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Abstract

We prove that the average size of the 3-Selmer group of a genus-2 curve with a marked Weierstrass
point is 4.
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1 Introduction

In this paper we prove new theorems about the arithmetic statistics of odd genus-2 curves. If f(x) =
x5 + c12x

3 + c18x
2 + c24x+ c30 ∈ Q[x] is a polynomial of non-zero discriminant, then the smooth projective

completion of the affine curve
C 0
f : y2 = f(x)

is a genus-2 curve with a marked Weierstrass point (the unique point at infinity). Conversely, any pair (C ,P),
where C is a (smooth, projective, connected) curve of genus 2 and P ∈ C (Q) is a marked Weierstrass point,
arises from a unique such polynomial f(x) satisfying the following conditions:

1. The coefficients of f(x) are integers and the discriminant of f(x) is non-zero.

2. No polynomial of the form n−10f(n2x) has integer coefficients, where n ≥ 2 is an integer.

We write E for the set of all polynomials f(x) = x5+c12x
3+c18x

2+c24x+c30 ∈ Z[x] of non-zero discriminant,
and Emin ⊂ E for the subset satisfying condition 2. above. For f(x) ∈ E , we write Cf for the corresponding
pointed genus-2 curve and Jf for the Jacobian of Cf , a principally polarized abelian surface over Q. We
define the height ht(f) of a polynomial f(x) ∈ E by the formula

ht(f) = sup
i
|ci(f)|120/i.

Note that for any a > 0, the set {f ∈ E |ht(f) < a} is finite. We can now state our first main theorem.

Theorem 1.1 (Theorem 7.1). The average size of the 3-Selmer group Sel3(Jf ) for f ∈ Emin is 4. More
precisely, we have

lim
a→∞

∑
f∈Emin,ht(f)<a |Sel3(Jf )|
|{f ∈ Emin | ht(f) < a}|

= 4.
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(A similar result can be proved for subsets of Emin defined by congruence conditions. See Remark 7.3.)

Here is one consequence of Theorem 1.1 for rational points, which follows from work of Poonen and Stoll
[PS14]:

Theorem 1.2. A positive proportion of curves (C ,P) ∈ F satisfy C (Q) = {P}. More precisely, we have

lim inf
a→∞

|{f ∈ Emin | ht(f) < a, |Cf (Q)| = 1}|
|{f ∈ Emin | ht(f) < a}|

> 0.

1.1 Method of proof

In the paper [BG13], Bhargava and Gross calculated the average size of the the 2-Selmer group of the
Jacobian of an odd hyperelliptic curve of fixed genus g ≥ 2 using a connection with the arithmetic invariant
theory of a graded Lie algebra; more precisely, the Z/2Z-graded Lie algebra arising from the element −1
of the automorphism group of a type A2g root lattice. This amounts to studying the orbits of the group
SO2g+1 on the space of traceless, self-adjoint (2g + 1)× (2g + 1) matrices.

In this paper, we exploit the stable Z/3Z-grading of the Lie algebra of type E8 in order to study the 3-
Selmer groups of odd genus-2 curves. Note that we are firmly in the territory of exceptional groups! In
particular, there seems to be no hope of generalizing anything in this paper to study e.g. the 3-Selmer groups
of hyperelliptic curves of higher genus. Nevertheless, we expect the methods developed in this paper to have
applications elsewhere, for reasons we will soon explain.

Let H be a split reductive group over Q of type E8, with split maximal torus T , and let ρ̌ : Gm → T be
the sum of the fundamental coweights with respect to some choice root basis. The restriction θ of ρ̌ to µ3

determines a stable Z/3Z-grading
h = ⊕i∈Z/3Zh(i)

of the Lie algebra h = LieH, and hence a coregular representation of G = H(0) = Hθ on V = h(1) (see e.g.
[RLYG12] – the word ‘stable’ refers to the presence of stable G-orbits in V , i.e. orbits that are are closed
and have finite stabilizers).

One can identify G with SL9/µ3 and V with the 3rd exterior power of the standard representation of SL9.
The relation between this representation and 3-descent on odd genus-2 curves has been studied previously
by Rains and Sam [RS]. We do not use their work. Instead, we follow a different approach which we find
more suited to studying integrality problems (of which more in a moment).

Using results of Vinberg, one can identify the geometric quotient B = V �G = SpecQ[V ]G with the spec-
trum of the polynomial algebra Q[c12, c18, c24, c30] in 4 indeterminates (thus c12, . . . , c30 are algebraically
independent G-invariant polynomials on V ). We can therefore think of B as parameterizing polynomials
f(x) = x5 + c12x

3 + c20x
2 + c24x+ c30. We write Vf ⊂ V for the G-invariant closed subscheme given by the

fibre of the quotient map π : V → B above a point f of the base.

The first step in the proof of Theorem 1.1 is to construct for any field k/Q and any f ∈ B(k) of non-zero
discriminant an injection

ηf : Jf (k)/3Jf (k)→ G(k)\Vf (k), (1.1)

where Jf is the Jacobian of the curve given by the equation y2 = f(x).

In fact, we go further than this, giving a version of this construction which works over any Q-algebra R (and
for any f ∈ B(R) with discriminant that is a unit on R). If R is a ring over which every locally free module
is free, then we obtain an injection

ηf : Jf (R)/3Jf (R)→ G(R)\Vf (R), (1.2)
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recovering the previous map in the case that R = k is a field.

This construction is based on changing our point of view from G-orbits in V to isomorphism classes of triples
(H ′, θ′, γ′), where H ′ is a reductive group of type E8, θ′ is a stable Z/3Z-grading, and γ′ ∈ h′(1). We give
a construction that begins with a Heisenberg group (such as the µ3-extension of Jf [3] arising from the
Mumford theta group of thrice the canonical principal polarization of Jf ) and a representation W of this
Heisenberg group, and returns a Lie algebra h′ of type E8 with a stable Z/3Z-grading θ′, together with a
representation of g′ = (h′)θ

′
on the same space W . The existence of this construction, which seems to be

related to twisted vertex operator realizations of affine Kac–Moody algebras [Lep85], still seems remarkable
to us! The general version of this construction will be described in a future work of the first author [Rom].

The next step in the proof of Theorem 1.1 is to introduce integral structures. All of the objects H, θ, G,
V can be defined naturally over Z, and we can require that our polynomials c12, . . . , c30 lie in Z[V ]G. If p
is a prime and f(x) = x5 + c12x

3 + c18x
2 + c24x + c30 ∈ Zp[x] is a polynomial of non-zero discriminant,

then our constructions so far yield a map Jf (Qp)/3Jf (Qp) → G(Qp)\Vf (Qp). However, it is essential
to be able to show that each G(Qp)-orbit in Vf (Qp) which is in the image of this map admits an integral
representative, i.e. intersects Vf (Zp) non-trivially. This has been a sticking point for some time. In our
earlier papers [Tho15, RTa], our failure to construct integral representatives in full generality meant we
could provide upper bounds only for the average sizes of the Selmer sets, and not full Selmer groups, of the
families of curves studied there.

In this paper we introduce a new general technique to construct integral orbit representatives. We describe
it briefly here. If f(x) ∈ Zp[x] is a polynomial of non-zero discriminant, we choose a lifting to f̃(x) ∈ Zp[u][x]

with favourable properties. In particular, the discriminant of f̃(x) should be non-zero in Fp[u] and square-free
in Qp[u]. The construction giving rise to the map (1.2) determines a triple (H ′, θ′, γ′) over the complement

in SpecZp[u] of the locus where the discriminant of f̃ vanishes.

Using an explicit construction of integral representatives in the square-free discriminant case, we extend
this triple to the complement in SpecZp[u] of finitely many closed points. Finally, we use the fact that
a reductive group on the punctured spectrum of a 2-dimensional regular local ring extends uniquely to
the whole spectrum (see [CTS79, Theorem 6.13]) to extend our triple further to the whole of SpecZp[u].
Specializing to u = 0, we find the desired integral representative.

This argument is inspired by the proof of the fundamental lemma for Lie algebras [Ngô 10]. The problem
of constructing integral representatives can be viewed as the problem of showing that a graded analogue of
an affine Springer fibre is non-empty. From this point of view, attempting to deform the problem to a case
where it can be solved directly is a natural strategy. Although we develop this technique here just in the
case of the stable Z/3Z-grading of E8 and its relation to odd genus-2 curves, it is completely general. In a
future work [RTb], we will return to the families of curves studied in our earlier papers [Tho15, RTa] and
obtain complete information about the average sizes of the 2-Selmer groups of their Jacobians.

Once integral representatives have been constructed, we can reduce the problem of studying the average size
of the 3-Selmer groups of the curves Cf to the problem of studying the number of orbits of G(Z) in V (Z)
of bounded height (with congruence conditions and local weights imposed). In the final step in the proof of
Theorem 1.1, we use Bhargava’s techniques and their interpretation in the framework of graded Lie algebras
(as in e.g. [BG13], [Tho15]) to carry out this orbit count and finally prove Theorem 1.1.

Remark 1.3. In the second author’s thesis [Tho13], simple curve singularities and their deformations played
an important role. The same is true here. The family of affine curves given by the equation y2 = x5 +c12x

3 +
c18x + c24x + c30 is a versal deformation of a type A4 singularity. Here, we think of this family instead as
being embedded in the family of affine surfaces

y2 = z3 + x5 + c12x
3 + c18x+ c24x+ c30.

This is a versal deformation of the E8 surface singularity y2 = z3 + x5, together with its action of µ3 by the
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formula ζ · (x, y, z) = (x, y, ζ−1z). This fact plays an important role in §4.4.

1.2 Organization of this paper

We now describe the organization of this paper. In §2 we review relevant properties of the E8 root lattice
and its associated Weyl group. In §3, fundamental for the construction of orbits, we give our “Heisenberg
group to graded Lie algebra” functor. In §4, we describe the invariant theory of our graded Lie algebra, and
use the construction of §3 to parameterize and construct orbits. An important role is played by two special
transverse slices to nilpotent elements, namely the Kostant section and the subregular Slodowy slice: we use
the first of these to normalize the set of orbits, and the second to normalize our generators for the ring of
G-invariant polynomials on V .

In §5 we give our construction of integral orbit representatives. We treat the local case using the ideas
described above, and then deduce the existence of integral orbit representations for Selmer elements in the
global case as a consequence. In §6, we give the point-counting results we need in order to prove Theorem
1.1. The power of Bhargava’s techniques is such that little more than formal verification is required in order
to check that they give the desired result here. We have therefore given a compressed treatment, describing
only what is new in this particular case; we trust that the interested reader will be able to easily fill in the
details, interpolating from e.g. the proof of [BG13, Theorem 25].

Finally, in §7 we combine all of this to prove our main theorems.
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1.4 Notation

If H is a group scheme, then we will use a gothic letter h = LieH for its Lie algebra. If θ : µn → Aut(H)
is homomorphism, then we write h = ⊕i∈Z/nZh(i) for the corresponding grading; thus h(i) is the isotypic
subspace in h corresponding to the character ζ 7→ ζi of µn.

If G is a group scheme over a base S, X an S-scheme on which G acts, T an S-scheme, and x ∈ X(T ),
then we write ZG(x) for the scheme-theoretic stabilizer of x, which is a T -scheme. By a Lie algebra over S,
we mean a coherent sheaf of OS-modules g together with an alternating bilinear form [·, ·] : g× g→ g that
satisfies the Jacobi identity. Similarly, if g is a Lie algebra that is equipped with a Lie algebra homomorphism
g→ EndOS (W ), for some locally free sheaf W of OS-modules, and x ∈W ⊗OS OT , then we define zg(x) to
be the Lie centralizer of x, which is a Lie algebra over T .

If G is reductive and A ⊂ G is a maximal torus, we write X∗(A) = Hom(A,Gm) for its character group,
Φ(G,A) ⊂ X∗(A) for its set of roots, and X∗(A) for its cocharacter group. We write NG(A) for the normalizer
of A and W (G,A) = NG(A)/A for the Weyl group of A in G.

If G is a smooth group scheme over a scheme S, then we write H1(S,G) for the set of isomorphism classes
of G-torsors over S, which we think of as a non-abelian étale cohomology set. If S = SpecR is affine then
we will write H1(R,G) for the same object.
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If G is a smooth linear algebraic group over a field k which acts on an integral affine variety X, and G0 is
reductive, then we write X�G = Spec k[X]G for the categorical quotient, which is again an integral affine
variety.

2 The E8 root lattice

Throughout this paper, we will constantly make use of the properties of a certain conjugacy class of auto-
morphisms of the E8 root lattice. We therefore record some of these properties here. For us, an E8 root
lattice Λ is a finite free Z-module, equipped with a symmetric bilinear pairing (·, ·) : Λ × Λ → Z with the
following property: let Φ ⊂ Λ be the set of elements α ∈ Λ with (α, α) = 2. Then Φ forms a root system in
ΛR of Dynkin type E8 (elements of Φ are called roots). Any two E8 root lattices are isomorphic.

Let Λ be an E8 root lattice with Φ ⊂ Λ its set of roots. Note that because E8 is simply laced, if α, β ∈ Φ,
then α + β ∈ Φ if and only if (α, β) = −1. We will make frequent use of this fact throughout the proofs in
§3. Given γ ∈ Λ, we define γ̌ to be the element of the dual lattice Λ∨ = Hom(Λ,Z) given by γ̌(µ) = (γ, µ)
for all µ ∈ Λ. We note that the map Λ→ Λ∨ defined by γ 7→ γ̌ is an isomorphism of lattices. If α ∈ Φ is a
root, then α̌ is called a coroot.

We write Aut(Λ) for the group of automorphisms of Λ that preserve the pairing (·, ·). Since E8 has no
diagram automorphisms, Aut(Λ) equals the Weyl group W (Λ), which is generated by the reflections in the
root hyperplanes α⊥ (for α ∈ Φ). We recall that an element w ∈W (Λ) is said to be elliptic if Λw = 0.

Lemma 2.1. W (Λ) contains a unique conjugacy class of elliptic elements of order 3. Let w be such an
element, and let Λw = Λ/(w − 1)Λ be the group of w-coinvariants in Λ. Then:

1. There is an isomorphism Λw ∼= F4
3.

2. Any choice of orbit representatives for the action of 〈w〉 on Φ gives a complete set of coset representa-
tives for the non-zero elements of Λw. The centralizer of w in W (Λ) acts transitively on Λw − {0}.

Proof. See [Ree11, Table 1] and [Ree11, Lemma 4.4].

We also note for later use that if w ∈ W (Λ) is elliptic of order 3, then w2γ + wγ + γ = 0 for all γ ∈ Λ.
In [Ree11], for any elliptic element w ∈ W (Λ), Reeder defines a symplectic pairing on Λw that is invariant
under the action of the centralizer of w in W (Λ). We now describe a slight variant of this pairing.

Let S be a Z[1/3]-scheme. We now let Λ be an étale sheaf of E8 root lattices on S. By this we mean that Λ
is a locally constant étale sheaf of finite free Z-modules, which is equipped with a pairing Λ×Λ→ Z making
each stalk Λs above a geometric point s→ S into an E8 root lattice. Then Aut(Λ) is a finite étale S-group.

