∈ T/T0

where a1 ≥ a2 ≥ · · · ≥ an are integers. We let an element uT0 act on πB by the Hecke operator [BuB]. This
induces an action of the algebra Ql[U ], which extends uniquely to an action of the algebra Ql[T/T0]. We
write ti = ei(X1, . . . , Xn) ∈ Ql[T/T0]W , where ei is the symmetric polynomial of degree i in n variables. As
the notation indicates, these elements are fixed under the natural action of the Weyl group on Ql[T/T0].

Proposition 4.3. 1. For any admissible representation V of G over Ql, there is a functorial isomorphism
V B ∼= (rGP V )T0 of Ql[T/T0]-modules.

2. If π is an irreducible admissible representation of G over Ql and πB 6= 0, then π is a subquotient of
n-IndGP χ for some unramified character χ = χ1 ⊗ · · · ⊗ χn. The operator ti has the unique eigenvalue
ei(χ1($), . . . , χn($)) on πB.

We introduce reduction modulo l, cf. [Vig94, §1.5]. Let V be an admissible G-module over Ql of
finite length. We say that V admits an integral structure if there exists a G-invariant Zl-lattice Λ ⊂ V such
that Λ⊗Zl Ql

∼= V . If V admits an integral structure, then the reduction modulo the maximal ideal of Zl of
Λ is a finite length admissible representation of G over Fl. Its Jordan-Hölder factors are independent of the
choice of integral structure.

If π is an irreducible admissible representation of G over Ql, then it admits an integral structure if
and only its cuspidal support does. In particular, if π is a subquotient of a principal series representation
n-IndGP χ, then π admits an integral structure if and only if χ takes is values in Z×l ⊂ Q×l .

Proposition 4.4. 1. Each representation πI admits an integral structure, and its reduction modulo l is
irreducible. We write πI,Fl for this reduced representation.

2. Let π = n-IndGQ Sta(α) ⊗ Stb(β) be an irreducible representation of G over Ql admitting an integral
structure, where a + b = n, and Q is the standard parabolic subgroup corresponding to this partition.
Then α, β ∈ Zl. Suppose that β ≡ qaα mod mZl . Then the reduction modulo l of π has exactly two
Jordan-Hölder factors, which are both absolutely irreducible. The first is the reduction modulo l of
π∅(α). The second is the reduction modulo l of πI(α), where I ⊂ R is such that PR\I = Q.
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Proof. For the first part, the existence of the integral structure is immediate from the remarks above. The
irreducibility of the representations πI,Fl in banal characteristic seems to have first been noted by Lazarus
[Laz00, Theorem 4.7.2]. Here we refer again to the work of Orlik [Orl05]. The second part follows from the
corresponding fact in characteristic zero, cf. [HT01, Lemma I.3.2], and by reduction modulo l.

Suppose that M is a smooth O[G]-module. We define cohomology groups H∗(M) as follows. Let
U0 = GLn(OF ) denote the standard maximal compact subgroup, and let U1, . . . , Un−1 denote the conjugates
of U0 containing B, as defined in the previous section. Similarly, if E ⊂ {0, . . . , n − 1} is a subset then we
write UE = ∩i∈EUi. We define a complex C•(M) by the formula

Ci(M) =
⊕

E⊂{0,...,n−1}

MUE ,

the direct sum being over subsets E of cardinality i + 1. The differential di : Ci(M) → Ci+1(M) is given
by the sum of the restriction maps rE,E′ : MUE → MUE′ for E ⊂ E′, each multiplied by the sign ε(E,E′),
where if E′ = {i1, . . . , ir}, i1 < · · · < ir, and E = E′ \ {is} then ε(E,E′) = (−1)s. We then define H∗(M)
to be the cohomology of this complex.

Proposition 4.5. 1. Suppose that M = π is an irreducible admissible representation of G over Ql. Then
H∗(M) is non-zero if and only if π is an unramified twist of one of the representations πI , I ⊂ R.

2. If M = πI(α) for some α ∈ Ql, then Hi(M) is non-zero if and only if i = #(R \ I).

3. If M = πI,Fl(α) for some α ∈ Fl then Hi(M) is non-zero if and only if i = #(R \ I).

Proof. If M = π is an irreducible admissible representation and H∗(M) 6= 0, then πB 6= 0. In particular π is
a subquotient of an unramified principal series representation, and its central character is unramified. After
twisting, we can suppose that the center of G acts trivially on π. Then there is a canonical isomorphism
H∗(M) ∼= H∗e (PGLn(F ),M), these latter groups taken in the sense of [BW00, Ch. X, §5]. The first and
second parts therefore follow from [BW00, Ch. X, Theorem 4.12]. The third part follows in a similar manner
from [Orl05, Theorem 1].

We now come to the main result of this section. Suppose that M,N are O-flat admissible O[G]-
modules, in the sense that for each open compact subgroup U ⊂ G, MU and NU are finite free O-modules.
Suppose further that M ⊗OQl and N ⊗OQl are semisimple and that all of their irreducible constituents are
generic, and that there is a perfect G-equivariant pairing M ×N → O.

Theorem 4.6. Suppose that MB 6= 0, and that if π ⊂M ⊗O Ql is an irreducible admissible representation
of G sastisfying πB 6= 0, then recTF (π) has at most two irreducible constituents. Suppose that Hn−2(N ⊗O k)
and Hn−2(M ⊗O k) are both zero. Finally, suppose that there exists α ∈ F×l such for any maximal ideal
(t1−α1, . . . , tn−αn) ⊂ Ql[T/T0]W in the support of MB, we have αi ≡ αei(q(n−1)/2, . . . , q(1−n)/2) mod mZl
for each i = 1, . . . , n. (Note that we necessarily have αi ∈ Zl.) Then there exists α ∈ Z×l lifting α such that
Stn(α) ⊂M ⊗O Ql.

