
Beyond the Taylor–Wiles method

In these notes we describe how to apply the Taylor–Wiles method when the numerical coin-
cidence no longer holds. The content of the numerical coincidence is nicely summarized in the
opening paragraphs of [CHT08]:

The method of [TW95] does not extend to GLn as the basic numerical coincidence on
which the method depends (see Corollary 2.43 and Theorem 4.49 of [DDT97]) breaks
down. For the Taylor–Wiles method to work when considering a representation

r : Gal(F/F )→ G(Ql)

one needs

[F : Q](dimG− dimB) =
∑
v|∞

H0(Gal(F v/Fv), ad0 r),

where B denotes a Borel subgroup of a (not necessarily connected) reductive group
G and ad0 denotes the kernel of the map, ad → adG, from ad to its G-coinvariants.
This is an ‘oddness’ condition, which can only hold if F is totally real (or ad0 = (0))
and r satisfies some sort of self-duality. For instance one can expect positive results if
G = GSp2n or G = GOn, but not if G = GLn for n > 2.

The method we discuss here makes no such restriction. We focus on the case of GL2 over a
non-totally real number field F , since all the interesting difficulties appear already in this case.
(The case where F is totally real is now very well understood; see for example [Gee].)

Nothing here is original to these notes. Our main reference is Calegari–Geraghty, ‘Modularity
lifting beyond the Taylor–Wiles method’ [CG]. See also Hansen, ‘Minimal modularity lifting for
GL2 over an arbitrary number field’ [Han]. We also use some ideas from [KT] and [NT16].

These notes come with the following health warning: in order to avoid getting distracted, we
have elided certain technical details. In some, but not all, cases, we have included a remark [in
square brackets] to indicate this.

1. Motivation and Galois deformation theory

Let F be a number field, let p be an odd prime unramified in F , and let Σ denote the set of
p-adic places of F . We write FΣ for the maximal extension of F unramified outside Σ, which
lives in some fixed algebraic closure of F . We suppose given as well a finite extension k/Fp and
an absolutely irreducible representation ρ : Gal(FΣ/F ) → GL2(k) satisfying the following two
conditions:

– The determinant is det ρ = ε−1, the inverse of the cyclotomic character.

– For each v ∈ Σ, the representation ρ|GFv is finite flat (as usual, GFv denotes a choice of
decomposition group at the place v).

We will study the Galois deformation theory of ρ. To this end, let W = W (k) denote the Witt
vectors of k, and let CW denote the category of Artinian local W -algebras with residue field k.
We consider the functor Defρ : CW → Sets, whose value on a ring A ∈ CW is given by the set of
liftings ρ : Gal(FΣ/F )→ GL2(A) of ρ, taken up to strict equivalence, and satisfying the following
two conditions:

– The determinant is det ρ = ε−1.

– For each v ∈ Σ, the representation ρ|GFv is finite flat.
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According to results of Mazur, the functor Defρ is pro-represented by a complete Noetherian
local W -algebra Rρ with residue field k, and there is a natural isomorphism between Defρ(k[ε])
(otherwise said, the Zariski tangent space to the ring Rρ) and the k-vector space

H1
L(FΣ/F, ad0 ρ) ⊂ H1(FΣ/F, ad0 ρ),

otherwise called the Selmer group. The subscript L indicates that we have chosen a set of local
conditions Lv ⊂ H1(Fv, ad0 ρ) for the places v ∈ Σ; these reflect the fact that we are working
only with those deformations of ρ which are finite flat at p.

Writing g = dimkH
1
L(FΣ/F, ad0 ρ) = h1

L(ad0 ρ), say, we can therefore find a surjection
W JX1, . . . , XgK→ Rρ of W -algebras which induces an isomorphism on Zariski tangent spaces.

According to results of Wiles, there is an equation

h1
L(ad0 ρ) = h1

L⊥(ad0 ρ(1))− r2,

where r = h1
L⊥(ad0 ρ(1)) = dimkH

1
L⊥(FΣ/F, ad0 ρ(1)) denotes the dual Selmer group, defined

with respect to the dual local conditions L⊥v ⊂ H1(Fv, ad0 ρ(1)), and we write r1, r2 for the
numbers of real and complex places of F , respectively. [This formula follows from the Euler
characteristic formula of Wiles, together with a calculation of the relevant local terms. It uses
that ρ is odd at the real places, and we have assumed that any terms which vanish when ρ is
sufficiently non-degenerate are indeed 0. See [DDT97, Theorem 2.19].]

The ‘numerical coincidence’ which occurs in the context of the ‘classical’ Taylor–Wiles method
is the equality h1

L(ad0 ρ) = h1
L⊥(ad0 ρ(1)); with the assumptions in effect here, this just means

that r2 = 0, i.e. that the number field F is totally real. We now attempt to explain why this is
relevant.

By definition, a Taylor–Wiles set for ρ is a set Q = {v1, . . . , vr} of finite places of the number
field F satisfying the following conditions:

(i) For each i = 1, . . . , r, we have qvi ≡ 1 mod p. (By definition, qv is the size of the residue
field k(v) at the place v.)

(ii) For each i = 1, . . . , r, ρ(Frobvi) has 2 distinct eigenvalues αi, βi ∈ k.

(iii) The natural localization map H1
L⊥(FΣ/F, ad0 ρ(1))→ ⊕ri=1H

1(Fvi , ad0 ρ(1)) is injective and

r = h1
L⊥(ad0 ρ(1)). (The image lies in the unramified subspace, so another way to say this

is that the localization map

H1
L⊥(FΣ/F, ad0 ρ(1))→

⊕
v∈Q

H1(k(v), ad0 ρ(1))

is an isomorphism.)

One can show, using the Chebotarev density theorem, that there are many Taylor–Wiles sets for
ρ. [In fact, this requires that ρ has big image, in some sense. It suffices to assume that p > 5 and
that ρ|GF (ζp)

is absolutely irreducible.] If Q is a fixed choice of Taylor–Wiles set, then we define
a new deformation functor Defρ,Q : CW → Sets by sending a ring A ∈ CW to the set of strict
equivalence classes of liftings ρ : Gal(FΣ∪Q/F )→ GL2(A) which have determinant ε−1, are finite
flat at p, and satisfy no extra condition at the places of Q. Again, one can show that this functor
is pro-represented by a complete Noetherian local W -algebra Rρ,Q with residue field k.