In this setting we define an elliptic µ3-action on Λ to be a homomorphism θ : µ3 → Aut(Λ) such that for any
geometric point s → S and any primitive 3rd root of unity ζ ∈ µ3(s), θ(ζ) ∈ Aut(Λs) is an elliptic element
of order 3.

If θ is an elliptic µ3-action on Λ, then we write Λθ for the sheaf of θ-coinvariants; by Lemma 2.1, it is a
locally constant étale sheaf of F3-vector spaces of rank 4. We define a pairing 〈·, ·〉 : Λθ × Λθ → µ3 by the
formula

〈λ, µ〉 = ζ((1−θ(ζ))λ,µ), (2.1)

for any primitive 3rd root of unity ζ. (Despite appearances, the pairing does not depend on a choice of root
of unity.)

6



Lemma 2.2. The pairing (2.1) is symplectic and non-degenerate, and it induces an isomorphism Λθ ∼=
Hom(Λθ, µ3).

Proof. This can be checked on geometric points, in which case it reduces to [Ree11, Lemma 2.2, Lemma
2.3].

Let H be a reductive group over S with geometric fibres of type E8. We define a stable Z/3Z-grading of
H to be a homomorphism θ : µ3 → H such that for each geometric point s → S, there exists a maximal
torus A ⊂ Hs that is normalized by the image of θ and such that the induced map µ3 → Aut(X∗(A)) is an
elliptic µ3-action (this definition makes sense since X∗(A) is an E8 root lattice). Note that any such θ is
then automatically a closed immersion, cf. [Con14, Lemma B.1.3].

The next lemma shows that any two stable Z/3Z-gradings are conjugate étale locally on the base.

Lemma 2.3. Let S be a Z[1/3]-scheme. Let (H, θ) and (H ′, θ′) be two pairs consisting of a reductive group
over S with geometric fibres of type E8 and a stable Z/3Z-grading. Then for any s ∈ S there exists an étale
morphism S′ → S with image containing s and an isomorphism HS′ → H ′S′ intertwining θS′ and θ′S′ .

Proof. The question is étale local on S, so we can assume that H = H ′ are both split reductive groups. Let
T denote the scheme of elements h ∈ H such that Ad(h) ◦ θ = θ′; this is a closed subscheme of H which is
smooth over S, by [Con14, Proposition 2.1.2]. Since surjective smooth morphisms have sections étale locally,
we just need to show that T → S is surjective. Since the formation of T commutes with base change, we are
therefore free to assume that S = Spec k is the spectrum of an algebraically closed field.

In this case, there exist (by assumption) maximal tori A, A′ ⊂ H on which θ, θ′ act through elliptic
automorphisms of order 3. Using the conjugacy of maximal tori, we can therefore assume that A = A′.
Using Lemma 2.1, we can assume that θ, θ′ define the same element of the Weyl group of A.

We have therefore reduced the problem to the statement that if w ∈ W (H,A) is an elliptic element of
order 3, then any two lifts n, n′ to the normalizer NH(A)(k) are H(k)-conjugate. In fact, they are even
A(k)-conjugate, as follows from the fact that the morphism 1 − w : A → A is étale (and surjective). This
completes the proof.

3 A functor

Let R be a Z[1/3]-algebra. In this section we describe a functorial construction of a graded Lie algebra over
R from a Heisenberg group. We will later observe that the input data can be constructed from a genus-2
curve with a Weierstrass point (see §4.3).

3.1 Two groupoids

We first need to introduce some notation.

We write HeisR for the groupoid of triples (Λ, θ,H ), where:

1. Λ is an étale sheaf of E8 root lattices on SpecR in the sense described in §2 with symmetric pairing
(·, ·) : Λ× Λ→ Z.
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2. θ : µ3 → Aut(Λ) is an elliptic µ3-action on Λ.

3. H is a central extension
1→ µ3 →H → Λθ → 1

of étale R-groups, with the property that the induced commutator pairing Λθ × Λθ → µ3 is the same
as the pairing 〈·, ·〉 : Λθ × Λθ → µ3 given by (2.1).

Morphisms (Λ, θ,H ) → (Λ′, θ′,H ′) in HeisR are pairs of isomorphisms α : Λ → Λ′, β : H → H ′

intertwining θ and θ′ and making the induced diagram

1 // µ3
//

=

��

H

β

��

// Λθ //

αθ

��

1

1 // µ3
// H ′ // Λ′θ′ // 1

commute. (Here αθ is the map naturally induced by α.)

We write GrLieTR for the groupoid of triples (H, θ,A), where:

1. H is a reductive group over R with geometric fibres all of Dynkin type E8.

2. A ⊂ H is a maximal torus.

3. θ : µ3 → H is a homomorphism whose image normalizes A, and such that the induced map θ : µ3 →
Aut(X∗(A)) is an elliptic µ3-action.

Morphisms (H, θ,A)→ (H ′, θ′, A′) in this category are given by isomorphisms γ : H → H ′ sending A to A′

and intertwining θ and θ′. If S = SpecR is an affine scheme over Z[1/3], then we will also occasionally write
HeisS and GrLieTS for the categories HeisR and GrLieTR.

Note that if R → R′ is a homomorphism of Z[1/3]-algebras, then pullback determines functors HeisR →
HeisR′ and GrLieTR → GrLieTR′ . We could define stacks Heis and GrLieT over Z[1/3], and even try to
represent them as quotient stacks using the objects introduced in §4 (as in [HLHN14]). We have chosen not
to do this here in order to avoid obscuring the main point of our constructions, which are based on relatively
explicit calculations.

We will introduce variants of these categories in §4.3. In particular, we will introduce the category GrLieR
of pairs (H, θ) (we forget the torus).

3.2 Definition of the functor

The main goal of §3 is to prove the following theorem.

Theorem-Construction 3.1. Let N = 2× 3× 5× 7, and S = Z[1/N ]. Then for each S-algebra R, there
is a functor HeisR → GrLieTR, compatible with arbitrary base change R→ R′.

We now define the functor HeisR → GrLieTR. Let (Λ, θ,H ) ∈ HeisR. We can assume SpecR is connected.
Let R → R′ be a Galois finite étale extension1 over which Λ and H become constant. Let Γ = AutR(R′).
We will first define a Lie algebra over R′ and then recover a Lie algebra over R by étale descent. (For this

1i.e. a ring map such that SpecR′ → SpecR is a surjective, finite étale morphism which is a Galois covering
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naive form of étale descent, see [Sta18, Tag 0D1V].) For the remainder of the section we fix a choice of
primitive 3rd root of unity ζ ∈ µ3(R′). For ease of notation, we write w = θ(ζ).

Let Φ ⊂ Λ be the set of roots, let Λ̃ = Λ ×Λθ H , and let Φ̃ denote the pre-image of Φ in Λ̃. Thus Λ̃ is a
central extension

1→ µ3 → Λ̃→ Λ→ 1

that also has commutator pairing given by 〈·, ·〉, and Φ̃ → Φ is a 3-fold cover. For an element α̃ ∈ Φ̃, we
write α for the image of α̃ in Φ.

To construct an element of GrLieTR′ , we first let A be the torus over R with X∗(A) = Λ. We next construct
a Lie algebra over R′ of type E8. Let a = LieA. Note that aR′ ∼= Hom(Λ, R′), and so for any α ∈ Φ, the
coroot α̌ corresponds to an element of aR′ . In fact aR′ is generated by {α̌ | α ∈ Φ}. Let h′ be the quotient

of the free R′-module with basis elements Xα̃, α̃ ∈ Φ̃, by the relations Xζα̃ = ζXα̃ (for any α̃ ∈ Φ̃). Finally,

let hR′ = aR′ ⊕ h′. Thus hR′ is a free R′-module of rank 248 generated by {α̌,Xβ̃ | α ∈ Φ, β̃ ∈ Φ̃} (by abuse

of notation we also write Xβ̃ for the image of this vector in h′).

We define a bilinear map [·, ·] : hR′ × hR′ → hR′ as follows. We set [x, y] = 0 for any x, y ∈ a. We let

[α̌,Xβ̃ ] = −[Xβ̃ , α̌] = (α, β)Xβ̃

for any α ∈ Φ, β̃ ∈ Λ̃. Finally, the bracket of vectors Xα̃, Xβ̃ is defined by the formula

[Xα̃, Xβ̃ ] =


−α̃β̃α̌ if α+ β = 0.

(−1)(α,wβ)〈α, β〉Xα̃β̃ if α+ β ∈ Φ.

0 otherwise.

We observe that the map is well-defined, i.e. it respects the defining relation Xζα̃ = ζXα̃.

Proposition 3.2. With the above definition, hR′ is a Lie algebra (i.e. the bracket [·, ·] is antisymmetric and
satisfies the Jacobi identity).

In order to prove the proposition, we first make the following observation.

Lemma 3.3. If α, β, α+ β ∈ Φ, then (−1)(α,wβ) + (−1)(wα,β) = 0.

Proof. We have (−1)(α,wβ) = (−1)(w2α,β) = (−1)(−α−wα,β) = (−1)(wα,β)+1 since (α, β) = −1.

We also point out the useful fact that because the pairing 〈·, ·〉 is alternating, we have α̃β̃ = β̃α̃ whenever
α+ β = 0.

Proof of Proposition 3.2. Using Lemma 3.3 and the fact that the pairing 〈·, ·〉 is alternating, it is not hard
to check that the bracket [·, ·] is antisymmetric. Thus it suffices to check the Jacobi identity. Consider

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] (3.1)

for generators x, y, z. If any of x, y, z are in aR′ , then it follows easily from the definition of the bracket that
(3.1) is zero.

Thus we restrict our attention to the case when x = Xα̃, y = Xβ̃ and z = Xγ̃ for some α̃, β̃, γ̃ ∈ Λ̃.
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First suppose α+ β + γ = 0. Then β + γ = −α ∈ Φ, and similarly β + γ, α+ β ∈ Φ. So we have

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = (−1)(β,wγ)〈β, γ〉[Xα̃, Xβ̃γ̃ ] + (−1)(γ,wα)〈γ, α〉[Xβ̃ , Xγ̃α̃]

+(−1)(α,β)〈α, β〉[Xγ̃ , Xα̃β̃ ]

= −α̃β̃γ̃
[
(−1)(β,wγ)〈β, γ〉α̌+ (−1)(γ,wα)〈γ, α〉β̌ + (−1)(α,wβ)〈α, β〉γ̌

]
.

Replacing γ by −α− β and γ̌ by −α̌− β̌ and using the fact that (β,wβ) = (α,wα) = −1, we may simplify
this equation to

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = α̃β̃γ̃
[
(−1)(β,wα)〈β,−α〉+ (−1)(α,wβ)〈α, β〉

]
(α̌+ β̌),

which is zero by Lemma 3.3.

For the rest of the proof we assume α+ β + γ 6= 0. For (3.1) to be nonzero, at least one term in (3.1) must
be nonzero. Without loss of generality, we may assume the first term is nonzero, and so either β + γ = 0 or
β + γ ∈ Φ. We deal with each of these cases separately.

Case 1: β + γ = 0.

In this case the first term of (3.1) is (α, β)β̃γ̃Xα̃. By assumption (α, β) 6= 0. Suppose (α, β) = −1. Then
(α, γ) = 1 and (γ, α+ β) = −1, so

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = −β̃γ̃Xα̃ + (−1)(α,wβ)+(γ,wα+wβ)〈α, β〉〈γ, α+ β〉Xγ̃α̃β̃

= −β̃γ̃Xα̃ + 〈α, β〉−1Xγ̃α̃β̃ .

Note that
Xγ̃α̃β̃ = 〈α, β〉Xγ̃β̃α̃ = 〈α, β〉γ̃β̃Xα̃,

where we are using the fact that β̃γ̃ ∈ µ3. Thus (3.1) is zero in the case when (α, β) = −1. The case when
(α, β) = 1 is similar.

If (α, β) = −2 then α = γ = −β, so

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = −2β̃γ̃Xα̃ + 2α̃β̃Xγ̃

= −2β̃γ̃Xα̃ + 2α̃β̃γ̃(α̃)−1Xα̃.

Since α̃ commutes with β̃ and γ̃ commutes with (α̃)−1, we see that this is zero. The case when (α, β) = 2 is
similar.

Case 2: β + γ ∈ Φ.

Since we are assuming that the first term in (3.1) is nonzero, we have that α + β + γ ∈ Φ, and so (β, γ) =
(α, β + γ) = −1. Thus (α, β) + (α, γ) = −1, and at least one of (α, β) or (α, γ) is less than 0. If (α, β) or
(α, γ) is −2, then the proof reduces to that of Case 1.

Suppose (α, β) = −1. Then

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = (−1)(α,wβ+wγ)+(β,wα)〈α, β + γ〉〈β, γ〉Xα̃β̃γ̃

+(−1)(α,wβ)+(γ,wα+wβ)〈α, β〉〈γ, α+ β〉Xγ̃α̃β̃

= (−1)(α,wβ)〈α, β〉
[
(−1)(α+β,wγ)〈α+ β, γ〉+ (−1)(γ,wα+wβ)〈γ, α+ β〉2

]
Xα̃β̃γ̃ ,

which is zero by Lemma 3.3 since 〈α+ β, γ〉 = 〈γ, α+ β〉2. If (α, γ) = −1, the proof is similar.
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Recall that Γ = AutR(R′). The étale sheaves Λ and H become constant over R′, and the group Γ acts on

their sections over SpecR′. This group therefore also acts on the sections over SpecR′ of Λ̃. We define a
semi-linear action of Γ on hR′ by giving it its canonical action on aR′ and by defining

σ(Xα̃) =

{
Xσ(α̃) if σ(ζ) = ζ;
−Xσ(α̃) if σ(ζ) = ζ−1

for all σ ∈ Γ.

Lemma 3.4. The action of Γ on hR′ just defined leaves the Lie bracket invariant.

Proof. We check the relation
σ([Xα̃, Xβ̃ ]) = [σ(Xα̃), σ(Xβ̃)] (3.2)

If σ(ζ) = ζ, then (3.2) is clear. Suppose instead that σ(ζ) = ζ−1. We split into cases. If α+ β = 0, the both

sides of (3.2) are equal to −(α̃β̃)−1σ(α̌).

If α + β is a root, then the left-hand side of (3.2) equals (−1)(α,wβ)+1〈α, β〉−1Xσ(α̃β̃), while the right-hand

side equals (−1)(σ(α),wσ(β))〈σ(α), σ(β)〉Xσ(α̃β̃). Since σ−1wσ = w−1 as elements of Aut(Λ), we have

(−1)(σα,wσβ) = (−1)(wα,β) = (−1)(α,wβ)+1

and
〈σα, σβ〉 = ζ(σα,σβ)−(wσα,σβ) = ζ(α,β)−(α,wβ) = 〈β, α〉,

and thus both sides of (3.2) are equal.

We let h = hΓ
R′ , H = AutR(h). Our assumption that N = 2× 3× 5× 7 is a unit in R says exactly that the

Killing form of h is non-degenerate, and therefore (by the main theorem of [Vas16]) that H is a reductive
group over R with geometric fibres of Dynkin type E8. Moreover, we have LieH = h and we can identify
ZH(a) = A.

