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Abstract

We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms
on GL,. This gives a systematic way to construct irreducible Galois representations whose residual
representation is reducible.
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1 Introduction

Let N be a positive integer, and let f be an elliptic modular newform of weight 2 and level I'o(N). If [ is a
prime and ¢ is a choice of isomorphism @Q; = C, then there is an associated Galois representation

rL(f) : GQ - GL2(@Z)7

unramified outside NI, uniquely characterized by the requirement that the trace of Frobenius at a prime
p1 NI equal the p'" Fourier coefficient of f (or rather, its image in Q; under ).

*This research was partially conducted during the period the author served as a Clay Research Fellow.



After possibly making a change of basis, we may assume that r,(f) takes its values in GL2(Z;). We
may then consider the reduced representation r,(f) : Gg — GL2(FF;), which we assume to be irreducible.

Let p be a prime not dividing NI, and let a;,as € le denote the eigenvalues of Frob,. If a; = ptlas then
there exists a lift of r,(f)|c,, to a representation

P GQP — GLQ(Z[)

such that p ®z Q, corresponds, under the local Langlands correspondence for GLo (Qp), to an unramified
twist of the Steinberg representation, which has conductor p. It therefore makes sense to ask if there exists
an elliptic modular newform ¢ of weight 2 and level I'o(Np) such that r,(g) = r,(f), there being in this
instance no obstruction from local-global compatibility.

This question was first posed and answered by Ribet [Rib84], and the theme of congruences between
algebraic automorphic representations has been developed in many different directions since that work.
In particular, an understanding of such congruences plays a fundamental role in the proofs of all known
automorphy lifting theorems.

The aim of this work is to prove new level raising theorems for automorphic representations m of
GL,(Ag), where E is a CM field satisfying some additional hypotheses. Suppose that 7 is regular algebraic
and conjugate self-dual. In this case, it is known that there exists a Galois representation r,(7) : Gg —
GL,(Q,), and one can formulate the question of level-raising in much the same way as we have done for
elliptic modular forms above. Broadly speaking, there are two main approaches. The first is to try to
understand directly the natural integral structures appearing in spaces of algebraic automorphic forms. In
this case, one can attempt to generalize Ribet’s original argument. For unitary groups this rests on the
still unproven ‘Thara’s Lemma’ of [CHTO8]. If the residual representation r,(m) has large image (and in
particular, is irreducible), a second approach is possible. A trick due to Richard Taylor [Tay08] allows one
to use automorphy lifting theorems to construct automorphic representations ' congruent to m modulo I,
and such that 7’ has essentially any local behavior away from [ not ruled out by the existence of a lifting p
as above, cf. [Geell].

In this work we therefore restrict focus to regular algebraic, conjugate self-dual automorphic rep-
resentations 7 of the form m = my B o, where m; are cuspidal automorphic representations of GL,,(AF)
and nq1 + no = n. By the theory of endoscopy, these representations often admit a descent to discrete au-
tomorphic representations of unitary groups. In this paper we exploit this fact to find congruences between
representations of this form and cuspidal automorphic representations on GL,,(Ag), by studying the integral
structure of spaces of algebraic automorphic forms on unitary similitude groups.

As an example of the kind of thing we can prove, suppose that E is a CM imaginary field with
totally real subfield F', and let p be a rational prime which is inert in F'. Let wy denote a place of E above
p, and suppose that wy is split over F. We assume that [F : Q] is odd. Let nj,ny be distinet even integers,
and let 7, m be cuspidal, conjugate self-dual automorphic representations of GL,, (Ag) and GL,,(Ag),
respectively, such that 7y B my is regular algebraic of strictly regular weight (cf. below).

Theorem 1.1. Suppose that 1 ., and T3, are isomorphic to unramified twists of the Steinberg representa-
tion. Then there exists a set L of rational primes | of Dirichlet density one such that for alll € L and for all
isomorphisms 1 : Q, = C, there exists a finite order character ¢ : Gg — C* with ¢ = 1, a CM quadratic
extension E1/E and a RACSDC automorphic representation I1 of GL,, (Ag,) satisfying the following:

o 7, (IT) = r,(m B (me ®1/)))|GE1'

o Ifwy is a place of E1 above wy, then I, is an unramified twist of the Steinberg representation.

e II has the same infinity type as the base change of my B 7wy to E1 and is unramified at the primes
dividing [.

Moreover, if w1 By is t-ordinary in the sense of [Gerl, Definition 5.1.2], then we can assume that 11 is also
t-ordinary.



For our main theorem, see Theorem below. It is worth noting that at the same time as proving
our main result, we also establish the analogue of Thara’s lemma in the simplest possible non-trivial case.
This is a new result even when we localize at a non-Eisenstein maximal ideal, and would presumably allow
one to establish the first non-minimal R = T theorems for Galois representations of unitary type, when our
hypotheses are satisfied, although we have not pursued this here.

Our main interest in proving such theorems is the applications to automorphy lifting theorems for
RACSDC automorphic representations with residually reducible Galois representations. We note that for
applications of this type it is essential to be able to find congruences to automorphic representations which
have the same [-adic Hodge type at the primes dividing {. By combining the theorems of this paper with the
main theorem of [Tho|, one can often prove the automorphy of Galois representations r : Gg — GL,(Q;)
satisfying the following kinds of conditions:

e 1 is ordinary, and there exists a place w of F at which r looks like it corresponds to the Steinberg
representation.

e The residual representation 7 is reducible, and the Jordan-Hélder factors of 7 are residually automor-
phic.

We now come to a description of the contents and main ideas of this paper. In sections §§2}{3] we first set up
notation and recall some background results.

Let I be a definite unitary group over Q associated to the extension E/F as above. Then the
Z-arithmetic subgroups of I(R) are essentially trivial, but if p is a prime such that I(Q,) is non-compact,
then the Z[1/pl-arithmetic subgroups of I(Q,) are highly non-trivial. If one knows that the cohomology of
these arithmetic subgroups is torsion-free, then one can prove level-raising results for automorphic forms on
I. This is essentially the content of §4]

In order to show such torsion vanishing, we compare the cohomology of these arithmetic groups with
the cohomology of a PEL-type Shimura variety S(G,U) obtained by ‘switching primes’, which is associated
to an inner form G of I which has the type U(1,n—1) x U(n)?~! at infinity and looks like a division algebra
locally at p. According to a theorem of Rapoport-Zink [RZ96], these varieties admit a p-adic uniformization
by the Drinfeld upper half plane. It turns out that the weight spectral sequence (whose definition we recall
in describing the cohomology of these Shimura varieties can be written down, at least at the E; page,
in terms of spaces of algebraic modular forms on the definite group I. We remark that the weight spectral
sequence of varieties uniformized by the Drinfeld upper half plane has been studied previously by Ito [Ito05].

Lan and Suh [LS12] have proved torsion vanishing results for the cohomology of local systems on
Shimura varieties of sufficiently regular weight, using geometric methods. When the weight spectral sequence
of S(G,U) degenerates at Fy, we deduce from their results that the the cohomology of our arithmetic groups
with corresponding coefficient systems has trivial torsion subgroup. We can prove this degeneration when [ is
a banal characteristic for GL,,(E,,) by using a trick inspired by the use of weights to show that the spectral
sequence with rational coefficients degenerates at Fo. The comparison of cohomologies and the study of the
weight spectral sequence is made in Finally, we deduce our main theorems in {7

1.1 Acknowledgements

The idea of using the weight spectral sequence together with the p-adic uniformization of unitary Shimura
varieties in order to prove cases of Thara’s lemma is due to Michael Harris, cf. [CHTO8, Introduction]. Richard
Taylor suggested to me that it might be possible to use these ideas to prove new cases of level-raising. I
am grateful to both of them for allowing me to pursue these ideas here. I would also like to thank Laurent
Clozel for a number of useful comments.

1.2 Notation

If F is a number field then we write G for its absolute Galois group. If v is a finite place of F', then we
write G, for a choice of decomposition group at v and g, for the cardinality of the residue field at v.



We fix for every prime [ an algebraic closure Q; of Q;. If p : Gr — GL,(Q;) is a continuous
representation then the semisimplification of the reduction modulo [ of p with respect to some invariant
lattice depends only on p, up to isomorphism, and we will write p : Gp — GL,(F;) for this reduced
representation.