We now describe the key properties of the ring Rρ,Q. The first property is that it has a
natural structure of W [∆Q]-algebra, where ∆Q is the maximal p-power order quotient of the
group

∏r
i=1 k(vi)

×. (Note that each of the groups k(vi)
× is cyclic of order divisible by p, because
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qvi ≡ 1 mod p. Thus if qvi ≡ 1 mod pn for each i = 1, . . . , r, then there is an isomorphism
∆Q/(p

n) ∼= (Z/pnZ)r.) This structure arises because for each i = 1, . . . , r we can decompose the
universal lifting of type Defρ,Q as

ρuniv
Q |GFvi = Ai ⊕Bi,

where Ai, Bi : GFvi → R×ρ,Q are continuous characters which are unramified (and send Frobenius
to αi or βi, respectively) modulo the maximal ideal. By local class field theory, the character Ai
determines a homomorphism k(vi)

× → R×ρ,Q of p-power order, and taking the product of these

characters determines the desired homomorphism ∆Q → R×ρ,Q. It is an easy consequence of the
definitions that the natural map Rρ,Q → Rρ factors through an isomorphism

Rρ,Q ⊗W [∆Q] W ∼= Rρ.

The second property is that the natural surjection Rρ,Q → Rρ (induced by the inclusion
Defρ ⊂ Defρ,Q) induces an isomorphism of tangent spaces, implying the existence of a surjective
homomorphism W JX1, . . . , XgK→ Rρ,Q of W -algebras. This fact again follows from Wiles’ Euler
characteristic formula, and is the reason for including property (iii) in the definition of a Taylor–
Wiles set.

We can now explain the basic idea of the Taylor–Wiles method, as it appears e.g. in the
original papers of Wiles and Taylor–Wiles. The calculation of the dimension of tangent spaces
describes a uniform upper bound for the size of the rings Rρ,Q, as the set Q varies: they are all
quotients of W JX1, . . . , XgK. The rings W [∆Q] have Zariski tangent space of dimension r, and
can be used to give a lower bound for the size of the part of Rρ,Q coming from spaces of modular
forms if there is e.g. a compatible action of W [∆Q] by diamond operators on a suitable space
of modular forms, using that as Q varies, the rings ∆Q approximate more and more closely the
ring W JZrpK ∼= W JS1, . . . , SrK. When the ‘numerical coincidence’ g = r holds, these upper and
lower bounds agree and (after a lot more work!) one can show that Rρ is exhausted by Galois
representations arising from modular forms (in other words, that R = T).

2. Cohomology and automorphic forms

We now introduce some Hecke algebras, continuing with the notation of §1: F is a number field,
p is an odd prime unramified in F , and k is a finite field of characteristic p.

Let G = PGL2,F , and fix a choice of maximal compact subgroup U∞ ⊂ G(F ⊗Q R). If
U =

∏
v Uv ⊂ GL2(A∞F ) is a compact open subgroup, then we define a topological space as a

double quotient

XU = G(F )\G(AF )/UU∞.

We can write down an isomorphism XU
∼=
∐n
i=1 Γi\Hr1

2 ×H
r2
3 , where Hd denotes hyperbolic space

of dimension d and the Γi are arithmetic subgroups of PGL2(F ⊗QR) which depend on U . If the
groups Γi are neat, then we see that XU has a natural structure of smooth manifold of dimension
2[F : Q]− r2. [We will assume that U always satisfies this neatness condition, and that XU is a
smooth manifold, in what follows. This is a minor technical point that does not cause any great
difficulty.] Then the cohomology groups H∗(XU ,W ) are finitely generated W -modules, non-zero
only in the range [0, 2[F : Q]− r2].

It is usual to consider the action of Hecke operators on the groups H∗(XU ,W ). We are
instead going to construct Hecke algebras in the derived category, following [NT16]. We write
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K(W ) for the category of chain complexes of W -modules, and D(W ) for the derived category
of chain complexes: it has the same objects as K(W ), but all quasi-isomorphisms have been
inverted. The cohomology groups H∗(XU ,W ) are computed as the cohomology groups of a
complex C(XU ,W ) ∈ D(W ), which is well-defined up to isomorphism.

Hecke operators exist in the derived category: there is a natural map

H(GL2(A∞F ), U)→ EndD(W )(C(XU ,W )),

where H(GL2(A∞F ), U) is the usual double coset algebra. If S ⊃ Σ is a finite set of primes of F
and Uv = GL2(OFv) for all primes v 6∈ S of F , then we can define a Hecke algebra TU as the
W -subalgebra of EndD(W )(C(XU ,W )) generated by the usual unramified Hecke operators Tv =
[GL2(OFv) diag($v, 1) GL2(OFv)] for primes v 6∈ S. These operators commute inH(GL2(A∞F ), U),
so we see that TU is a finite commutative W -algebra. In particular, it has finitely many maximal
ideals m, each of which has residue field TU/m a finite extension of k. [The algebra TU depends
a priori on the choice of set S. However, a standard argument (see [KT, Lemma 6.20]) shows
that if we assume Conjecture A below, and m ⊂ TU is a non-Eisenstein maximal ideal, then the
localization TU,m is independent of the choice of S. We therefore feel free to ignore this dependence
in our notation.]

Let T′U denote the quotient of TU which acts faithfully on cohomology. Since the complex
C(XU ,W ) is filtered by its finitely many cohomology objects, the surjection TU → T′U has
nilpotent kernel; in particular, every maximal ideal of TU appears in the support of H∗(XU ,W ).
(See e.g. [KT, Lemma 2.5].)

To get started, we are going to state the two basic conjectures that Calegari–Geraghty need
to get their generalization of the Taylor–Wiles method to work. The first is about existence of
Galois representations with TU -coefficients; the second is about the behaviour of the cohomology
groups H∗(XU ,W ).