To complete the description of the functor HeisR → GrLieTR, it remains to describe the homomorphism
θ : µ3 → H. We make µ3 act on Λ̃ = Λ ×Λθ H by putting the trivial µ3-action on H . We define a map
θ : µ3 → Aut(hR′) using the existing action on a, together with the formula

θ(ζ)(Xα̃) = Xθ(ζ)(α̃).

Lemma 3.5. With the above definition, θ : µ3(R′)→ Aut(hR′) preserves the Lie bracket and is equivariant
for the action of Γ = AutR(R′).

Proof. Recall that we have defined w = θ(ζ). In order to prove the lemma, it suffices to show that

[w(x), w(y)] = w([x, y]) (3.3)

for any generators x, y of hR′ . If x, y ∈ aR′ , then both sides of (3.3) are zero. If x = α̌ and y = Xβ̃ for some

α ∈ Φ, β̃ ∈ Λ̃, then equality in (3.3) follows from the fact that (wα,wβ) = (α, β). Suppose x = Xα̃ and

y = Xβ̃ for some α̃, β̃ ∈ Λ̃. If (α, β) ≥ 0, then both sides of (3.3) are zero, and if α+ β ∈ Φ, then equality in

(3.3) follows from the fact that 〈wα,wβ〉 = 〈α, β〉. If α+ β = 0, then

[w(Xα̃), w(Xβ̃)] = −(wα̃)(wβ̃)w(α̌)

= −w(α̃β̃)w(α̌)

= −α̃β̃w(α̌),
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where we are using that α̃β̃ ∈ µ3. Thus we again have equality in (3.3). It is immediate from the definition
that θ as defined above is equivariant for the action of Γ.

We write again θ : µ3 → Aut(h) = H for the induced homomorphism. This completes the construction
of the triple (H, θ,A). It is (up to canonical isomorphism) independent of the choice of primitive 3rd
root of unity ζ ∈ µ3(R′); indeed, this choice entered only in the definition of the Lie bracket via the

formula [Xα̃, Xβ̃ ] = (−1)(α,θ(ζ)(β))〈α, β〉Xα̃β̃ (when α̃, β̃ ∈ Φ̃ and α + β is a root). The other choice would

give [Xα̃, Xβ̃ ] = (−1)(α,θ(ζ−1)(β))〈α, β〉Xα̃β̃ . If h′R′ denotes the Lie algebra over R′ defined using the other

primitive 3rd root of unity ζ−1, then the map hR′ → h′R′ which is the identity on the summand aR′ and
which sends Xα̃ ∈ hR′ to −Xα̃ ∈ h′R′ is an isomorphism which intertwines the two actions of AutR(R′), and
therefore defines an isomorphism between the Lie algebras over R corresponding to the two possible choices
of root of unity.

This completes the definition of the functor HeisR → GrLieTR, and therefore the proof of Theorem 3.1.

We observe that if (Λ, θ,H ) ∈ HeisR, then there is a morphism fR : H0(R,Λθ) → AutHeisR(Λ, θ,H )
defined as follows: if λ ∈ H0(R,Λθ), then fR(λ) acts as the identity on Λ and as µ 7→ 〈λ, µ〉µ on H .
Let (H, θ,A) ∈ GrLieTR be the tuple corresponding to (Λ, θ,H ) under the construction of Theorem 3.1.
Varying R and taking into the account the functorial nature of our construction, we obtain a morphism of
group schemes over R:

Λθ → Aut(H, θ,A) = NH(A)θ. (3.4)

We can describe this explicitly:

Lemma 3.6. Let notation be as in the above discussion. Then there is a canonical isomorphism Λθ ∼= Aθ,
under which the morphism (3.4) corresponds to the adjoint action of Aθ = ZH(A)θ ⊂ Aut(H, θ,A) =
NH(A)θ.

Proof. By definition, we have X∗(A) = Λ, hence X∗(A) ∼= Λ∨ = Hom(Λ,Z). There is a canonical isomor-
phism Aθ ∼= (Λ∨ ⊗ µ3)θ.

There is an isomorphism Λθ ∼= (Λ∨ ⊗ µ3)θ, given by the formula λ 7→ (1 − θ(ζ))λ̌ ⊗ ζ for λ ∈ Λ; this does
not depend on the choice of ζ and also depends only on the image of λ in Λθ.

Composing the above two isomorphisms gives the desired isomorphism Λθ ∼= Aθ. Now fix λ ∈ Λθ, and let
R→ R′ be a Galois finite étale cover over which Λ and H become constant.

We will give an explicit description of λ as an automorphism of hR′ = aR′ ⊕ h′. By definition, it acts as the
identity on aR′ and sends the vector Xα̃ to X〈λ,α〉α̃. In other words, it leaves invariant the α-root space and
acts by the scalar 〈λ, α〉 there.

On the other hand, the element (1 − w)λ̌(ζ) in Aθ also acts as the identity on A and leaves invariant each
root space, acting on the α-root space by the scalar

ζ((1−w)λ,α) = 〈λ, α〉.

This completes the proof.

3.3 Identifying h(0)

Theorem 3.1 associates to any triple (Λ, θ,H ) ∈ HeisR a triple (H, θ,A) ∈ GrLieTR. In the proof of our
next result, we show that if W is an irreducible representation of H on which the central µ3 acts by its
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tautological (scalar) character, then we can identify h(0) with sl(W ) and H with a certain subgroup of
SL(W ). This result will play an essential role in the construction of orbits in §4.3.

Theorem 3.7. Let (Λ, θ,H ) ∈ HeisR. Let W be a locally free R-module of rank 9, and suppose ρ : H →
AutR(W ) is a homomorphism such that the central µ3 acts on W through its tautological character. Let
(H, θ,A) denote the image of (Λ, θ,H ) under the functor of Theorem 3.1 and let G = Hθ. Then:

1. G is a semisimple reductive group. Let Gsc denote its simply connected cover.

2. There is a commutative diagram of R-groups with exact rows:

1 // µ3
// Gsc // G // 1

1 // µ3
//

=

OO

H

OO

// Λθ

OO

// 1,

where the map Λθ → G is induced by a canonical isomorphism Λθ ∼= Aθ.

To prove the theorem, we can again assume that SpecR is connected, and choose a Galois finite étale
extension R→ R′ over which Λ and H become constant. The group G is reductive with geometric fibres of
type SL9/µ3, so its simply connected cover Gsc → G exists, and has a kernel which is a group of multiplicative
type over R of order 3. Let g = LieG. Then g = hθ (see e.g. [Con14, Lemma 2.2.4]).

The first step in the proof of Theorem 3.7 is to define an action of the Lie algebra g on W ; equivalently, to
define a Γ-equivariant map gR′ → EndR′(WR′).

If α̃ ∈ Φ̃, define Zα̃ = Xα̃ +Xθ(ζ)(α̃) +Xθ(ζ2)(α̃) ∈ gR′ . These elements span gR′ .

Let π : Λ̃→H denote the canonical projection. We define a map ρ′ : gR′ → EndR′(WR′) by the formula

ρ′(Zα̃) = ζ(1− ζ−1)−1ρ(π(α̃)).

Proposition 3.8. With the above definition, ρ′ is a well-defined Lie algebra homomorphism that commutes
with the action of Γ = AutR(R′).

Proof. We see that ρ′ is well defined exactly because ρ(ζ) = ζ · 1W . The key point is to check that the Lie
bracket is preserved, or in other words that the relation

ρ′([Zα̃, Zβ̃ ]) = [ρ′(Zα̃), ρ′(Zβ̃)] (3.5)

holds for all α̃, β̃ ∈ Φ̃. We give a case-by-case-proof depending on the value of (α, β). Before beginning, we
note again the useful fact that if α ∈ Φ, then α+w(α) +w2(α) = 0. In particular, α+w(α) and α+w2(α)
are roots.

Case 1. If (α, β) = ±2, then α = ±β. If α = β then both sides of (3.5) vanish. If α = −β, then the

right-hand side vanishes because π(α̃) and π(β̃) commute in H . On the other hand, [Zα̃, Zβ̃ ] equals

[Xα̃, Xβ̃ ] + [Xwα̃, Xwβ̃ ] + [Xw2α̃, Xw2β̃ ]

+[Xα̃, Xwβ̃ ] + [Xwα̃, Xw2β̃ ] + [Xw2α̃, Xβ̃ ]

+[Xα̃, Xw2β̃ ] + [Xwα̃, Xβ̃ ] + [Xw2α̃, Xwβ̃ ].

(3.6)

The first line of (3.6) is zero because it is an element of gR′ ∩ aR′ = 0. The second line vanishes because
α − wα is not a root. The third line vanishes because α − w2α is not a root. Therefore both sides of (3.5)
are zero in this case.
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We note that if any of (α,wβ) = ±2, (α,w2β) = ±2, (wα, β) = ±2, or (w2α, β) = ±2, then because
Zα̃ = Zwα̃ = Zw2α̃ and similarly for Zβ̃ , we still have that both sides of (3.5) are zero, so for the rest of the
proof we can, and do, assume that this is not the case.

Case 2. If (α, β) = −1, then α + β is a root. Note that the equation (α, β) + (wα, β) + (w2α, β) = 0
implies that (wα, β) and (w2α, β) are nonnegative, and similarly for (α,wβ) and (α,w2β). This implies that
[Zα̃, Zβ̃ ] = (−1)(α,wβ)〈α, β〉Zα̃β̃ and that 〈α, β〉 = ζ−(wα,β)−1 6= 1. Thus

[ρ′(Zα̃), ρ′(Zβ̃)] = ζ−1(1− ζ−1)−2
[
ρ(π(α̃)), ρ(π(β̃))

]
= ζ−1(1− ζ−1)−2(1− ρ(π(β̃α̃β̃−1α̃−1)))ρ(π(α̃β̃))

= ζ−1(1− ζ−1)−2(1− 〈β, α〉)ρ(π(α̃β̃)).

If 〈α, β〉 = ζ, then (wα, β) = 1 and (α,wβ) = 0, so

ζ−1(1− ζ−1)−2(1− 〈β, α〉)ρ(π(α̃β̃)) = ζ−1(1− ζ−1)−1 = ρ′(
[
Zα̃, Zβ̃

]
).

If 〈α, β〉 = ζ−1, then (wα, β) = 0, (α,wβ) = 1, and we again have equality in (3.5).

Case 3. Suppose (α, β) ∈ {0, 1}. If (α, β) = (wα, β) = (w2α, β) = 0, then both sides of (3.5) are 0. Otherwise
the equation (α, β) + (wα, β) + (w2α, β) = 0 implies that either (wα, β) = −1 or (w2α, β) = −1, and thus
we may reduce to Case 2. This completes the proof that ρ′ is a Lie algebra homomorphism.

It remains to check that ρ′ is equivariant for the action of Γ. We just need to note the formulae

σ(Zα̃) =

{
Zσ(α̃) σ(ζ) = ζ;
−Zσ(α̃) σ(ζ) = ζ−1

and −ζ/(1− ζ−1) = 1/(ζ(1− ζ)).

The induced map g → sl(W ) is an isomorphism, inducing an isomorphism Gad → PGL(W ) (by [Vas16]
once again), hence a unique isomorphism Gsc → SL(W ) which is compatible with the given map g→ sl(W )
([Con14, Exercise 6.5.2]). Let H ′ denote the pre-image of Aθ ∼= Λθ in Gsc. Identifying the centre of Gsc

with µ3 via its action on W , we find that H ′ fits into a diagram

1 // µ3
// Gsc // G // 1

1 // µ3
//

=

OO

H ′

OO

// Λθ

OO

// 1.

To complete the proof of Theorem 3.7, we must show that there is an isomorphism H ∼= H ′ of central
extensions of Λθ by µ3. We will show that in fact the images of H and H ′ in SL(W ) coincide. This can be
checked over the extension R→ R′.

Let p : Gsc → Gad denote the projection to the adjoint group. We can characterize H as

H = {g ∈ Gsc | p(g) ∈ p(ρ(H )), g3 = 1}.

Similarly, we can characterize H ′ as

H ′ = {g ∈ Gsc | p(g) ∈ p(Λθ), g3 = 1}.

To prove the theorem, it is therefore enough to show that the two homomorphisms Λθ → PGL(W ), one
derived from Ad ◦ρ, the other derived from Ad |H ′ , are the same. Since gR′ is spanned by the elements Zβ̃ ,
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and the non-trivial elements of Λθ are all of the form α mod(θ − 1), for some α ∈ Φ, it is enough to show

that the two possible actions of α on Zβ̃ are the same for all α ∈ Φ, β̃ ∈ Φ̃.

For the first action, we see that, by definition, ρ′(Zβ̃) ∈ gR′ = sl(WR′) ⊂ EndR′(WR′) is a scalar multiple of

ρ(π(β̃)). Therefore we have

Ad(ρ(π(α̃)))(Zβ̃) = ρ(π(α̃β̃α̃−1β̃−1))Zβ̃ = 〈α, β〉Zβ̃ . (3.7)

For the second action, we use the fact that Zβ̃ = Xβ̃ + Xθ(ζ)(β̃) + Xθ(ζ2)(β̃). The isomorphism Λθ → Aθ,

defined by Lemma 3.6, sends a root α to the element (1 − w)α̌(ζ). We calculate the corresponding action
on Zβ̃ as

Ad((1− w)α̌(ζ))(Zβ̃) = ζ((1−w)α̌,β)Zβ̃ = 〈α, β〉Zβ̃ . (3.8)

The equality of the expressions (3.7) and (3.8) concludes the proof of Theorem 3.7.

4 A stable grading of E8

In the previous section we constructed a functor from Heisenberg groups to Z/3Z-graded Lie algebras. In
order to count points, we need to have a ‘reference’ algebra in which one can do explicit calculations. In this
section we introduce such an algebra using a principal grading as defined in [RLYG12] and give rigidifications
of orbits and invariant polynomials using two special transverse slices to nilpotent orbits. The main results
of this section, in §4.3, combine this work with the work done in §3 to define the map ηf described in the
introduction (in other words, to construct orbits from points of Jacobians).

4.1 Definition of the grading

Let H be a split reductive group of type E8 over Z. Let T ⊂ H be a split maximal torus, and let ΦH ⊂ X∗(T )
be the corresponding set of roots. Let SH ⊂ ΦH be a fixed choice of root basis. Let Φ+

H be the corresponding
set of positive roots. We suppose that H comes with a pinning {Xα}α∈SH .

Let ρ̌ ∈ X∗(T ) be the sum of the fundamental coweights with respect to SH , and let θ = ρ̌|µ3 : µ3 → H. Let
h = Lie(H). Then θ defines an action of µ3 on h and thus determines a Z/3Z-grading

h = h(0)⊕ h(1)⊕ h(2). (4.1)

We let G = Hθ, the centralizer of θ in H. We write V = h(1); it is a representation of G, free over Z of rank
84.

Proposition 4.1. The group G is a split reductive group isomorphic to SL9/µ3. The subgroup T ⊂ G is a
split maximal torus. Over Z[1/3], θ is a stable Z/3Z-grading of H, in the sense of §2.