If p is a prime and K is a finite extension of Qp,, then there is a bijection
recg : Adme GL,, (K) < WDgWkg,

characterized by a certain equality of epsilon- and L-factors on either side, cf. [HT01], [Hen02]. Here we write
(for Q = C or Q) Admg GL,,(K) for the set of isomorphism classes of irreducible admissible representations
of this group over §2, and WDG Wy for the set of Frobenius-semisimple Weil-Deligne representations (r, V)
of Wk valued in GL,,(Q2). We define reck (7) = recg (| - |(*=™)/2). This is the normalization of the local
Langlands correspondence with good rationality properties; in particular, for any ¢ € Aut(C) and any
7 € Admg GL,, (K) there is an isomorphism

reck (o) 2 7 reck (7).

This can be seen using, for example, the characterization of reck and the description given in [Tat79, §3] of
the action of Galois on local e- and L-factors. As a consequence, reck gives rise to a well-defined bijection

reck : Admg GL, (K) « WD Wk
Suppose instead that K is a finite extension of R. Then there is a bijection
reck : Adme GL,, (K) <> RepcWk.

Here we write Adme GL, (K) for the set of infinitesimal equivalence classes of irreducible admissible repre-
sentations of GL,,(K) and Rep¢ Wi for the set of continuous representations of Wk into GL,,(C). We define
reck (1) = recg (| - [(17)/2).

2 Automorphic representations

2.1 GL,

Let E be an imaginary CM field with totally real subfield F, and let ¢ € Gal(E/F) denote the non-trivial
element. We say that an automorphic representation 7 of GL,,(Ag) is RACSDC if it satisfies the following
conditions:

e It is conjugate self-dual: 7¢ = V.
e It is cuspidal.

e It is regular algebraic. By definition, this means that for each place v|oo of E, the representation
rec:gv (my) is a direct sum of pairwise distinct algebraic characters.

If 7 is a regular algebraic automorphic representation of GL,,(Ag), then for each embedding 7 : F — C, we
are given a representation r, : C* — GL,,(C), induced by recg, (m,), where v is the infinite place induced
by 7, and the isomorphism E) = C* induced by 7. This representation has the form

re(2) = ((2/2)", ., (2/2)"m),

where a,; € (n—1)/2 + Z. We will refer to the tuple a = (ar1,...,0rn)reHom(E,c), Where for each 7 we
have a; 1 > ar2 > -+ > arp, as the infinity type of 7. More generally if 7 is any automorphic representation
of GL,,(Ag) and the parameters r.(z) associated to 7 are given by the above formula for some real numbers
ar; € R, we use the same formula to define the infinity type a of 7. We will say that the infinity type of =
is strictly regular if for each embedding 7 : £ — C, we have

Qrj > Qrit1 + 1 (21)



for each 1.

Suppose that 71,7 are conjugate self-dual cuspidal automorphic representations of GL,, (Ag),
GL,,(Ag), respectively, and that 7 = 7, By is regular algebraic. Then the representations ;|- |("i=™)/2 are
regular algebraic. We call a representation 7 arising in this way a RACSD sum of cuspidal representations.
In this case, define a’ = (a%)cHom(z,c) by the requirement that (al, + (n; —n)/2,...,ak,, + (n; —n)/2)
equal the infinity type of m;| - |(%=™)/2 and define b = (br)recHom(k,c) by the formula

(bT,17 R bT,n) = ((171_717 e 7a71—,n1 ’ a72—,17 ) a72—7n2)'
Then there is a unique tuple W = (w; ) reHom(E,c) € SHem(EC) quch that for each 7 € Hom(E, C), the infinity
type of 7 is (brw, (1) - -+ Orw, (n)) reHom(E,c)- We Will say that m = 7, B 7 satisfies the sign condition if the

following condition is satisfied. Choose for each place v|oo of F' an embedding 7 : F < C inducing v. Then:
H det Wr(y) = 1. (2.2)

We remark that this condition is always satisfied if, for example, there is an imaginary CM subfield ' C F
such that [E : E'] =2 and 7 arises as a base change from F'.

Theorem 2.1. Suppose that w1, 79 are cuspidal conjugate self-dual automorphic representations of GLy,, (Ag)
and that m = 71 B is a regular algebraic automorphic representation of GL,(Ag). Then for each isomor-
phism 1 Q; =2 C, there is a continuous semisimple representation

r(m) : Gg — GLa(Q),
uniquely characterized by the following local-global compatibility property at all primes w of E not dividing :
WD(r,(n)|g2 ) = recg, (¢ ). (2.3)

Proof. Arguing as in the proof of [Guelll Theorem 2.3], we can find continuous characters v; : Ay /E* — C*
such that ¥¢ = 1 and the restriction of ¢; to (E ®p , C)* is given by v;(2) = (z/2¢)%7, where §; ; = 0
if n —n; is even and 6, = 1/2 if n — n; is odd. Then each m;7; is RACSDC, and the representations
r,(m;1;), characterized by a similar local-global compatibilty condition, exist, cf. [Carl2l Theorem 1.1]. We
now simply take

r(m) = r(myn) @ (|| TR @ ey (maghe) @ 7 (5] - (2 T).
O

If 7 is a regular algebraic representation of GL,(Ag) of infinity type a, we also define a tuple
A = (A)reHomE,C) = (M1, Arn)reHom(E,c)s Which we call the weight of m, by the formula A\, ; =
—Grnt1—i + (n—1)/2 — (n —14). Then for each 7 : E — C, we have A;1 > --- > A, and the irreducible
admissible representation of GL, (C) corresponding to r, has the same infinitesimal character as the dual of
the algebraic representation of GL,,(C) with highest weight A,. The representation 7 is strictly regular if
and only if for each 7 we have A1 > -+ > A ;.

2.2 Algebraic modular forms

Let E be an imaginary CM field with totally real subfield F. We suppose that £ = Fy - F, where Ej is a
quadratic imaginary extension of Q, and that E/F is everywhere unramified. Let 1 denote an involution of
the second kind on the matrix algebra M,,(E) corresponding to a Hermitian form on E™. We define reductive
groups I over Q and I; over F' by their functors of points:

I(R) = {g € Myu(E) ®q R | 9" = c(g) € R*}



and
Ii(R)={g € M,(E)®r R|gg" =1}

We suppose that I is quasi-split at every finite place and that I; (R) is compact. (This can always be achieved.
Indeed, there is an obstruction from the Hasse principle only if n is even and [F : Q] is odd. However, the
assumption that E/F is everywhere unramified implies that [F : Q] is even, by [Gro03, Proposition 3.1].) If
v = ww° is a place of F split in F and dividing the rational prime p, then there are isomorphisms

tw  1(Qy) 2 Q) x ] GLn(Ew),

w'|p
tw + T1 (Fy) = GL, (Ey),

the product being over the primes w’ of E above p with the same restriction to Eg as w. We observe that
I(R) is not compact, but that the group I nevertheless satisfies the conditions of [Gro99l Proposition 1.4].
In particular, we can define spaces of automorphic forms on the groups I and I; with integral coefficients.

Fix a prime [, and let K be a finite extension of Q; inside Q, with ring of integers O and residue
field k. Let U; C I(Q;) be an open compact subgroup, and suppose that M is a finite O-module on which
U, acts continuously in the [-adic topology. In this case we define A(M) to denote the set of locally constant
functions f : I(A*) — M such that for all v € I(Q), f(vg) = f(g9). We endow this space with an action
of I(Ab>) x U; by setting (g - f)(h) = gif(hg), where g; denotes the projection to the I-component. If
U C I(Ab*®) x U is a subgroup, we set A(U, M) = A(M)Y.

Lemma 2.2. Let p # 1 be a prime, and suppose that UP is an open compact subgroup of I(AP**°) whose
projection to I(Qq) is contained in U;. Then A(UP, M) is an admissible representation of I(Q,), in the
following sense: for any open compact subgroup U, C 1(Q,), A(UP, M)Y» is a finite O-module.

Proof. Let U, C I(Q,) be an open compact subgroup. By [Gro99, Proposition 1.4], I(Q) C I(A>) is a
discrete cocompact subgroup, and the quotient I(Q)\I(A>)/UPU, is finite. Let g1,...,9s € I(A*>) be
representatives. There is an isomorphism of O-modules

A(UPU,, M) = @5 M, £ (£(:))iz1,....s»
where I'; = I(Q) N g;UPU,g; " 0

Lemma 2.3. 1. Let o be an automorphic representation of I(A) such that o is the restriction of an
algebraic representation of I(R) C I(C). Then there exists an automorphic representation o1 of I (Ap)
satisfying the following:

e For each place p of Q split in Ey, 01, is isomorphic to the restriction of o, to the group I (F Qg
Q) € 1(Qy)-
® 01,00 IS isomorphic to the restriction of oo to I1(R).