Conjecture A. (i) For each maximal ideal m ⊂ TU , there exists a continuous representation
ρm : Gal(FS/F ) → GL2(TU/m) such that det ρm = ε−1 and for all v 6∈ S, tr ρm(Frobv) =
Tv mod m.

(ii) If m ⊂ TU is a maximal ideal such that ρm is absolutely irreducible (in which case we say
that m is non-Eisenstein), there exists a lifting ρm : Gal(FS/F ) → GL2(TU,m) of ρm such
that det ρm = ε−1 and for all v 6∈ S, tr ρm(Frobv) = Tv.

(iii) If m is a non-Eisenstein maximal ideal and Uv = GL2(OFv) for all v ∈ Σ, then the repre-
sentation ρm is finite flat at p.

Suppose that U =
∏
v GL2(OFv) and m ⊂ TU is non-Eisenstein. Then ρ = ρm satisfies the

conditions of the previous section, and the lifting ρm determines a surjective homomorphism
Rρ → TU,m. Our goal in these notes is to prove that this map is in fact an isomorphism.

Conjecture B. Let m ⊂ TU be a non-Eisenstein maximal ideal. Then the groups H∗(XU , k)m
are concentrated in the range [r1, r1 + r2].

This conjecture is motivated by what happens rationally: the groups H∗(XU ,W )[1/p] can be
computed in terms of cuspidal cohomological automorphic forms, and these indeed contribute
non-zero classes exactly in degrees in the range [r1, r1 + r2].

We will assume both of these conjectures in what follows.
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3. The classical case

Having set the scene, we now describe the Taylor–Wiles argument in the classical case where
the base number field F is totally real and the numerical coincidence g = r is in effect. The
version of the argument we describe here is in fact a modification of the original arguments of
Taylor and Wiles which is due to Diamond. We observe that the case where F is totally real is
the only case currently where both Conjectures A and B are known. [More precisely, Conjecture
B is known in many cases thanks to work of Dimitrov [Dim05]; in practice, one would use the
Jacquet–Langlands correspondence to move to a form of PGL2 (e.g. definite at infinity) for which
Conjecture B becomes trivial.]

We thus take F to be totally real, U =
∏
v GL2(OFv), and m ⊂ TU a non-Eisenstein maximal

ideal. Let ρ = ρm. We will show that the map Rρ → TU,m is an isomorphism. In this situation,
XU is the set of complex points of a Hilbert modular variety, and the groups H i(XU ,W )m are
free W -modules, non-zero only in the middle degree i = [F : Q]. This implies that the Hecke
algebra TU,m acts faithfully on H0 = H [F :Q](XU ,W )m, so we can forget about derived categories
for this section. The module H0 becomes a Rρ-module via the map Rρ → TU,m. We will in fact
show something even stronger than Rρ = TU,m, namely that H0 is a free Rρ-module.

The key input into the classical Taylor–Wiles method is the following additional data.

Proposition 3.1. For every Taylor–Wiles set Q, we can find the following data:

(i) A finite free W [∆Q]-module HQ.

(ii) A homomorphism Rρ,Q → EndW [∆Q](HQ) of W [∆Q]-algebras.

(iii) An isomorphism HQ ⊗W [∆Q] W ∼= H0 of W -modules such that the diagram

Rρ,Q //

��

EndW [∆Q](HQ)

−⊗W [∆Q]W

��
Rρ // EndW (H0)

commutes.

Let ∆∞ = Zrp, and let S∞ = W J∆∞K ∼= W JS1, . . . , SrK. For every choice of Taylor–Wiles set
Q, we fix a surjection ∆∞ → ∆Q, and hence view Rρ,Q as S∞-algebra. We also fix a surjection
W JX1, . . . , XgK→ Rρ,Q.

As Q varies, the kernels of the maps ∆∞ → ∆Q become arbitrarily small. A compactness (or
“patching”) argument (using the fact that all of the objects considered here are profinite) allows
us to imagine that all of the data associated to Taylor–Wiles sets Q here are compatible as Q
varies. More precisely, compactness allows us to pass to a convergent subsequence where this is
indeed the case (see [Dia97, §2]). We can therefore ‘pass to the limit with respect to Q’ to obtain
the following data:

(i) A finite free S∞-module H∞.

(ii) A complete local W -algebra Rρ,∞, together with a surjection W JX1, . . . , XgK→ Rρ,∞, and
a homomorphism S∞ → Rρ,∞, together with an isomorphism Rρ,∞ ⊗S∞ W ∼= Rρ.

(iii) A homomorphism Rρ,∞ → EndS∞(H∞) of S∞-algebras.
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(iv) An isomorphism H∞ ⊗S∞ W ∼= H0 of W -modules such that the diagram

Rρ,∞ //

��

EndS∞(H∞)

−⊗S∞W

��
Rρ // EndW (H0)

commutes.

[Warning: although elementary, the construction of these objects depends on many choices. In
particular, there is no Galois representation with coefficients in the ring Rρ,∞.]

We have

dimS∞ = depthS∞ H∞ 6 depthRρ,∞ H∞ 6 dimRρ,∞ 6 dimW JX1, . . . , XgK,

the first equality because H∞ is free, the first inequality because the action of S∞ on H∞ factors
through Rρ,∞, the second inequality because depth is bounded above by dimension, and the final
inequality because Rρ,∞ is a quotient of the given power series ring.

At this point, the numerical coincidence g = r intervenes to show that these inequalities are
all equalities. This shows that the surjection W JX1, . . . , XgK → Rρ,∞ must be an isomorphism.
To finish the argument, we use the Auslander–Buchsbaum formula depthSM + proj dimSM =
dimS, for a finitely generated module M over a regular local ring S. This implies that H∞ is
free over Rρ,∞, and hence H0

∼= H∞ ⊗S∞ W is free over Rρ ∼= Rρ,∞ ⊗S∞ W . This is the end of
the argument.

4. Beyond the classical case

We now return to the case of a general number field F , and take again U =
∏
v GL2(OFv) and

m ⊂ TU to be a non-Eisenstein maximal ideal. Let ρ = ρm. Two problems arise when generalizing
the arguments of the previous section:

– First, the numerical coincidence g = r no longer applies, although it seemed to play a crucial
role at the end of the argument. Instead, we have g = r − r2, where r2 is the number of
complex places of F .