Proof. It follows from the discussion in [Con14, Remark 3.1.5] that G is smooth over Z, and moreover that the
connected component G0 (which agrees in each fibre Gs with the connected component of Gs) is reductive.
Moreover, T ⊂ G0 is a split maximal torus. It remains therefore to check that G = G0 and that its root
datum is that of SL9/µ3. The quotient G/G0 is étale over Z, so both of these last points can be checked
at the generic point, in which case they follow from the general theory over C (see e.g. [Ree10]). The final
statement can be checked in geometric fibres, in which case it is [RLYG12, Corollary 5.7].
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Let ΦG = Φ(G,T ). There exists a unique choice SG of root basis for G such that Φ+
G = ΦG ∩ Φ+

H .

We write H for the Q-fibre of H, and similarly for T , G, and V . In the coming sections we will describe the
invariant theory of the pair (G,V ) and its relation to 3-descent on odd genus-2 curves. We will re-introduce
integral structures into our discussion in §4.5 below.

We let B = V �G = Q[V ]G, and write π : V → B for the quotient map. For a detailed study of the
properties of the pair (G,V ), and its analogue over fields of sufficiently large positive characteristic, see
[Lev09]. We invite the reader to become familiar at least with the results in the introduction to that paper
before proceeding; in particular, we will make frequent use of the existence of Jordan decomposition of
elements in V and of the fact that, if k is algebraically closed, then two semisimple elements of V (k) are
G(k)-conjugate if and only if they have the same image in B(k).

We write Brs ⊂ B for the open subscheme where the restriction of the discriminant of h to V (which
is certainly G-invariant) is non-zero. The preimage π−1(Brs) is the open subscheme V rs ⊂ V of regular
semisimple elements. We also have the open subscheme V reg ⊂ V of regular elements, i.e. those with finite
stabilizers in G. We will generally use the superscripts (?)rs and (?)reg to denote intersection with these open
subschemes of regular semisimple and regular elements, respectively.

4.2 Kostant section

Let E =
∑
α∈SH Xα ∈ h. Then E is a regular nilpotent element. Let (E,X,F ) be the unique normal

sl2-triple containing it. By definition, this means that (E,X,F ) is an sl2-triple with E ∈ h(1), X ∈ h(0),
and F ∈ h(−1) (cf. [dG11, §3.1]; the uniqueness follows from the results stated there, together with the fact
that ZG(E) is trivial). In fact, (E,X,F ) is the sl2-triple associated to the pinning of H (cf. [Gro97, §2]).

We define an affine linear subspace κ = (E + zh(F )) ∩ V ⊂ V .

Proposition 4.2. The restriction of the map π : V → B to κ induces an isomorphism π|κ : κ → B.
Moreover, κ is contained in the open subscheme V reg ⊂ V of regular elements.

Proof. See [Pan05, Theorem 3.5].

We write σ : B → V for the inverse σ = π|−1
κ , and call it the Kostant section. We define an action of Gm on

κ by the formula t · x = tAd(ρ̌(t−1))(x). This is a contracting action with E as its unique fixed point, and
the morphism π|κ is Gm-equivariant (when Gm acts on B = V �G in the natural way, compatibly with its
action on V by scalar multiplication). Hence σ is also Gm-equivariant.

If k/Q is a field extension, and f ∈ Brs(k), then we can use the Kostant section to organise the setG(k)\Vf (k),
where Vf = π−1(f). Indeed, we write µf : G→ Vf for the action map g 7→ g · σ(f). Then µf is a torsor for
the group ZG(σ(f)) and determines a bijection

G(k)\Vf (k) ∼= ker(H1(k, ZG(σ(f)))→ H1(k,G)).

The group scheme ZG(σ(f)) can be described explicitly as follows: Af := ZH(σ(f)) is a maximal torus of
H. The image of θ normalizes Af , inducing a homomorphism µ3 → NH(Af )/Af = W (H,Af ) that is an
elliptic µ3-action on X∗(Af ) in the sense of §2. Thus ZG(σ(f)) = Aθf is a finite étale k-group of order 34.

More generally, the centralizer A := ZH(σ|Brs) is a maximal torus in HBrs . We define Λ = X∗(A) and
Λ∨ = Hom(Λ,Z). We define a pairing (·, ·) : Λ × Λ → Z by the formula (λ, µ) = λ̌(µ). Then Λ is an étale
sheaf of E8 root lattices on Brs. The grading θ determines a homomorphism µ3 → Aut(Λ) that we also
denote by θ, and which is an elliptic µ3-action on Λ. The stabilizer scheme ZG(σ|Brs) is finite étale over Brs,
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and can be identified with Λθ (cf. Lemma 3.6). Moreover, Λθ admits a symplectic, non-degenerate pairing
〈·, ·〉 : Λθ × Λθ → µ3 (Lemma 2.2).

Proposition 4.3. We can choose polynomials c12, c16, c24, c30 ∈ Q[V ]G with the following properties:

1. Each polynomial ci is homogeneous of degree i, and Q[V ]G is isomorphic to the ring Q[c12, c16, c24, c30].
Consequently, there is an isomorphism B ∼= A4

Q. If ∆0 ∈ Q[V ]G denotes the discriminant of the

polynomial f(x) = x5 + c12x
3 + c18x

2 + c24x+ c30, then ∆2
0 is (up to scalar) equal to the restriction to

V of the usual Lie algebra discriminant of h.

2. Let C 0 → B be the family of affine curves given by the equation

C 0 : y2 = x5 + c12x
3 + c18x

2 + c24x+ c30, (4.2)

and let C → B be its completion inside weighted projective space PB(1, 1, 3), projective over B. Let
J → Brs be the Jacobian of its smooth part. Then there is an isomorphism Λθ ∼= J [3] of étale
sheaves which sends the pairing 〈·, ·〉 on Λθ to the Weil pairing on J [3].

The proof of this proposition will be given in §4.4.

Let P : B → C denote the section at infinity (which is a Weierstrass point in each smooth fibre of C ). The
choice of P determines a symmetric line bundle M = OJ (C −P) on J . We write L = M⊗3, and define
G to be the 3-torsion subgroup of the Mumford theta group G (L ). Thus G is a central extension

1→ µ3 → G →J [3]→ 1

of étale group schemes over Brs, and (Λ, θ,G ) is an object of the category HeisBrs defined in §3. We will soon
show (Proposition 4.6) that the image of (Λ, θ,G ) under the functor defined in Theorem 3.1 is isomorphic
in the groupoid GrLieTBrs to the triple (HBrs , θBrs , A).

4.3 Twisting

We can now explain our construction of orbits. Let R be a Q-algebra. We recall that in §3 we have defined
groupoids HeisR and GrLieTR, and a functor HeisR → GrLieTR. We now define some related groupoids.

We define GrLieR to be the groupoid of pairs (H ′, θ′), where H ′ is a reductive group over R of type E8 and
θ′ : µ3 → H ′ is a stable Z/3Z-grading. Morphisms (H ′, θ′)→ (H ′′, θ′′) are given by isomorphisms H ′ → H ′′

intertwining θ′ and θ′′.

Lemma 4.4. The following sets are in canonical bijection:

1. The set of isomorphism classes of objects in GrLieR.

2. The set H1(R,G).

Proof. Note that GrLieR always contains the object (HR, θR). We have proved (Lemma 2.3) that any
two objects of GrLieR are isomorphic étale locally on SpecR. Since Aut(H, θ) = G, the result follows by
descent.

We define GrLieER to be the groupoid of tuples (H ′, θ′, γ′), where (H ′, θ′) ∈ GrLieR and γ′ ∈ h′(1).
Morphisms (H ′, θ′, γ′) → (H ′′, θ′′, γ′′) are given by isomorphisms H ′ → H ′′ intertwining θ′ and θ′′ and
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sending γ′ to γ′′. If (H ′, θ′, γ′) ∈ GrLieER, then we define an element π(γ′) ∈ B(R) as follows: after
passage to a faithfully flat extension R → R′, we can find an isomorphism α : (H ′R′ , θ

′
R′)
∼= (HR′ , θR′),

and π(α(γ′)) ∈ B(R′) in fact lies in B(R) and is independent of the choice of α. Thus there is a functor
π : GrLieER → B(R), compatible with arbitrary base change on R. (We view the set B(R) as a discrete
category, i.e. as a category with no non-identity morphisms.)

There is an obvious functor V (R) → GrLieER (where V (R) is viewed as a discrete category) given by
γ 7→ (HR, θR, γ). The composite V (R) → GrLieER → B(R) coincides with the map π : V (R) → B(R)
defined previously.

If f ∈ B(R), then we define GrLieER,f to be the full subcategory of GrLieER consisting of tuples (H ′, θ′, γ′)
where π(γ′) = f .

Lemma 4.5. Let R be a Q-algebra, and let f ∈ Brs(R). Then any two objects of GrLieER,f are isomorphic
étale locally on SpecR. Consequently, the following sets are in canonical bijection:

1. The set of G(R)-orbits in Vf (R).

2. The set ker(H1(R,ZG(σ(f)))→ H1(R,G)).

3. The set of isomorphism classes of objects (H ′, θ′, γ′) ∈ GrLieER,f such that (H ′, θ′) ∼= (HR, θR) in
GrLieR.

Proof. The group scheme ZG(σ(f)) is a finite étale R-scheme, and the action map G → Vf of σ(f) is a
ZG(σ(f))-torsor. The existence of the bijection between the first and second sets is therefore a consequence
of e.g. [Con14, Exercise 2.4.11].

The category GrLieER,f contains the triple (HR, θR, σ(f)). Its automorphisms may be identified with the
sections over R of ZG(σ(f)). Moreover, any two objects of GrLieER,f are isomorphic étale locally on SpecR.
This implies the existence of the bijection between the second and third sets.

If f ∈ Brs(R), then we define HeisR,f to be the subcategory of HeisR consisting of triples (f∗Λ, θ,H ).
Morphisms H → H ′ in HeisR,f are morphisms (f∗Λ, θ,H ) → (f∗Λ, θ,H ′) in HeisR which act as the
identity on f∗Λ. (Recall that Λ = X∗(A) is an étale sheaf of E8 root lattices on Brs, so f∗Λ is an étale sheaf
of E8 root lattices on SpecR.)

Let fτ ∈ Brs(Brs) be the tautological section. According to Proposition 4.3, (Λ, θ,G ) defines an element of
the groupoid HeisBrs,fτ , hence a tuple (Hτ , θτ , Aτ ) ∈ GrLieTBrs (and in fact Aτ = A). The Lie algebra aτ
has a tautological section γτ (which is in fact none other than σ). Thus (Hτ , θτ , γτ ) ∈ GrLieEBrs,fτ .

Proposition 4.6. The objects (Hτ , θτ , γτ ) and (HBrs , θBrs , σ(fτ )) of GrLieEBrs,fτ are isomorphic.

Proof. The proof relies upon the fact that for each triple, the associated Z/3Z-grading can be naturally
extended to a Z/6Z-grading. A Z/6Z-grading of hBrs extending the grading of (HBrs , θBrs , σ(fτ )) is given
by ρ̌|µ6

. Let V ′ ⊂ hBrs denote the 1-part of this Z/6Z-grading, and note that σ(fτ ) ∈ V ′(Brs).

To define a Z/6Z-grading of hτ extending the grading of (Hτ , θτ , γτ ), observe that M is a symmetric line
bundle. A choice of isomorphism M ∼= [−1]∗M determines an automorphism (ω, α) 7→ (−ω, [−1]∗α) of G
which acts as the identity on the central µ3 and as −1 on the quotient J [3]. Since this automorphism is
compatible with the action of −1 on Λ, Theorem 3.1 implies the existence of an involution θ′ : Hτ → Hτ

that commutes with θτ , that normalizes the torus ZHτ (γτ ), and that acts −1 on the character group of this
torus. Therefore θ′ · θτ defines a Z/6Z-grading of hτ such that, if V ′τ ⊂ hτ is the 1-part of the grading, then
γτ ∈ V ′τ .
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To complete the proof, consider the Brs-scheme T of isomorphisms H → Hτ intertwining ρ̌|µ6 and θ′ · θτ
and sending σ(fτ ) to γτ . Then T is an étale Brs-scheme, which is in fact a torsor for ZH(σ(fτ ))ρ̌|µ6 (the
argument is the same as in the proof of Lemma 2.3). Since ZH(σ(fτ ))ρ̌|µ6 → Brs is the trivial group scheme,
we have T = Brs and it follows that there is a unique isomorphism (Hτ , θτ , γτ ) ∼= (HBrs , θBrs , σ(fτ )) in
GrLieEBrs,fτ that is compatible with the given Z/6Z-gradings.

Theorem 4.7. Let f ∈ Brs(R). Then there is an equivalence of categories HeisR,f → GrLieER,f , compatible
with base change on R.

Proof. Let (f∗Λ, θ,H ) ∈ HeisR,f , and let (H ′, θ′, A′) ∈ GrLieTR be its image under the functor of Theorem
3.1. Since A′ = f∗Aτ , we have the section γ′ = f∗(γτ ). The functor HeisR,f → GrLieER,f is defined by
sending (f∗Λ, θ,H ) to the triple (H ′, θ′, γ′).

It is fully faithful, by Lemma 3.6. The category HeisR,f contains the object f∗(Λ, θ,G ), which corresponds
to the object (HR, θR, f

∗(γτ )), by Proposition 4.6. The objects of both categories are therefore classified
by the group H1(R,Jf [3]) = H1(R,ZG(σ(f))). This shows that our functor is essentially surjective, and
completes the proof of the lemma.

Corollary 4.8. Let R be a Q-algebra over which every locally free module of finite rank is free. Let f ∈
Brs(R). Then there is a canonical injection ηf : Jf (R)/3Jf (R)→ G(R)\Vf (R).

Proof. The group G acts on H0(Jf ,L ), which is a locally free R-module of rank 9. By Proposition 4.6 and
Theorem 3.7, there is a diagram of R-groups with exact rows:

1 // µ3
// Gsc

R
// GR // 1

1 // µ3
//

=

OO

G //

OO

Jf [3] //

OO

1.

Let P ∈ Jf (R). Let LP = t∗PM ⊗M ⊗M , and let GP denote the 3-torsion subgroup of the Mumford
theta group G (LP ). Then GP ∈ HeisR,f . Let (HP , θP , γP ) ∈ GrLieER,f denote the tuple corresponding to
GP under the equivalence of Theorem 4.7. Then the class ϕ ∈ H1(R,Jf [3]) corresponding to (HP , θP , γP )
under the bijection of Lemma 4.5 is the Kummer class of the point P (as follows from Lemma 3.6).

To prove the corollary, we will show that this class lifts to H1(R,G ). This will imply that the image of ϕ
in H1(R,G) lies in the image of the map H1(R,Gsc) → H1(R,G), which is trivial (by our assumption on
R). To show that the class lifts, it will even suffice to show that it lifts to H1(R,G (L )), where G (L ) is the
Mumford theta group of L , sitting in the short exact sequence of R-groups

1 //Gm //G (L ) //Jf [3] //1.

Indeed, the map H2(R,µ3) → H2(R,Gm) is injective, again by our assumption on R. We define TP to be
the scheme of pairs (ω, α), where ω ∈ Jf and α : LP → t∗ωL is an isomorphism. Note that forgetting ω
leads to a surjective map TP → [3]−1(P ). Thus TP is a torsor for G (L ), defining a class in H1(R,G (L ))
that lifts the class ϕ ∈ H1(R,Jf [3]). This completes the proof of the corollary.