2. Let o1 be an automorphic representation of I1(Ap). Then there exists an automorphic representation
o of I(A) satisfying the following:

e 0 18 the restriction of an algebraic representation of I(R) C I(C). The restriction of 0o to
I (R) is isomorphic to 01,c0-

e For each prime p split in Ey, the restriction of o, to the group I (F ®gQ,) C I(Qy) is isomorphic
to o1 p. If 01, is unramified then o, is unramified. If o1, has an ITwahori-fized vector, then oy
has an Iwahori-fized vector.

Proof. Let T = Resg0 Gy, and let Ty C T denote the subtorus of elements of norm 1. Then there is an
exact sequence of algebraic groups

1——T——T x Res{, [} —=I——>1,



where T3 is embedded diagonally. Let A denote the space of automorphic forms on I, an admissible semisim-
ple representation of I(A). Arguing as in the proof of [HT0I, Theorem VI.2.1], we see that given an auto-
morphic representation o of I(A) appearing in A, there is an element g € I(A) and an irreducible admissible
constituent 7 of o|p(a)xr(a,) such that 7 22 ¢) ® o1 is automorphic. The representation oy then satisfies the
desired properties.

Suppose conversely that o is as in the second part of the lemma. Arguing as in the proof of [HT01]
Lemma VI.2.10], we can find an algebraic Hecke character ¢ : Ej \AEO such that the central character
wy, of oy satisfies the relation w,, (2) = 1 (271). If p is a prime split in Ey and o1, is unramified or has
an Iwahori-fixed vector, then w,, is unramified at p, and after multiplying ¢ by a character of the form
X ©Ng, /0, x a Dirichlet character, we can assume that 1 is unramified at all such primes.

Now ¢ ® oy is an automorphic representation of the group T(A) x I1(Ar), and (cf. the proof of
[HT01l Theorem VI.2.9]) it is a subrepresentation of the pullback to T(A) x I1(Ar) of an automorphic
representation o of I(A), which now satisfies the desired properties. O

Proposition 2.4. 1. Letm, w2 be cuspidal, conjugate self-dual automorphic representations of GL,,, (Ag),
GL,,, (Ag), respectively, such that m = m By is reqular algebraic. Suppose that the following conditions
are satisfied:

o [If my, is ramified, then w is split over F.
® NiNo 1S even.

o m = B satisfies the sign condition[2.3

Then there exists a cuspidal automorphic representation o of Iy (Ap) of which 7 is the base change
in the following sense: at every place of E at which w is unramified, the correspondence is given by
the unramified base change. For every place v = ww® of F split in E, we have my = 0, 0 ty,. The
representation o is dual of the algebraic representation of I (F ®qg R) of highest weight equal to the
weight of .

2. Suppose conversely that o is a cuspidal automorphic representation of Iy (Ar). Then there exists a
partition n = nq +- - -+n, and discrete automorphic representations m; of GL,,(Ag) such that at finite
places, m1 B --- B m, is the base change of o in the above sense. If we suppose furthermore that the m;
are cuspidal, then w4 is the base change of 0.

Proof. The first part is proved in [CT]. The second part follows immediately from [Labl1l Corollaire 5.3]. O

3 Drinfeld’s upper half plane

In this section let F' be a finite extension of Q,, and fix an integer n > 2. We write @ for a choice of
uniformizer of F' and ¢ for the cardinality of the residue field Op/w. The Drinfeld p-adic upper half plane
over F' is a formal scheme over O whose rigid generic fiber can be identified with the open subspace of
]P’%f1 obtained by deleting all F-rational hyperplanes. It receives a faithful action of the group PGL, (F)
and uniformizes certain Shimura varieties.

We first recall the Bruhat-Tits building BT of PGL, (F). It is a simplicial complex with vertices
the homothety classes of Op-lattices M C F™. A set {My,...,M,} of lattices up to homothety represents
a simplex if we can choose representatives such that wM, C M; C --- C M,. The maximal simplices have
dimension n — 1, and for each k, PGL,,(F') acts transitively on the set of simplices of dimension k with a
marked vertex. We write BT(7) for the set of simplices of BT of dimension i.

We write Qo,. for the Drinfeld upper half plane over Op, see [RZ96 §3.71] or [Mus78g]. It is a p-adic
formal scheme, formally locally of finite type over Spf O, which receives a left action of PGL,,(F). The
irreducible components of the special fiber of (2p, are geometrically irreducible, and in canonical bijection
with the vertices of BT(0). Moreover, they are smooth, and the special fiber is a strict normal crossings
divisor. In fact, BT can also be described as follows: it is the simplicial complex whose vertices are in



bijection with the set of irreducible components of the special fiber of Qp,.. Vertices vy, ..., v, give rise to
a simplex if and only if the corresponding irreducible components have non-trivial intersection.

The irreducible component of the special fiber corresponding to the homothety class of the lattice
M can be described as follows: let Yy = P(M) ®0,. (Or/w). For each i, let Y; denote the blowing-up of
Y;_1 along the strict transforms in ¥;_; of the codimension i, O /ww-rational linear subspaces of Yy. Then
(as observed in [Ito05] §6]) the desired variety is Y,—1. In particular:

Proposition 3.1. Let's be a geometric point above the _closed point of Spec Op. For e_ach prime | # p, the
action of Frobenius on the étale cohomology groups H*(Y,_13,Z;) is by the scalar q*. These groups are
torsion-free. For each odd integer i, H' (Y, _13,7;) is zero.

Proof. This follows from the calculation of the cohomology of the blow-up of a smooth variety along a smooth
center, cf. [[to05] §3]. O

For global applications, we will need to introduce a simple enlargement of Qp,.. We write M*Plit for
the p-adic formal scheme formally locally of finite type over Op given by the formula

Msplit — QOF X Q;/Z; X GLn(F)/GLn(F)O7

where GL,,(F)? C GL,(F) is the open subgroup consisting of matrices with determinant a p-adic unit. Here
we identify the sets on the right hand side with the corresponding constant Op-formal schemes. We define
M = MR, »Or, where F denotes the completion of a maximal unramified extension of Op. The group
Q)¢ x GL,(F) acts on both of these formal schemes on the left.

The set of irreducible components in the special fiber of M is in bijection with the set BT (0) x Z x Z.
We define a coloring map « : BT(0) x Z x Z — Z/nZ by sending (M, a,b) to x(M, a,b) = log,[M : Op] +b.
We observe that « is equivariant for the action of the group Q, x GL,,(F), and its fibers are precisely the
orbits of this group.

If we make some more choices, then we can get an even more concrete realization of this set. Let
B C Uy = GL,(OF) denote the standard Iwahori subgroup inside the standard maximal compact subgroup.
Let

o1 0 ... 0
0o 0o 1 ... 0
(= Do IR
0 0 ... 0 1
w 0 ... 0 0
Fori =0,...,n—1, let U; = (""Uy¢*. These maximal compact subgroups stabilize the n — 1 distinct
vertices of the closure of the unique chamber of BT fixed by B, and their intersection is exactly equal to
B. Let zg,...,z,—1 denote these vertices. Then we have x(x;,1,1) = 4, and therefore an isomorphism of
Q, x GL,,(F)-sets
n—1
BT(0) x Z x 2.2 Q) /75 x || GLa(F)/U;.
i=0
For each i = 0,...,n — 1 there is then a bijection between the set of non-empty (i 4+ 1)-fold intersections of

irreducible components of the special fiber of M and the set

BT(i) xZxZ=Qy /2y x [  GL.(F)/Ug.
Ec{o0,...,n—1}

Here the disjoint union runs over subsets E of order ¢ 4+ 1, and by definition we have Ug = N;cgU;. Finally,
we have the following.

Lemma 3.2. 1. Let T' C GL,(F)° denote a discrete cocompact subgroup, and suppose that for all x €
BT(0), the stabilizer Zr(z) is trivial. Then for all x € BT(0) and for all v € T, v # 1, we have
d(z,y-x) > 2.



The quotient T\Qo,. exists, and has a canonical algebraization, which is a projective algebraic variety,
strictly semistable over Op. The irreducible components of its special fiber are geometrically irreducible
and globally smooth.

2. LetT' C Qp x GL,,(F) denote a discrete cocompact subgroup, and suppose that for all x € BT(0)xXZ X Z,
the stabilizer Zr(x) is trivial. Then the quotient T\ M"Y exists, and has a canonical algebraization,
which is a projective algebraic variety, strictly semistable over Op. The irreducible components of its
special fiber are geometrically irreducible and globally smooth.