Proof. After twisting by an unramified character, we can assume that α = 1. Decompose N⊗O k = N0⊕N1,
where N0 is generated by NB ⊗O k and NB

1 = 0. (This is possible since the representations of G with non-
zero Iwahori-fixed vectors form a block in the category of admissible representations of G over Fl.) Then
the irreducible constituents of N0 ⊗k Fl are of the form π∅ or π{α} for some α ∈ R, by Proposition 4.4. If
π{α} ↪→ N ⊗O Fl, then Hn−2(N0) 6= 0. Thus π∅ ↪→ N ⊗O Fl. By duality, there is a surjection M ⊗O Fl � π∅,
hence Hn−1(M ⊗O Fl) 6= 0. Using that Hn−2(M ⊗O Fl) = 0, we deduce that Hn−1(M ⊗O Ql) 6= 0, and
hence M that contains a twist of the Steinberg representation.

If π is an irreducible admissible representation of G over Ql which admits an integral structure, and
πB 6= 0, then we will say that π satisfies the level-raising congruence if there exists α ∈ F×l such that the
eigenvalue αi of ti on πB satisfies the congruence

αi ≡ αei(q(n−1)/2, . . . , q(1−n)/2) mod mZl . (4.1)
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5 The weight spectral sequence

Let OF be a complete discrete valuation ring, and S = SpecOF . Write s for the closed point of S, η for the
generic point. Let F = FracOF , and let F denote a fixed algebraic closure. We write s, η for the induced
geometric points of S above s and η, respectively. Suppose that f : X → S is a proper, strictly semistable (in
the sense of [Sai03, §1.1]) morphism of relative dimension n. Then Xs is a strict normal crossings divisor on
X; write X1, . . . , Xh for its irreducible components. We suppose moreover that each Xi is globally smooth
over κ(s). For E ⊂ {1, . . . , h} we write XE for the intersection ∩i∈EXE , and X(m) =

∐
#E=m+1XE (disjoint

union). Let K be a finite extension of Ql with ring of integers O, uniformizer λ, and residue field k, where
l is coprime to the residue characteristic of OF . Let Λ = K, O, or k, and let V be a local system of flat
Λ-modules on X. The weight spectral sequence of Rapoport-Zink is a spectral sequence

Ep,q1 =
⊕

i≥max(0,−p)

Hq−2i(X(p+2i)
s , V (−i))⇒ Hp+q(XK , V ). (5.1)

It is equivariant for the natural action of GF on both sides, and the differentials commute with the action of
the group GF . Note that the groups Ep,q1 vanish for q < 0 and q > 2n. Let us briefly recall the construction
of this spectral sequence, following Saito [Sai03]. Consider the following diagram:

Xs

��

i // XOF

��

Xη
j

oo

��
Xs

i // X Xη.
j

oo

The complex RΨV = i
∗
Rj∗V in Db

c(Xs, V ) of nearby cycles receives an action of the inertia group IF ⊂
GF = Gal(F/F ). Let T ∈ IF denote an element that maps to a generator of Zl(1) under the canonical
homomorphism tl : IF → Zl(1). Let ν denote the endomorphism of RΨV induced by the element T − 1. We
then have (cf. [Sai03, §2]):

Proposition 5.1. 1. RΨV lies in the abelian subcategory Perv(Xs,Λ)[−n] of −n-shifted perverse sheaves
with Λ-coefficients.

2. Let M• denote the increasing monodromy filtration of the nilpotent endomorphism ν of RΨΛ. For each
positive integer p ≥ 0, let ap : X(p)

s → Xs denote the canonical map. Then for each integer r ≥ 0 there
is a canonical isomorphism ⊕

p−q=r
ap+q,∗V (−p)[−(p+ q)] ∼= GrMr RΨV,

compatible with the action of GF on either side.

The weight spectral sequence is now the spectral sequence associated to the filtered object RΨV .
Note that [Sai03] treats only the case of constant coefficients, but the case of twisted coefficients can be
reduced to this one by working étale locally on X.

We compute the first row of the spectral sequence of the pair (X,V ). By definition, we have
Ep,01 = H0(X(p)

s , V ). Define a simplicial complex K as follows: the vertices of K are in bijection with the
Xi, and the set {Xi1 , . . . , Xir} corresponds to a simplex σE if and only if the intersection XE is non-empty,
E = {i1, . . . , ir}. We define a coefficient system V on K by the assignment σE 7→ Hi(XE,s, V ). Let C•(K,V)
denote the complex calculating the simplicial cohomology of K with coefficients in V. Thus, by definition we
have

Cr(K,V) =
⊕

E⊂{1,...,h}

Hi(XE,s, V ),
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the sum being over subsets E of cardinality r + 1. The differential dr = Cr(K,V)→ Cr+1(K,V) is given by
the direct sum of the restriction maps

resE,E′ : H0(XE,s, V )→ H0(XE′,s, V ),

each multiplied by the sign ε(E,E′) of the previous section.

Proposition 5.2. There is a canonical isomorphism of complexes E•,01
∼= C•(K,V).

Proof. In the case V = Λ, this follows immediately from [Sai03, Proposition 2.10]. Again, the case of general
V can be reduced to this one by working étale locally.