Remark 4.9. We could prove a stronger version of Corollary 4.8 where we replace our assumption that every
locally free module is free with the assumption that H1(R,Gsc) is trivial, by refining the torsor for G (L )
constructed in the proof to a torsor for G using the canonical isomorphism M⊗9 ∼= [3]∗M afforded by the
theorem of the cube. However, since we don’t need this extra generality we have chosen not to include the
details here.

We restate the corollary in the case that R = k is a field extension of Q.
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Corollary 4.10. Let k/Q be a field, and let f ∈ Brs(k). Then there is a canonical injection ηf, :
Jf (k)/3Jf (k)→ G(k)\Vf (k).

We also record for future use the fact that when R = Q, we can extend the above construction of orbits from
rational points to 3-Selmer elements:

Proposition 4.11. Let f ∈ Brs(Q). Then the map ηf : Jf (Q)/3Jf (Q)→ G(Q)\Vf (Q) naturally extends to
a map ηf : Sel3(Jf )→ G(Q)\Vf (Q).

Proof. Taking into account Lemma 4.5, we just need to show that the map H1(Q, G) →
∏
vH

1(Qv, G) is
trivial kernel, where the product runs over the set of all places v of Q. This is an exercise using class field
theory.

4.4 Proof of Proposition 4.3

We now prove Proposition 4.3. We will use a special transverse slice to the orbit of a subregular nilpotent
element in V in order to form the bridge between the group H and the family of abelian surfaces J .

We begin by fixing a subregular nilpotent element e ∈ V (the existence of such an element can be read off
from the tables in [VÈ78], which also show that there is a unique G-orbit of subregular nilpotents in V ). We
can complete e to a normal sl2-triple (e, h, f) in h. We define X0 = e+ zh(f), an affine linear subspace of h.
We define a µ3-action on X0 by the formula ζ · x = ζ−1 Ad(θ(ζ))(x). We define a Gm-action on X0 by the
formula t · x = t2 Ad(λ(t−1))(x), where λ : Gm → G is the cocharacter with dλ(1) = h. These two actions
commute, giving a µ3 × Gm-action on X0. Let B0 = h�H, and let p0 : X0 → B0 denote the restriction
of the adjoint quotient π0 : h → h�H to X0. This is equivariant for the action of µ3 × Gm on source and
target if Gm acts on h�H by the square of its usual action. We identify X∗(µ3×Gm) = Z/3Z×Z. If v is an
eigenvector for an action of µ3×Gm, then we define its weight to be the image in Z/3Z×Z of the character
by which µ3 ×Gm acts on v.

Proposition 4.12. We can choose polynomials c2, c8, c12, c14, c18, c20, c24, c30 ∈ Q[h]H and x, y, z ∈ Q[X0]
with the following properties:

1. Each polynomial ci is homogeneous of degree i. The polynomials ci are algebraically independent and
generate Q[h]H . The restriction of ci to X0 has weight (−i, 2i). The elements x, y, z have weights
(0, 12), (0, 30) and (−1, 20), respectively.

2. The restriction of the 7 elements c2, c8, c12, c14, c18, c20, c24 to X0, together with x, y, z, are algebraically
independent and generate Q[X0]. Moreover, the morphism p0 : X0 → B0 is given by the formula

y2 = z3 + x5 + z(c2x
3 + c8x

2 + c14x+ c20) + (c12x
3 + c18x

2 + c24x+ c30).

Proof. View X0 as a vector space with origin e; then the action of µ3 × Gm on X0 is linear. By direct
calculation, the weights of µ3 ×Gm in X0 are as follows:

(1, 4), (0, 12), (1, 16), (−1, 20), (0, 24), (1, 28), (0, 30), (0, 36), (1, 40), (0, 48).

The weights of µ3 ×Gm on h�H are as follows:

(1, 4), (1, 16), (0, 24), (1, 28), (0, 36), (1, 40), (0, 48), (0, 60).

By comparison with the results of [Slo80, §8.7], we see that the differential dp0,e has rank 7, mapping the
subspace where Gm acts with weights 4, 16, 24, 28, 36, 40, 48 isomorphically into the Zariski tangent space
T0(h�H) and annihilating the subspace where Gm acts with weights 12, 20, and 30.
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Following through the argument of [Slo80, §8.7, Theorem] with this µ3 × Gm-action now shows that there
is a µ3 × Gm-equivariant isomorphism (X0 → B0) → (X ′

0 → B′0), where X ′
0 → B′0 is the semi-universal

µ3 ×Gm-deformation of the singularity y2 = z3 + x5 given by the formula

y2 = z3 + x5 + z(c2x
3 + c8x

2 + c14x+ c20) + (c12x
3 + c18x

2 + c24x+ c30),

where x, y, z have weights (0, 12), (0, 30) and (−1, 20), respectively, and each ci has weight (−i, 2i). We fix
our invariant polynomials c2, . . . , c30 ∈ Q[h]H to be the images under this isomorphism of the elements with
the same names in the affine ring of B′0. This completes the proof of the proposition.

We fix elements c2, c8, c12, c14, c18, c20, c24, c30 and x, y, z as in Proposition 4.12. Thus we have identified X0

explicitly as given by the equation

y2 = z3 + x5 + z(c2x
3 + c8x

2 + c14x+ c20) + (c12x
3 + c18x

2 + c24x+ c30). (4.3)

We view (4.3) as an affine Weierstrass equation over A1
B0

. This allows us to compactify X0 to obtain a
projective Weierstrass fibration (in the sense of [Mir81]) Y0 → P1

B0
which contains X0 as an open subscheme.

More precisely, X0 is the complement in Y0 of the zero section O and the fibre F above the point x = ∞
of P1

B0
.

Let κ0 = E + zh(F ), and let σ0 = π0|−1
κ0

: B0 → h denote the Kostant section for h. (Thus κ = κ0 ∩ V .) Let
A0 = ZH(σ0|Brs

0
), and let Λ0 = X∗(A0). Then Λ0 is an étale sheaf of E8 root lattices on Brs

0 .

Observe that there is a A0-torsor T0 →X rs
0 given by the formula

T0 = {(h, x) ∈ H ×Brs
0 | h · σ0(x) ∈X rs}.

Let η0 be the generic point of B0, and let η0 be a geometric point above it. The existence of T0 determines
a π1(η0, η0)-equivariant map X∗(A0,η0) → Pic(X0,η0). (Note that this étale fundamental group can be
identified with Gal(k(η0)/k(η0)).) We endow Pic(X0,η0) with an intersection pairing as follows. There is a
perfect intersection pairing on Pic(Y0,η0), which is a free Z-module of rank 10 (Y0,η0 is a rational elliptic
surface, cf. [SS10, §8]). Let W0 = 〈O,F 〉 ⊂ Pic(Y0,η0), and let W ⊥

0 denote its orthogonal complement. Then
Pic(Y0,η0) = W0⊕W ⊥

0 , and so the morphism W ⊥
0 → Pic(Y0,η0)→ Pic(X0,η0) induced by the open immersion

X0,η0 → Y0,η0 is an isomorphism. We give Pic(X0,η0) the perfect, negative definite pairing induced from
that of W ⊥

0 .

Lemma 4.13. The π1(η0, η0)-equivariant morphism X∗(A0,η0) → Pic(X0,η0) ∼= W ⊥
0 just constructed is

an isomorphism which intertwines the pairing (·, ·) : Λ0 × Λ0 → Z with minus the intersection pairing on
Pic(X0,η0) ∼= W ⊥

0 .

Proof. To show that this morphism is an isomorphism, we use the existence of the Springer resolution. Recall
that T ⊂ H is a maximal torus with Lie algebra t and root basis SH ⊂ Φ(H,T ). We write P ⊂ H for the
Borel subgroup corresponding to this choice of root basis. Let X0,t denote the pullback of X0 → B0 along
the finite map t→ B0 = t�W (H,T ), and define

X̃0,t = {(hP, x) ∈ H/P ×X0,t | x ∈ Ad(h)(LieP )}.

Then X̃0,t → t is the Springer resolution of the transverse slice X0: it is smooth, and the morphism

X̃0,t → X0,t is a proper morphism which is an isomorphism away from the singular points in each fibre of

X0,t → t (cf. [Slo80, §5.3]). In particular, we can glue X̃0,t with Y0,t to obtain a smooth proper surface

Ỹ0,t → t which is itself a resolution of Y0,t → t.
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We have Pic(H/P ) = X∗(T ). The projection X̃0,t → H/P therefore induces a map X∗(T ) → Pic(X̃0,t).
Let ξ denote the generic point of t, and let ξ denote a lift of η0 to a geometric point above ξ. We claim that
the composite

X∗(T )→ Pic(X̃0,t)→ Pic(X̃0,t,ξ)

is an isomorphism. In fact, it suffices to prove the analogous claim above the central point 0 of t, as we now
explain. In order to avoid confusing notation, let us write s for this point, and s for a geometric point above
it. Then there is a commutative diagram

X∗(T )

=

��

// Pic(X̃0,t,ξ)

��
X∗(T ) // Pic(X̃0,t,s),

where the right vertical map is given by specialization and is injective with torsion-free cokernel (cf. [MP12,
Proposition 3.6], which gives a specialization morphism for Néron–Severi groups of the fibres of the proper

morphism Ỹ0,t → t; we are using that the fibres of Ỹ0,t → t are rational elliptic surfaces, and that in each
geometric fibre the free rank 2 subgroup 〈O,F 〉 of the Picard group splits off as a direct summand in a way
that is compatible with specialization). Since the source and target of the right vertical arrow are both free
Z-modules of rank 8, this arrow is an isomorphism. It follows that if the bottom arrow in the above diagram
is an isomorphism, then so is the top arrow.

Here, however, we can make everything explicit, using the description of the exceptional fibre of the morphism

X̃0,t,s → X0,t,s given in [Hin91]. The upshot is that this exceptional divisor is a union of projective lines

Cα indexed by simple roots α ∈ SH , the classes of which freely generate Pic(X̃0,t,0); and if α ∈ SH is a
simple root, then the image of α ∈ X∗(T ) in the Picard group is the class of the curve Cα (this is [Hin91,
5.3, Lemma]).

The same argument shows that the morphism X∗(T ) → Pic(X̃0,t,ξ)
∼= W ⊥

0 intertwines the root lattice on

X∗(T ) with the negative of the intersection pairing on W ⊥
0 . Indeed, this can be checked in the central fibre of

the Springer resolution, where it follows from the formula (Cα, Cβ) = −β̌(α), itself a consequence of [Hin91,
Proposition 5.2].

It remains to see why the above results on the map X∗(T ) → Pic(X̃0,t,ξ) imply what we need for the

map X∗(Aη0) → Pic(X0,η0). However, the points ξ and σ0(η0) of h(k(η0)) are conjugate under the action
of H(k(η0)), so what we really need to check is that the two maps X∗(T ) → Pic(X0,t,ξ), one arising by
pullback from Pic(H/P ), and the other arising from the existence of the Tk(η0)-torsor

T ′ = {h ∈ Hk(η0) | Ad(h)(ξ) ∈X0,k(η0)},

are the same. This follows from the definitions.

The morphism X0 → B0 is µ3-equivariant, and µ3 acts on B0 = SpecQ[c2, c8, c12, c14, c18, c20, c24, c30] by
the formula ζ · ci = ζ−ici. If X denotes the restriction of X0 to B = SpecQ[c12, c18, c24, c30] = Bµ3

0 , then θ
acts on the fibres of X → B by the formula θ(ζ)(x, y, z) = (x, y, ζ−1z). If we write Y → B for the pullback
of Y0 to B, then µ3 acts on the fibres of Y → B by the same formula, and we can identify the fixed locus
Y µ3 with the projective completion C of the family of affine curves

C 0 : y2 = x5 + c12x
3 + c18x

2 + c24x+ c30 (4.4)

that is the object of our study in this paper.
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We now come back to Proposition 4.3. We recall that we have defined Λ = X∗(A), where A = ZH(σ|Brs) is a
torus over Brs. Thus Λ is an étale sheaf of E8 root lattices, which may be identified with the pullback of Λ0

along the closed immersion B → B0. The image of the stable Z/3Z-grading θ : µ3 → H normalizes A, and
determines an elliptic µ3-action θ : µ3 → Aut(Λ). We must show that there is an isomorphism Λθ →J [3]
intertwining the pairing 〈·, ·〉 on Λθ, described in §2, with the Weil pairing on J [3].

We define the morphism Λθ → J [3] in stages. Since both Λ and J [3] are locally constant étale sheaves
over Brs, it is enough to define this morphism at the generic point η of Brs. Let η now denote the generic
point of Brs, and let η be a geometric point above it. We have the following corollary of Lemma 4.13:

Corollary 4.14. There is a π1(η, η)-equivariant isomorphism X∗(Aη) → Pic(Xη) which intertwines the
Weyl-invariant pairing on the source with the negative of the intersection pairing of W ⊥ on the target.

The morphism X∗(Aη)→ Pic0(Cη) is defined to be the composite

X∗(Aη)→ Pic(Xη)→ Pic(C 0
η ) ∼= Pic0(Cη),

where the first arrow is the one given by Corollary 4.14, the second is pullback along C 0 → X , and the
third one is the natural isomorphism Pic(C 0

η ) ∼= Pic(Cη)/〈Pη〉 ∼= Pic0(Cη). We could equivalently define it
as the composite

X∗(Aη)→ Pic(Xη) ∼= W ⊥ ⊂ Pic(Yη)→ Pic(Cη),

where W = 〈O,F 〉 ⊂ Pic(Yη) and W ⊥ ⊂ Pic(Yη) is the orthogonal complement, and where the last arrow
is now pullback along C → Y .

The map X∗(Aη)→ Pic(Cη) is π1(η, η)-equivariant and factors through the θ-coinvariants in X∗(Aη), which
are 3-torsion. We obtain a morphism Λθ →J [3] of locally constant étale sheaves on Brs.

Proposition 4.15. This morphism Λθ → J [3] is an isomorphism, which intertwines the pairing 〈·, ·〉 on
Λθ with the Weil pairing on J [3].

Proof. It suffices to check this statement at the geometric generic point of Brs. Let us write 〈·, ·〉W for the
Weil pairing on J [3]η = Pic(Cη)[3]. We will consider the factorization

X∗(Aη)→ Pic(Xη)→ Pic(C 0
η ).

Let us write (·, ·)W ⊥ for the (negative definite) intersection pairing on Pic(Xη), and (·, ·) for its negative.
The pairing (·, ·) corresponds under the isomorphism X∗(Aη) ∼= Pic(Xη) of Corollary 4.14 to the pairing
on X∗(Aη) which is also denoted by (·, ·). To prove the proposition, it is enough to show that the map
Pic(Xη)→ Pic(C 0

η ) factors through an isomorphism ψ : Pic(Xη)θ → Pic0(Cη)[3] which satisfies the identity

ζ((1−θ(ζ))α,β) = ζ−((1−θ(ζ))α,β)W⊥ = 〈ψ(α), ψ(β)〉W (4.5)

for all α, β ∈ Pic(Xη). In order to do this, we will make everything explicit. Recall (cf. §2) that Pic(Xη)θ is
isomorphic as an abelian group to (Z/3Z)4. Its 80 non-trivial elements are in bijective correspondence with
the θ-orbits of root vectors in Pic(Xη). To prove the result, it will suffice to show that these 80 non-trivial
elements are in bijection with the non-trivial elements of Pic(Cη)[3], and that if α, β ∈ Pic(Xη) are two root
vectors, then they satisfy the identity (4.5).

