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Abstract

Let C be a hyperelliptic curve over a field k of characteristic 0, and let P ∈ C(k) be a marked
Weierstrass point. As Bhargava and Gross have observed, the 2-descent on the Jacobian of C can
be rephrased in terms of the language of arithmetic invariant theory, using the geometry of pencils of
quadrics. We give a simple re-interpretation of their construction using instead the geometry of the curve
C.
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1 Introduction

Let k be a field of characteristic 0, and let f ∈ k[x] be a monic polynomial of odd degree N ≥ 5 with non-zero
discriminant ∆(f) 6= 0. The affine curve over k

C0
f : y2 = f

is then smooth, and we write Cf for its smooth projective completion, and Jf = JacCf for its Jacobian
variety. This note is about the 2-descent on the variety Jf .

Let Af = k[x]/(f). It is well-known (see [Sch95]) that there is an injective homomorphism, functorial
in k:

Jf (k)/2Jf (k) ↪→ A×f /k
×(A×f )2. (1.1)

The existence of this map is usually derived using Galois cohomology from the existence of Kummer exact
sequence

0 //Jf [2] //Jf
[2] //Jf //0

and the isomorphism Jf [2] ∼= (ResAf/k µ2)/µ2 of finite k-groups.
In the work [BG12a] of Bhargava and Gross, the map (1.1) is taken as the starting point for a

relation between the arithmetic of the variety Jf and the arithmetic invariant theory of the pair (G,W0),
where:

• G = SO(V0) is the special orthogonal group of a split orthogonal space V0 over k of dimension dimV0 =
deg f ;

∗This research was partially conducted during the period the author served as a Clay Research Fellow.
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• and W0 ⊂ Endk(V0) is the representation of G on the space of self-adjoint linear endomorphisms of V0.

More precisely, the authors carry out the following steps:

1. To any element α ∈ A×f /k×(A×f )2, they associate an orthogonal space V of dimension dimV = deg f ,
and a self-adjoint linear operator T ∈W ⊂ Endk(V ) with characteristic polynomial f .

2. If α is in the image of the map (1.1), they show that there is a (non-canonical) isomorphism V ∼= V0 of
orthogonal spaces. (In other words: V is split.) The element T then determines a G-orbit in W0 with
characteristic polynomial f .

The essential ingredient for the second step is a description of the elements of the Galois cohomology set
H1(k, Jf [2]) in terms of the geometry of pencils of quadrics.

In this note, we give another approach to the construction of G-orbits in W0 from rational points of
Jf (k), which avoids both Galois cohomology and the geometry of pencils of quadrics. If P ∈ Jf (k), then we
can view P as being the isomorphism class of a line bundle L on the curve Cf . We construct an orthogonal
space V directly from L. We then show it is a split orthogonal space by writing down a maximal isotropic
subspace in V , using the Mumford representation of the line bundle L.

Given the elementary nature of this construction, it would be very interesting to try to generalize it
to other situations (such as the families of non-hyperelliptic curves studied in [Tho14]). In particular, it is
possible to adapt our construction when k = Q to give integral orbits, giving an alternative proof of [BG12b,
Proposition 19]. The analogous problem for non-hyperelliptic curves has not yet been solved. Another
motivation for our construction is that the orbits we construct can naturally be considered as sitting inside
transverse slices to nilpotent orbits inside the Lie algebra of PGLN , along the lines considered in eg. [Ngô99,
§1.1]. This explains to some extent the appearance of these transverse slices in [Tho13].

We now describe the organization of this note. In §2, we recall some basic facts about orthogonal
spaces. In §3, we recall the definition of the map (1.1), and its expression in terms of the Mumford rep-
resentation. These first two sections are thus a review of existing ideas. Finally, in §4, we carry out the
construction described above, and verify by explicit calculation that the ‘2-descent’ map defined this way
agrees with the cohomological one described in §3. In this way we give a new proof of [BG12b, Proposition
11].

2 Background

2.1 An orbit problem over k

Let k be a field of characteristic 0. Let N = 2n+ 1 be a positive odd integer.