Proof. For the first part, we note that if d(x,y) = 1 then there exists a chamber in BT whose closure contains
z,y. Then x,y are represented by Op-lattices M, C M,. If v € I" and yx = y then we must therefore have
x =y and hence v = 1. The formal scheme Qp, has a covering by Zariski open subsets, formally of finite
type over O, which are in bijective correspondence with the set BT(0). Two Zariski opens intersect if and
only if the corresponding vertices are connected by an edge. Thus I' acts discontinuously with respect to
this covering, and the quotient formal scheme can be obtained by simply gluing these Zariski opens. The
ample line bundle which defines the algebraization is the relative dualizing sheaf over Spf O, cf. [Mus78|
Theorem 4.1].

For the second part, let T® = I'N (ZX x GL,(F)°). The quotient [\ M?Plit is a finite union of
quotients of the form I'°\Qo,,. O

4 A level raising formalism in banal characteristic

Let p # [ be distinct prime numbers. Let K be a finite extension of Q; inside Q;with ring of integers O
and residue field k, and let F' be a finite extension of @, with ring of integers O and uniformizer w. We
write ¢ for the cardinality of the residue field Op/w. We fix throughout a choice of square-root of ¢ in K.
Throughout this section we make the following assumption:

e [ is a banal characteristic for GL,,(F'). By definition, this means that [ is coprime to the pro-order of
GL,, (F).

In this section we show how one can prove level-raising results for GL, (F)-modules under the assumption
that suitable cohomology groups are torsion free. Let G = GL,,(F). Let T' C P C G denote the standard
maximal torus and Borel subgroup, and R C ®* C ® the corresponding subsets of simple roots, positive
roots, and roots of GL,,. Let Ty C T denote the unique maximal compact subgroup, and B C G for the
Iwahori subgroup. In this section, all admissible representations of G will be considered as being defined
over Q.

Ifx:T— @lx is a continuous character, we define

Indg x = {f: G — Q| f(bg) = x(b)f(g)¥b € P},
the un-normalized induction. The normalized induction is defined as

n—Indg X = Indg (5113/2)(7

where 6p : P — Q, " is the modulus character sending tn to [t? 122 ... t1="|. In particular, n-Ind$ 6;1/2 =
Ind% 1 = C*(G/P) may be identified with the space of locally constant functions G/P — Q. If 7 is an
admissible representation of G, then we define the normalized restriction

Tgﬂ = 5;1/2 QTN.
This is an admissible representation of 7', and the functor r$ is left adjoint to n—Indg. If 7 is an admissible

representation of G and a € Q; X, then we write m(a) = 7 ® (det o A, ), where A, is the unramified character
satisfying Ay (@) = a.



We describe the decomposition of n-Ind% 6;1/2 = C®(G/P,Q,). Let I C R. We write P; for the
group generated by P and the subgroups U_, for a € I. Thus Py = P and Pr = G. For each I C J there
is an injection C*°(G/P;,Q;) — C*°(G/Pr,Q;). We define

;= C>(G/Pr)/ Z C>=(G/Py).

icJ

Proposition 4.1. The w; are irreducible and pairwise non-isomorphic, and exhaust the composition factors
G —1/2
of n-Indp 6, /7.

Proof. See [BW00, Chapter X]. A convenient reference for this and for some facts below is [Orl05]. O

The 7; may be described in terms of the Zelevinsky classification [Zel80] as follows. The irreducible
constituents 77(?) of n-Ind% 6;1/ ? are in bijection with the orientations T of the graph T" with vertices
corresponding to the characters |- |(*=)/2 _ |.|(»=1/2 and edges joining two characters whose quotient is
|-|£1. The elements of R are a; = €; —€;41, for i = 1,...,n— 1. Given an orientation F), we write I(f}) CR
for the subset of roots ; such that the edge connecting | - |(1=™)/2+=1 and | . |(1=")/2+4 starts at the former

and ends at the latter.

Proposition 4.2. We have = 71'(?) In particular, Ty = Sty, is the Steinberg representation and g

[(T)
is the trivial representation of G.

We now introduce part of the theory of the Bernstein center. If 7 is any admissible representation

of G over @, then we can endow the Iwahori invariants 77 with an action of the algebra Q[T'/Tp] =
Q[X1, X7 1., X, X1 as follows. Let U C T/T, denote the submonoid consisting of those elements

(w’“, . ,w“")TO S T/TO

where a1 > as > -+ > a,, are integers. We let an element T} act on 77 by the Hecke operator [BuB]. This
induces an action of the algebra Q,;[U], which extends uniquely to an action of the algebra Q;[T/Tp]. We
write t; = e;(X1,...,X,) € Q[T/To]", where e; is the symmetric polynomial of degree i in n variables. As
the notation indicates, these elements are fixed under the natural action of the Weyl group on Q;[T/Tp].

Proposition 4.3. 1. For any admissible representation V' of G over Qy, there is a functorial isomorphism
V2 (rGV)T of Q[T/To]-modules.

2. If 7 is an irreducible admissible representation of G over Q, and 78 # 0, then 7 is a subquotient of

n—Indg x for some unramified character x = x1 ® -+ - ® xn. The operator t; has the unique eigenvalue

ei(x1(@), .-, Xn(w@)) on 5.

We introduce reduction modulo I, cf. [Vigd4, §1.5]. Let V be an admissible G-module over Q; of
finite length. We say that V admits an integral structure if there exists a G-invariant Z;-lattice A C V such
that A ®z, Q, 2 V. If V admits an integral structure, then the reduction modulo the maximal ideal of Z; of
A is a finite length admissible representation of G over F;. Its Jordan-Holder factors are independent of the
choice of integral structure.

If 7 is an irreducible admissible representation of G over Q,, then it admits an integral structure if
and only its cuspidal support does. In particular, if 7 is a subquotient of a principal series representation
n—IndIG; X, then 7 admits an integral structure if and only if x takes is values in ZX - @lx .

Proposition 4.4. 1. FEach representation 7wy admits an integral structure, and its reduction modulo [ is
irreducible. We write w; 5, for this reduced representation.

2. Let m = n—Indg Stq(a) ® Sty(B) be an irreducible representation of G over Q; admitting an integral
structure, where a +b = n, and Q is the standard parabolic subgroup corresponding to this partition.
Then o, 3 € Z;. Suppose that f = ¢« mod mz . Then the reduction modulo of m has exactly two
Jordan-Hélder factors, which are both absolutely irreducible. The first is the reduction modulo 1 of
mg(a). The second is the reduction modulo | of wy(a), where I C R is such that Pr\; = Q.
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Proof. For the first part, the existence of the integral structure is immediate from the remarks above. The
irreducibility of the representations 7y F, in banal characteristic seems to have first been noted by Lazarus
[Laz00, Theorem 4.7.2]. Here we refer again to the work of Orlik [Orl05]. The second part follows from the
corresponding fact in characteristic zero, cf. [HT01l Lemma 1.3.2], and by reduction modulo I. O

Suppose that M is a smooth O[G]-module. We define cohomology groups H*(M) as follows. Let
Up = GL,,(OF) denote the standard maximal compact subgroup, and let Uy, ..., U,_1 denote the conjugates
of Uy containing B, as defined in the previous section. Similarly, if £ C {0,...,n — 1} is a subset then we
write Ug = N;egU;. We define a complex C*(M) by the formula

cM= € MU,
Ec{0,....n—1}
the direct sum being over subsets E of cardinality i + 1. The differential d; : C*(M) — C**1(M) is given
by the sum of the restriction maps rg g : MU2 — MUs’ for E C E', each multiplied by the sign e(E, E'),
where if B/ = {i1,...,i}, 41 < -+ <, and E = E’\ {is} then €(E, E’) = (—1)°. We then define H*(M)
to be the cohomology of this complex.

Proposition 4.5. 1. Suppose that M = 7 is an irreducible admissible representation of G over Q;. Then
H*(M) is non-zero if and only if 7 is an unramified twist of one of the representations 7y, I C R.

2. If M = mr() for some a € Q, then H'(M) is non-zero if and only if i = #(R\ I).
S If M =5 (@) for some a € Fy then H'(M) is non-zero if and only if i = #(R\ I).

Proof. If M = 7 is an irreducible admissible representation and H*(M) # 0, then 78 # 0. In particular  is
a subquotient of an unramified principal series representation, and its central character is unramified. After
twisting, we can suppose that the center of G acts trivially on w. Then there is a canonical isomorphism
H*(M) = HX(PGL,(F), M), these latter groups taken in the sense of [BW00, Ch. X, §5]. The first and
second parts therefore follow from [BWQQ, Ch. X, Theorem 4.12]. The third part follows in a similar manner
from [Orl05, Theorem 1]. O

We now come to the main result of this section. Suppose that M, N are O-flat admissible O[G]-
modules, in the sense that for each open compact subgroup U C G, MY and NV are finite free O-modules.
Suppose further that M ®» Q, and N ®¢ Q; are semisimple and that all of their irreducible constituents are
generic, and that there is a perfect G-equivariant pairing M x N — O.