The root vectors α in Pic(Xη) correspond exactly to the sections sα : P1
η → Yη of Yη → P1

η which do not

meet the zero section O (see e.g. [Shi10]). If `α ⊂ Yη denotes the image of sα, then the element of W ⊥ ⊂
Pic(Yη) corresponding to α is `α −O −F . The sections sα admit unique expressions as (a(x), b(x)), where
a(x), b(x) ∈ k(η)[x] have degree 2, 3 respectively and satisfy b(x)2 = a(x)3 +f(x). Suppose sα = (a(x), b(x))
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and sβ = (c(x), d(x)) are two such sections. If α 6= ±β then b(x)− d(x) has 3 zeroes in k(η), counted with
multiplicity, and we have the formula

(α, β) = −(`α − O −F , `β − O −F )W ⊥ = 1− (`α, `β)W ⊥

= 1− |{γ ∈ k(η) | b(γ) = d(γ), a(γ) = c(γ)}|,

(see e.g. [SS10, §8.7]).

Note that θ(ζ)(sα) = (ζ−1a(x), b(x)). Therefore we have the formula

ζ((1−θ(ζ)(α),β) = ζ−|{γ∈k(η)|b(γ)=d(γ),a(γ)=c(γ)}|+|{γ∈k(η)|b(γ)=d(γ),ζ−1a(γ)=c(γ)}|. (4.6)

What is ψ(α)? It is the class of the divisor P1 + P2 − 2∞, where a(x) has roots γ1, γ2 in k(η) and Pi =
(a(γi), b(γi)).

We compare this with the Weil pairing 〈ψ(α), ψ(β)〉W on a case by case basis as follows. Assuming as we
may that α 6= θ(ζi)β for any i ∈ Z, we see that a(x) − c(x) is not the zero polynomial. Let Σ(α, β) denote
the set of zeroes in k(η) of b(x)−d(x); it has 3 elements. For each γ ∈ Σ(α, β), we have a(γ)3 = c(γ)3, hence
ω(γ) = c(γ)/a(γ) is a 3rd root of unity. We now divide into 2 cases.

The first case is where the values ω(γ), γ ∈ Σ(α, β), are pairwise distinct. In this case we see that both the
Weil pairing 〈ψ(α), ψ(β)〉W and the value given by (4.6) are equal to 1. Indeed, the Weil pairing can be
computed using [BFT14, Lemma 5], while for (4.6) this is obvious.

The second case is where some value ω(γ) occurs exactly twice. Since our pairing does not depend on the
choice of ζ, we can suppose without loss of generality that it is ζ that appears twice. Then we see that (4.6)
gives a value of ζ−1 (if the other value of ω(γ) is 1) or ζ (if the other value of ω(γ) is ζ−1). Again, this
agrees with the result of [BFT14, Lemma 5]. This concludes the proof.

The only part of Proposition 4.3 that remains to be proved is that ∆0 = disc(x5 + c12x
3 + c16x

2 + c24x+ c30)
has the property that ∆2

0 is (up to scalar) the restriction to V of the usual Lie algebra discriminant ∆. Note
that ∆2

0 and ∆ both have degree 240, that ∆0 is irreducible, and that ∆2
0 and ∆ vanish along the same

points (as follows from e.g. [Slo80, §6.6]). This implies that they are equal up to scalar, as desired.

4.5 Spreading out

So far we have described the structure of the representation (G,V ) over Q. We recall (see §4.1) that it has
a natural extension (G,V ) over Z. We now observe that all of the above works equally well over Z[1/N ] for
some integer N ≥ 1.

Indeed, we can choose the invariant polynomials c12, c18, c24, c30 ∈ Q[V ]G to lie in Z[V ]G (by using the
Gm-equivariant structure of X0 described at the beginning of §4.4 to clear denominators). We set B =
SpecZ[c12, . . . , c30] and write π : V → B for the corresponding morphism (which extends the morphism
between V → B on Q-fibres already denoted by π). Note that this implies that ∆0 = disc(x5 + c12x

3 +
c18x

2 + c24x+ c30) ∈ Z[V ]G too. We define Brs = SpecZ[c12, c18, c24, c30][∆−1
0 ]. We extend C to a family of

projective curves C → B given by the same equation as before.

We can now find an integer N ≥ 1 satisfying the following properties:

1. Let S = Z[1/N ]. Then each prime p dividing the order of the Weyl group of H (i.e. p ∈ {2, 3, 5, 7}) is
a unit in S. In particular, the morphism CS → BS is smooth exactly above Brs

S .
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2. S[V ]G = S[c12, c18, c24, c30]. The Kostant section extends to a section σ : BS → V S of π which satisfies
the following property: for any f ∈ B(Z) ⊂ B(S), σ(N · f) ∈ V (Z). We write κS ⊂ V S for the image
of the Kostant section.

3. There exist open subschemes V reg ⊂ V rs ⊂ V S such that if S → k is a field and v ∈ V (k), then v is
regular if and only if v ∈ V reg(k) and v is regular semisimple if and only if v ∈ V rs(k). Moreover, V rs

is the locus in V S where ∆0 does not vanish.

4. Let A = ZH(σS |Brs
S

), a maximal torus in HBrs
S

, and let Λ = X∗(A). Then Λ is an étale sheaf of E8 root
lattices on Brs

S , equipped with a pairing (·, ·) : Λ× Λ→ Z and an elliptic µ3-action θ : µ3 → Aut(Λ).

5. There is a perfect pairing 〈·, ·〉 : Λθ × Λθ → µ3 induced by usual formula 〈λ, µ〉 = ζ((1−θ(ζ))(λ),µ) for
any primitive 3rd root of unity ζ. We can therefore extend the definition of the groupoids GrLieER,f
and HeisR,f of §4.3 to all S-algebras R.

6. Let J → Brs
S denote the Jacobian of CBrs

S
. Then there is an isomorphism Λθ ∼= J [3] of locally

constant étale sheaves on Brs
S which intertwines the pairing 〈·, ·〉 on Λθ and the Weil pairing of J [3].

7. Let M = OJ (C −P), a symmetric non-degenerate line bundle on J , and let L = M⊗3. Let
G ⊂ G (L ) be the subgroup of 3-torsion elements. Then G is an extension

1→ µ3 → G →J [3]→ 1.

Then the analogue of Proposition 4.6 holds in GrLieEBrs,fτ .

With these data in hand, we can extend our constructions of orbits from sections of Jacobians. We can
therefore apply the results of §4.3 for S-algebras R (and not just Q-algebras). We mention in particular:

1. Let R be an S-algebra and let f ∈ Brs(R). Suppose given a tuple (H ′, θ′, γ′) ∈ GrLieER,f . If
(H ′, θ′) ∼= (HR, θR), then (H ′, θ′, γ′) determines an element of G(R)\V f (R), a set which is in turn in

canonical bijection with the set ker(H1(R,ZG(σ(f)))→ H1(R,G)).

2. Let R be an S-algebra, and let f ∈ Brs(R). Suppose that every locally free R-module is free. Then
there is an injective map ηf : Jf (R)/3Jf (R)→ G(R)\V f (R) which is compatible with base change
on R.

4.6 Measures

The results of this section are used in the calculations of §6 – 7. Let ωG be a generator for the (free rank
1 Z-module of) left-invariant top forms on G. It is uniquely determined up to sign, and determines Haar
measures dg on G(R) and on G(Qp) for each prime p.

Proposition 4.16. The product vol(G(Z)\G(R)) ·
∏
p vol(G(Zp)) converges absolutely, and equals 3.

Proof. Note that G has class number 1 (i.e. G(Q)\G(A∞)/G(Ẑ) has 1 element). Therefore the product
expresses the Tamagawa number of the simple group G = SL9/µ3, which equals 3 (apply the results of
[Lan66] and [Ono65]).

Let ωV be a generator for the for the left-invariant volume forms on V , which is again determined up to sign,
and determines Haar measures dv on V (R) and on V (Qp) for every prime p. We write ωB for the volume
form dc12 ∧ dc18 ∧ dc24 ∧ dc30 on B. It determines measures df on B(R) and on B(Qp) for every prime p.
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Proposition 4.17. There exists a constant W0 ∈ Q× with the following properties:

1. Let V (Zp)rs = V (Zp) ∩ V rs(Qp), and define a function mp : V (Zp)rs → R≥0 by the formula

mp(v) =
∑

v′∈G(Zp)\(G(Qp)·v∩V (Zp))

|ZG(v)(Qp)|
|ZG(v′)(Zp)|

.

Then mp(v) is locally constant.

2. Let B(Zp)rs = B(Zp) ∩ Brs(Qp), and let ψp : V (Zp)rs → R≥0 be a bounded, locally constant function
which is G(Qp)-invariant, in the sense that if v, v′ ∈ V (Zp) are conjugate under the action of G(Qp),
then ψp(v) = ψp(v

′). Then we have the formula∫
v∈V (Zp)rs

ψp(v) dv = |W0|p vol(G(Zp))
∫
f∈B(Zp)rs

∑
g∈G(Qp)\V f (Zp)

mp(v)ψp(v)

|ZG(v)(Qp)|
df.

3. Let U0 ⊂ G(R) and U1 ⊂ B(R)rs be open subsets such that the product morphism µ : U0×U1 → V (R)rs,
(g, f) 7→ g · σ(f), is injective. Then we have the formula∫

v∈µ(U0×U1)

dv = |W0|
∫
g∈U0

dg

∫
f∈U1

df.

Here we write | · |p for the usual p-adic absolute value on Qp (with |p|p = p−1).

Proof. All of these identities can be proved in the same way as in [RTa, Proposition 3.3] and [Tho15,
Proposition 2.16]. The key input in the proof is the equality dimQ V =

∑
i deg ci, which holds here since

84 = 12 + 18 + 24 + 30.

5 Constructing integral orbit representatives

We continue with the notation of §4. Let E denote the set of polynomials f(x) = x5 + c12x
3 + c18x

4 + c24x+
c30 ∈ Z[x] of non-zero discriminant. If p is a prime, let Ep denote the set of polynomials f(x) = x5 + c12x

3 +
c18x

4 + c24x+ c30 ∈ Zp[x] of non-zero discriminant. Thus we can identify Ep = B(Zp)rs := B(Zp)∩Brs(Qp).

This section is devoted to the proof of the following theorem concerning the map ηf of Corollary 4.10.

Theorem 5.1. Let N be the integer of §4.5. Then for each prime p > N , for each polynomial f(x) ∈ Ep,
and for each P ∈Jf (Qp), the orbit ηf (P ) ∈ G(Qp)\Vf (Qp) intersects V f (Zp).

Most of §5 is devoted to the proof of this theorem. We first prove the theorem for polynomials of square-free
discriminant in §5.1. This is then used as an ingredient in the proof of the theorem in the general case in
§5.2.

5.1 The case of square-free discriminant

In this section we establish Theorem 5.1 for polynomials f(x) ∈ Ep of square-free discriminant. We first
prove two useful lemmas.
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Lemma 5.2. Let R be a Noetherian regular integral domain such that every locally free R-module of finite
rank is free. Then the map H1(R,G)→ H1(Frac(R), G) has trivial kernel.

Proof. The existence of the short exact sequence of fppf R-groups

1 //µ3
//SL9

//G //1,

together with the triviality of H1(R,SL9), reduces the problem to showing that H2(R,µ3) → H2(K,µ3) is
injective, or even that H2(R,Gm)→ H2(K,Gm) is injective. This follows from [Gro68, 1.8].

Lemma 5.3. Let R be a complete discrete valuation ring and let A be a quasi-finite étale commutative
R-group which satisfies the “Néron mapping property” A(R′) = A(Frac(R′)) for any étale extension R→ R′

of discrete valuation rings. Then the natural map H1(R,A)→ H1(K,A) is injective.

Proof. Let j : SpecK → SpecR be the natural open immersion. The “Néron mapping property” says that
A = j∗j

∗A. The map H1(R,A) → H1(K,A) is therefore injective because it is the first map in the 5-term
exact sequence associated to the spectral sequence Hp(R,Rqj∗j

∗A)⇒ Hp+q(K,A).

The following proposition contains Theorem 5.1 (in the space case R = Zp).

Proposition 5.4. Let R be a discrete valuation ring in which N is a unit. Let K = FracR, and let
ordK : K× � Z be the normalized discrete valuation. Let f ∈ B(R). Suppose that ordK disc(f) ≤ 1. Then:

1. If x ∈ V f (R), then ZG(x)(K) = ZG(x)(R).

2. The natural map α : G(R)\V f (R)→ G(K)\V f (K) is injective and its image contains ηf (Jf (K)/3Jf (K)).

3. If further R is complete and has finite residue field then the image of α equals ηf (Jf (K)/3Jf (K)).

Proof. We first note that we can assume that R is complete. To see this, we need to use the equality
G(K̂) = G(K)G(R̂), where R̂ is the completion of R and K̂ = Frac R̂ (see [Nis84, Théorème 3.2]). We
therefore assume that R is complete.

If ordK disc f = 0, then Jf is a smooth projective R-scheme and Jf (R) = Jf (K). In particular the
map Jf (K)/3Jf (K)→ G(K)\V f (K) factors through G(R)\V f (R). We therefore just need to check that

G(R)\V f (R) → G(K)\V f (K) is injective. In fact, the map H1(R,Jf [3]) → H1(K,Jf [3]) is injective (a
special case of Lemma 5.3), so this follows from Lemma 4.5.

If the residue field of R is finite, then H1(R,G) = {1} and the map Jf (R)/3Jf (R)→ H1(R,Jf [3]) is an
isomorphism, as H1(R,Jf ) is trivial, by Lang’s theorem.

Now suppose that ordK disc f = 1. Roughly the same principles apply. Let Jf denote the Néron model of
Jf . It is a smooth group scheme over R with generic fibre Jf , and Jf (K) = Jf (R). Our assumptions
imply that Jf has connected fibres and that the special fibre of Jf is an extension of an elliptic curve by
a rank 1 torus. (Indeed, Cf is projective over R and regular. Its special fibre is integral and has a unique
singularity, which is a node. Now one can compute using the results of [BLR90, Ch. 9].) In particular, the
quasi-finite étale group scheme Jf [3] over R has generic fibre of order 34 and special fibre of order 33.

We claim that V reg
f (R) = V f (R). To prove this, we must show that any element x of V f (R) has regular

image xk ∈ V f (k), where k is the residue field of R. Consider the direct sum decomposition h
R

= h
0,R
⊕h

1,R
,

where ad(x) acts topologically nilpotently in h
0

and invertibly in h
1
. Let $ be a uniformizer of R. The

reduction modulo $ of this decomposition is the direct sum decomposition h
k

= h
0,k
⊕ h

1,k
, where ad(xk)
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acts nilpotently in h
0,k

and invertibly in h
1,k

. In fact, if xk = ys + yn is the Jordan decomposition of xk as a

sum of its semisimple and nilpotent parts, then h
0,k

= zh(ys). We must show that yn is a regular nilpotent

element of zh(ys).