– Second, we still want to take H0 = H∗(XU ,W )m. However, the natural groups HQ that you
might write down are no longer free W [∆Q]-modules. This freeness was important.

It turns out that these problems are connected, and will in the end cancel each other out. The
second problem is closely related to the fact that the cohomology groups H∗(XU ,W )m are no
longer concentrated in a single cohomological degree. This happens even rationally: if π is a
cuspidal automorphic representation of PGL2(AF ) which contributes to H∗(XU ,W )m[1/p], then
it will have non-zero contributions in all of the degrees in the range [q0, q0 + l0] = [r1 + r2, r1 +
2r2]. (The notation q0, l0 introduced here generalizes away from GL2, although the origin of
these quantities is not important here.) Recall that conjecture B above states that the integral
cohomology of H∗(XU ,W )m is concentrated in the same range.

We recall that we have defined the Hecke algebra TU ⊂ EndD(W )(C(XU ,W )). Since TU
is a finite W -algebra, and so p-adically complete, the maximal ideal m ⊂ TU determines an
idempotent em ∈ TU . We can then apply the following lemma to get a direct summand complex
C(XU ,W )m, which is equipped with a subalgebra TU,m ⊂ EndD(W )(C(XU ,W )m) and a canonical
isomorphism H∗(C(XU ,W )m) ∼= H∗(XU ,W )m.
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Lemma 4.1. Let A be a ring and let e ∈ EndD(A)(X) be an idempotent. Then there is an
isomorphism X ∼= Y ⊕Z which identifies e with idY ⊕0Z . Moreover, the objects Y, Z are uniquely
determined up to isomorphism in D(A).

In other words, the additive category D(A) is idempotent complete. We set C0 = C(XU ,W )m ∈
D(W ).

To go further we now need to specify what additional structures there are given Taylor–
Wiles data. We recall that given a Taylor–Wiles set Q = {v1, . . . , vr}, we have introduced the
deformation ring Rρ,Q, which parameterizes deformations of ρ which may now be ramified at
places v ∈ Q: it is an algebra for the ring W [∆Q], where ∆Q =

∏r
i=1 k(vi)

×(p).

Conjecture C. For every Taylor–Wiles set Q, we can find the following data:

(i) A perfect complex CQ of W [∆Q]-modules.

(ii) A homomorphism Rρ,Q → EndD(W [∆Q])(CQ) of W [∆Q]-algebras.

(iii) An isomorphism CQ ⊗L
W [∆Q] W

∼= C0 in D(W ) such that the diagram

Rρ,Q

��

// EndD(W [∆Q])(CQ)

−⊗L
W [∆Q]

W

��
Rρ // EndD(W )(C0)

commutes.

[The construction of CQ will be explained in the next section; its definition is unconditional.
The statement in (ii) that the map Rρ,Q → EndD(W [∆Q])(CQ) respects W [∆Q]-algebra structures
is a slightly obscured form of local-global compatibility at Taylor–Wiles primes.]

Before we proceed to the patching argument, we recall a very useful lemma that explains the
importance of Conjecture B. It is a version of Nakayama’s lemma for complexes:

Lemma 4.2. Let A be a Noetherian local ring.

(i) Say a complex C ∈ D(A) is minimal if C is a bounded complex of finite free A-modules
and the differentials on C ⊗A A/mA are 0. If C,D are minimal complexes of A-modules,
and they are isomorphic in D(A), then this isomorphism is represented by an isomorphism
C ∼= D in K(A).

(ii) Let C be a perfect complex of A-modules. Then C is isomorphic in D(A) to a minimal
complex.

If C is a minimal complex, then C ⊗A A/mA = H∗(C ⊗A A/mA). Applying the traditional
form of Nakayama’s lemma, this shows that Ci is non-zero if and only if H i(C ⊗A A/mA) 6= 0.

Applying the lemma (and Conjecture B) to C0, we can assume that C0 is a complex of finite
free W -modules concentrated in the range [q0, q0 +l0]. Applying the lemma to CQ, we can assume
that CQ is a complex of finite free W [∆Q]-modules concentrated in the range [q0, q0 + l0], and
that the isomorphism of Conjecture C is represented by an isomorphism

CQ ⊗W [∆Q] W ∼= C0

in K(W [∆Q]).

We can now carry out the Taylor–Wiles argument. Let ∆∞ = Zrp, and let S∞ = W J∆∞K ∼=
W JS1, . . . , SrK. We choose for every Taylor–Wiles set Q a surjection ∆∞ → ∆Q and a surjection
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W JX1, . . . , XgK → Rρ,Q. By another compactness argument (to ‘take the limit Q → ∞’; see §7
below), we obtain the following data:

(i) A complex C∞ of finite free S∞-modules, concentrated in degrees [q0, q0 + l0].

(ii) A complete local W -algebra Rρ,∞, together with a surjection W JX1, . . . , XgK→ Rρ,∞, and
a map S∞ → Rρ,∞, together with an isomorphism Rρ,∞ ⊗S∞ W ∼= Rρ.

(iii) A homomorphism Rρ,∞ → EndD(S∞)(C∞) of S∞-algebras.

(iv) An isomorphism C∞ ⊗S∞ W ∼= C0 of complexes of W -modules such that the diagram

Rρ,∞ //

��

EndD(S∞)(C∞)

−⊗L
S∞W

��
Rρ // EndD(W )(C0)

commutes.

We have

dimS∞ H∗(C∞) 6 dimRρ,∞ H∗(C∞) 6 dimRρ,∞ 6 dimW JX1, . . . , XgK = dimS∞ − l0,

since the action of the ring S∞ on the cohomology groups factors through Rρ,∞, and r− g = l0.
To conclude, we apply the following lemma of Calegari–Geraghty (see [CG, Lemma 6.2]):

Lemma 4.3. Let S be a regular local ring of dimension d, let 0 6 l 6 d be an integer, and let C
be a complex of finite free S-modules, concentrated in degrees [0, l]. Then dimS H

∗(C) > d− l,
and if equality holds then there is a unique non-zero cohomology group H i(C) in degree i = l,
and we have proj dimSH

l(C) = l, depthS H
l(C) = d− l.

