BEYOND THE TAYLOR—WILES METHOD

In these notes we describe how to apply the Taylor—Wiles method when the numerical coin-
cidence no longer holds. The content of the numerical coincidence is nicely summarized in the
opening paragraphs of [CHTOS]:

The method of [TW95] does not extend to GL,, as the basic numerical coincidence on
which the method depends (see Corollary 2.43 and Theorem 4.49 of [DDT97]) breaks
down. For the Taylor—Wiles method to work when considering a representation

r:Gal(F/F) — G(Q)
one needs
[F: Q|(dim G — dim B) = > H(Gal(F,/F,),ad"7),
v]oo
where B denotes a Borel subgroup of a (not necessarily connected) reductive group
G and ad’ denotes the kernel of the map, ad — ad¢, from ad to its G-coinvariants.
This is an ‘oddness’ condition, which can only hold if F is totally real (or ad® = (0))

and r satisfies some sort of self-duality. For instance one can expect positive results if
G = GSpy,, or G = GOy, but not if G = GL, for n > 2.

The method we discuss here makes no such restriction. We focus on the case of GLy over a
non-totally real number field F', since all the interesting difficulties appear already in this case.
(The case where F' is totally real is now very well understood; see for example [Geel.)

Nothing here is original to these notes. Our main reference is Calegari—Geraghty, ‘Modularity
lifting beyond the Taylor—Wiles method’ [CG]. See also Hansen, ‘Minimal modularity lifting for
GL2 over an arbitrary number field” [Han]. We also use some ideas from [KT] and [NT16].

These notes come with the following health warning: in order to avoid getting distracted, we
have elided certain technical details. In some, but not all, cases, we have included a remark [in
square brackets] to indicate this.

1. Motivation and Galois deformation theory

Let F' be a number field, let p be an odd prime unramified in F, and let ¥ denote the set of
p-adic places of F. We write Fy for the maximal extension of F' unramified outside %, which
lives in some fixed algebraic closure of F'. We suppose given as well a finite extension k/F, and
an absolutely irreducible representation p : Gal(Fs/F) — GLa(k) satisfying the following two
conditions:

— The determinant is det p = ¢!, the inverse of the cyclotomic character.

— For each v € ¥, the representation pl|g,, is finite flat (as usual, GF, denotes a choice of
decomposition group at the place v).

We will study the Galois deformation theory of p. To this end, let W = W (k) denote the Witt
vectors of k, and let Cy denote the category of Artinian local W-algebras with residue field k.
We consider the functor Def; : Cyy — Sets, whose value on a ring A € Cy is given by the set of
liftings p : Gal(Fx/F) — GLa(A) of p, taken up to strict equivalence, and satisfying the following
two conditions:

— The determinant is det p = e L.

— For each v € %, the representation p|g,, is finite flat.
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According to results of Mazur, the functor Def; is pro-represented by a complete Noetherian
local W-algebra R; with residue field k, and there is a natural isomorphism between Def;(k[e])
(otherwise said, the Zariski tangent space to the ring Rz) and the k-vector space

Hp(Fs/F,ad’p) C H' (Fs/F,ad’p),

otherwise called the Selmer group. The subscript £ indicates that we have chosen a set of local
conditions £, C H' (Fv,ad0 p) for the places v € X; these reflect the fact that we are working
only with those deformations of p which are finite flat at p.

Writing g = dimy HE(Fx/F,ad’p) = hk(ad’p), say, we can therefore find a surjection
W[Xi,...,X4] = Rp of W-algebras which induces an isomorphism on Zariski tangent spaces.

According to results of Wiles, there is an equation
hy(ad’p) = hy. (ad®p(1)) — 7,

where r = h}zl(ado p(1)) = dimg H}:L(FE/F, ad’p(1)) denotes the dual Selmer group, defined
with respect to the dual local conditions £ C H'(F,,ad’p(1)), and we write 71,79 for the
numbers of real and complex places of F, respectively. [This formula follows from the Euler
characteristic formula of Wiles, together with a calculation of the relevant local terms. It uses

that p is odd at the real places, and we have assumed that any terms which vanish when p is
sufficiently non-degenerate are indeed 0. See [DDT97, Theorem 2.19].]

The ‘numerical coincidence’ which occurs in the context of the ‘classical’ Taylor—Wiles method
is the equality hk(ad’p) = hz . (ad’5(1)); with the assumptions in effect here, this just means
that ro = 0, i.e. that the number field F' is totally real. We now attempt to explain why this is
relevant.

By definition, a Taylor—Wiles set for p is a set Q = {v1,...,v,} of finite places of the number
field F' satisfying the following conditions:

(i) For each i = 1,...,r, we have ¢,, = 1 mod p. (By definition, g, is the size of the residue
field k(v) at the place v.)

(ii) For each i =1,...,r, p(Frob,,) has 2 distinct eigenvalues a, 3; € k.

(iii) The natural localization map HEL (Fs/F,ad’p(1)) — @l_,H'(F,,,ad’p(1)) is injective and
r= h1£ . (ad’5(1)). (The image lies in the unramified subspace, so another way to say this
is that the localization map

HL, (Fs/F,ad*p(1)) - @ H'(k(v), ad® 5(1)
vEQR

is an isomorphism.)