To see this, we first observe that there exists a unique closed subgroup L ⊂ HR such that LieL = h
0,R

and such that L is smooth over R with connected fibres. Moreover, we have Lk = ZH(ys). The uniqueness
follows from [SGA70, Exp. XIV, Proposition 3.12]. To show existence, choose a regular semisimple element
r ∈ zh(ys) and an arbitrary lift r ∈ h

R,0
. The centralizer ZH(r) is a maximal torus of HR with Lie algebra

contained in h
R,0

, and we can construct a Levi subgroup of HR with Lie algebra hR,0 after passage to an

étale extension R→ R′ where ZH(r) is split.

Using the results of [Slo80, §6.6], we see that the derived group of L has type A2 and that the centre ZL has
rank 6. Moreover, the action of µ3 determined by θ restricts to an action on L, and the induced morphism
θL : µ3 → Aut(L) is a stable Z/3Z-grading. (We have defined this notion in §2 for a reductive group of type
E8, but the definition is the same here: in each geometric fibre, there is a maximal torus of L on which θL
defines an elliptic µ3-action.)

To show that xk is regular in h
k
, we must show that yn is a regular nilpotent element in h0,k. After passage

to an étale extension R → R′ of discrete valuation rings, we can find an isomorphism hder

0,R
∼= sl3,R under

which θL corresponds to the homomorphism ζ 7→ Ad(diag(1, ζ, ζ2)). (The proof is the same as the proof of
Lemma 2.3, using that the automorphism group of the A2 root lattice contains a unique conjugacy class of
elements of order 3.) Let ∆′ denote the Lie algebra discriminant of h

0,R
. Then ordK ∆(x) = ordK ∆′(x).

Let x′ denote the projection of x to hder

0,R
(this projection exists because of our assumption on the residue

characteristic of R).

The image of x′ in sl3,R is given by a matrix

x′ =

 0 a 0
0 0 b
c 0 0

 ,

and the discriminant ∆′(x) equals (abc)2. If ordK(abc)2 = 2 then exactly one of a, b or c is divisible by $,
and in this case we see that the reduction modulo $ of x′ (which coincides with yn) is a regular nilpotent
element. This proves our claim that V reg

f (R) = V f (R).

We next claim that ZG(σ(f)) satisfies the “Néron mapping property” ZG(σ(f))(R′) = ZG(σ(f))(Frac(R′))
for any étale extension R → R′ of discrete valuation rings. In view of the identification of ZG(σ(f))K with
Jf [3], we just need to show that the isomorphism ZG(σ(f))K ∼= Jf [3] extends uniquely to an isomorphism
ZG(σ(f)) ∼= Jf [3]. This will follow if we can show that the special fibre of ZG(σ(f)) has order 33. This
is the case. Writing now ys + yn for the Jordan decomposition of σ(f)k and carrying through the above
computation, we see that ZG(σ(f))k can be identified with the θL-fixed points in the centre of the group Lk.
Since the centre is a rank-6 torus on which θL defines an elliptic µ3-action, this group indeed has order 33.
(See [Tho13, Proposition 2.8] for a similar calculation.)

The map G → V reg
f , g 7→ g · σ(f) is surjective and étale, and in fact a torsor for the étale group scheme

ZG(σ(f)). The only part of this claim that we have not already established is the fact that this map is
surjective in the special fibre Gk → V reg

f,k. This is equivalent to showing that if ys ∈ V k is a semisimple

element such that ZH(ys) has derived group of type A2, then ZG(ys) = ZH(ys)
θ acts transitively on the

regular nilpotent elements of zh(ys)(1). This is true. (Note that in the (Z/3Z)-grading of sl3,k given by

ξ : ζ 7→ Ad(1, ζ, ζ2), SLξ3 does not act transitively on the regular nilpotent elements, but PGLξ3 does. Luckily
in our situation the group ZH(ys) fits into a θ-equivariant short exact sequence

1→ C → ZH(ys)→ PGL3 → 1,
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where C is a θ-elliptic torus. This implies that the map ZH(ys)
θ → PGLθ3 is surjective.)

It follows that the set G(R)\V f (R) is in bijection with ker(H1(R,ZG(σ(f))) → H1(R,G)). By Lemma

5.3, the map H1(R,ZG(σ(f))) → H1(K,ZG(σ(f))) is injective, implying that the map α : G(R)\V f (R) →
G(K)\V f (K) is injective (cf. [Con14, Exercise 2.4.11]). To show that the image of α contains the image of
ηf , we observe that we have a commutative diagram

Jf (R)/3Jf (R) //

��

Jf (K)/3Jf (K)

��
H1(R,Jf [3]) // H1(K,Jf [3]).

We therefore just need to show that each class in the image of Jf (R)/3Jf (R) inH1(R,Jf [3]) ∼= H1(R,ZG(σ(f)))
has trivial image in H1(R,G). This follows from the fact that the map H1(R,G) → H1(K,G) is injective
(Lemma 5.2).

Finally, suppose once more that R has finite residue field. Lang’s theorem once again implies that H1(R,G) =
{1} and H1(R,Jf ) = {1}. This completes the proof.

Corollary 5.5. Let R be a PID in which N is a unit, and let f ∈ B(R) be a polynomial such that disc(f) is
square-free (as an element of R). Let K = Frac(R). Let P ∈Jf (K), and let γP ∈ V f (K) be a representative
of the orbit ηf (P ). Then there exists g ∈ G(K) such that g · γP ∈ V f (R).

Proof. We show that the tuple (HK , θK , γP ) ∈ GrLieEK,f extends to a tuple (H0, θ0, γ0) ∈ GrLieER,f . By
Lemma 5.2 and Lemma 4.4, we have (H0, θ0) ∼= (HR, θR), and the corollary will follow from this.

After localizing, we can assume that R is a DVR. In this case, Proposition 5.4 implies that we can find
g ∈ G(K) such that g · γP ∈ V f (R). In other words, g defines an isomorphism between (HK , θK , γK) and
(HK , θK , g · γP ), and the latter triple extends naturally to (HR, θR, g · γP ) ∈ GrLieER,f .

5.2 The general case

We now use the results just established in §5.1 to complete the proof of Theorem 5.1. Let us therefore
take a prime p > N , a polynomial f(x) ∈ Ep, and a point P ∈ Jf (Qp). We must show that the orbit
ηf (P ) ⊂ Vf (Qp) contains an element of V f (Zp).

We first give an explicit representation of the point P . Arguing as in the proof of [BG13, Proposition 19], we
can assume (after possibly changing P without changing its image in Jf (Qp)/3Jf (Qp)) that P corresponds
to a decomposition f(x) = u0(x)v0(x) + r0(x)2, where for some ν ∈ {0, 1, 2}, u0(x), v0(x) ∈ Zp[x] are monic
of degrees ν and 5−ν, respectively, and r0(x) has degree at most ν−1. (This is the Mumford representation
of P : thus P corresponds to the linear equivalence class of the divisor D − ν∞, where D ⊂ C 0

f,Qp is the

effective divisor of degree ν determined by the equations y = r0(x), u0(x) = 0.)

Let Dν denote the scheme (over Zp) of tuples of polynomials (u(x), v(x), r(x)), where u(x), v(x) are monic
of degrees ν and 5− ν, respectively, and r(x) has degree at most ν − 1, and u(x)v(x) + r(x)2 = x5 + a1x

4 +
a2x

3 + a3x
2 + a4x + a5 satisfies a1 = 0. Thus the tuple (u0(x), v0(x), r0(x)) determines a point of Dν(Zp).

Let δ ∈ H0(Dν ,ODν ) denote the discriminant of the (monic, degree 5) polynomial u(x)v(x) + r(x)2, and let
Dδ
ν ⊂ Dν denote the closed subscheme defined by the vanishing of δ. Then Dδ

ν has codimension 1 in each
fibre of Dν over Zp. (In fact, Dδ

ν is flat over BZp).

Let λ be a formal variable. We can find a point (u1(x), u1(x), r1(x)) ∈ Dν(Zp[λ]) with the following proper-
ties:
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• We have (u1(x), v1(x), r1(x)) mod λ = (u0(x), v0(x), r0(x)).

• Let f1(x) = u1(x)v1(x) + r1(x)2 ∈ Zp[λ][x]. Then disc f1 = δ(u1, v1, r1) is square-free, when viewed as
an element of the ring Qp[λ], and its image in Fp[λ] is non-zero.

(We can accomplish this by choosing e.g. u1 = u0 + λu′0, v1 = v0 + λv′0, r1 = r0 + λr′1 for some polynomials
u′0, v

′
0, r
′
0 ∈ Zp[x]. We first choose them so that the discriminant of f1(x) is not zero in Fp[λ]. If the

discriminant is not already square-free in Qp[λ] then by Bertini’s theorem we can choose a small p-adic
perturbation to make it so.)

Let U1 = SpecZp[λ][disc(f1)−1]. We have constructed a smooth projective curve Cf1 → U1, together with
a section P1 ∈ Jf1(U1). Applying the construction described in §4.5, we obtain a tuple (H1, θ1, γ1) ∈
GrLieEU1,f1 . The pullback of this tuple to GrLieEQp,f along the point {λ = 0} ∈ U1(Qp) corresponds to the
orbit ηf (P ) under the bijection of Lemma 4.5.

Let U2 = SpecQp[λ]. Using that disc(f1) is square-free when viewed as an element of Qp[λ], we can apply
Corollary 5.5 to find that there is an extension of the triple (H1[1/p], θ1[1/p], γ1[1/p]) to a similar triple
(H2, θ2, γ2) over U2. We can glue these triples to obtain a similar triple (H0, θ0, γ0) over U0 = U1 ∪ U2 ⊂
SpecZp[λ]. Observe that by construction, θ0 is a stable Z/3Z-grading of H0.

Note that the complement of U0 in SpecZp[λ] is a union of finitely many closed points in the special fibre.
We now apply the following lemma.

Lemma 5.6. Let T be an integral regular scheme of dimension 2, and let Z ⊂ T be a closed subset of
dimension 0. Let U = T − Z. Then restriction M 7→ MU defines an equivalence between the following two
categories:

1. The category of reductive groups over T , with morphisms given by isomorphisms of group schemes.

2. The category of reductive groups over U , with morphisms given by isomorphisms of group schemes.

Moreover, if M is a reductive group over T , then H0(T,m) = H0(U,mU ).

Proof. The essential surjectivity is [CTS79, Theorem 6.13]. If M,M ′ are reductive group schemes over T ,
then the scheme of isomorphisms between M and M ′ is T -affine; this shows that the functor is fully faithful
(cf. [CTS79, Lemma 2.1]).

Applying Lemma 5.6, we see that H0 extends uniquely to a reductive group H2 over SpecZp[λ], and that
θ0 extends uniquely to a grading θ2 : µ3 → H2, and γ0 comes from a unique section γ2 ∈ V2 = h2(1). Note
that θ2 is a stable Z/3Z-grading of H2. It follows that (H2, θ2, γ2) is an object of the category GrLieEZp[λ],f1

considered in §4.3. By construction, its pullback to GrLieEQp,f along the map λ = 0 corresponds, under the
bijection of Lemma 4.5, to the orbit ηf (P ) ∈ G(Qp)\Vf (Qp).

Let (H3, θ3, γ3) ∈ GrLieEZp,f denote the pullback of (H2, θ2, γ2) to Zp. Since H1(Zp, G) = {1}, this
triple determines an orbit in G(Zp)\V f (Zp) mapping to ηf (P ) under the natural map G(Zp)\V f (Zp) →
G(Qp)\Vf (Qp). This completes the proof of Theorem 5.1.

5.3 Complements

We conclude §5 with a weak result that holds for every prime (not just primes p > N). The Gm-action on
B here is the standard one (where t · ci = tici).
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Proposition 5.7. Let p be a prime, and let f0(x) ∈ Ep. Then there exists an integer n ≥ 1 and an open
neighbourhood Wp of f0 in Ep such that for all f ∈ Wp and for all y ∈ Jpn·f (Qp), the orbit ηpn·f (y) ∈
G(Qp)\Vpn·f (Qp) contains an element of V pn·f (Zp).

Proof. Choose n ≥ 1 such that each orbit in the image of ηpn·f0 intersects V pn·f0(Zp). Let σ1, . . . , σr ∈
V pn·f0(Zp) be representatives for the distinct G(Qp)-orbits in the image of ηpn·f0 . For each i = 1, . . . , r, we
can find an open neighbourhood U ′p,i ⊂ V (Zp) of σi with the following properties:

1. The image π(U ′p,i) = Up ⊂ B(Zp) is independent of i, and π|U ′p,i : U ′p,i → Up is a homeomorphism. Let

si = π|−1
U ′p,i

.

2. Up ⊂ B(Zp)rs = B(Zp) ∩Brs(Qp).

3. For each g ∈ Up, the elements si(g) represent the distinct G(Qp)-orbits in the image of ηg.

This essentially follows from the fact that the action map G→ Vf attached to any f ∈ Brs(Qp), x ∈ Vf (Qp),
is étale. After possibly shrinking Up, we can assume that it has the form pn ·Wp for some open compact
subset Wp ⊂ B(Zp)rs which contains f0. This completes the proof.

Corollary 5.8. Let f0(x) ∈ E . Then for each prime p ≤ N we can find an open compact neighbourhood
Wp of f0(x) in Ep and an integer np ≥ 0 with the following property. Let M =

∏
p≤N p

np . Then for all
f ∈ E ∩ (

∏
p≤N Wp), and for all y ∈ Sel3(JM ·g), the orbit ηM ·f (y) ∈ G(Qp)\VM ·f (Qp) contains an element

of VM ·f (Z).

Proof. We have G(A∞) = G(Q)G(Ẑ). It follows that for a given element v ∈ V (Q), finding g ∈ G(Q) such
that g · v ∈ V (Z) is equivalent to finding for each prime p an element gp ∈ G(Qp) such that g · v ∈ V (Zp).
The result therefore follows on combining Theorem 5.1 and Proposition 5.7.

6 Counting points

We retain the notation of §4. In particular, we have a reductive group G over Z acting on a free Z-module
V , and a G-equivariant morphism π : V → B = SpecZ[c12, c18, c24, c30] (where G acts trivially on B). For
f ∈ B(Z), we define ht(f) = supi |ci(f)|120/i. If v ∈ V (Z), then we define ht(v) = ht(π(v)).

6.1 Counting points with finitely many congruence conditions

For any G(Z)-invariant subset X ⊂ V (Z), define

N(X, a) =
∑

v∈G(Z)\X
ht(v)<a

1

|ZG(v)(Z)|
.

Suppose given an integer M ≥ 1 and a G(Z/MZ)-invariant function w : V (Z/MZ)→ R≥0. We define

Nw(X, a) =
∑

s∈G(Z)\X
ht(v)<a

w(v mod M)

|ZG(v)(Z)|
.
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We define µw to be the average value of w (where V (Z/MZ) gets its uniform probability measure).