Definition 2.1. An orthogonal space of dimension N over k is a pair (V, 〈·, ·〉), where:

1. V is a k-vector space of dimension N .

2. 〈·, ·〉 : V × V → k is a non-degenerate symmetric bilinear pairing.

A morphism (V, 〈·, ·〉V ) → (W, 〈·, ·〉W ) of orthogonal spaces is a linear map ϕ : V → W such that for all
x, y ∈ V , 〈ϕ(x), ϕ(y)〉W = 〈x, y〉V .

When the pairing is clear from the context, we will drop it from the notation and simply refer to
the vector space V as an orthogonal space. If V is an orthogonal space, then we define detV ∈ k×/(k×)2

for the determinant of the matrix (〈ei, ej〉)1≤i,j≤N , where e1, . . . , eN is any k-basis of V . (It is easy to see
that this is well-defined.) Similarly, we define discV = (−1)N(N−1)/2 detV ∈ k×/(k×)2.

If V is an orthogonal space and U ⊂ V is an isotropic subspace (that is, 〈x, y〉V = 0 for all x, y ∈ U),
then dimU ≤ n. If equality holds, we say that the orthogonal space V is split. It follows from [MH73, Ch.
III, §1] that if V , W are split orthogonal spaces of dimension N and discV = discW , then V ∼= W .

An example of a split orthogonal space is the space V0 with basis

e−n, . . . , e−1, e0, e1, . . . , en, (2.1)
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the pairing being defined by the formula 〈ei, e−j〉 = δij . Then discV0 = 1. If T : V0 → V0 is a linear operator,
then we write T ∗ : V0 → V0 for its adjoint, defined by the formula 〈Tv,w〉 = 〈v, T ∗w〉 for all v, w ∈ V0. We
also consider the group

SO(V0) = {g ∈ SL(V0) | gg∗ = 1}. (2.2)

The group SO(V0) acts by conjugation on W0 = {T ∈ End(V0) | T = T ∗}, the space of self-adjoint linear
transformations of V0. The characteristic polynomial of an element T ∈ W0 is an invariant of its SO(V0)-
orbit. In what follows, we will be interested in the set of SO(V0)-orbits in W0 with fixed characteristic
polynomial f , ∆(f) 6= 0.

Lemma 2.2. Let f ∈ k[x] be a monic polynomial of degree N = 2n + 1 and of non-zero discriminant
∆(f) 6= 0. Then the following two sets are in canonical bijection:

1. The set of SO(V0)-orbits in W0 with characteristic polynomial f .

2. The set of isomorphism classes of pairs (V, T ), where V is a split orthogonal space of dimension N
and discriminant 1, and T ∈ Endk(V ) is a self-adjoint linear operator with characteristic polynomial
f . (By definition, an isomorphism (V, T ) → (V ′, T ′) is an isomorphism V → V ′ that intertwines T
and T ′.)

Proof. We define maps in each direction which are mutually inverse. Since V0 is split, there is an obvious
map from the set of orbits in W0 to the set of isomorphism classes of pairs (V, T ). Conversely, given (V, T ),
we can find an isomorphism f : V → V0 of orthogonal spaces, and then f ◦ T ◦ f−1 ∈ W0. If h : V → V0 is
another isomorphism, then h ◦ T ◦ h−1 differs from f ◦ T ◦ f−1 by the action of an element of

O(V0) = {g ∈ GL(V0) | gg∗ = 1}.

Since N is odd, we have O(V0) = SO(V0)× {±1}, and {±1} acts trivially on W0. In particular, the O(V0)-
orbits in W0 are the same as the SO(V0)-orbits. This completes the proof.

2.2 An orbit problem over Af

Let A = k[x]. If f ∈ A is a monic polynoimal of degree N = 2n + 1, then we write Af = A/(f) for the
quotient ring, a finite k-algebra.

Definition 2.3. An orthogonal A-module of dimension N is a pair (V, 〈·, ·〉), where:

1. V is a cyclic A-module, of dimension N as a k-vector space.

2. 〈·, ·〉 : V × V → Af is a non-degenerate symmetric A-bilinear pairing.

A morphism (V, 〈·, ·〉V)→ (W, 〈·, ·〉W) of orthogonal A-modules is an A-linear map ϕ : V → W such that for
all x, y ∈ V, 〈ϕ(x), ϕ(y)〉W = 〈x, y〉V .