One can show, using the Chebotarev density theorem, that there are many Taylor—Wiles sets for
p. [In fact, this requires that p has big image, in some sense. It suffices to assume that p > 5 and
that E\GF( ) is absolutely irreducible.] If Q is a fixed choice of Taylor—Wiles set, then we define
a new deformation functor Def; g : Cw — Sets by sending a ring A € Cy to the set of strict
equivalence classes of liftings p : Gal(Fxg/F) — GLa(A) which have determinant ¢!, are finite
flat at p, and satisfy no extra condition at the places of (). Again, one can show that this functor
is pro-represented by a complete Noetherian local W-algebra R; o with residue field k.

We now describe the key properties of the ring R;g. The first property is that it has a
natural structure of W[AgJ-algebra, where Ag is the maximal p-power order quotient of the
group []._; k(v;)*. (Note that each of the groups k(v;)* is cyclic of order divisible by p, because
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¢v; = 1 mod p. Thus if ¢,, = 1 mod p" for each ¢+ = 1,...,r, then there is an isomorphism
Aq/(p™) = (Z/p"Z)".) This structure arises because for each i = 1,...,r we can decompose the
universal lifting of type Def; g as

plé)nw|GFui =A; ® B,
where A;, B; : G R, = Rg’ o are continuous characters which are unramified (and send Frobenius
to a; or B;, respectively) modulo the maximal ideal. By local class field theory, the character A;
determines a homomorphism k(v;)* — R%Q of p-power order, and taking the product of these
characters determines the desired homomorphism Ag — Rﬁ;Q. It is an easy consequence of the
definitions that the natural map R; o — Rj; factors through an isomorphism

R;0 Ow(Ag] W = Rp.

The second property is that the natural surjection R;o — Rj (induced by the inclusion
Def; C Def; g) induces an isomorphism of tangent spaces, implying the existence of a surjective
homomorphism WXy, ..., X,] = Rp ¢ of W-algebras. This fact again follows from Wiles’ Euler
characteristic formula, and is the reason for including property (iii) in the definition of a Taylor—
Wiles set.

We can now explain the basic idea of the Taylor-Wiles method, as it appears e.g. in the
original papers of Wiles and Taylor—Wiles. The calculation of the dimension of tangent spaces
describes a uniform upper bound for the size of the rings ¢, as the set () varies: they are all
quotients of W[Xy,..., X,]. The rings W[Ag] have Zariski tangent space of dimension r, and
can be used to give a lower bound for the size of the part of Rj o coming from spaces of modular
forms if there is e.g. a compatible action of W[Ag] by diamond operators on a suitable space
of modular forms, using that as @) varies, the rings Ag approximate more and more closely the
ring W[Zy] = W[Si,...,S;]. When the ‘numerical coincidence’ g = r holds, these upper and
lower bounds agree and (after a lot more work!) one can show that Rj; is exhausted by Galois
representations arising from modular forms (in other words, that R = T).

2. Cohomology and automorphic forms

We now introduce some Hecke algebras, continuing with the notation of F' is a number field,
p is an odd prime unramified in F', and k is a finite field of characteristic p.

Let G = PGLy F, and fix a choice of maximal compact subgroup Us, C G(F ®q R). If
U =1[,Us C GL2(AY) is a compact open subgroup, then we define a topological space as a
double quotient

Xy =G(F)\G(Ar)/UUs.

We can write down an isomorphism Xy = [, I';\H5' x Hi?, where Hy denotes hyperbolic space
of dimension d and the I'; are arithmetic subgroups of PGLg(F ®g R) which depend on U. If the
groups I'; are neat, then we see that Xy has a natural structure of smooth manifold of dimension
2[F : Q] — ro. [We will assume that U always satisfies this neatness condition, and that Xy is a
smooth manifold, in what follows. This is a minor technical point that does not cause any great
difficulty.] Then the cohomology groups H* (X, W) are finitely generated W-modules, non-zero
only in the range [0, 2[F : Q] — r2].

It is usual to consider the action of Hecke operators on the groups H*(Xy, W). We are
instead going to construct Hecke algebras in the derived category, following [NT16]. We write
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K (W) for the category of chain complexes of W-modules, and D(W) for the derived category
of chain complexes: it has the same objects as K(W), but all quasi-isomorphisms have been
inverted. The cohomology groups H*(Xy, W) are computed as the cohomology groups of a
complex C(Xy, W) € D(W), which is well-defined up to isomorphism.

Hecke operators exist in the derived category: there is a natural map
H(GL2(AF),U) = Endpw) (C(Xu, W)),

where H(GL2(A%),U) is the usual double coset algebra. If S O 3 is a finite set of primes of F'
and U, = GLy(Op,) for all primes v ¢ S of F, then we can define a Hecke algebra Ty as the
W-subalgebra of EndD(W)(C (Xy, W)) generated by the usual unramified Hecke operators T, =
[GL2(Op,) diag(w,, 1) GL2(OF, )] for primes v ¢ S. These operators commute in H(GL2(AY), U),
so we see that Ty is a finite commutative W-algebra. In particular, it has finitely many maximal
ideals m, each of which has residue field Ty;/m a finite extension of k. [The algebra Ty depends
a priori on the choice of set S. However, a standard argument (see [KT, Lemma 6.20]) shows
that if we assume Conjecture A below, and m C Ty is a non-Eisenstein mazximal ideal, then the
localization Ty w is independent of the choice of S. We therefore feel free to ignore this dependence
in our notation.]

Let T}, denote the quotient of Ty which acts faithfully on cohomology. Since the complex
C(Xy,W) is filtered by its finitely many cohomology objects, the surjection Tyy — Ty, has
nilpotent kernel; in particular, every maximal ideal of Ty appears in the support of H*( Xy, W).
(See e.g. [KT), Lemma 2.5].)