6 Shimura varieties and uniformization

Fix an algebraic closure Q of Q, and let E be a CM imaginary field with totally real subfield F . We fix a
rational prime p, and suppose that p is totally inert in F . We suppose that the unique prime v of F above
p is split in E as v = wwc. We let d denote the degree of F over Q. We fix embeddings φ∞, φp of Q into
C,Qp, respectively. The composite φ∞ ◦ φ−1

p induces a bijection of sets

Hom(E,C)↔ Hom(E,Qp).

Let n ≥ 2 be an integer, and let D be a central division algebra over E of dimension n2, whose invariants at
the places w and wc are given respectively by 1/n and −1/n. We suppose that at every other place of F , D
is split. Let ∗ be a positive involution on D. Let V = D, viewed as a D-module, and let ψ : V × V → Q be
an alternating pairing satisfying the condition ψ(dv, w) = ψ(v, d∗w) for all d ∈ D, v,w ∈ V . Fix a CM-type
Φ ⊂ Hom(E,C). Then we can choose an isomorphism D⊗Q R ∼=

∏
τ∈ΦD⊗E,τ C ∼=

∏
τ∈ΦMn(C), such that

∗ corresponds to the operation X 7→ tX.
Similarly we may decompose V ⊗Q R =

∏
τ∈Φ V ⊗E,τ C. We can find isomorphisms V ⊗E,τ C =

Cn ⊗C Wτ , where Mn(C) acts on the first factor. The form ψτ then admits a decomposition

ψτ (z1 ⊗ w1, z2 ⊗ w2) = trC/R(tz1 · z2hτ (w1, w2)),

where hτ is a skew-hermitian form on Wτ . We can find a basis {e1, . . . , en} of Wτ such that hτ is given by
the matrix

diag(−i, . . . ,−i︸ ︷︷ ︸
rτ

, i, . . . , i︸ ︷︷ ︸
rτc

),

where rτ + rτc = n. We define algebraic groups over Q by their functors of R-points:

G(R) = {g ∈ GLD(V ⊗R) | ψ(gv, gw) = c(g)ψ(v, w), c(g) ∈ R×}.

G1(R) = {g ∈ GLD(V ⊗R) | ψ(v, w) = ψ(v, w)}.

The choices above give rise to an embedding GR ↪→
∏
τ∈ΦGU(rτ , rτc). We write h : ResC/R Gm → GR for

the homomorphism which corresponds under this identification to the map

h : z ∈ C× 7→ (diag(z, . . . , z︸ ︷︷ ︸
rτ

),diag(z, . . . , z︸ ︷︷ ︸
rτc

))τ∈Φ.

Let X denote the G(R)-conjugacy class of h inside the set of homomorphisms ResC/R Gm → GR.
We now suppose that Φ corresponds under the identification Hom(E,C) ↔ Hom(E,Qp) to the set

of embeddings inducing the p-adic place w of E. Write τ1, . . . , τd for the elements of Φ; we suppose that
rτ1 = 1 and rτi = 0, i = 2, . . . , d. We will also assume that the group G is quasi-split at every finite place
not dividing p. PEL data (D,E, ∗, F, V, ψ) satisfying these assumptions exist provided that [F : Q] is even,
which we always assume in the applications below, cf. [HT01, Lemma I.7.1].
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Proposition 6.1. The pair (G,X) is a Shimura datum. For U ⊂ G(A∞) a neat open compact subgroup, the
Shimura varieties S(G,U) with S(G,U)(C) = G(Q)\G(Af )×X/U are smooth projective algebraic varieties
over C, and admit canonical models over the reflex field τ1(F ) ⊂ C.

The varieties S(G,U) admit p-adic uniformizations. Let ν = φpφ
−1
∞ denote the induced embedding

of τ1(F ) into Qp. According to [RZ96, §6], there exists an inner form I of G over Q and isomorphisms
I(Ap,∞) ∼= G(Ap,∞), I(Qp) ∼= Q×p × GLn(Fv), and satisfying the following. Let F denote the completion of
the maximal unramified extension of Fv. The group I(Q) acts on ΩOFv ⊗̂OFvOF via the scalar extension
of its action on ΩOFv through the map I(Q) ⊂ I(Qp) → PGLn(Fv). It also acts on G(A∞)/Up, where
Up ⊂ G(Qp) is the unique maximal compact subgroup, as follows. There is an isomorphism G(A∞)/Up =
G(Ap,∞)×G(Qp)/Up ∼= I(Ap,∞)×G(Qp)/Up. I(Q) acts diagonally under this identification via the natural
action on I(Ap,∞) and as follows on G(Qp)/Up. The choice of place w of E induces a canonical isomorphism
G(Qp) ∼= Q×p ×D×w . Let Π ∈ D×w denote a uniformizer. Then an element (c, a) ∈ I(Qp) acts by the formula
(cf. [RZ96, Lemma 6.45])

(c, a) · (c′, a′) mod Up = (cc′,ΠvalFv det aa′) mod Up,

where valFv is normalized so that valFv (F×v ) = Z. The following theorem is now [RZ96, Corollary 6.51].
In what follows, we say that an open compact subgroup of G(Ap,∞) ∼= I(Ap,∞) is sufficiently small if there
exists a prime q 6= p such that the projection of U to G(Qq) contains no non-trivial elements of finite order.