(Thus the complex C is a projective resolution of H l(C) of minimal length.) Applying this
to the complex C∞ of S∞-modules shows that dimS∞ H∗(C) > dimS∞ − l0. We already know
that the reverse inequality holds, so we deduce equality and can apply the lemma again to get

dimS∞ − l0 = depthS∞ Hq0+l0(C∞) 6 depthRρ,∞ Hq0+l0(C∞)

6 dimW JX1, . . . , XgK = dimS∞ − l0.

Thus depthRρ,∞ Hq0+l0(C∞) = dimW JX1, . . . , XgK. We deduce that Rρ,∞ = W JX1, . . . , XgK
and, using the Auslander–Buchsbaum formula, that Hq0+l0(C∞) is free over Rρ,∞. Finally we
can pass to the quotient to deduce that Hq0+l0(XU ,W )m = Hq0+l0(C∞) ⊗S∞ W is free over
Rρ = Rρ,∞ ⊗S∞ W . In particular, the map Rρ → TU,m must be an isomorphism.

Looking at the proof, we see that it can be said to rely on a new numerical coincidence

dimkH
1
L⊥ (FΣ/F,ad0 ρ(1))

− dimkH
1
L(FΣ/F,ad0 ρ)

= l0 = length of range in which
there is non-zero cohomology.

5. Construction of complexes

We now sketch the construction of the auxiliary complexes CQ appearing in §4. Recall then that
C0 = C(XU ,W )m, and we want to construct for every Taylor–Wiles set Q a perfect complex CQ of
W [∆Q]-modules, together with a homomorphism Rρ,Q → EndD(W [∆Q])(CQ) of W [∆Q]-algebras
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and an isomorphism CQ ⊗L
W [∆Q] W

∼= C0 such that the diagram

Rρ,Q

��

// EndD(W [∆Q])(CQ)

−⊗L
W [∆Q]

W

��
Rρ // EndD(W )(C0)

commutes.

In the classical case l0 = 0, the perfectness of the complex CQ, together with Conjecture
B, would imply that cohomology groups H∗(CQ) are free over W [∆Q] (and non-zero exactly
in degree q0). In general, this will definitely not be the case, and this necessitates the use of
complexes rather than cohomology groups.

Let us therefore take a Taylor–Wiles set Q = {v1, . . . , vr}. We recall that by definition we
have #k(vi) = qvi ≡ 1 mod p for each i = 1, . . . , r, and the group ∆Q is defined as the maximal p-
power order quotient of the finite abelian group

∏r
i=1 k(vi)

×. We define open compact subgroups
of U =

∏
v GL2(OFv) as follows:

U0(Q) =
∏
v 6∈Q

GL2(OFv)×
∏
v∈Q

U0(v),

U1(Q) =
∏
v 6∈Q

GL2(OFv)×
∏
v∈Q

U1(v),

where

U0(v) =

{(
a b
c d

)
∈ GL2(OFv) | c ≡ 0 mod ($v)

}
,

U1(v) =

{(
a b
c d

)
∈ U0(v) | ad−1 mod ($v) has order prime to p

}
.

Then U0(Q) ⊂ U has finite index prime to p (its index is
∏r
i=1(qvi + 1) and p is odd), and

U1(Q) ⊂ U0(Q) is a normal subgroup with U0(Q)/U1(Q) ∼= ∆Q. Since we assume that U is neat,
the natural map XU1(Q) → XU0(Q) is a Galois covering, with group ∆Q. Then we can upgrade
C(U1(Q),W ) to be a perfect complex of W [∆Q]-modules such that

H∗(C(U1(Q),W )) = H∗(XU1(Q),W )

and

H∗(C(U1(Q),W )⊗L
W [∆Q] W ) = H∗(XU0(Q),W ).

The Hecke algebra TU lives in EndD(W )(C(XU ,W )), while the Hecke algebra TU0(Q) lives in
EndD(W )(C(XU0(Q),W ). We define TU0(Q)/U1(Q) to be the W [∆Q]-subalgebra of

EndD(W [∆Q])(C(XU1(Q),W ))

generated by unramified Hecke operators. Then there is a commutative diagram

TU0(Q)/U1(Q)

��

// EndD(W [∆Q])(C(XU1(Q),W ))

−⊗L
W [∆Q]

W

��
TU0(Q)

// EndD(W )(C(XU0(Q),W )).

The index [U : U0(Q)] =
∏r
i=1(qvi + 1) is prime to p, so the pullback morphism C(XU ,W ) →

9
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C(XU0(Q),W ) is split by the trace map trU/U0(Q). This allows us to write down another commu-
tative diagram

TU0(Q)
//

��

EndD(W )(C(XU0(Q),W ))

��
TU // EndD(W )(C(XU ,W )).

We write n0 for the pullback of m to TU0(Q) and n1 for the pullback of n0 to TU0(Q)/U1(Q). Then
there are surjective maps

TU0(Q)/U1(Q),n1
→ TU0(Q),n0

→ TU,m
and we can define the corresponding localized complexes

C(XU1(Q),W )n1 ∈ D(W [∆Q])

and

C(XU0(Q),W )n0 ∈ D(W ).

Then there is an isomorphism

C(XU1(Q),W )n1 ⊗L
W [∆Q] W

∼= C(XU0(Q),W )n0 .

A souped-up version of Conjecture A would imply the existence of a lifting of ρm to TU0(Q)/U1(Q),n1
,

hence a surjective map Rρ,Q → TU0(Q)/U1(Q),n1
. We are still not quite finished: even in the classical

case, this map will not be a homomorphism of W [∆Q]-algebras (which is a key requirement).