To get started, we are going to state the two basic conjectures that Calegari—-Geraghty need
to get their generalization of the Taylor—Wiles method to work. The first is about existence of
Galois representations with Ty-coefficients; the second is about the behaviour of the cohomology
groups H*( Xy, W).

CONJECTURE A. (i) For each maximal ideal m C Ty, there exists a continuous representation
Pm : Gal(Fs/F) — GLg(Ty/m) such that detp,, = ¢! and for all v € S, tr p,,(Frob,) =
T, mod m.

(ii) If m C Ty is a maximal ideal such that p,, is absolutely irreducible (in which case we say
that m is non-Eisenstein), there exists a lifting pm : Gal(Fs/F) — GL2(Tym) of py such
that det pyn, = €' and for all v € S, tr py(Froby,) = T,.

(iii) If m is a non-Eisenstein maximal ideal and U, = GLy(Op,) for all v € 3, then the repre-
sentation py, is finite flat at p.

Suppose that U = [[, GL2(OF,) and m C Ty is non-Eisenstein. Then p = p,, satisfies the
conditions of the previous section, and the lifting p, determines a surjective homomorphism
R5 — Tym. Our goal in these notes is to prove that this map is in fact an isomorphism.

CONJECTURE B. Let m C Ty be a non-Eisenstein maximal ideal. Then the groups H*( Xy, k)m
are concentrated in the range [r1,r1 + 72].

This conjecture is motivated by what happens rationally: the groups H* (X, W)[1/p] can be
computed in terms of cuspidal cohomological automorphic forms, and these indeed contribute
non-zero classes exactly in degrees in the range [r1,71 + r2].

We will assume both of these conjectures in what follows.
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3. The classical case

Having set the scene, we now describe the Taylor—Wiles argument in the classical case where
the base number field F' is totally real and the numerical coincidence g = r is in effect. The
version of the argument we describe here is in fact a modification of the original arguments of
Taylor and Wiles which is due to Diamond. We observe that the case where F' is totally real is
the only case currently where both Conjectures A and B are known. [More precisely, Conjecture
B is known in many cases thanks to work of Dimitrov [Dim05]; in practice, one would use the
Jacquet—Langlands correspondence to move to a form of PGLy (e.g. definite at infinity) for which
Conjecture B becomes trivial.]

We thus take F' to be totally real, U = [[, GL2(OF, ), and m C Ty a non-Eisenstein maximal
ideal. Let p = p,,. We will show that the map R; — Ty, is an isomorphism. In this situation,
Xy is the set of complex points of a Hilbert modular variety, and the groups H*(Xy, W)y, are
free W-modules, non-zero only in the middle degree i = [F' : Q]. This implies that the Hecke
algebra Ty acts faithfully on Hy = H [£:Q] (X, W)m, so we can forget about derived categories
for this section. The module Hp becomes a Rs;-module via the map R; — Tym. We will in fact
show something even stronger than R; = Ty, namely that Hy is a free Rz-module.

The key input into the classical Taylor-Wiles method is the following additional data.
ProprosITION 3.1. For every Taylor—Wiles set (), we can find the following data:

(i) A finite free W[Ag]-module Hg.
(ii) A homomorphism R; g — Endy(a,)(Hg) of W[Ag]-algebras.
(ili) An isomorphism Hg Qwiag) W = Ho of W-modules such that the diagram

prQ —— EndW[AQ] (HQ)

Rﬁ EIldW (HO)

commutes.

Let Ay = Zy, and let Soo = W[Ax] = W[Sy,. .., S,]. For every choice of Taylor-Wiles set
@, we fix a surjection Ay, — Ag, and hence view Rj; o as Ss-algebra. We also fix a surjection
WIXy,...,Xy] = Rsq-

As @ varies, the kernels of the maps Ao, — Ag become arbitrarily small. A compactness (or
“patching”) argument (using the fact that all of the objects considered here are profinite) allows
us to imagine that all of the data associated to Taylor—Wiles sets @) here are compatible as @
varies. More precisely, compactness allows us to pass to a convergent subsequence where this is
indeed the case (see [Dia97, §2]). We can therefore ‘pass to the limit with respect to Q’ to obtain
the following data:

(i) A finite free Soo-module H.

(ii) A complete local W-algebra Rj ~, together with a surjection W[Xjy, ..., Xy] = Rj o0, and
a homomorphism So, — Rj o, together with an isomorphism Rj; o ®s,, W = Rp.

(iii) A homomorphism Rj . — Endg, (Hx) of Se-algebras.
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(iv) An isomorphism He, ®g., W = Hj of W-modules such that the diagram

i l_mw

Rﬁ EndW (Ho)

comimutes.

[Warning: although elementary, the construction of these objects depends on many choices. In
particular, there is no Galois representation with coefficients in the ring Rp o.]

We have
dim S, = depthg  Hoo < depthp  Hoo < dim Rj 0 < dim W[Xi,..., X4,

the first equality because H is free, the first inequality because the action of Sy, on H factors
through Rj5 o, the second inequality because depth is bounded above by dimension, and the final
inequality because Rj; . is a quotient of the given power series ring.

At this point, the numerical coincidence g = r intervenes to show that these inequalities are
all equalities. This shows that the surjection W[Xjy,..., Xy] = Rp o must be an isomorphism.
To finish the argument, we use the Auslander-Buchsbaum formula depthg M + proj dimgM =
dim S, for a finitely generated module M over a regular local ring S. This implies that H is
free over R; ., and hence Hy = H, ®g,, W is free over R; = Rj; oo ®g., W. This is the end of
the argument.