Theorem 6.2. With notations as above, for each sufficiently small open compact subgroup Up ⊂ G(Ap,∞),
there is an integral model of S(G,UpUp)⊗τ1(F ),νFv over OFv and a canonical isomorphism of formal schemes
over Spf OF

I(Q)\ [M×G(Ap,∞)/Up] ∼=
(
S(G,UpUp)⊗OFv OF

)b
.

This isomorphism is equivariant with respect to the action of the prime-to-p Hecke algebra H(G(Ap,∞)�Up)
on either side.

From now on, we shall write S(G,UpUp) to mean this integral model over OFv . We will only
consider open compact subgroups U = UpUp, with Up maximal compact, so that this will always be defined.
As is well-known, the left hand side in the above equation can be rewritten as a finite union of quotients
of ΩOFv ⊗̂OFvOF. Indeed, the double quotient I(Q)\G(Ap,∞)/Up is finite. Let g1, . . . , gs be representatives,
and let Γi = I(Q)∩ (giUpg−1

i × Ũp), the intersection taken inside I(A∞). Here Ũp ⊂ I(Qp) = Q×p ×GLn(Fv)
is the subgroup Z×p × (valFv ◦ det)−1(0). Each Γi ⊂ Q×p × GLn(Fv) is a discrete cocompact subgroup, and
there is an isomorphism (cf. Lemma 3.2):

(S(G,U)⊗OFv OF)b∼= s∐
i=1

Γi\M.

6.1 Automorphic local systems

From now on we consider only sufficiently small open compact subgroups U = UpUp as in Theorem 6.2. We
now introduce some local systems on the varieties S(G,U) corresponding to algebraic representations of G.
Corresponding to the infinity type Φ, there is an isomorphism

G(C) ∼= C× ×
∏
τ∈Φ

GLn(C).

We write T ⊂ G⊗Q C for the product of the diagonal maximal tori:

T (C) ∼= C× ×
∏
τ∈Φ

C× × · · · × C×︸ ︷︷ ︸
n

.
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Then there is a canonical isomorphism X∗(T ) ∼= Z×(Zn)Φ, and we write X∗(T )+ for the subset of dominant
weights µ = (c, (µτ )τ∈Φ), namely those satisfying the condition

µτ,1 ≥ µτ,2 ≥ · · · ≥ µτ,n

for each embedding τ : E ↪→ C in Φ. If l is a rational prime, we say that µ is l-small if for each τ ∈ Φ, we
have

0 ≤ µτ,i − µτ,j < l (6.1)

for all 0 ≤ i < j ≤ n. If l is unramified in E and µ is l-small, we associate to µ an l-adic local system on
S(G,U) as follows, cf. [HT01, §III.2], [Har, §7.1]. Fix a choice of isomorphism ι : Ql

∼= C, and let K be a
finite extension of Ql in Ql with ring of integers O, maximal ideal λ, and residue field k. Let Ul ⊂ G(Ql)
be a hyperspecial maximal compact subgroup. We suppose that the algebraic representation of G⊗Q Ql of
highest weight ι−1µ can be defined over K. Let Wµ,K denote this representation. There is, up to homothety,
a unique Ul-invariant O-lattice of Wµ,K . Choose one and write it as Wµ,O. It is unique since, by the l-
small hypothesis, the reduced lattice Wµ,k = Wµ,O ⊗O k is an irreducible representation of Ul, and up to
isomorphism does not depend on the choice of invariant lattice.

Given an integer m ≥ 1, let U(m) = Up(m)Up ⊂ U denote a normal open compact subgroup which
acts trivially on Wµ,O/λm = Wµ,O ⊗O O/λm. Then U acts on the constant sheaf Wµ,O/λm on S(G,U(m))
in a way covering its action on S(G,U), and the quotient defines an étale local system on S(G,U), which we
write as Vµ,O/λm . The sections of Vµ,O/λm over an étale open T → S(G,U) can be identified with the set
of functions f : π0(S(G,U(m)) ×S(G,U) T ) → Wµ such that for all σ ∈ U,C ∈ π0(S(G,U(m)) ×S(G,U) T ),
we have the relation f(Cσ) = σ−1f(C). We then take Vµ,O = lim←−

m

Vµ,O/λm and Vµ,K = Vµ,O ⊗O K. These

local systems are isomorphic to the local systems étV [µ] constructed in [LS12, §4.3] using geometric means.

6.2 A split descent

The scheme S(G,U) ⊗OFv OF has another descent S(G,U)split to OFv whose p-adic formal completion is
given by

S(G,U)split = I(Q)\
[
Msplit ×G(Ap,∞)/Up

] ∼= ∐
i

Γi\Msplit.

This is not the descent defined by S(G,U). However, the local systems Vµ,Λ, where Λ = K, O or O/λm,
also admit descents to S(G,U)split, using exactly the same recipe as before. We write V split

µ,Λ for the local
systems defined this way.

Lemma 6.3. The pullback of V split
µ,k to any irreducible (hence geometrically irreducible) component Y of the

special fiber of S(G,U)split is a constant sheaf. If Y1, . . . , Ys are irreducible components of the special fiber of
S(G,U)split, then Frobenius acts as the scalar qi/2v on the group Hi((Y1 ∩ · · · ∩ Ys)s, V split

µ,k ). (We recall that
this group is zero if i is odd.)

Proof. Let Y ⊂ S(G,U(1))split denote an irreducible component of the special fiber of this scheme. Let π :
S(G,U)split → S(G,U)split denote the natural projection. Then the restriction π|Y induces an isomorphism
from Y to its image in S(G,U)split. Pulling back V split

µ,k by the inverse of this isomorphism now gives the
first assertion. The second assertion now follows from the first and Proposition 3.1.