To get around this, we introduce the double coset operators Uv = [U1(v) diag($v, 1)U1(v)]
for v ∈ Q and define the enlarged Hecke algebras

TQ-aug
U0(Q)/U1(Q),n1

⊂ EndD(W [∆Q])(C(XU1(Q),W )n1)

and

TQ-aug
U0(Q),n0

⊂ EndD(W )(C(XU0(Q),W )n0)

to be the algebras generated by TU0(Q)/U1(Q),n1
and TU0(Q),n0

, respectively, and all the operators
Uv (v ∈ Q). A calculation in the local Iwahori–Hecke algebra H(GL2(Fv), U0(Q)) (see [KT, §5],
where this calculation is done for GLn; a simpler argument suffices when n = 2, see [CG]) shows
that the ideals

n0,α = (n0, Uv1 − α1, . . . , Uvr − αr) ⊂ TQ-aug
U0(Q),n0

and

n1,α = (n1, Uv1 − α1, . . . , Uvr − αr) ⊂ TQ-aug
U0(Q)/U1(Q),n1

are proper maximal ideals which appear in the support of H∗(XU0(Q), k) and H∗(XU1(Q), k),
respectively. (We recall that for each vi ∈ Q, ρ(Frobv) is assumed to have distinct eigenvalues
αi, βi ∈ k.) We consider the further localizations

C(XU1(Q),W )n1,α ,

direct summand of C(XU1(Q),W )n1 , and

C(XU0(Q),W )n0,α ,

direct summand of C(XU0(Q),W )n0 . These complexes have the property that

C(XU1(Q),W )n1,α ⊗L
W [∆Q] W

∼= C(XU0(Q),W )n0,α

10
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and one can moreover show (cf. [KT, §5]) that there is now an isomorphism in D(W )

C(XU0(Q),W )n0,α
∼= C(XU ,W )m

which respects the action of unramified Hecke operators. We can finally therefore take

CQ = C(XU1(Q),W )n1,α ,

with its induced map Rρ,Q → EndD(W [∆Q])(CQ). To verify Conjecture C, it remains to show that
this map is a homomorphism of W [∆Q]-algebras. This would follow from an appropriate version
of local-global compatibility.

In the classical case, the above complexes are isomorphic in D(W [∆Q]) to their unique non-
zero cohomology groups, and our construction reduces to the one given in e.g. [Gee, §5.5].

6. Further remarks

There is much more to say than we have time for here:

Remark. (i) Everything we have said generalizes essentially without change to the case of GLn
(in particular, there is no need to fix the determinant), as long as one states the correct
versions of the corresponding conjectures. The same ideas also apply in other situations
where the numerical coincidence fails to hold. A key example is the case of weight 1 modular
forms for GL2 over Q (where there are repeated Hodge–Tate weights). Calegari–Geraghty
implement their ideas in [CG] to prove unconditional R = T theorems for weight 1 modular
forms.

(ii) We have shown above how to prove an R = T theorem. This leads to a traditional auto-
morphy lifting theorem of the following form:

Theorem 6.1. Let p be an odd prime and let F be a number field unramified at p. Assume
Conjectures A, B and C above. Let ρ : GF → GL2(Qp) be a continuous representation,
unramified away from p and finite flat at p, and such that det ρ = ε−1. Suppose that there
exists a cuspidal automorphic representation π of PGL2(AF ), cohomological of weight 0 and
everywhere unramified, such that rι(π) ∼= ρ (for some choice of isomorphism ι : Qp

∼= C).
Suppose moreover that ρ satisfies a big image hypotheses (e.g. p > 5 and ρ|GF (ζp)

absolutely

irreducible). Then ρ is automorphic: there exists a cuspidal automorphic representation Π
of PGL2(AF ), cohomological of weight 0, and an isomorphism ρ ∼= rι(Π).

It is obviously desirable to have a version of this theorem that allows ρ and π to be ramified
(at least at the primes away from p). In [CG] it is shown that the technique used in [Tay08]
can be generalized to the current setting. This allows one to prove automorphy lifting results
where ρ and π can have arbitrary ramification away from p (still assuming the appropriate
generalizations of Conjectures A, B and C). It is shown in [CG] that these (conditional)
theorems are strong enough to imply e.g. the potential modularity of all elliptic curves over
all number fields!

(iii) The Galois representations that are required in Conjecture A have been almost shown to
exist by Scholze in the case where F is a CM field [Sch15]. More precisely he constructs
representations with coefficients in a quotient TU/I, where I is an ideal satisfying Iδ = 0
for some explicit integer δ (depending only on F and n, and not on the particular choice of
U). One can modify the arguments here to find that this weaker statement is still enough
to prove results like Theorem 6.1, although one will no longer be able to show that the map
Rρ → TU,m is an isomorphism on the nose.

11
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The modifications required in order to deal with the presence of a nilpotent ideal I are quite
simple, and there is some hope (based on [NT16]) that one will eventually have access to
Scholze’s results with δ = 1 (i.e. I = 0), so we have avoided discussing them in the main
part of these notes. We discuss the modifications required in §8 below.

7. Appendix 1: how to patch

Here we describe an abstract result that describes how to patch complexes together. The result
and its proof are based on [KT, Proposition 3.1]. We still use k to denote a finite field and W
its ring of Witt vectors.

Proposition 7.1. Fix integers g, r > 0, and let ∆∞ = Zrp. If N > 0, let ∆N = ∆∞/(p
N ). Let

S∞ = W J∆∞K. Suppose given the following data:

(i) A complete Noetherian local W -algebra R0 and a surjection W JX1, . . . , XgK → R0 of W -
algebras.

(ii) A minimal complex C0 of W -modules.

(iii) A homomorphism R0 → EndD(W )(C0) of W -algebras.

Suppose given as well for every N > 1 the following data:

(i) A complete Noetherian local W [∆N ]-algebra RN and a surjection W JX1, . . . , XgK→ RN of
W -algebras.

(ii) A minimal complex CN of W [∆Q]-modules.

(iii) A homomorphism RN → EndD(W [∆N ])(CN ) of W [∆N ]-algebras.

(iv) Isomorphisms RN ⊗W [∆N ] W ∼= R0 and CN ⊗W [∆N ] W ∼= C0 such that the diagram

RN //

��

EndD(W [∆N ])(CN )

−⊗L
W [∆N ]

W

��
R0

// EndD(W )(C0)

commutes.

Then we can find the following data:

(i) A complete Noetherian local S∞-algebra R∞ and a surjection W JX1, . . . , XgK → R∞ of
W -algebras.