4. Beyond the classical case

We now return to the case of a general number field F', and take again U = [, GL2(OF,) and
m C Ty to be a non-Eisenstein maximal ideal. Let p = p,,,. Two problems arise when generalizing
the arguments of the previous section:

— First, the numerical coincidence g = r no longer applies, although it seemed to play a crucial
role at the end of the argument. Instead, we have g = r — 19, where ry is the number of
complex places of F.

— Second, we still want to take Hy = H*(Xy, W)n. However, the natural groups Hg that you
might write down are no longer free W[Ag]-modules. This freeness was important.

It turns out that these problems are connected, and will in the end cancel each other out. The
second problem is closely related to the fact that the cohomology groups H*(Xy, W), are no
longer concentrated in a single cohomological degree. This happens even rationally: if 7 is a
cuspidal automorphic representation of PGL2(A ) which contributes to H*( Xy, W)m[1/p], then
it will have non-zero contributions in all of the degrees in the range [qo, g0 + lo] = [r1 + 72,71 +
2r9]. (The notation qg,lp introduced here generalizes away from GLg, although the origin of
these quantities is not important here.) Recall that conjecture B above states that the integral
cohomology of H*( Xy, W)n is concentrated in the same range.

We recall that we have defined the Hecke algebra Ty C Endpy)(C(Xy, W)). Since Ty
is a finite W-algebra, and so p-adically complete, the maximal ideal m C Ty determines an
idempotent e, € Ty. We can then apply the following lemma to get a direct summand complex
C(Xy, W)m, which is equipped with a subalgebra Ty,mw C Endp ) (C(Xy, W)m) and a canonical
isomorphism H*(C( Xy, W)m) = H*( Xy, W)m.
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LeEMMA 4.1. Let A be a ring and let e € Endp4)(X) be an idempotent. Then there is an
isomorphism X =Y & Z which identifies e with idy &05. Moreover, the objects Y, Z are uniquely
determined up to isomorphism in D(A).

In other words, the additive category D(A) is idempotent complete. We set Co = C( Xy, W)y €
D(W).

To go further we now need to specify what additional structures there are given Taylor—
Wiles data. We recall that given a Taylor—Wiles set Q = {v1,...,v,}, we have introduced the
deformation ring Rj g, which parameterizes deformations of p which may now be ramified at
places v € Q: it is an algebra for the ring W[Ag], where Ag = [[;_, k(vi)* (p).

CONJECTURE C. For every Taylor—Wiles set (), we can find the following data:
(i) A perfect complex Cq of W[Ag]-modules.

(ii) A homomorphism Rz o — Endpwia,))(Cq) of W[Ag|-algebras.

(ili) An isomorphism Cg ®H‘;V[ Al W= Co in D(W) such that the diagram

Rp,0 — Endpw(ag))(Co)

L

Rﬁ EHdD(W) (C())

commutes.

[The construction of Cq will be explained in the next section; its definition is unconditional.
The statement in (ii) that the map R — Endpyia,))(Cq) respects W[Agl-algebra structures
is a slightly obscured form of local-global compatibility at Taylor—Wiles primes.]

Before we proceed to the patching argument, we recall a very useful lemma that explains the
importance of Conjecture B. It is a version of Nakayama’s lemma for complexes:

LEMMA 4.2. Let A be a Noetherian local ring.

(i) Say a complex C' € D(A) is minimal if C' is a bounded complex of finite free A-modules
and the differentials on C ® 4 A/my are 0. If C, D are minimal complexes of A-modules,
and they are isomorphic in D(A), then this isomorphism is represented by an isomorphism
C=DinK(A).

(ii) Let C be a perfect complex of A-modules. Then C' is isomorphic in D(A) to a minimal
complex.

If C' is a minimal complex, then C ® 4 A/my = H*(C ®4 A/my). Applying the traditional
form of Nakayama’s lemma, this shows that C? is non-zero if and only if H*(C ®4 A/m4) # 0.

Applying the lemma (and Conjecture B) to Cp, we can assume that Cp is a complex of finite
free W-modules concentrated in the range [qo, go+lo]. Applying the lemma to Cg, we can assume
that Cg is a complex of finite free W[Ag]-modules concentrated in the range [qo, qo + lo], and
that the isomorphism of Conjecture C is represented by an isomorphism

Cq OW(Ag] W = Cy
in K(W[Ag]).

We can now carry out the Taylor-Wiles argument. Let Ay = Z;, and let S = W[A] =
W[Si,...,Sr]. We choose for every Taylor-Wiles set ) a surjection Ay, — Ag and a surjection
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WI[Xi,...,X4] = Rp- By another compactness argument (to ‘take the limit @ — o0’; see
below), we obtain the following data:
(i) A complex Cy of finite free Sso-modules, concentrated in degrees [qo, qo + lo]-

(ii) A complete local W-algebra Rj ., together with a surjection W[Xy, ..., Xy] = Rp o0, and
a map Seo — 15 00, together with an isomorphism R; o ®s., W = Ry.

(iii) A homomorphism Rj . — Endp(g.)(Coo) of Sx-algebras.
(iv) An isomorphism Cy ®g., W = Cp of complexes of W-modules such that the diagram

Rﬁ,oo —_— EndD(Sw) (Coo)

T

Rﬁ El’ldD(W) (C())

comiutes.