Theorem 4.6. Suppose that ME # 0, and that if 7 C M ®0 Q, is an irreducible admissible representation
of G sastisfying TP # 0, then recL () has at most two irreducible constituents. Suppose that H"2(N ®0 k)
and H"2(M ®0 k) are both zero. Finally, suppose that there exists o € le such for any maximal ideal
(t1—ay,...,th —ayn) C QT/To]W in the support of MB, we have oy = @ei(q"~V/2, ... ¢=™/2) mod mz,
for eachi=1,...,n. (Note that we necessarily have oy € Z;.) Then there exists o € le lifting @ such that
Sty () C M ®0 Q.

Proof. After twisting by an unramified character, we can assume that @ = 1. Decompose N ® o k = No® Ny,
where N is generated by N” ®¢ k and NP = 0. (This is possible since the representations of G with non-
zero Iwahori-fixed vectors form a block in the category of admissible representations of G' over F;.) Then
the irreducible constituents of Ny ®; F; are of the form 7y or T{a} for some a € R, by Proposition H If
Tia} — N®oF;, then H""2(Ng) # 0. Thus 7p — N @0 F;. By duality, there is a surjection M @0 F; — mp,
hence H" (M ®¢ F;) # 0. Using that H" 2(M ®¢ F;) = 0, we deduce that H" (M ®¢ Q;) # 0, and
hence M that contains a twist of the Steinberg representation. O

If 7 is an irreducible admissible representation of G over Q; which admits an integral structure, and

78 £ 0, then we will say that 7 satisfies the level-raising congruence if there exists a € le such that the
eigenvalue «; of t; on 78 satisfies the congruence

o; = aei(qY2 0 q(7™/2) mod my . (4.1)
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5 The weight spectral sequence

Let Op be a complete discrete valuation ring, and S = Spec Op. Write s for the closed point of .S, n for the
generic point. Let F = Frac Op, and let F denote a fixed algebraic closure. We write 5,7 for the induced
geometric points of S above s and 7, respectively. Suppose that f : X — S is a proper, strictly semistable (in
the sense of [Sai03l §1.1]) morphism of relative dimension n. Then Xj is a strict normal crossings divisor on
X; write X1, ..., X} for its irreducible components. We suppose moreover that each X; is globally smooth
over k(s). For E C {1,...,h} we write X for the intersection N;cz X, and X (™) = Hyp—mi1 Xe (disjoint
union). Let K be a finite extension of Q; with ring of integers O, uniformizer A, and residue field k, where
[ is coprime to the residue characteristic of Op. Let A = K, O, or k, and let V be a local system of flat
A-modules on X. The weight spectral sequence of Rapoport-Zink is a spectral sequence

EP1 = @ Hq—2i(X§;D+2i)7 V(—i) = Hp+q(Xf’ V). (5.1)

i>max(0,~p)
It is equivariant for the natural action of Gg on both sides, and the differentials commute with the action of

the group Gp. Note that the groups E}*? vanish for ¢ < 0 and ¢ > 2n. Let us briefly recall the construction
of this spectral sequence, following Saito [Sai03]. Consider the following diagram:

X§ : XOf — Xﬁ
R
Xs d X . X77‘

J

The complex RUYV = E*RE*V in D%(Xs, V) of nearby cycles receives an action of the inertia group Ir C
Gr = Gal(F/F). Let T € Ir denote an element that maps to a generator of Z;(1) under the canonical
homomorphism ¢; : Ir — Z;(1). Let v denote the endomorphism of RUV induced by the element T — 1. We
then have (cf. [Sai03] §2]):

Proposition 5.1. 1. RUV lies in the abelian subcategory Perv(Xz, A)[—n| of —n-shifted perverse sheaves
with A-coefficients.

2. Let M, denote the increasing monodromy filtration of the nilpotent endomorphism v of RUA. For each
positive integer p > 0, let ay : Xg(,p) — Xz denote the canonical map. Then for each integer r > 0 there
is a canonical isomorphism

B apiqV(=p)—(p+ )] = Gr) RIV,
p—q=r

compatible with the action of Gg on either side.

The weight spectral sequence is now the spectral sequence associated to the filtered object RUV.
Note that [Sai03] treats only the case of constant coefficients, but the case of twisted coefficients can be
reduced to this one by working étale locally on X.

We compute the first row of the spectral sequence of the pair (X,V). By definition, we have
Ef’o = HO(Xg(p), V). Define a simplicial complex K as follows: the vertices of IC are in bijection with the
X;, and the set {X;,,..., X, } corresponds to a simplex og if and only if the intersection Xg is non-empty,
E = {i1,...,i,}. We define a coefficient system V) on K by the assignment o — H*(Xgs, V). Let C*(K,V)
denote the complex calculating the simplicial cohomology of K with coefficients in V. Thus, by definition we
have

crKV)= P H(XesV),
Ec{1,...,h}
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the sum being over subsets E of cardinality » + 1. The differential d,, = C"(K,V) — C"1(K, V) is given by
the direct sum of the restriction maps

respp : H'(Xp5, V) = H (Xp 5,V),
each multiplied by the sign e(E, E’) of the previous section.

Proposition 5.2. There is a canonical isomorphism of complexes E;’O > C(K,V).

Proof. In the case V = A, this follows immediately from [Sai03] Proposition 2.10]. Again, the case of general
V can be reduced to this one by working étale locally. O

6 Shimura varieties and uniformization

Fix an algebraic closure Q of Q, and let £ be a CM imaginary field with totally real subfield F. We fix a
rational prime p, and suppose that p is totally inert in F. We suppose that the unique prime v of F' above
p is split in E as v = ww®. We let d denote the degree of F over Q. We fix embeddings ¢, ¢, of Q into
C,@p, respectively. The composite ¢oo © ¢, ! induces a bijection of sets

Hom(E,C) < Hom(E,Q,).

Let n > 2 be an integer, and let D be a central division algebra over E of dimension n?, whose invariants at
the places w and w® are given respectively by 1/n and —1/n. We suppose that at every other place of F'; D
is split. Let % be a positive involution on D. Let V = D, viewed as a D-module, and let ¥ : V x V — Q be
an alternating pairing satisfying the condition 1 (dv, w) = (v, d*w) for all d € D, v,w € V. Fix a CM-type
® C Hom(£,C). Then we can choose an isomorphism D ®qR =[] .4 D®pr C =[] 4 Mn(C), such that
* corresponds to the operation X +— ‘X.

Similarly we may decompose V ®g R = HTeq, V ®g, C. We can find isomorphisms V ®pg , C =
C™ ®c W, where M,,(C) acts on the first factor. The form v, then admits a decomposition

V7 (21 @ wy, 22 @ wy) = trC/R(tfl - Zohr (w1, w)),

where h, is a skew-hermitian form on W... We can find a basis {ey,...,e,} of W, such that h, is given by
the matrix
diag(—i, ..., —i,4,...,1),
T rec

where 7, + r-c = n. We define algebraic groups over QQ by their functors of R-points:
G(R) = {g € GLp(V @ R) | ¥(gv, gw) = c(9)1(v, w), c(g) € R*}.

Gi(R) = {g € GLp(V @ R) [ (v, w) = ¢ (v, w)}.

The choices above give rise to an embedding Gr — [[,cq GU(rr, 7). We write h : Resc/r G,y — Gr for
the homomorphism which corresponds under this identification to the map

h:zeC*w (diag(z,...,2),diag(z,...,2))rca-
N—— N——

T Trc

Let X denote the G(R)-conjugacy class of h inside the set of homomorphisms Resc g G, — Gr.

We now suppose that ® corresponds under the identification Hom(E,C) < Hom(E,Q,) to the set
of embeddings inducing the p-adic place w of E. Write 71,...,7, for the elements of ®; we suppose that
rr, = 1land r, =0,i=2,...,d. We will also assume that the group G is quasi-split at every finite place
not dividing p. PEL data (D, E, %, F, V, 1) satisfying these assumptions exist provided that [F : Q] is even,
which we always assume in the applications below, cf. [HT0I, Lemma I.7.1].
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Proposition 6.1. The pair (G, X) is a Shimura datum. For U C G(A™) a neat open compact subgroup, the
Shimura varieties S(G,U) with S(G,U)(C) = G(Q)\G(A') x X/U are smooth projective algebraic varieties
over C, and admit canonical models over the reflex field 7 (F) C C.