We call the polynomial f ∈ A such that V ∼= Af as A-modules the characteristic polynomial of
V. When the pairing is clear from the context we drop it from the notation and simply refer to V as an
orthogonal A-module. If V is an orthogonal A-module, then we define detV = 〈v0, v0〉 ∈ A×f /(A

×
f )2, where

v0 ∈ A is any choice of generator as A-module. (It is easy to see that this is well-defined.)

Lemma 2.4. The assignment V 7→ detV gives a bijection between the set of isomorphism classes of orthog-
onal A-modules with characteristic polynomial f and the group A×f /(A

×
f )2.

Proof. Given U ∈ A×f , define an orthogonal A-module VU by the pair (Af , 〈·, ·〉U ), where 〈x, y〉U = Uxy.

Then detVU = U mod (A×f )2. This shows that the map V 7→ detV is surjective.
We now show that it is injective. Suppose that V,W are orthogonal A-modules with detV = detW.

Choose cyclic vectors v0 ∈ V, w0 ∈ W. After replacing w0 by an A×f -multiple, we can assume that 〈v0, v0〉V =
〈w0, w0〉W . The map f : V → W defined by v0 7→ w0 is then an isomorphism of orthogonal A-modules.
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2.3 Classification of orbits

Let f ∈ k[x] be a monic polynomial of degree N = 2n+ 1, and suppose that ∆(f) 6= 0.

Proposition 2.5. The following sets are in canonical bijection.

1. The set of isomorphism classes of pairs (V, T ), where V is an orthogonal space and T ∈ Endk(V ) is a
self-adjoint linear transformation with characteristic polynomial f .

2. The set of isomorphism classes of orthogonal A-modules V with characteristic polynomial f .

If V and V correspond under this bijection, then we have discV = NAf/k detV in k×/(k×)2.

Proposition 2.5 will follow immediately from Lemma 2.6 and Lemma 2.7 below. The k-vector space
Af has a canonical basis, given by the images of the elements 1, x, . . . , x2n, and we write τ : Af → k for the
element of the dual basis with τ(x2n) = 1.

Lemma 2.6. Let V be an orthogonal A-module with characteristic polynomial f , and let V be the orthogonal
space with underlying k-vector space V, and 〈·, ·〉V = τ ◦ 〈·, ·〉V .

1. We have discV = NAf/k detV ∈ k×/(k×)2.

2. Let T ∈ Endk(V ) be multiplication by x ∈ A. Then T is a self-adjoint linear operator with characteristic
polynomial f .

Proof. 1. Fix a cyclic vector v0 ∈ V. A k-basis of V is then v0, xv0, . . . , x
2nv0. We prove the equality

det〈xiv0, xjv0〉V = (−1)nNAf/k〈v0, v0〉V in k×, which will imply the first part of the lemma. Suppose

first that 〈v0, v0〉V = 1. Then the matrix 〈xiv0, xjv0〉V = τ(xi+j) has 0’s above the anti-diagonal,
and 1’s on the anti-diagonal, so has determinant (−1)n, giving the desired equality in this case. In
general, after making a separable extension of k we can suppose that there exists α ∈ A×f such that

α2 = 〈v0, v0〉V . We then have

det〈xiv0, xjv0〉V = det〈xiα−1v0, xjα−1v0〉V · NAf/k(α)2 = (−1)nNAf/k〈v0, v0〉V ,

as required.

2. Immediate.

Lemma 2.7. Let V be an orthogonal space, and let T ∈ Endk(V ) be a self-adjoint linear operator with
characteristic polynomial f . Let V be the Af -module with underlying k-vector space V , and the action
of x ∈ A given by T . Then Af -module V admits a unique structure of orthogonal A-module such that
〈x, y〉V = τ〈x, y〉V .