We have
dimg,, H*(Cw) < dimp,  H*(Cx) < dim Bj o0 < dim WX, ..., X;] = dim S — lo,

since the action of the ring S, on the cohomology groups factors through R; o, and r — g = lo.
To conclude, we apply the following lemma of Calegari-Geraghty (see [CGl Lemma 6.2]):

LEMMA 4.3. Let S be a regular local ring of dimension d, let 0 < | < d be an integer, and let C
be a complex of finite free S-modules, concentrated in degrees [0,1]. Then dimg H*(C) > d — I,
and if equality holds then there is a unique non-zero cohomology group H*(C) in degree i = I,
and we have proj dimgH'(C) = I, depthg H'(C) = d — .

(Thus the complex C' is a projective resolution of H'(C) of minimal length.) Applying this
to the complex Cy, of Soo-modules shows that dimg  H*(C) > dim Se — lp. We already know
that the reverse inequality holds, so we deduce equality and can apply the lemma again to get

dim S — lp = depthg  H®™(Cy) < depthp  HPH0(Cy)
< dimW[Xy,...,X,] = dim Se — lo.

Thus depthp, Hoto(CL) = dimW[Xy,...,X,]. We deduce that R;. = W[Xy,...,X,]
and, using the Auslander-Buchsbaum formula, that H%+0(Cy) is free over Rj; . Finally we
can pass to the quotient to deduce that HOTO(Xy W)y, = HOT0(CL) ®g,, W is free over
R; = R; o ®s,, W. In particular, the map R; — Tyn must be an isomorphism.

Looking at the proof, we see that it can be said to rely on a new numerical coincidence
dimg HEL (Fo/Fad’p(1)) — 0= length of range in which
— dimy, H};(Fg/F,ado 7) — %0 = there is non-zero cohomology.

5. Construction of complexes

We now sketch the construction of the auxiliary complexes Cg appearing in @ Recall then that
Co = C(Xy, W)m, and we want to construct for every Taylor-Wiles set ) a perfect complex Cg of
W[Agq]-modules, together with a homomorphism Rj ¢ — Endpayia,))(Cq) of W[Ag]-algebras
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and an isomorphism Cg ®H;V[ Ag) W 2 Cy such that the diagram

R;.q — Endpwiay)(Cq)

L

B% EndDGVﬂCb)

commutes.

In the classical case lp = 0, the perfectness of the complex Cg, together with Conjecture
B, would imply that cohomology groups H*(Cq) are free over W[Ag| (and non-zero exactly
in degree qp). In general, this will definitely not be the case, and this necessitates the use of
complexes rather than cohomology groups.

Let us therefore take a Taylor-Wiles set @ = {v1,...,v.}. We recall that by definition we
have #k(v;) = ¢»,;, = 1 mod p foreach i =1,...,r, and the group A is defined as the maximal p-

power order quotient of the finite abelian group [[;_; k(v;)*. We define open compact subgroups
of U =[], GL2(OF,) as follows:

Uo(Q) = [ [ GL2(Or,) x [ ] Uo(v),

vgQ veEQR
U1(Q) = [[ GL2(Or,) x T] Ui (v),
vgQ veQ

where

o) = { (£ ) ) € G1a(0R) | =0 mod (1)}

Ui(v) = {( ch Z ) € Up(v) | ad™! mod (zw,) has order prime to p} .

Then Up(Q) C U has finite index prime to p (its index is [[;_;(q, + 1) and p is odd), and
U1(Q) C Up(Q) is a normal subgroup with Uy(Q)/U1(Q) = Aq. Since we assume that U is neat,
the natural map Xy, () — Xy,(@) is a Galois covering, with group Ag. Then we can upgrade
C(U1(Q), W) to be a perfect complex of W[Ag]-modules such that

H*(C(U(Q), W)) = H* (X, (@), W)
and
H*(C(U1(Q), W) ®prjag) W) = H* (Xuy(q), W)-

The Hecke algebra Ty lives in Endp ) (C(Xy, W)), while the Hecke algebra Ty () lives in
Endpw)(C(Xvy (), W). We define Ty, )/, (@) to be the W[Ag]-subalgebra of

Endpwiag) (C(Xu, (@), W))

generated by unramified Hecke operators. Then there is a commutative diagram

Tu,(@)/v1(@) — Endpwiag) (C(Xu, @), W)

_ ol

Endp ) (C( Xy @) W))-

Tuo(@)
The index [U : Up(Q)] = [[;_;(qv;, + 1) is prime to p, so the pullback morphism C(Xy, W) —
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C (XUO(Q), W) is split by the trace map tr; JU(@)- This allows us to write down another commu-
tative diagram

Tuy (@) — Endp ) (C(Xuy @), W)

| |

Ty ——— Endpw,) (C(Xu, W)).
We write ng for the pullback of m to Ty, () and ny for the pullback of ng to Ty (@) /v, (). Then
there are surjective maps

Tvo@un@m = Tvo@umo = Tum
and we can define the corresponding localized complexes

C(Xvy(@): W)n € D(W[Ag])
and
C(XUO(Q)7 W)no S D(W)

Then there is an isomorphism
C(XU1(Q)7 W, ®HI7V[AQ] W= C'(XUo(Q% W)

A souped-up version of Conjecture A would imply the existence of a lifting of py, to Ty, (9) /v, (Q),n1 s
hence a surjective map Rp g — Ty (Q)/u,(Q),n, - We are still not quite finished: even in the classical
case, this map will not be a homomorphism of W[Ag]-algebras (which is a key requirement).