6.3 Hecke actions and weight spectral sequence

We now compute the complex of abelian groups C•(K,V) of Proposition 5.2 for the local system Vµ,k on the
Shimura variety S(G,U) in terms of the p-adic uniformization

I(Q)\ [M×G(Ap,∞)/Up] ∼= (S(G,U)⊗OFv OF)b.
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Since U is sufficiently small, the irreducible components of the special fiber are in bijection with the set

I(Q)\
[
BT(0)×Q×p /Z×p ×GLn(Fv)/GLn(Fv)0 × I(Ap,∞)/Up

] ∼= n−1∐
i=0

I(Q)\I(A∞)/Z×p UiUp,

where the subgroup Ui ⊂ GLn(Fv) is as in §3. For each i = 0, . . . , n− 1, there is now a bijection

π0(S(G,U)(i)
s ) ∼=

∐
E⊂{0,...,n−1}

I(Q)\I(A∞)/Z×p UEUp,

the union running over subsets E of cardinality i + 1. If x ∈ I(Q)\I(A∞)/Z×p UEUp, then the images of x
under the natural maps I(Q)\I(A∞)/Z×p UEUp → I(Q)\I(A∞)/Z×p UE\{i}Up, i ∈ E, correspond exactly to
those i-fold intersections of irreducible components which contain the (i+ 1)-fold intersection corresponding
to x.

For the weight spectral sequence to be defined for S(G,U), we must first choose a partial ordering
of the set of irreducible components of the special fiber which restricts to a total ordering on all subsets of
irreducible components which have non-trivial intersection. We choose the partial ordering on Z/nZ given by
0 ≤ · · · ≤ n− 1, and pull this back to the set I(Q)\

[
BT(0)×Q×p /Z×p ×GLn(Fv)/GLn(Fv)0 × I(Ap,∞)/Up

]
via the function κ defined in §3. Let Ep,q1 ⇒ Hp+q(S(G,U)η, Vµ,k) denote the weight spectral sequence of
§5. We observe that the groups Ep,q1 are zero if q is odd, and if q = 2k is even then the groups Ep,2k1 are
non-zero only if −k ≤ p ≤ n− 1− k.

Proposition 6.4. 1. For each i = 0, . . . , n− 1, there is a canonical isomorphism

Ei,01
∼=

⊕
E⊂{0,...,n−1}

A(Z×p UpUE ,Wµ,k),

the direct sum running over the set of all subsets E of order i+ 1.

2. There is a canonical isomorphism of complexes

E•,01
∼= C•(A(Z×p Up,Wµ,k)),

and hence for each i = 0, . . . , n− 1,

Ei,02
∼= Hi(A(Z×p Up,Wµ,k)).

Proof. By definition we have Ei,01 = H0(S(G,U)(i)
s , Vµ,k), and this space can be identified with the set

of all functions f : π0(S(G,U(1))(i)
s ) → Wµ,k satisfying the relation f(Cσ) = σ−1f(C) for all C ∈

π0(S(G,U(1))(i)
s ), σ ∈ U . We have identified the set π0(S(G,U(1))(i)

s ) with
∐
E I(Q)\I(A∞)/Z×p UEUp,

compatibly as U varies. The isomorphism of the first part of the proposition now follows from the very
definition of the spaces A(Z×p UpUE ,Wµ,k).

The the remainder of the proposition, it remains to show that the differentials in the two complexes
correspond under the isomorphism of the first part. This follows after noting that the restriction maps of
sections under this isomorphism to the natural inclusions A(Z×p UEUp,Wµ,k) → A(Z×p UE′Up,Wµ,k), and
that the signs that must be inserted in either complex agree because of the choices we have made.

6.4 Degeneration

Proposition 6.5. Let r = 2s+ 1. With notation as above, the differentials

dp,qr : Ep,qr → Ep+r,q+1−r
r

are all zero as long as qsv 6≡ 1 modulo l.
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Proof. We recall that the differentials in the weight spectral sequence are Galois equivariant. The proposition
would therefore follow if the action of Frobenius on Ep,q1 was given by the scalar qq/2v . (We recall that these
groups are zero if q is odd.) This is not the case. However, this is the case for the weight spectral sequence
of the pair (S(G,U)split, V split

µ,k ), by Lemma 6.3. The weight spectral sequence of a pair (X,V ), where X
is a strictly semistable scheme over OFv and V is a local system on X, viewed as a spectral sequence of
abelian groups (forgetting the Galois action), depends only on (X ⊗OFv OF, V ), i.e. the pullback of X to
the maximal unramified extension of OFv . Since the pairs (S(G,U)split, V split

µ,k ) and (S(G,U), Vµ,k) become
canonically isomorphic over OF, we are done.

Corollary 6.6. Suppose that l is a banal characteristic for GLn(Fv). Then the weight spectral sequence
for the pair (S(G,U), Vµ,k) degenerates at E2, and there is for each i ≥ 0 an injection, equivariant for the
prime-to-p Hecke algebra H(G(Ap,∞)�Up):

Hi(A(Z×p Up,Wµ,k)) ↪→ Hi(S(G,UpUp)Fv , Vµ,k).