(ii) A minimal complex C∞ of S∞-modules.

(iii) A homomorphism R∞ → EndD(S∞)(C∞) of S∞-algebras.

(iv) Isomorphisms R∞ ⊗S∞ W ∼= R0 and C∞ ⊗S∞ W ∼= C0 such that the diagram

R∞ //

��

EndD(S∞)(C∞)

−⊗L
S∞W

��
R0

// EndD(W )(C0)

commutes.

Proof. Let s = dimkH
∗(C0 ⊗W k), and suppose that C0 is concentrated in the range [0, d] for

some d > 0. If t ∈ mRN , then t acts nilpotently on H∗(CN ⊗W [∆N ] k) = H∗(C0 ⊗W k), so ts acts

12
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as 0 on H∗(CN ⊗W [∆N ] k). The existence of the spectral sequence of a filtered complex implies

that tN
2rs acts as 0 on H∗(CN ⊗W [∆N ] W [∆N ]/(pN )), and then [KT, Lemma 2.5] shows that

t(d+1)N2rs has trivial image in

EndD(W [∆N ]/(pN ))(CN ⊗W [∆N ] W [∆N ]/(pN )).

It follows that the map

RN → EndD(W [∆N ]/(pN ))(CN ⊗W [∆N ] W [∆N ]/(pN ))

factors through the quotient RN/m
(g+1)(d+1)N2rs
RN

.

We define a patching datum of level N > 1 to be a tuple (D,ψ,R, η0, η1, η2), where:

– D is a minimal complex of W [∆N ]/(pN )-modules and ψ is an isomorphism

ψ : D ⊗W [∆N ]/(pN ) W/(p
N ) ∼= C0 ⊗W W/(pN ).

– R is a complete Noetherian local S∞-algebra equipped with a surjection

η0 : W JX1, . . . , XgK→ R

of W -algebras, a homomorphism

η1 : R→ EndD(W [∆N ]/(pN ))(D)

of S∞-algebras, and a homomorphism

η2 : R→ R0/m
(g+1)(d+1)N2rs
R0

of S∞-algebras. Moreover, m
(g+1)(d+1)N2rs
R = 0, and the diagram

R //

��

EndD(W [∆N ]/(pN ))(D)

��
R0

// EndD(W/(pN ))(C0)

commutes.

We make the collection of patching data of level N into a category PatchN as follows: a morphism
α : (D,ψ,R, η0, η1, η2)→ (D′, ψ′, R′, η′0, η

′
1, η
′
2) is a pair α = (f, g), where:

– f : D → D′ is an isomorphism of complexes ofW [∆N ]/(pN )-modules such that ψ′(f⊗W [∆N ]/(pN )

W/(pN ))ψ−1 is the identity.

– g : R→ R′ is an isomorphism of S∞-algebras that intertwines η0 and η′0, η1 and η′1, and η2

and η′2.

Evidently the category PatchN is a groupoid, i.e. every morphism is an isomorphism. There is a
collection of functors (FN : PatchN+1 → PatchN )N>1, which assign to a tuple (D,ψ,R, η0, η1, η2)
the tuple FN (D,ψ,R, η0, η1, η2) = (D′, ψ′, R′, η′0, η

′
1, η
′
2) given as follows:

– D′ = D ⊗W [∆N+1]/(pN+1) W [∆N ]/(pN ).

– ψ′ is the composite

D′ ⊗W [∆N ]/(pN ) W/(p
N ) ∼= D ⊗W [∆N+1]/(pN+1) W/(p

N ) ∼= C0 ⊗W W/(pN ).

– R′ = R/m
(g+1)(d+1)N2rs
R .

13
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– η′0, η
′
1 and η′2 are the obvious maps.

The set of isomorphism classes of patching data of level N is finite. Indeed, it suffices to note
that the cardinality of the ring R in the tuple (D,ψ,R, η0, η1, η2) is bounded solely in terms
of N (since W JX1, . . . , XgK/(p,X1, . . . , Xg)

(g+1)(d+1)N2rs is a ring of finite cardinality), and
EndD(W [∆N ]/(pN ))(D) has cardinality bounded above by |W [∆N ]/(pN )|·(dimkD⊗W [∆N ]/(pN )k)2.

(Indeed, sinceD is a complex of finite free modules, every endomorphism ofD in D(W [∆N ]/(pN ))
is represented by a homotopy class of endomorphisms of D as a complex.)

The set of isomorphism classes is also non-empty. Indeed, for each M > 1, we can define a
patching datum D(M,M) = (D,ψ,R, η0, η1, η2) ∈ PatchM as follows:

– D = CM ⊗W [∆M ] W [∆M ]/(pM ).

– ψ is the reduction modulo pM of the given isomorphism CM ⊗W [∆M ] W ∼= C0.

– R = RM/m
(g+1)(d+1)M2rs
RM

.

– η0, η1 and η2 are the obvious maps.

If M > N > 1, then we define D(M,N) ∈ PatchN to be the image of D(M,M) under the
composite functor FN◦FN+1◦· · ·◦FM−1. After diagonalization, we can find an increasing sequence
(MN )N>1 of integers, together with a system of isomorphisms αN : FN (D(MN+1, N + 1)) →
D(MN , N). Passing to the inverse limit with respect to these isomorphisms, we obtain a tuple
(C∞, ψ∞, R∞, η0, η1, η2), where:

– C∞ is a bounded complex of finite free S∞-modules and ψ∞ is an isomorphism

ψ∞ : C∞ ⊗S∞ W ∼= C0.

– R∞ is a complete Noetherian local S∞-algebra equipped with a surjection

η0 : W JX1, . . . , XgK→ R∞

of W -algebras, a homomorphism

η1 : R∞ → EndD(S∞)(C∞)

of S∞-algebras, and a homomorphism

η2 : R∞ → R0

of S∞-algebras. Moreover, the diagram

R∞ //

��

EndD(S∞)(C∞)

��
R0

// EndD(W )(C0)

commutes.

(We have used here the fact that if F is a bounded complex of finite free S∞-modules, then there
is a canonical isomorphism

EndD(S∞)(F ) = lim←−EndD(W [∆N ]/(pN ))(F ⊗S∞ W [∆N ]/(pN )).