To get around this, we introduce the double coset operators U, = [U;(v) diag(w,, 1)Uy (v)]
for v € @ and define the enlarged Hecke algebras

Q-au,
T/t @m < Endpaviag) (C(Xu, @) W)
and

Tg(;?z?g)7ﬂo C Endp ) (C(Xyy(@): Wng)

to be the algebras generated by Ty (0) /v, (Q)n @0d Ty (@) ny» respectively, and all the operators
Uy (v € Q). A calculation in the local Iwahori-Hecke algebra H(GLa(F), Up(Q)) (see [KT) §5],
where this calculation is done for GLy,; a simpler argument suffices when n = 2, see [CG]) shows
that the ideals

o0 = (no, Uy, —a1,..., Uy, — ) C T%?gg)mo
and
Na = (111; le ALy, U’Ur B 047») C Tg(;?gg)/Ul(Q)’m

are proper maximal ideals which appear in the support of H*(Xy (), k) and H*(Xy, (@), k),
respectively. (We recall that for each v; € @, p(Frob,) is assumed to have distinct eigenvalues
a;, B; € k.) We consider the further localizations

C(XU1(Q)7 W)nl,on
direct summand of C'(Xy;, (@), W)n,, and
C(XUO(Q)v W)no,cw
direct summand of C(X¢, (), W)n,- These complexes have the property that

C(Xuy@) Wi @iviag) W = C(Xug@)s Who.a

10
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and one can moreover show (cf. [KT] §5]) that there is now an isomorphism in D(W)

C(XUO(Q)’ W)ﬂo,a = C(XUa W)m

which respects the action of unramified Hecke operators. We can finally therefore take

Cqo = C(Xp,Q)s Wy o

with its induced map R; ¢ — EndD(W[AQ])(CQ). To verify Conjecture C, it remains to show that
this map is a homomorphism of W[Ag]-algebras. This would follow from an appropriate version
of local-global compatibility.

In the classical case, the above complexes are isomorphic in D(W[Ag]) to their unique non-
zero cohomology groups, and our construction reduces to the one given in e.g. [Geel §5.5].

6. Further remarks

There is much more to say than we have time for here:

Remark. (i) Everything we have said generalizes essentially without change to the case of GL,

(iii)

(in particular, there is no need to fix the determinant), as long as one states the correct
versions of the corresponding conjectures. The same ideas also apply in other situations
where the numerical coincidence fails to hold. A key example is the case of weight 1 modular
forms for GLy over Q (where there are repeated Hodge-Tate weights). Calegari-Geraghty
implement their ideas in [CG] to prove unconditional R = T theorems for weight 1 modular
forms.

We have shown above how to prove an R = T theorem. This leads to a traditional auto-
morphy lifting theorem of the following form:

THEOREM 6.1. Let p be an odd prime and let F' be a number field unramified at p. Assume
Conjectures A, B and C above. Let p : Gp — GLQ(@p) be a continuous representation,
unramified away from p and finite flat at p, and such that det p = e~!. Suppose that there
exists a cuspidal automorphic representation m of PGLy(A ), cohomological of weight 0 and
everywhere unramified, such that r,(7) = p (for some choice of isomorphism ¢ : @p ~C).
Suppose moreover that p satisfies a big image hypotheses (e.g. p > 5 and ﬁ|GF(<p) absolutely

irreducible). Then p is automorphic: there exists a cuspidal automorphic representation IT
of PGL2(AF), cohomological of weight 0, and an isomorphism p = r,(II).

It is obviously desirable to have a version of this theorem that allows p and 7 to be ramified
(at least at the primes away from p). In |[CGJ it is shown that the technique used in [TayO§]
can be generalized to the current setting. This allows one to prove automorphy lifting results
where p and 7 can have arbitrary ramification away from p (still assuming the appropriate
generalizations of Conjectures A, B and C). It is shown in [CG] that these (conditional)
theorems are strong enough to imply e.g. the potential modularity of all elliptic curves over
all number fields!

The Galois representations that are required in Conjecture A have been almost shown to
exist by Scholze in the case where F' is a CM field [Schl5]. More precisely he constructs
representations with coefficients in a quotient Ty /I, where I is an ideal satisfying I =0
for some explicit integer 0 (depending only on F' and n, and not on the particular choice of
U). One can modify the arguments here to find that this weaker statement is still enough
to prove results like Theorem although one will no longer be able to show that the map
R; — Ty is an isomorphism on the nose.

11
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The modifications required in order to deal with the presence of a nilpotent ideal I are quite
simple, and there is some hope (based on [NT16]) that one will eventually have access to
Scholze’s results with § = 1 (i.e. I = 0), so we have avoided discussing them in the main
part of these notes. We discuss the modifications required in §8| below.

7. Appendix 1: how to patch

Here we describe an abstract result that describes how to patch complexes together. The result
and its proof are based on [KT) Proposition 3.1]. We still use k to denote a finite field and W
its ring of Witt vectors.

PROPOSITION 7.1. Fix integers g,r > 0, and let Ao = Zy,. If N > 0, let Ay = Ao/ (p™). Let
Soo = W[A]. Suppose given the following data:

(i) A complete Noetherian local W-algebra Ry and a surjection W[Xy,..., X, — Ro of W-
algebras.

(ii) A minimal complex Cy of W-modules.
(iii) A homomorphism Ry — Endp ) (Co) of W-algebras.
Suppose given as well for every N > 1 the following data:

(i) A complete Noetherian local W|[An]-algebra Ry and a surjection W[X1,...,X4] — Ry of
W -algebras.