6.5 Raising the level

We now suppose in addition that E = F · E0, where E0 is a quadratic imaginary extension of Q and that
E/F is everywhere unramified. We now change notation slightly and write v0 for the place of F above
the rational prime p, and w0 for one of the places of E above it. Let l 6= p be another prime, and fix an
isomorphism ι : Ql

∼= C. We assume that l is unramified in E.
Let µ be a choice of l-small dominant weight, and let U =

∏
q Uq ⊂ I(A∞) denote a open compact

subgroup. Then there is defined a finite free O-module Wµ,O on which Ul acts, and a space of automorphic
forms A(U,Wµ,O). It is a finite free O-module. We recall that this space has the following interpretation.
Let A denote the space of automorphic forms on I, a semisimple admissible representation of I(A). Let Wµ,C
denote the representation of I(R) ⊂ I(C) ∼= C× ×

∏
τ∈Φ GLn(C) which is the restriction of the algebraic

representation of highest weight µ. Then there is an isomorphism

A(U,Wµ,O)⊗O,ι C ∼= HomI(R)(W∨µ,C,A).

If T is a finite set of rational primes containing l, and such that Uq is a hyperspecial maximal compact
subgroup for all q 6∈ T , let Tuniv

T = O[{T v1 , . . . , T vn , (T vn )−1}] denote the the polynomial ring in infinitely
many indeterminates corresponding to the unramified Hecke operators at places v of F which split in E and
are not contained in T . Then Tuniv

T acts on A(U,Wµ,O) by O-algebra endomorphisms, and on the spaces
Hi(S(G,U)E , Vµ,k), via the fixed isomorphism I(Ap,∞) ∼= G(Ap,∞). If σ is an automorphic representation
of I(A) such that (σ∞)U 6= 0 and σ∞ ∼= W∨µ,C, then we can associate to it a maximal ideal mσ ⊂ Tuniv

T by
assigning to each Hecke operator the reduction modulo l of its eigenvalue on ι−1(σ∞)U ⊂ A(U,Wµ,O)⊗OQl.
If σ′ is another automorphic representation of I(A), we say that σ′ contributes to A(U,Wµ,O)mσ if σ′∞ ∼=
W∨µ,C, (σ′∞)U 6= 0, and the intersection of (ι−1σ′∞)U and A(U,Wµ,O)mσ inside A(U,Wµ,O) ⊗O Ql is non-
trivial.

There is an isomorphism ιw0 : I(Qp) ∼= Q×p × GLn(Ew0), and if σp is an irreducible admissible
representation of I(Qp), then (σp ◦ ιw0)|GLn(Ew0 ) remains irreducible. We assume that ιw0(Up) = Z×p × B,
where B ⊂ GLn(Ew0) is the standard Iwahori subgroup. We write U ′p ⊂ G(Qp) for the unique maximal
compact subgroup.

Theorem 6.7. Suppose that σ is as above, and let mσ ⊂ Tuniv
T denote the associated maximal ideal. Suppose

that the following hypotheses hold:

1. The group Up is a sufficiently small open compact subgroup of I(Ap,∞).

2. If σ′ is another automorphic representation which contributes to A(U,Wµ,O)mσ , then (σ′p◦ιw0)|GLn(Ew0 )

is a subquotient of a parabolic induction n-IndGQ Sta(α)⊗ Stb(β) for some a+ b = n.

3. ι−1σ1,w0 satisfies the level-raising congruence (4.1).
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4. µ is l-small (6.1) and l is a banal characteristic for GLn(Ew0).

5. The groups Hn−2(S(G,UpU ′p)Fv , V
∨
µ,k) and Hn−2(S(G,UpU ′p)Fv , Vµ,k) are zero.

Then we can raise the level: there exists another irreducible constituent σ′ contributing to A(U,Wµ,O)mσ ,
and such that σ′ is an unramified twist of the Steinberg representation.

We remark that [LS12, Theorem 8.12] implies that hypothesis 5 above is satisfied provided that Ul
is a hyperspecial maximal compact subgroup, µ is strictly regular, and the following inequalities hold:

2n+
∑
τ∈Φ

n∑
j=1

(2dµτ,1/2e − µτ,n+1−j) ≤ l and 2n+
∑
τ∈Φ

n∑
j=1

(µτ,j − 2bµτ,n/2c) ≤ l.

By adding some further local hypotheses at a prime q 6= p, we could also appeal to the main result of [Shi].

Proof. Combining hypothesis 5 and Corollary 6.6, we see that the groupsHi(A(UpZ×p ,W∨µ,k)) andHi(A(UpZ×p ,Wµ,k))
vanish when i = n− 2. On the other hand, there is a perfect pairing

A(UpZ×p ,W∨µ,O)×A(UpZ×p ,Wµ,O)→ O.

Indeed, given an open compact subgroup V ⊂ B and f1 ∈ A(UpZ×p V,W∨µ,O), f2 ∈ A(UpZ×p V,Wµ,O), we
define 〈f1, f2〉 by the formula

〈f1, f2〉 =
1

[B : V ]

∑
x∈I(Q)\I(A∞)/UpZ×p V

(f1(x), f2(x)).

This is independent of the choice of V , and for every such V restricts to a perfect pairing A(UpZ×p V,W∨µ,O)×
A(UpZ×p V,Wµ,O) → O. For any g ∈ GLn(Ew0), we have the formula 〈gf1, gf2〉 = 〈f1, f2〉. The action of
Tuniv
T on A(UpZ×p ,Wµ,O) gives a canonical direct sum decomposition of O[GLn(Ew0)]-modules:

A(UpZ×p ,Wµ,O) = A(UpZ×p ,Wµ,O)mσ ⊕ C,

for some C. The hypotheses of Theorem 4.6 are now satisfied with M = A(UpZ×p ,Wµ,O)mσ and N taken to
be the annihilator of C under the pairing 〈·, ·〉. The result follows from this.