The varieties S(G, U) admit p-adic uniformizations. Let v = ¢,¢-} denote the induced embedding
of 71(F) into Q,. According to [RZ96, §6], there exists an inner form I of G over Q and isomorphisms
I(AP>°) = G(AP"X’),I(QP) = Q, x GL,(F,), and satisfying the following. Let I denote the completion of
the maximal unramified extension of F;,. The group I(Q) acts on Qo @oFU OF via the scalar extension
of its action on Qp,, through the map I(Q) C I(Q,) — PGL,(F,). It also acts on G(A*>)/U,, where
Up C G(Qp) is the unique maximal compact subgroup, as follows. There is an isomorphism G(A*>)/U, =
G(AP>®) x G(Qp) /U, = I(AP*°) x G(Qp)/Up. 1(Q) acts diagonally under this identification via the natural
action on I(AP°°) and as follows on G(Q,)/U,. The choice of place w of E induces a canonical isomorphism
G(Qp) =Qp x Dy. Let IT € Djy denote a uniformizer. Then an element (c,a) € I(Q,) acts by the formula
(cf. [RZ96, Lemma 6.45))

(c,a)-(¢;a’) mod U, = (cc,IT¥F dtag)y  mod U,

where valp, is normalized so that valp, (F,*) = Z. The following theorem is now [RZ96, Corollary 6.51].
In what follows, we say that an open compact subgroup of G(AP>°) = J(AP>*°) is sufficiently small if there
exists a prime ¢ # p such that the projection of U to G(Q,) contains no non-trivial elements of finite order.

Theorem 6.2. With notations as above, for each sufficiently small open compact subgroup UP C G(AP>°),
there is an integral model of S(G,UPU,) @+, (r),, Foy over OF, and a canonical isomorphism of formal schemes
over Spf Op

HQ)\ [M x G(AP*>)/UP] = (S(G,UPUp) @0y, Of) -
This isomorphism is equivariant with respect to the action of the prime-to-p Hecke algebra H(G(AP->°) JUP)

on either side.

From now on, we shall write S(G,UPU,) to mean this integral model over Op,. We will only
consider open compact subgroups U = UPU,,, with U, maximal compact, so that this will always be defined.
As is well-known, the left hand side in the above equation can be rewritten as a finite union of quotients
of Qo ®0FU Or. Indeed, the double quotient I(Q)\G(AP>>)/U? is finite. Let g1,...,gs be representatives,

and let I'; = I(Q) N (g;UPg; x U,,), the intersection taken inside I(A>). Here U, C 1(Q,) = Q) x GL,(F,)
is the subgroup Z, x (valp, odet) 1(0). Bach I'; € QF x GL,(F,) is a discrete cocompact subgroup, and
there is an isomorphism (cf. Lemma [3.2):

(S(G,U) @0y, Or) ]_[FZ\M

6.1 Automorphic local systems

From now on we consider only sufficiently small open compact subgroups U = UPU,, as in Theorem @ We
now introduce some local systems on the varieties S(G,U) corresponding to algebraic representations of G.
Corresponding to the infinity type ®, there is an isomorphism

C)=C* x [ GLa(C)

TED

We write T' C G ®g C for the product of the diagonal maximal tori:

C)%CXXHCXX~~XCX.
—_———

TED n
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Then there is a canonical isomorphism X*(T') 22 Z x (Z")®, and we write X*(T), for the subset of dominant
weights p = (¢, (147 )rea ), namely those satisfying the condition

Hr,1 Z Hr2 Z e 2 Hrn

for each embedding 7 : E < C in ®. If [ is a rational prime, we say that p is l-small if for each 7 € ®, we
have
0<piri—piry <l (6.1)

for all 0 < i < j < n. If [ is unramified in F and p is [-small, we associate to p an [-adic local system on
S(G,U) as follows, cf. [HTOI, §I11.2], [Har, §7.1]. Fix a choice of isomorphism ¢ : Q, = C, and let K be a
finite extension of Q; in @, with ring of integers O, maximal ideal A, and residue field k. Let U; C G(Q)
be a hyperspecial maximal compact subgroup. We suppose that the algebraic representation of G ®g Q; of
highest weight ¢ ' p can be defined over K. Let W, i denote this representation. There is, up to homothety,
a unique Uj-invariant O-lattice of W, k. Choose one and write it as W, 0. It is unique since, by the I-
small hypothesis, the reduced lattice Wy, = W, 0 ®0 k is an irreducible representation of U;, and up to
isomorphism does not depend on the choice of invariant lattice.

Given an integer m > 1, let U(m) = UP(m)U, C U denote a normal open compact subgroup which
acts trivially on W, o/xm = Wy 0 ®0 O/A™. Then U acts on the constant sheaf W, o/xm on S(G,U(m))
in a way covering its action on S(G,U), and the quotient defines an étale local system on S(G,U), which we
write as V}, o/xm. The sections of V,, o/\m over an étale open T' — S(G,U) can be identified with the set
of functions f : mo(S(G,U(m)) xg(c,uy T) — W, such that for all 0 € U,C € mo(S(G,U(m)) xsc,u) T),
we have the relation f(Co) =o' f(C). We then take V,, o = lim V, o/am and Vi = V0 ®o K. These

m
local systems are isomorphic to the local systems ¢V, constructed in ILS12, §4.3] using geometric means.

6.2 A split descent

The scheme S(G,U) ®o,, Op has another descent S(G,U)*P to Op, whose p-adic formal completion is
given by
S(G, U)split = 1(Q)\ [Msplit « G(Ap’oo)/Up] i~ Hri\Msplit.

This is not the descent defined by S(G,U). However, the local systems V,, o, where A = K, O or O/A™,

also admit descents to S(G,U)*P!i*| using exactly the same recipe as before. We write Vip}\it for the local
systems defined this way.

Lemma 6.3. The pullback of V:pkm to any irreducible (hence geometrically irreducible) component Y of the
special fiber of S(G,U)*P% is a constant sheaf. If Y1, ..., Y, are irreducible components of the special fiber of

S(G,U)*Pht, then Frobenius acts as the scalar ¢/ on the group Hi((Y1 N ---NYs)s, V:f’klit). (We recall that
this group is zero if i is odd.)

Proof. Let Y C S(G,U(1))*!* denote an irreducible component of the special fiber of this scheme. Let 7 :
S(G, U™t — §(G,U)%!t denote the natural projection. Then the restriction 7|y induces an isomorphism
from Y to its image in S(G,U)**!it. Pulling back V;p,iit by the inverse of this isomorphism now gives the
first assertion. The second assertion now follows from the first and Proposition 3.1 O

6.3 Hecke actions and weight spectral sequence

We now compute the complex of abelian groups C*(K, V) of Proposition for the local system V,, j on the
Shimura variety S(G,U) in terms of the p-adic uniformization

HQN\ M x G(A"=)/UP] = (5(G,U) ®oy, Or).
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Since U is sufficiently small, the irreducible components of the special fiber are in bijection with the set
n—1
I(Q)\ [BT(0) x Q) /Z}} x GLy(F,)/GLn(F,)° x I(AP>)/U?] = ] IQ\I(A™)/Z;UU”,
i=0

where the subgroup U; C GL,(F,) is as in For each ¢ = 0,...,n — 1, there is now a bijection

m(S@G UM = [ HQM@A™)/Z;URU?,
Ec{0,...,n—1}

the union running over subsets E of cardinality i + 1. If z € I(Q)\I(A>)/Z,UgUP?, then the images of x
under the natural maps I(Q)\I(A>)/Z;UpU? — I(Q\I(A>)/Z,Ug\(;yUP, i € E, correspond exactly to
those i-fold intersections of irreducible components which contain the (i + 1)-fold intersection corresponding
to x.

For the weight spectral sequence to be defined for S(G,U), we must first choose a partial ordering
of the set of irreducible components of the special fiber which restricts to a total ordering on all subsets of
irreducible components which have non-trivial intersection. We choose the partial ordering on Z/nZ given by
0 <---<n—1, and pull this back to the set I(Q)\ [BT(0) x QX /ZX x GLy(F,)/GLy(F,)° x I(AP>)/U?]
via the function s defined in Let EY"? = HPT9(S(G,U)y, Vi) denote the weight spectral sequence of
We observe that the groups EV'? are zero if ¢ is odd, and if ¢ = 2k is even then the groups Ef’% are
non-zero only if —k <p<n-—1-—k.

Proposition 6.4. 1. For eachi=0,...,n— 1, there is a canonical isomorphism

E'= P AZIUUp, W),

the direct sum running over the set of all subsets E of order i + 1.