Proof. Choose a cyclic vector v0 ∈ V. There exists a unique element α ∈ Af such that 〈xiv0, v0〉V = ταxi

for each i = 0, . . . , N − 1. We make V into an orthogonal A-module by defining 〈v0, v0〉V = α. To finish the
proof of the lemma, it suffices to show the equality

〈xiv0, xjv0〉V = τ〈xiv0, xjv0〉V = τxi+jα

for each 0 ≤ i, j ≤ N − 1. We can write xi+j =
∑N−1

m=0 cmx
m ∈ Af for unique scalars cm ∈ k; we then have

〈xiv0, xjv0〉V = 〈xi+jv0, v0〉V =

N−1∑
m=0

cm〈xmv0, v0〉V =

N−1∑
m=0

cmταx
m = ταxi+j .

This completes the proof.
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3 Hyperelliptic curves and 2-descent

Let k be a field of characteristic 0, and let f ∈ k[x] be a monic polynomial of degree N = 2n + 1 ≥ 5.
Suppose that ∆(f) 6= 0. We write C0

f for the smooth affine curve over k which is given by the equation

y2 = f , and Cf for its smooth projective completion. We write Jf = JacCf = Pic0 Cf for the Jacobian of
this hyperelliptic curve of genus n. We write π : Cf → P1 for the branched double covering given by the x
co-ordinate, and P∞ ∈ Cf (k) for the unique point above x = ∞. Then P∞ is a Weierstrass point, fixed by
the hyperelliptic involution ι : Cf → Cf which sends y to −y.

Associated to Cf is the Kummer exact sequence (of smooth k-groups):

0 //Jf [2] //Jf
[2] //Jf //0 (3.1)

Taking the long exact sequence in cohomology, we obtain an injective homomorphism δ : Jf (k)/2Jf (k) ↪→
H1(k, Jf [2]). This Galois cohomology group can be computed explicitly using the following result.

Proposition 3.1. There is an isomorphism Jf [2] ∼= (ResAf/k µ2)/µ2 of finite k-groups.

Proof. See [Sch95, §2].

Because N = deg f is odd, the exact sequence

0 //µ2
//ResAf/k µ2

//(ResAf/k µ2)/µ2
//0 (3.2)

is split. Hilbert’s Theorem 90 then allows us to compute H1(k, Jf [2]) ∼= H1(k, (ResAf/k µ2)/µ2), leading us
to identify the map δ with a homomorphism

δ : Jf (k)/2Jf (k) ↪→ A×f /k
×(A×f )2. (3.3)

We now discuss a concrete way to represent elements of the group Jf (k).

Lemma 3.2. Every line bundle L on Cf of degree 0 is isomorphic to a unique bundle of the form O(D−mP∞)
for some 0 ≤ m ≤ n, where D is an effective divisor satisfying the following condition. Extending scalars to
an algebraic closure ks/k, we can write D =

∑m
i=1 Pi with Pi ∈ Cf (ks). Then:

1. If 1 ≤ i ≤ m then Pi 6= P∞.

2. If 1 ≤ i < j ≤ m then Pi 6= ιPj.

Proof. Let m ≥ 0 be the smallest integer such that H0(Cf ,L(mP∞)) 6= 0. By Riemann-Roch, we have
m ≤ n, and H0(Cf ,L(mP∞)) contains a unique non-zero section s, up to scalar. The divisor of zeroes of s
now has the desired properties.

We now introduce the Mumford representation of divisors on the curve Cf , cf. [Mum07, Ch. IIIa,
§2]. Let 0 ≤ m ≤ n be an integer, and suppose given polynomials U, V,R ∈ k[x] satisfying the following
conditions:

1. we have degU = m, deg V = 2n+ 1−m, and degR ≤ m− 1;

2. the polynomials U and V are monic;

3. and we have the relation f = UV −R2.

(If m = 0, then we interpret the first condition as R = 0.) Then the effective divisor D ⊂ C0
f cut out by

the equations U = 0, y = R satisfies the conclusions of Lemma 3.2, and we associate to the triple (U, V,R)
the degree 0 line bundle L = O(D −mP∞) on Cf . Conversely, every degree 0 line bundle admits such an
expression:
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Proposition 3.3. The assignment (U, V,R) 7→ L defines a bijection between the set of tuples of polynomials
U, V,R ∈ k[x] satisfying the conditions 1–3 above and the set of isomorphim classes of degree 0 line bundles
on Cf (i.e. the set Jf (k)).