This is a consequence of the representation of endomorphisms in D by homotopy classes of
endomorphisms as complexes, and a Mittag-Leffler argument, see the proof of [KT, Lemma
2.13].) This completes the proof.
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8. Appendix 2: nilpotent ideals

In this section we briefly discuss how to modify the arguments of §4 assuming weaker versions
of Conjectures A and C. We continue to assume that F is a number field and that p is an odd
prime unramified in F , and now state these weaker versions:

Conjecture A′. Let U =
∏
v Uv ⊂ GL2(ÔF ) be an open subgroup, and let S ⊃ Σ be a finite

set of finite places such that Uv = GL2(OFv) if v 6∈ S.

(i) For each maximal ideal m ⊂ TU , there exists a continuous representation ρm : Gal(FS/F )→
GL2(TU/m) such that det ρm = ε−1 and for all v 6∈ S, tr ρm(Frobv) = Tv mod m.

(ii) If m ⊂ TU is a maximal ideal such that ρm is absolutely irreducible (in which case we say
that m is non-Eisenstein), then there exists an absolute constant δ = δ(F ), an ideal I ⊂ TU,m
such that Iδ = 0, and a lifting

ρm : Gal(FS/F )→ GL2(TU,m/I)

of ρm such that det ρm = ε−1 and for all v 6∈ S, tr ρm(Frobv) = Tv mod I.

(iii) If m is a non-Eisenstein maximal ideal and Uv = GL2(OFv) for all v ∈ Σ, then the repre-
sentation ρm is finite flat at p.

If F is an imaginary CM field, then parts (i) and (ii) of Conjecture A′ follow from the work
of Scholze [Sch15]. It is proved in [NT16] that in this case, one can even take δ = 4.

Let U =
∏
v GL2(OFv), and let m ⊂ TU be a non-Eisenstein maximal ideal. Let ρ = ρm. Let

T0 = TU,m, I0 ⊂ T0 the ideal given by Conjecture A′. We recall that C0 = C(U,W )m.

Conjecture C′. For every Taylor–Wiles set Q, we can find the following data:

(i) A perfect complex CQ of W [∆Q]-modules and an isomorphism CQ⊗L
W [∆Q]W

∼= C0 in D(W ).

(ii) A W [∆Q]-subalgebra TQ ⊂ EndD(W [∆Q])(CQ) such that the image of TQ under the map
EndD(W [∆Q])(CQ)→ EndD(W )(C0) equals T0.

(iii) An ideal IQ ⊂ TQ such that IδQ = 0 and a surjective homomorphism Rρ,Q → TQ/IQ of
W [∆Q]-algebras such that the diagram

Rρ,Q

��

// TQ/IQ

��

TQoo

��

// EndD(W [∆Q])(CQ)

−⊗L
W [∆Q]

W

��
Rρ // T0/(I0, IQ) T0

oo // EndD(W )(C0)

commutes.

Note that Conjecture C′ with δ = 1 is equivalent to Conjecture C. We now assume Conjectures
A′, B, and C′, and will show that the surjective map Rρ → T0/I0 is an isomorphism after passage
to reduced quotients. In particular, this statement suffices to prove an automorphy lifting theorem
(for Qp-valued lifts of ρ).

As in §4, we assume that C0 is represented by a minimal complex of W -modules, hence
concentrated in the range [q0, q0 + l0] = [r1 + r2, r1 + 2r2], and similarly for all the complexes CQ.
Using a simple variant of Proposition 7.1, we obtain the following objects (with S∞ = W JZrpK):

(i) A complex C∞ of finite free S∞-modules and an isomorphism C∞ ⊗S∞ W ∼= C0 in K(W ).
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(ii) An S∞-subalgebra T∞ ⊂ EndD(S∞)(C∞) such that the image of T∞ under the map
EndD(S∞)(C∞)→ EndD(W )(C0) equals T0.

(iii) An ideal I∞ ⊂ T∞ such that Iδ∞ = 0, a complete Noetherian local S∞-algebra Rρ,∞, a
surjection W JX1, . . . , XgK→ Rρ,∞ of W -algebras, an isomorphism Rρ,∞ ⊗S∞ W ∼= Rρ, and
a surjective map Rρ,∞ → T∞/I∞ of S∞-algebras such that the diagram

Rρ,∞

��

// T∞/I∞

��

T∞oo

��

// EndD(S∞)(C∞)

−⊗L
S∞W

��
Rρ // T0/(I0, I∞) T0

oo // EndD(W )(C0)

commutes.

We can now conclude the argument along similar lines to before. Conjecture B and Lemma 4.3
show that dimS∞ H∗(C∞) > dimS∞ − l0. On the other hand, we have

dimS∞ H∗(C∞) = dimT∞ H∗(C∞) 6 dimT∞ = dimT∞/I∞ 6 dimRρ,∞ 6W JX1, . . . , XgK

(since quotient by nilpotent ideals does not change dimension). We now use the numerical co-
incidence to find that all these inequalities are equalities, and apply Lemma 4.3 once more to
conclude that H∗(C∞) = Hq0+l0(C∞) is an S∞-module of depth dimS∞−l0, hence a T∞-module
of depth dimS∞ − l0. We also see that the maps W JX1, . . . , XgK → Rρ,∞ and Rρ,∞ → T∞/I∞
are isomorphisms.

We can now apply e.g. [Tay08, Lemma 2.3] to conclude that H∗(C∞) is a nearly faithful T∞-
module; by definition, this means that the ideal AnnT∞ H∗(C∞) is nilpotent. We now repeatedly
apply [Tay08, Lemma 2.2] (which says that if A is Noetherian local with ideal I ⊂ A and M
is a nearly faithful finite A-module, then M/(I) is nearly faithful over A/I). First, we see that
H∗(C∞)/(I∞) is a nearly faithful T∞/I∞ = Rρ,∞-module. Let a = ker(S∞ → W ); then we see
that Hq0+l0(C∞)/(I∞, a) = Hq0+l0(C0)/(I∞) is a nearly faithful Rρ,∞/(a) = Rρ-module. This
completes the proof.
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