(ii) A minimal complex Cn of W[Ag]-modules.
(iii) A homomorphism Ry — Endpway))(Cn) of W[Ay]-algebras.
(iv) Isomorphisms Ry ®way) W = Ro and Cn ®y(ay) W = Co such that the diagram

Ry — Endpy(a,)(Cn)

oL
i i ®W[AN]W

Ry Endp ) (Co)

commutes.
Then we can find the following data:

(i) A complete Noetherian local Sy-algebra R, and a surjection W[Xy,...,X,] - R of
W -algebras.

(ii) A minimal complex Cy, of Soo-modules.
(iii) A homomorphism Ry — Endps,.)(Cs) of Sx-algebras.
(iv) Isomorphisms Ro ®g.. W = Ry and Coo ®g,, W = Cy such that the diagram

Roo —_— EndD(Sw)(Coo)
l J{@%mw
Ry — Endp ) (Co)
commutes.

Proof. Let s = dimy H*(Cy @w k), and suppose that Cj is concentrated in the range [0, d] for
some d > 0. If t € mp,, then t acts nilpotently on H*(Cny @way) k) = H*(Co @w k), so t* acts

12
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as 0 on H*(Cy QW(Ax] k). The existence of the spectral sequence of a filtered complex implies
that tN°7* acts as 0 on H*(Cy QW ([AN] WIAN]/(pY)), and then [KT, Lemma 2.5] shows that
t(d+DN?rs hag trivial image in
Endp a8 ) (CN @wiay WIAN]/(0Y)).
It follows that the map
Ry = Endp(w(a /7)) (C8 @wiay WIAN]/ (™))

2
factors through the quotient Ry /mj; (g+1)(d+1)Nrs

We define a patching datum of level N > 1 to be a tuple (D, 1, R,no,m1,m2), where:

— D is a minimal complex of W[Ax]/(p")-modules and 1) is an isomorphism

¥ 2 D ®yiany ey W/ (EN) = Co@w W/(pN).
— R is a complete Noetherian local Sy.-algebra equipped with a surjection
Mo : W[[Xl,...,Xg]] — R
of W-algebras, a homomorphism
m B = Endpyia/m) (D)
of Sy-algebras, and a homomorphism

(g+1)(d+1)N2rs

of S-algebras. Moreover, mp = 0, and the diagram

R ——= Endpriay/pv) (D)

| |

Ro Endp gy ) (Co)

commutes.

We make the collection of patching data of level N into a category Patchy as follows: a morphism
a: (D7 wa Ra No, M1, 772) — (D/7 T,Z)/, R,’ 77(,)7 ’r]/l’ 775) is a pair a = (f7 g)a where:
— f: D — D'is an isomorphism of complexes of W[Ax]/(p" )-modules such that ' ( f Qwan]/ @)
W/(p™N))y~! is the identity.
— g : R — R’ is an isomorphism of S-algebras that intertwines 7y and n(, 71 and 7}, and 72
and 75.

Evidently the category Patchy is a groupoid, i.e. every morphism is an isomorphism. There is a
collection of functors (Fi : Patchyyi — Patchy)n>1, which assign to a tuple (D, 1, R, no,m1,1m2)
the tuple FN(D7 7/’» R7 Mo, M, 772) = (D/7 711/7 R,a 77(,)7 nlla Ué) given as follows:

= D'=D Swiay v WIAN/ @Y.

— )’ is the composite
D' @wiany/ed) W/ ™) = D @wiay, ey W/ EY) = Co @w W/ ().

R/ (g+1)(d+1)N23rs

13
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— n4,n} and 74 are the obvious maps.

The set of isomorphism classes of patching data of level N is finite. Indeed, it suffices to note
that the cardinality of the ring R in the tuple (D, v, R,no,m1,7m2) is bounded solely in terms
of N (since W[[Xl,...,Xg]]/(p,Xl,...,Xg)(9+1)(d+1)N2TS is a ring of finite cardinality), and
Endpwiay)/pv)) (D) has cardinality bounded above by WIAN]/(p™)]- (dimg D @wian]/M) k)2.
(Indeed, since D is a complex of finite free modules, every endomorphism of D in D(W[Ax]/(p™))
is represented by a homotopy class of endomorphisms of D as a complex.)

The set of isomorphism classes is also non-empty. Indeed, for each M > 1, we can define a
patching datum D(M, M) = (D, v, R,no,m,n2) € Patchys as follows:

— 1 is the reduction modulo p™ of the given isomorphism C); Qwiay) W = Co.
_ R= RM/mggA—:l)(d—i-l)MQrs'
— no,m and 12 are the obvious maps.

If M > N > 1, then we define D(M,N) € Patchy to be the image of D(M, M) under the
composite functor FyoFq0---0Fy 1. After diagonalization, we can find an increasing sequence
(Mn)ns=1 of integers, together with a system of isomorphisms ay : Fy(D(Myy1, N +1)) —
D(Mp, N). Passing to the inverse limit with respect to these isomorphisms, we obtain a tuple
(Coo, Iboo, Roo, no, M1, 772), where:

— (Cx is a bounded complex of finite free So-modules and ¥, is an isomorphism
Voo : Coo ®s,, W = Cp.
— R is a complete Noetherian local S.-algebra equipped with a surjection
no: W[X1,...,X4] = R
of W-algebras, a homomorphism
m : Roo — Endp(g.,.)(Coo)
of Syo-algebras, and a homomorphism
M2 : Roo = Ro
of S-algebras. Moreover, the diagram

Roo —_— EndD(Soo) (Coo)

| |

Ry —— Endpw)(Co)
commutes.
(We have used here the fact that if F' is a bounded complex of finite free So-modules, then there
is a canonical isomorphism
Endp(s,.)(F) = lim Endp w(a v/ M) (F @s. WIAN]/ (V).