Proof. See [Mum07, Ch. IIIa, §2]. If L = O(D − mP∞), where D =
∑m

i=1 Pi is a divisor satisfying the
conclusion of Lemma 3.2, then we define U =

∏m
i=1(x − x(Pi)). If the x(Pi) are distinct, then we define R

to be the unique polynomial satisfying R(x(Pi)) = y(Pi). In this case, f −R2 is divisible by U , and this in
turn determines V . If the x(Pi) are not distinct, then the definition of R is slightly more involved, and we
do not describe the details here.

The inverse assignment L 7→ (U, V,R) is what we call the Mumford representation of the line bundle
L. We can use it to calculate the image of L under the 2-descent map (3.3):

Lemma 3.4. Let L be a degree 0 line bundle on Cf , representing a point [L] ∈ Jf (k), and let (U, V,R)
be its Mumford representation. Factor U = U0U1 in k[x], where U0 divides f and U1 is prime to f . Then
δ([L]) = U1(U0 − f/U0) mod k×(A×f )2.

Proof. This follows easily from [Sch95, Lemma 2.2].

4 Orbits and the arithmetic of hyperelliptic curves

Let k be a field of characteristic 0, let f ∈ k[x] be a polynomial of odd degree N = 2n+ 1 ≥ 5 and of non-
vanishing discriminant ∆(f) 6= 0, and let Cf be the associated hyperelliptic curve. We write j : W ↪→ Cf

for the closed subscheme supported on the 2n + 1 branch points of the map π : Cf → P1 not equal to P∞.
Thus W is in fact contained inside C0

f = Spec k[x, y]/(y2 − f), where it is defined by the equation y = 0.
There is a canonical isomorphism W ∼= SpecAf .

Let L be a line bundle on Cf of degree 0. We fix a choice of isomorphism L⊗O ι∗L ∼= O. Since ιj = j,
there is a canonical isomorphism j∗ι∗L ∼= j∗L, and we get an induced bilinear pairing j∗L × j∗L → OW .
We set V = H0(W, j∗L), and write 〈·, ·〉V : V × V → Af for the symmetric bilinear pairing we obtain after
taking global sections.

Lemma 4.1. The space V is an orthogonal A-module with characteristic polynomial f . Moreover, the image
of detV in A×f /k

×(A×f )2 is independent of the choice of trivialization of L ⊗O ι∗L.

Proof. We must show that V is a free Af -module of rank 1, and that the pairing 〈·, ·〉V is non-degenerate.
The first assertion is immediate, since j∗L is a locally free sheaf of rank 1 and W is affine. For similar
reasons, we see that 〈·, ·〉V is non-degenerate. Changing the trivialization changes detV by a k×-multiple,
which is therefore trivial in the group A×f /k

×(A×f )2.

We now compute V explicitly. Suppose that L = O(mP∞ − D), where D is an effective divisor
satisfying the conditions of Lemma 3.2, and let (U, V,R) be the associated Mumford representation of
L⊗−1 = O(D − mP∞). (If W ⊂ Cf is a Zariski open, then the non-zero sections of L over W are the
functions g ∈ k(Cf )× satisfying

(g) +mP∞ −D ≥ 0

in W .) We have L⊗ ι∗L ∼= O(2mP∞−D− ι∗D). The function U ∈ k(Cf )× satisfies (U) = D+ ι∗D−2mP∞,
and thus defines a choice of trivialization of O(2mP∞−D−ι∗D). With this choice, the pairing L×ι∗L → OCf

sends a pair (g1, g2) to g1g2/U . It follows that the pairing V × V → Af can be computed as follows: given
v1, v2 ∈ V, choose functions g1, g2 ∈ k(Cf ) such that gi − D ≥ 0 on W and j∗gi = vi. Then the function
g1g2/U ∈ k(Cf ) is regular in a neighborhood of W, and we define 〈v1, v2〉V = g1g2/U mod y ∈ Af .