2. There is a canonical isomorphism of complezes
E}® = C*(A(ZyUP, W),
and hence for eachi=0,...,n—1,
By = H(AZXUP, Wy i)

Proof. By definition we have EI° = HO(S(G,U)(;),VMJC), and this space can be identified with the set
of all functions f : WO(S(G7U(1))@) — W, satisfying the relation f(Co) = o71f(C) for all C €

S

m0(S(G,U1)), 0 € U. We have identified the set 7o(S(G,U (1)) with [[ I(Q\I(A®)/ZUgU?,

S
compatibly as U varies. The isomorphism of the first part of the proposition now follows from the very

definition of the spaces A(Z,UPUg, Wy, k).

The the remainder of the proposition, it remains to show that the differentials in the two complexes
correspond under the isomorphism of the first part. This follows after noting that the restriction maps of
sections under this isomorphism to the natural inclusions A(Z, UpU?, W, ) — A(Z;Ur/U?, Wy, 1), and
that the signs that must be inserted in either complex agree because of the choices we have made. O

6.4 Degeneration

Proposition 6.5. Let r = 2s+ 1. With notation as above, the differentials
. ) hq+1—
dﬁq.EquEerr‘H r

are all zero as long as ¢ Z 1 modulo .
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Proof. We recall that the differentials in the weight spectral sequence are Galois equivariant. The proposition
would therefore follow if the action of Frobenius on EV*? was given by the scalar qu/ 2, (We recall that these
groups are zero if ¢ is odd.) This is not the case. However, this is the case for the weight spectral sequence
of the pair (S(G,U)Plt, V;p,iit), by Lemma The weight spectral sequence of a pair (X,V), where X
is a strictly semistable scheme over Op, and V is a local system on X, viewed as a spectral sequence of
abelian groups (forgetting the Galois action), depends only on (X ®o0,, Or,V), i.e. the pullback of X to
the maximal unramified extension of OF,. Since the pairs (S(G, U)sPHt, V:f’,iit) and (S(G,U),V, k) become
canonically isomorphic over Op, we are done. O

Corollary 6.6. Suppose that | is a banal characteristic for GL,(F,). Then the weight spectral sequence
for the pair (S(G,U), Vi) degenerates at Ea, and there is for each i > 0 an injection, equivariant for the
prime-to-p Hecke algebra H(G(AP>°) JUP):

H (A(ZyUP Wy k) = H'(S(G,UpUP) g7, Viuk)-

6.5 Raising the level

We now suppose in addition that £ = F - Fy, where Ej is a quadratic imaginary extension of Q and that
E/F is everywhere unramified. We now change notation slightly and write vy for the place of F' above
the rational prime p, and wg for one of the places of E above it. Let [ # p be another prime, and fix an
isomorphism ¢ : Q, =2 C. We assume that [ is unramified in E.

Let p be a choice of I-small dominant weight, and let U = [] q Uy C I(A™) denote a open compact
subgroup. Then there is defined a finite free O-module W, » on which U; acts, and a space of automorphic
forms A(U, Wy,0). It is a finite free O-module. We recall that this space has the following interpretation.
Let A denote the space of automorphic forms on I, a semisimple admissible representation of I(A). Let W, ¢
denote the representation of I(R) C I(C) = C* x ], .4 GL,(C) which is the restriction of the algebraic
representation of highest weight p. Then there is an isomorphism

A(U, WHKQ) ®O’L (C = HOI’HI(R) (W/::C’ A)

If T is a finite set of rational primes containing [, and such that U, is a hyperspecial maximal compact
subgroup for all ¢ ¢ T, let THY = O[{TY,..., T, (T?)"*}] denote the the polynomial ring in infinitely
many indeterminates corresponding to the unramified Hecke operators at places v of F' which split in £ and
are not contained in 7. Then T}“i" acts on A(U, W, 0) by O-algebra endomorphisms, and on the spaces
H'(S(G,U)g, Vu,k), via the fixed isomorphism I(AP>°) = G(AP>°). If o is an automorphic representation
of I(A) such that (6°°)V # 0 and o, = W, ¢, then we can associate to it a maximal ideal m, C TunlY by

assigning to each Hecke operator the reduction modulo [ of its eigenvalue on . =1 (0°°)V C AU, W,.0)®0 Q;.
If o’ is another automorphic representation of I(A), we say that o’ contributes to A(U, Wy, 0)m, if ol =
W, e (0">)Y # 0, and the intersection of (:7'¢’*)" and AU, Wy, 0)m, inside A(U, Wy.0) ®o Q; is non-
trivial.

There is an isomorphism ¢y, : 1(Q,) = Q x GL,(Ey,), and if 0, is an irreducible admissible
representation of 1(Qy), then (o} o tu,)|cL, (£,,,) remains irreducible. We assume that v, (Uy) = Z) x B,
where B C GLy(Ey,) is the standard Iwahori subgroup. We write U, C G(Q,) for the unique maximal

compact subgroup.

Univ

Theorem 6.7. Suppose that o is as above, and let m, C T denote the associated mazimal ideal. Suppose
that the following hypotheses hold:

1. The group U? is a sufficiently small open compact subgroup of I(AP>°).

2. If o' is another automorphic representation which contributes to AU, Wp,0)m, , then (0),0tu,)|aL, (E.,)

is a subquotient of a parabolic induction n—Indg Sty (a) @ Sty(B) for some a+b=n.

3. 1Yoy 4, satisfies the level-raising congruence (4. 1).
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4. pis l-small (6.1) and l is a banal characteristic for GLy, (Ey,)-

5. The groups H"*(S(G,UPU})5-, V) 1) and H**(S(G,UPU} )5, Vi) are zero.

Then we can raise the level: there exists another irreducible constituent o’ contributing to A(U, Wy,0)m, ,
and such that o’ is an unramified twist of the Steinberg representation.

We remark that [LS12] Theorem 8.12] implies that hypothesis 5 above is satisfied provided that U,
is a hyperspecial maximal compact subgroup, u is strictly regular, and the following inequalities hold:

2n + Z Z(Q[Mr,l/ﬂ — frny1—j) <l and 2n + Z Z(Mm —2|prn/2]) <L
TeD j=1 T€d j=1
By adding some further local hypotheses at a prime g # p, we could also appeal to the main result of [Shil.

Proof. Combining hypothesis 5 and Corollary we see that the groups H'(A(UPZ), W,/ ) and H' (A(UPZ,, W k)
vanish when ¢ = n — 2. On the other hand, there is a perfect pairing

AUPZE WY o) x A(UPZY W0) — O.
Indeed, given an open compact subgroup V' C B and f1 € A(UPZ;V, W;\LO), f2 € A(UPZSV, Wy 0), we
define (f1, f2) by the formula

=gy X (h@hE)
a€l(QN\I(A>)/UPLEV

This is independent of the choice of V, and for every such V' restricts to a perfect pairing A(UPZ, 'V, W;Yo) X
A(UPZyV, W, 0) — O. For any g € GLy,(Ey,), we have the formula (gf1,gf2) = (f1, f2). The action of
T on A(UPZY, Wy,0) gives a canonical direct sum decomposition of O[GLy, (Ey,)]-modules:

.A(UPZ; s W;I,,O) = -A(UPZ; ’ Wﬂuo)md @ 07

for some C'. The hypotheses of Theorem are now satisfied with M = A(UPZ), W, 0)m, and N taken to
be the annihilator of C' under the pairing (-, -). The result follows from this. O

7 Consequences for GL,

In this section we deduce our main theorem. We suppose that E is an imaginary CM field of the form
E = Ey - F, where F is a totally real number field and FEjy is an imaginary quadratic field. We suppose that
E/F is everywhere unramified. Suppose that there exists a prime p which is totally inert in F' and split in
Ey. Let vg = wow§ denote the unique place of F' above p. Let n > 3 be an integer, and [ # p a prime. We
fix an isomorphism ¢ : Q; = C.

Let ni,ns be positive integers with n = n; 4+ ns. Suppose that 71,72 are conjugate self-dual
cuspidal automorphic representations of GL,,(Ag) such that © = w1 H 7y is regular algebraic. We recall that
in Theorem [2.1{ we have associated to 7 a continuous semisimple representation r,(7) : Gg — GL,(Q,).

Theorem 7.1. With m as above, suppose that 11w, satisfies the level-raising congruence . Suppose
further that:

1. Ift; € Gg,, is a generator the l-part of the tame inertia group at wo, then r,(m)(t;) is a unipotent
matriz with exactly two Jordan blocks.