7 Consequences for GLn

In this section we deduce our main theorem. We suppose that E is an imaginary CM field of the form
E = E0 · F , where F is a totally real number field and E0 is an imaginary quadratic field. We suppose that
E/F is everywhere unramified. Suppose that there exists a prime p which is totally inert in F and split in
E0. Let v0 = w0w

c
0 denote the unique place of F above p. Let n ≥ 3 be an integer, and l 6= p a prime. We

fix an isomorphism ι : Ql
∼= C.

Let n1, n2 be positive integers with n = n1 + n2. Suppose that π1, π2 are conjugate self-dual
cuspidal automorphic representations of GLn(AE) such that π = π1 �π2 is regular algebraic. We recall that
in Theorem 2.1 we have associated to π a continuous semisimple representation rι(π) : GE → GLn(Ql).

Theorem 7.1. With π as above, suppose that ι−1πw0 satisfies the level-raising congruence 4.1. Suppose
further that:

1. If tl ∈ GEw0
is a generator the l-part of the tame inertia group at w0, then rι(π)(tl) is a unipotent

matrix with exactly two Jordan blocks.

2. l is a banal characteristic for GLn(Ew0).

3. The weight λ = (λτ )τ :E↪→C of π satisfies the following:
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• For each τ and for each 0 ≤ i < j ≤ n, we have 0 < λτ,i − λτ,j < l.

• There exists an isomorphism ιp : Qp
∼= C such that the following inequalities hold:

2n+
∑

τ :E↪→C

n∑
j=1

(λτ,j − 2bλτ,n/2c) ≤ l and 2n+
∑

τ :E↪→C

n∑
j=1

(2dλτ,1/2e − λτ,n+1−j) ≤ l,

the first sum in each case being over embeddings τ such that the place of E0 induced by ι−1
p τ is

the same as the restriction of the place w0 to E0.

4. If π is ramified at a place w of E, then w is split over F .

5. π is unramified at the primes of E dividing l, and the prime l is unramified in E and split in E0.

6. π = π1 � π2 satisfies the sign condition 2.2, n1 6= n2, and n1n2 is even.

Then there exists a RACSDC automorphic representation Π of GLn(AE) of weight λ such that rι(π) ∼= rι(Π)
and Πw0 is an unramified twist of the Steinberg representation. If the places of F above l are split in E, and
π is ι-ordinary in the sense of [Ger, Definition 5.1.2], then we can even assume that Π is also ι-ordinary.

Proof. Let I1 denote the definite unitary group associated to the extension E/F in §2.2. By Proposition 2.4
there exists an automorphic representation σ1 of I1(AF ) such that π is the base change of σ1. Let I denote
the corresponding unitary similitude group. By Lemma 2.3, σ1 extends to an automorphic representation σ
of I(A). We apply Theorem 6.7 to σ. Let Up =

∏
q 6=p Uq be a sufficiently small open compact subgroup of

I(Ap,∞) with σU 6= 0, where U = UpUp and Up ⊂ I(Qp) corresponds under the isomorphism ιw0 : I(Qp) ∼=
Q×p ×GLn(Ew0) to the product Z×p ×B, where B ⊂ GLn(Ew0) is the standard Iwahori subgroup. Suppose
in addition that Ul is a hyperspecial maximal compact subgroup.

In the notation of Theorem 6.7, let µ be the weight such that σ contributes to the space A(U,Wµ,O).
If σ′ is an automorphic representation which contributes to the space A(U,Wµ,O)mσ , then let σ′1 and π′ be
the automorphic representations of the groups I1(AF ) and GLn(AE) associated to σ′ by Lemma 2.3 and
Proposition 2.4. Then rι(π′)|GEw0

∼= rι(π)|GEw0
, and hence the former representation maps tl to a unipotent

matrix with exactly two Jordan blocks. If σ′ is such a representation, then the representation σ′w0
◦ ιw0

of GLn(Ew0) has an Iwahori-fixed vector and is therefore isomorphic to Stn1(α1) � · · · � Stns(αs) for some
constants α1, . . . , αs and integers with n1 + · · ·+ ns = n. The nilpotent operator N in the associated Weil-
Deligne representation then has a Jordan decomposition corresponding to this partition of n. By hypothesis,
the conjugacy class of N specializes to the conjugacy class of a nilpotent matrix with exactly two Jordan
blocks. This implies that s ≤ 2, and hence the second hypothesis of Theorem 6.7 is satisfied. Let σ′ be the
representation whose existence is guaranteed by that theorem. Applying Proposition 2.4 and Lemma 2.3 to
σ′, we obtain a representation Π satisfying the conclusion of the present theorem. It must be cuspidal since
Πw0 is an unramified twist of the Steinberg representation.

To obtain the last sentence of the theorem, we can enlarge the Hecke algebra Tuniv
T appearing in

the proof of Theorem 6.7 to contain the analogues of the Ul operators at the places dividing l, and further
localize at a maximal ideal not containing them. We omit the details.

We remark that when the characteristic is not banal, but n is nevertheless small compared to the
order of qv0 modulo l, one can still obtain some information using Proposition 6.5 instead of Corollary 6.6.
For example, one can prove an analogue of the above theorem in the case n = 3, with no hypothesis on the
order of qv0 modulo l. In general it seems an interesting question to decide whether the spectral sequence of
§6.3 degenerates at E2.