This is a consequence of the representation of endomorphisms in D by homotopy classes of
endomorphisms as complexes, and a Mittag-Leffler argument, see the proof of [KT, Lemma
2.13].) This completes the proof. O
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8. Appendix 2: nilpotent ideals

In this section we briefly discuss how to modify the arguments of §4] assuming weaker versions
of Conjectures A and C. We continue to assume that F' is a number field and that p is an odd
prime unramified in F', and now state these weaker versions:

CONJECTURE A’. Let U =[], U, C GLg(@F) be an open subgroup, and let S D ¥ be a finite
set of finite places such that U, = GL2(Op,) ifv € S.

(i) For each maximal ideal m C Ty, there exists a continuous representation p,, : Gal(Fs/F) —
GLg(Ty/m) such that detp,, = ¢ and for all v € S, tr p,,(Frob,) = T, mod m.

(ii) If m C Ty is a maximal ideal such that p, is absolutely irreducible (in which case we say
that m is non-Eisenstein), then there exists an absolute constant § = 6(F'), an ideal I C Ty
such that I° = 0, and a lifting

Pm - Gal(Fs/F) — GLQ(TUym/I)
of py, such that det py, = €1 and for all v € S, tr py(Frob,) = T, mod I.

(iii) If m is a non-Eisenstein maximal ideal and U, = GLy(Op,) for all v € X, then the repre-
sentation py, is finite flat at p.

If F is an imaginary CM field, then parts (i) and (ii) of Conjecture A’ follow from the work
of Scholze [Schl15|. It is proved in [NT16] that in this case, one can even take § = 4.

Let U =[], GL2(OF,), and let m C Ty be a non-Eisenstein maximal ideal. Let p = p,,. Let
To = Tum, Lo C To the ideal given by Conjecture A’. We recall that Co = C(U, W ).
CONJECTURE C'. For every Taylor—Wiles set (), we can find the following data:
(i) A perfect complex Cq of W[Ag]-modules and an isomorphism C¢ ®HW[AQ] W = Cp in D(W).

1 -subaligebra C Endpmwia such that the 1mage o under the map
ii) A W[Ag balgebra Tg Ed([Q])C’Q h th he i f Tq under th
EndD(W[AQ})(CQ) — EndD(W)(CO) equals Tp.

(iii) An ideal Ig C Tq such that I% = 0 and a surjective homomorphism Rz o — Tg/Ig of
W [Agq]-algebras such that the diagram

R0 Tq/lg Tq Endpwiag))(Co)
I [ oo
RﬁHTo/(Io,IQ) TO EndD(W)(C())

commutes.

Note that Conjecture C’ with § = 1 is equivalent to Conjecture C. We now assume Conjectures
A’, B, and C’, and will show that the surjective map R; — Ty /Iy is an isomorphism after passage
to reduced quotients. In particular, this statement suffices to prove an automorphy lifting theorem

(for Q,-valued lifts of p).

As in we assume that Cj is represented by a minimal complex of W-modules, hence
concentrated in the range [qo, go +lo] = [r1 + 72,71 + 2r2], and similarly for all the complexes Cg.
Using a simple variant of Proposition we obtain the following objects (with So = W[Z}]):

(i) A complex C of finite free Soo-modules and an isomorphism Co, ®g,, W = Cjy in K(W).
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(i) An S-subalgebra Ty C Endp(s.)(Cx) such that the image of T, under the map
EndD(Soo)(Coo) — EndD(W)(OQ) equals To.

(iii) An ideal I, C T such that IS, = 0, a complete Noetherian local S..-algebra R; 0, a
surjection W[X7y,...,Xy] = Rpj o0 of W-algebras, an isomorphism Rj o ®s,, W = R;, and
a surjective map Rp o — Too/Io Of Seo-algebras such that the diagram

Rﬁ,oo Too/loo Too EndD(Soo)(COO)
ST U SR
RﬁHTo/(Io,IOO) TQ EndD(W)(Co)

commutes.

We can now conclude the argument along similar lines to before. Conjecture B and Lemma
show that dimg  H*(Cs) = dim So, — lp. On the other hand, we have

dimg,  H*(Cx) = dimp, H*(C) < dimToo = dim To /Ioo < dim Rp o0 < WX, ..., X{]

(since quotient by nilpotent ideals does not change dimension). We now use the numerical co-
incidence to find that all these inequalities are equalities, and apply Lemma [£.3] once more to
conclude that H*(Cy) = H?F0(Cy.) is an Se-module of depth dim Su, —lg, hence a Too-module
of depth dim So, — ly. We also see that the maps W[X,..., Xy] = Rpoo and Rp o0 = Too/Ino

are isomorphisms.

We can now apply e.g. [Tay08| Lemma 2.3] to conclude that H*(Cy) is a nearly faithful Too-
module; by definition, this means that the ideal Anny_ H*(Cy) is nilpotent. We now repeatedly
apply [Tay08, Lemma 2.2] (which says that if A is Noetherian local with ideal I C A and M
is a nearly faithful finite A-module, then M/(I) is nearly faithful over A/I). First, we see that
H*(Cx)/(Ix) is a nearly faithful Too/Io = Rpec-module. Let a = ker(So, — W); then we see
that H90(Cx)/ (I, @) = H®T0(Cp) /(1) is a nearly faithful R;/(a) = Rymodule. This
completes the proof.
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