2. 1 is a banal characteristic for GLy, (Ey,)-

3. The weight X = (\;)r.g—c of ® satisfies the following:
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e For each T and for each 0 <1i < j <n, we have 0 < Ar; — A5 <.

e There exists an isomorphism i, : Q, = C such that the following inequalities hold:

2n + Z i()\m— —2|Arn/2]) <1 and 2n+ Z i(ﬂ)‘ﬂl/ﬂ —Arnti1—j) <1,

T:E—C j=1 T:E—C j=1

the first sum in each case being over embeddings T such that the place of Ey induced by L]le 18
the same as the restriction of the place wgy to Ey.

4. If m is ramified at a place w of E, then w is split over F.
5. m is unramified at the primes of E dividing 1, and the prime | is unramified in E and split in Ey.

6. m = m H o satisfies the sign conditz’on ny # na, and ning is even.

Then there exists a RACSDC automorphic representation I1 of GL,,(Ag) of weight X such that r,(7) = r,(II)
and IL,, is an unramified twist of the Steinberg representation. If the places of F' above l are split in E, and
7 is t-ordinary in the sense of [Gerl, Definition 5.1.2], then we can even assume that 11 is also t-ordinary.

Proof. Let I denote the definite unitary group associated to the extension E/F in By Proposition
there exists an automorphic representation o1 of I (Ar) such that 7 is the base change of o1. Let I denote
the corresponding unitary similitude group. By Lemma [2.3] o1 extends to an automorphic representation o
of I(A). We apply Theorem [6.7/to 0. Let U? =[], Uy be a sufficiently small open compact subgroup of
I(AP>°) with oV # 0, where U = UPU,, and U, C I(Q,) corresponds under the isomorphism ¢.,, : I(Q,) =
Q) x GL,(Ey,) to the product Z) x B, where B C GLy,(FE.,,) is the standard Iwahori subgroup. Suppose
in addition that Uj is a hyperspecial maximal compact subgroup.

In the notation of Theorem let p be the weight such that o contributes to the space A(U, W, 0).
If o’ is an automorphic representation which contributes to the space A(U, Wy, 0)m,, then let o} and 7’ be
the automorphic representations of the groups I1(Ar) and GL,(Ag) associated to ¢’ by Lemma and
Proposition Then r,(7')|q Bug = r.(m)|e £, » 80d hence the former representation maps ¢; to a unipotent

matrix with exactly two Jordan blocks. If o’ is such a representation, then the representation oy, o Ly,
of GL,,(E,,) has an Iwahori-fixed vector and is therefore isomorphic to Sty, (o) B - -- B St,_(as) for some
constants o, ..., as and integers with n; + --- 4+ ng; = n. The nilpotent operator N in the associated Weil-
Deligne representation then has a Jordan decomposition corresponding to this partition of n. By hypothesis,
the conjugacy class of N specializes to the conjugacy class of a nilpotent matrix with exactly two Jordan
blocks. This implies that s < 2, and hence the second hypothesis of Theorem is satisfied. Let ¢’ be the
representation whose existence is guaranteed by that theorem. Applying Proposition [2:4] and Lemma [2.3] to
o’, we obtain a representation IT satisfying the conclusion of the present theorem. It must be cuspidal since
IL,,, is an unramified twist of the Steinberg representation.

To obtain the last sentence of the theorem, we can enlarge the Hecke algebra T4V appearing in
the proof of Theorem to contain the analogues of the U; operators at the places dividing [, and further
localize at a maximal ideal not containing them. We omit the details. O

We remark that when the characteristic is not banal, but n is nevertheless small compared to the
order of ¢,, modulo [, one can still obtain some information using Proposition @ instead of Corollary @
For example, one can prove an analogue of the above theorem in the case n = 3, with no hypothesis on the
order of ¢,, modulo [. In general it seems an interesting question to decide whether the spectral sequence of
degenerates at E.

7.1 Proof of Theorem [1.1]

We now give the proof of the theorem of the introduction. We first note the following.
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Proposition 7.2. Let E be an imaginary CM field with totally real subfield F, and let w be a RACSDC
automorphic representation of GL,(Ag). Suppose that wy is a place of E and that my,, is an unramified
twist of the Steinberg representation. Let L denote the set of rational primes | such that for all isomorphisms
t: Q; = C, the residual representation r,() is irreducible and, if t; denotes a generator of the pro-l part of
the tame inertia group at wo, then r,(7)(t;) is a reqular unipotent element. Then L has Dirichlet density 1.

Proof. We sketch the proof, by exhibiting for every § € (0,1) a set L5 C L of lower density at least 1 — 6.
Replacing E by a soluble extension, we can assume without loss of generality that for any prime w at which
m is ramified, w is split over F.

Suppose that Fq,..., Es are quadratic imaginary fields such that for each i, F; is disjoint over Q
from the compositum of the fields E;, j # i. Let Ey denote the compositum of the fields E, Ey, ..., E,. Let
Fy denote the totally real subfield of Fy. If a prime [ splits in any F;, then the primes of Fj above [ all split
in Ey. Let IT denote the base change of m to Ey. By [TY07, Corollary B] and [BLGGT. Proposition 5.2.2],
there exists a set M of rational primes [ of Dirichlet density 1 such that for all [ € M and all isomorphisms
t: Q, = C, the residual representation r,(II) is irreducible and I > 2(n + 1). This implies a fortiori

|GE0(Cl)
that m is irreducible. After casting out finitely many elements of M, we can suppose further that for
all | € M, FEy and II are unramified above [ and, if A denotes the weight of II, then for all embeddings
T : Ey — C, we have A\;; — Ar, <1 —n —1 (this means that the Hodge-Tate weights of r,(II) lie in the
Fontaine-Lafaille range).

Choose a place xq of Ey above wg. It follows from [BLGGT| Theorem 4.4.1] that if | € M is a prime
split in one of Ej,...,E,, ¢ : Q, = C is an isomorphism and 7,(7)(#;) is not a regular unipotent element,

then we can find a RACSDC automorphic representation II' of GL, (Ag,) satisfying the following:

o 7, (II) = r (1),

e If w is a place of Ey and U, C GL,(Ey ) is an open compact subgroup such that Y« £ 0, then
(I, ) 40,

e I’ has weight A.

e There exists an open compact subgroup U, of GL,(Ep 4,) strictly containing the Iwahori subgroup,
such that (I, )Y # 0.

We claim that there can be only finitely many such primes. Indeed, if there are infinitely many then, by
the pigeonhole principle, there exists an automorphic representation II' of GLa, satisfying the last three

points, and infinitely many primes l1,ls, - - - € M with isomorphisms ¢; : Q;, = C such that r,, (I) = r,, (IT').
As TI*°, (TII')*° are defined over number fields, this implies that we must have IT 2 IT', a contradiction (cf.
[BGO6, Lemme 5.1.7]).

Let L, denote the set of primes [ € M which are split in one of Fy,..., E,. This set has Dirichlet
density 1 — 27°. The above argument shows that after casting out finitely many elements, we have £, C L.
This concludes the proof. O

Proof of Theorem[I.1, We take up the notation of the introduction. Thus E/F is a CM imaginary exten-
sion of a totally real field, and 71,7 are RACSDC automorphic representations of GL,, (Ag), GL,,(Ag),
respectively. Let £ denote the intersection of the sets £y, Ls of primes associated to the representations
71, T2 by Proposition [7.2] After removing finitely many elements from £, we can assume that for all [ € £
and all isomorphisms ¢ : Q, = C, 7 = m; B 7y is unramified at every prime of E above [, [ is unramified in
E, the order of gy, in F/ is greater than 2n, and the weight X of 7 satisfies the inequalities

(E:Q+2n+ Y Zn:(m — M) < 1/2.

7:E—C j=1

Fix a prime [ € £ and an isomorphism ¢ : Q; = C.
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There exist o, 5 € le such that the Frobenius eigenvalues of r,(m1) and r,(m2) are given by respec-

tively

O, Qup Qs - - - ,qgé_l and 3, gu, 0, - - - ,qgi_l
Let v denote the image of §/(aqy!) in le7 and let m > 1 denote the order of « in this group. By the
Grunwald-Wang theorem, there exists a cyclic extension K of E of degree m such that wy is inert in K and
w§ splits in K, and K is unramified above the primes of E dividing [. Let ¢ : Gg — le be the character
factoring through Gal(K/E) such that ¢(Frob,,) = 7, and let ¢ be the Teichmiiller lift of ¢/°. Then
P =1 and ¢ (my B (m2 @ 11)) )4, satisfies the level-raising congruence.

Let Ey be a quadratic imaginary extension of @Q in which p is inert, and which is split at [ and
every prime ¢ # p of Q below a place of E at which m B (m2 ® 1) or the extension E/F is ramified. Let
Ey = FE - Ey. The hypotheses of Theorem now apply to the base change of 71 H (72 ® 1)) to Ey. This
completes the proof. O
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