Lemma 4.2. With notation as above, factor U = U0U1, where U0 divides f and U1 is prime to f . Then
detV = U1(U0 − f/U0) mod k×(A×f )2.
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Proof. The function y − U0 generates L in a Zariski open neighborhood of W, so its image in V is a cyclic
vector. We calculate

detV = 〈y − U0, y − U0〉V =
(y − U0)(−y − U0)

U
=
U2
0 − f
U

≡ U1(U0 − f/U0) mod k×(A×f )2,

as desired.

Comparing Lemma 4.2 with Lemma 3.4, we immediately obtain:

Corollary 4.3. The induced map δ′ : Jf (k) → A×f /k
×(A×f )2, L 7→ detV mod k×(A×f )2, agrees with the

Kummer homomorphism (3.3).

Lemma 4.4. Suppose that L = O(mP∞ − D) is a degree 0 line bundle on Cf , where D is an effective
divisor satisfying the conditions of Lemma 3.2, and let (U, V,R) be the Mumford representation of L⊗−1 =
O(D −mP∞). Then:

1. The functions U, y −R lie in H0(C0
f ,L), and the set

B =
{
U, xU, . . . , xdeg V−1U, (y −R), x(y −R), . . . , xdegU−1(y −R)

}
⊂ H0(C0

f ,L)

projects to a basis of V as k-vector space.

2. Let V denote the orthogonal space associated to the orthogonal A-module V (cf. Lemma 2.6). Then V
is split.

Proof. 1. We first note that H0(C0
f ,L) is a free A-module of rank 2, a basis being given by the elements

U, y − R. (We write A = k[x].) Indeed, H0(C0
f ,L) is generated as an A[y]-module by these elements,

and we have the relations

yU = RU + U(y −R) and y(y −R) = V U −R(y −R). (4.1)

It follows that V is isomorphic as A-module to A2/yA2, where y acts by the matrix(
R V
U −R

)
.

The dimension of V is equal to the cardinality of B, so it suffices to show that B spans V over k.
However, this is immediate from the relations (4.1).

2. Let a = bdegU/2c and b = bdeg V/2c. Then a + b = n and we define U ⊂ V to be the k-vector
subspace spanned by the elements U, . . . , xb−1U and (y − R), . . . , xa−1(y − R). We claim that U is
isotropic with respect to the pairing 〈v, w〉V = τ〈v, w〉V . This follows immediately on recalling that
τ : Af → k takes a polynomial to the coefficient of x2n, and noting that 〈xiU, xjU〉V = xi+jU ,
〈xiU, xj(y −R)〉V = −xi+jR, and 〈xi(y −R), xj(y −R)〉V = −xi+jV .

Example 4.5. Suppose that L = OCf
is the trivial line bundle. Then V = Af , and 〈v1, v2〉V = τv1v2. We

recover in this way the distinguished orbit of [BG12a, §5].

Theorem 4.6. Let k be a field of characteristic 0, and let f ∈ k[x] be a monic polynomial of odd degree
N = 2n + 1 ≥ 5 of non-zero discriminant ∆(f) 6= 0. Let Cf denote the associated hyperelliptic curve over
k, let Jf be its Jacobian, and let V0 be the orthogonal space (2.1). Then there is a canonical injection from
Jf (k)/2Jf (k) to the set of SO(V0)-orbits on the space W0 with characteristic polynomial f .

Proof. Let L be a degree 0 line bundle representing a point of Jf (k). We recall our constructions so far:

1. In this section, we have associated to L an orthogonal space (V, 〈·, ·〉V) with δ′([L]) = detV = δ([L]) in
A×f /k

×(A×f )2. Since N is odd, we can assume after replacing 〈·, ·〉V by a k×-multiple that NAf/k detV =
1.
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2. By Lemma 2.6, the orthogonal A-module V determines an orthogonal space where V with discV =
NAf/k detV = 1, and equipped with a self-adjoint linear operator T ∈ Endk(V ) with characteristic
polynomial f . Moreover, V is split (by Lemma 4.4).

3. By Lemma 2.2, the pair (V, T ) determines a SO(V0)-orbit in W0 with characteristic polynomial f .

It follows from Corollary 4.3 and Proposition 2.5 that the composite map induces an injection from the group
Jf (k)/2Jf (k) to the set of orbits in W0 with characteristic polynomial f . This completes the proof.
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