7.1 Proof of Theorem 1.1

We now give the proof of the theorem of the introduction. We first note the following.
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Proposition 7.2. Let E be an imaginary CM field with totally real subfield F , and let π be a RACSDC
automorphic representation of GLn(AE). Suppose that w0 is a place of E and that πw0 is an unramified
twist of the Steinberg representation. Let L denote the set of rational primes l such that for all isomorphisms
ι : Ql

∼= C, the residual representation rι(π) is irreducible and, if tl denotes a generator of the pro-l part of
the tame inertia group at w0, then rι(π)(tl) is a regular unipotent element. Then L has Dirichlet density 1.

Proof. We sketch the proof, by exhibiting for every δ ∈ (0, 1) a set Lδ ⊂ L of lower density at least 1 − δ.
Replacing E by a soluble extension, we can assume without loss of generality that for any prime w at which
π is ramified, w is split over F .

Suppose that E1, . . . , Es are quadratic imaginary fields such that for each i, Ei is disjoint over Q
from the compositum of the fields Ej , j 6= i. Let E0 denote the compositum of the fields E,E1, . . . , Es. Let
F0 denote the totally real subfield of E0. If a prime l splits in any Ei, then the primes of F0 above l all split
in E0. Let Π denote the base change of π to E0. By [TY07, Corollary B] and [BLGGT, Proposition 5.2.2],
there exists a set M of rational primes l of Dirichlet density 1 such that for all l ∈M and all isomorphisms
ι : Ql

∼= C, the residual representation rι(Π)|GE0(ζl)
is irreducible and l > 2(n + 1). This implies a fortiori

that rι(π) is irreducible. After casting out finitely many elements of M, we can suppose further that for
all l ∈ M, E0 and Π are unramified above l and, if λ denotes the weight of Π, then for all embeddings
τ : E0 ↪→ C, we have λτ,1 − λτ,n ≤ l − n − 1 (this means that the Hodge-Tate weights of rι(Π) lie in the
Fontaine-Lafaille range).

Choose a place x0 of E0 above w0. It follows from [BLGGT, Theorem 4.4.1] that if l ∈M is a prime
split in one of E1, . . . , Es, ι : Ql

∼= C is an isomorphism and rι(π)(tl) is not a regular unipotent element,
then we can find a RACSDC automorphic representation Π′ of GLn(AE0) satisfying the following:

• rι(Π) ∼= rι(Π′),

• If w is a place of E0 and Uw ⊂ GLn(E0,w) is an open compact subgroup such that ΠUw
w 6= 0, then

(Π′w)Uw 6= 0.

• Π′ has weight λ.

• There exists an open compact subgroup Ux0 of GLn(E0,x0) strictly containing the Iwahori subgroup,
such that (Π′x0

)Ux0 6= 0.

We claim that there can be only finitely many such primes. Indeed, if there are infinitely many then, by
the pigeonhole principle, there exists an automorphic representation Π′ of GLAE0

satisfying the last three
points, and infinitely many primes l1, l2, · · · ∈ M with isomorphisms ιi : Qli

∼= C such that rιi(Π) ∼= rιi(Π′).
As Π∞, (Π′)∞ are defined over number fields, this implies that we must have Π ∼= Π′, a contradiction (cf.
[BG06, Lemme 5.1.7]).

Let Ls denote the set of primes l ∈ M which are split in one of E1, . . . , Es. This set has Dirichlet
density 1− 2−s. The above argument shows that after casting out finitely many elements, we have Ls ⊂ L.
This concludes the proof.

Proof of Theorem 1.1. We take up the notation of the introduction. Thus E/F is a CM imaginary exten-
sion of a totally real field, and π1, π2 are RACSDC automorphic representations of GLn1(AE),GLn2(AE),
respectively. Let L denote the intersection of the sets L1,L2 of primes associated to the representations
π1, π2 by Proposition 7.2. After removing finitely many elements from L, we can assume that for all l ∈ L
and all isomorphisms ι : Ql

∼= C, π = π1 � π2 is unramified at every prime of E above l, l is unramified in
E, the order of qw0 in F×l is greater than 2n, and the weight λ of π satisfies the inequalities

([E : Q] + 2)n+
∑

τ :E↪→C

n∑
j=1

(λτ,j − λτ,n) ≤ l/2.

Fix a prime l ∈ L and an isomorphism ι : Ql
∼= C.
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There exist α, β ∈ Z×l such that the Frobenius eigenvalues of rι(π1) and rι(π2) are given by respec-
tively

α, qw0α, . . . , q
n1−1
w0

and β, qw0β, . . . , q
n2−1
w0

.

Let γ denote the image of β/(αqn1
w0

) in F×l , and let m ≥ 1 denote the order of γ in this group. By the
Grunwald-Wang theorem, there exists a cyclic extension K of E of degree m such that w0 is inert in K and
wc0 splits in K, and K is unramified above the primes of E dividing l. Let ϕ : GE → F×l be the character
factoring through Gal(K/E) such that ϕ(Frobw0) = γ, and let ψ be the Teichmüller lift of ϕ/ϕc. Then
ψψc = 1 and ι−1(π1 � (π2 ⊗ ιψ))w0 satisfies the level-raising congruence.

Let E0 be a quadratic imaginary extension of Q in which p is inert, and which is split at l and
every prime q 6= p of Q below a place of E at which π1 � (π2 ⊗ ιψ) or the extension E/F is ramified. Let
E1 = E · E0. The hypotheses of Theorem 7.1 now apply to the base change of π1 � (π2 ⊗ ιψ) to E1. This
completes the proof.
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