For a field k/Q, we say that v ∈ V (k) is k-reducible if v has zero discriminant or if v is G(k)-conjugate to
the Kostant section σ(π(v)) ∈ V (k). Otherwise we say that v is k-irreducible. If X ⊂ V (Q) is any subset,
then we write X irr for its intersection with the set of Q-irreducible elements.

The first main result of this section concerns the number of G(Z)-orbits of Q-irreducible elements of V (Z)
of bounded height:

Theorem 6.1. We have

Nw(V (Z)irr, a) =
|W0|

9
µw vol(G(Z)\G(R))a7/10 + o(a7/10),

where W0 denotes the constant of Proposition 4.17.

The proof of Theorem 6.1 is very similar to the proofs of earlier results like [BG13, Theorem 36] (see also
[Tho15, §3]). Rather than repeat details word for word here, we instead give the key propositions, which can
be inserted into the arguments at the appropriate points. In comparing what we prove here with the results
of [BG13] it’s useful to note that because σ(Brs(R)) contains exactly one representative for each orbit of
G(R) on V (R)rs, it may be used to construct a fundamental set for the action of R>0 ×G(R) on V (R)rs (cf.
[BG13, Section 9.1]), and also that the stabilizer in G(R) of every element in V (R)rs has order 9 (because
for any f ∈ Brs(R), Jf (R)[3] has order 9).

Following, e.g., [BG13, Section 10], the only arguments that do not carry over easily are those that show
we can bound the contribution from the cusp region in a fundamental domain for the action of G(Z) on
V (R). To do this, by the same logic as in the proof of [Tho15, Theorem 3.6], it suffices to check that certain
combinatorial properties hold in the set of weights for the action of G on V .

We start by defining some notation. We write SG = {β1, ..., β8} for the root basis of ΦG fixed in §4.1.

Then any γ ∈ X∗(T ) may be written uniquely as γ =
∑8
i=1 ni(γ)βi for some ni(γ) ∈ Q. Note that

the Cartan decomposition h = t ⊕
∑
α∈ΦH

h
α

of h is preserved by the action of µ3 via θ. We define
ΦV = {α ∈ ΦH | hα ⊂ V }; then V = ⊕α∈ΦV hα. Given a vector v ∈ V , we write v =

∑
α∈ΦV

vα for its

decomposition as a sum T -eigenvectors. We write Φ+
V for Φ+

H ∩ ΦV . Given a subset M ⊂ ΦV , we define
V (M) = {v ∈ V | vα = 0 for all α in M}. The following lemma, which is a variant of [RTa, Proposition
2.15], gives criteria for the vectors in V (M) to be reducible.

Lemma 6.2. Let k/Q be a field. Given a subset M ⊂ ΦV , suppose one of the following three conditions is
satisfied:

1. We have Φ+
V − SH ⊂M .

2. There exist integers a1, . . . , a8 not all equal to zero such that if α ∈ ΦV and
∑8
i=1 aini(α) > 0, then

α ∈M .

3. There exist β ∈ ΦG, α ∈ ΦV −M , and integers a1, . . . , a8 not all equal to zero such that the following
conditions hold:

(a) We have {γ ± β | γ ∈M} ∩ ΦV ⊂M .

(b) α− β ∈ ΦV −M .

(c) If γ ∈ ΦV and
∑r
i=1 aini(γ) > 0, then γ ∈M ∪ {α}.

4. There exist β ∈ ΦG, α ∈ ΦV −M , integers a1, . . . , a8 not all equal to zero, and integers b1, ..., b8 not
all equal to zero such that the following conditions hold:
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(a) {γ + β | γ ∈M} ∩ ΦV ⊂M .

(b) α+ β ∈ ΦV .

(c) If γ ∈ ΦV and
∑8
i=1 aini(γ) > 0, then γ ∈ M ∪ {α}, and if γ ∈ ΦV and

∑8
i=1 bini(γ) > 0, then

γ ∈M ∪ {α+ β}.

Then every element of V (M)(k) is k-reducible.

Proof. If one of the first three conditions is satisfied, the fact that the elements of V (M)(k) are k-reducible
is given by a proof identical to that of [RTa, Proposition 2.15]. To prove that the fourth criterion implies
reducibility, suppose v ∈ V (M)(k). If vα = 0 or vα+β = 0, then v is in V (M ∪{α})(k) or V (M ∪{α+β})(k)
and so is reducible by condition 2 of the lemma. Thus we may assume vα 6= 0 and vα+β 6= 0. Let
U−β ⊂ G be the root subgroup corresponding to −β ∈ ΦG. Note that there exists u ∈ U−β such that
u · (vα + vα+β) = cvα+β for some constant c. By condition (a), we have u · v ∈ V (M)(k), and so by our
choice of u we have u · v ∈ V (M ∪ {α}). Thus v is k-reducible as desired.

We call a pair (M0,M1) of disjoint subsets of ΦV a cusp datum. Given a cusp datum (M0,M1), let
V (M0,M1) = {v ∈ V (M0) | vα 6= 0 for all α ∈ M1}. The significance of the next result can be appre-
ciated by looking at the proof of [Tho15, Proposition 3.6]; it is the essential ingredient in proving that there
are few irreducible elements of V (Z) which are ‘in the cusp’ of a fundamental domain in V (R) for the action
of G(Z).

Proposition 6.3. There exists a unique root λ0 ∈ ΦV that is maximal with respect to the partial ordering
induced by the root basis SG, or in other words such that ni(λ0) ≥ ni(λ) for all i ∈ {1, . . . , 8} and all λ ∈ ΦV .
There exists a collection C of cusp data such that

• V ({λ0})(Q)irr ⊂
⋃

(M0,M1)∈C V (M0,M1)(Q) and

• For each (M0,M1) ∈ C there exists a function f : M1 → R≥0 with
∑
α∈M1

f(α) < #M0 and∑
α∈Φ+

G

ni(α)−
∑
α∈M0

ni(α) +
∑
α∈M1

f(α)ni(α) > 0

for all i ∈ {1, ..., 8}.

Proof. Each weight λ ∈ ΦV admits a unique expression λ =
∑8
i=1 ni(λ)βi for some ni(λ) ∈ Q. One checks

that the height hG(λ) :=
∑8
i=1 ni(λ) achieves its maximal value 9 exactly once, at the maximal weight λ0

(which we note is not in this case the highest root of ΦH with respect to the root basis SH).

We use a computer to generate the collection C using a procedure very similar to the proof of [RTa, Proposition
4.5]. Yet here the criteria corresponding to [RTa, Proposition 2.15] is not enough to complete the proof: we
must use part 4 of Lemma 6.2 to eliminate additional cusp data (M0,M1) such that V (M0,M1)(Q)irr = ∅.
The details of this computation can be found in the Mathematica notebook https://www.dpmms.cam.ac.

uk/~jat58/E8(3)CuspData.nb.

Let N be the integer of §4.5, and let p > N be a prime. We define V red
p ⊂ V (Zp) to be the set of vectors

v ∈ V (Zp) such that either p|∆0(v), or p - ∆0(v) and the image v of v in V (Fp) is G(Fp)-conjugate to
σ(π(v)). Similarly, we define V bigstab

p ⊂ V (Zp) to be the set of vectors v ∈ V (Zp) such that either p|∆0(v),
or p - ∆0(v) and the image v of v in V (Fp) has non-trivial stabilizer in G(Fp).
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Proposition 6.4. We have

lim
Y→∞

∏
N<p<Y

∫
v∈V red

p

dv = 0

and

lim
Y→∞

∏
N<p<Y

∫
v∈V bigstab

p

dv = 0.

Proof. This can be proved using [Ser12, Proposition 9.15]. We illustrate the method for V bigstab
p . The number

of points of V (Fp) of zero discriminant is O(p83). The number of points of V (Fp) of non-zero discriminant
equals |Brs(Fp)||G(Fp)|. For a prime p ≡ 1 mod 3, let C ⊂ Sp4(F3) be the set of elements γ which have 1 as
an eigenvalue. Then [Ser12, Proposition 9.15] gives∫

v∈V bigstab
p

dv =
1

p84
(|{f ∈ Brs(Fp) | Frobf ∈ C}| · |G(Fp)|+O(p83)) =

|C|
|Sp4(F3)|

+O(p−1/2).

Since C 6= Sp4(F3), this implies what we need.

Proposition 6.3 and Proposition 6.4 imply Theorem 6.1 just as [BG13, Propositions 29, 31, 32, 33] imply
[BG13, Theorem 25] and its variant [BG13, Theorem 36].

6.2 Counting points with infinitely many congruence conditions

We now observe that using the results of [Bha] (see also [BS15]), we can get a strengthened version of Theorem
6.1 where we impose infinitely many congruence conditions. This is the analogue of [BG13, Theorem 42]. We
state this following [BG13]. Suppose given for each prime p a G(Zp)-invariant function wp : V (Zp) → [0, 1]
satisfying the following conditions:

• wp is locally constant outside the closed subset V (Zp)− V (Zp)rs ⊂ V (Zp).

• For all sufficiently large primes p, we have wp(v) = 1 for all v ∈ V (Zp) such that p2 - ∆0(v).

Then we can define a function w : V (Z)→ [0, 1] by the formula w(v) =
∏
p wp(v) if ∆0(v) 6= 0, and w(v) = 0

otherwise. If X ⊂ V (Z) is an G(Z)-invariant subset, then we define

Nw(X, a) =
∑

v∈G(Z)\X
ht(v)<a

w(v)

|ZG(v)(Z)|
.

Our strengthened theorem is then as follows.

Theorem 6.5. We have

Nw(V (Z)irr, a) =
|W0|

9

(∏
p

∫
v∈V (Zp)

wp(v) dv

)
vol(G(Z)\G(R))a7/10 + o(a7/10).

Following the proof of [BS15, Proposition 25], for primes p > N we define

Wp = {v ∈ V (Zp)rs | p2 divides ∆0(v)}.
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Let W1
p ⊂ Wp denote the set of points v such that either π(v) mod p has either more than 1 repeated

root or a triple root, or such that v mod p is not regular. (The proof of Proposition 5.4 shows that if v is
such an element, then ∆0(v) is necessarily divisible by p2.) Let W2

p ⊂ Wp denote the set of points v such
that π(v) mod p has 1 double root and no other repeated roots, and such that v mod p is regular. Then
Wp =W1

p ∪W2
p . In order to prove Theorem 6.5 using the method of [Bha] (or [BS15, Theorem 24]), it will

suffice to define a map
ψ : G(Z)\(V (Z) ∩W2

p )→ G(Z)\(V (Z) ∩W1
p )

with the following properties:

• ht ◦ψ = ψ.

• The fibres of ψ have cardinality at most 3.

We will construct this map as follows: for any v ∈ W2
p , we will define an element gv,p ∈ G(Qp) with the

following properties:

• gv,p · v ∈ W1
p

• If kp ∈ G(Zp), then gkp·v,p = kpgv,pk
−1
p .

This determines a map ψp :W1
p →W2

p , by the formula v 7→ gv,p · v. For each w ∈ W2
p , define Πp(w) = {hp ∈

G(Qp) | h−1
p w = v ∈ W2

p and h = gv,p}. We will show that Πp(w) has the following properties:

• If hp ∈ Πp(w), then h−1
p w ∈ W2

p .

• If kp ∈ G(Zp), then Πp(kpw) = kpΠp(w)k−1
p .

• Πp(w) has cardinality at most 3.

Before giving the construction, we explain why it implies the existence of a map ψ with the desired properties.
Note that G(Z)\G(Z[1/p])→ G(Zp)\G(Qp) is bijective (because G has class number 1). It follows that given
an element v ∈ W2

p∩V (Z), there is an element gv ∈ (G(Zp)·gv,p)∩G(Q), well-defined up to left multiplication
by G(Z), and we can define ψ(v) = gv · v. If γ ∈ G(Z) then gγ·v = γgvγ

−1, modulo left multiplication by
G(Z), so we get a well-defined map ψ : G(Z)\(V (Z)∩W2

p )→ G(Z)\(V (Z)∩W1
p ) which by definition satisfies

ht ◦ψ = ψ.

To bound the cardinality of the fibres of ψ, note that if w ∈ W1
p ∩ V (Z) and w = ψ(v) (modulo the

action of G(Z)) for some v ∈ W2
p ∩ V (Z), then by definition w = gv · v = kpgv,p · v, where kp ∈ G(Zp),

hence k−1
p w = gv,p · v, hence gv,p ∈ Πp(k

−1
p w) = k−1

p Πp(w)kp. This shows that gv ∈ Πp(w)kp, hence
v = g−1

v w ∈ (G(Zp)Πp(w)−1 ∩ G(Q)) · w. Again using the class number 1 property of G, we see that
G(Zp)Πp(w)−1 ∩G(Q) consists of at most 3 G(Z)-orbits under left multiplication, hence that the fibre of ψ
above the G(Z)-orbit of w indeed has cardinality at most 3.

We now construct the element gv,p. We will use similar arguments to those of the proof of Proposition 5.4.
Let v ∈ W2

p , and let vFp denote its reduction modulo p. Let vFp = ys+yn be its Jordan decomposition. There
is a decomposition hZp

= h
0,Zp
⊕ h

1,Zp
, where ad(v) acts topologically nilpotently in h

0,Zp
and invertibly in

h
1,Zp

; and moreover, there is a unique closed subgroup L ⊂ HZp with Lie algebra h
0,Zp

and which is smooth

with connected fibres over Zp (the argument is the same as in the proof of Proposition 5.4). By assumption,
yn is a regular nilpotent element in h

0,Fp
= zh(ys).
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There is an isomorphism hder

0,Zp
∼= sl3,Zp which intertwines θ|hder

0,Zp
with ζ 7→ Ad(diag(1, ζ, ζ2)), and which

sends yn to the element  0 1 0
0 0 1
0 0 0

 .

of sl3,Fp . (Indeed, there is a unique such isomorphism modulo p, which then lifts by Hensel’s lemma to an
isomorphism over Zp.) Similarly, there is a map ϕv : SL3,Zp → L which intertwines Ad(diag(1, ζ, ζ2)) with
θL = θ|L and which is compatible with the above isomorphism on Lie algebras. The map ϕv is uniquely
determined up to conjugation by diagonal matrices in PGL3(Zp); the element gv,p = ϕv(diag(p, 1, p−1)) ∈
L(Qp) is therefore independent of any choices.

To see that this gv,p has the desired properties, let v′ denote the projection of v to hder
0,Zp , and note that the

image of v′ in sl3,Zp has the form

v =

 0 a 0
0 0 b
c 0 0

 ,

where a ≡ b ≡ 1 mod p and p2|c (because of our assumption that p2 divides ∆0(v)). Thus we have

gv,p · v′ =

 0 pa 0
0 0 pb

c/p2 0 0

 .

The reduction modulo p of gv,p · v is no longer regular, showing that gv,p · v ∈ W1
p . This defines the map ψp.

We now need to describe the set Πp(w) for w ∈ W1
p . Let wFp = zs + zn be the Jordan decomposition. As

before, we get a decomposition hZp
= h

0,Zp
⊕ h

1,Zp
where ad(w) acts topologically nilpotently in h

0,Zp
and

invertibly in h
1,Zp

, and h
0,Zp

is the Lie algebra of a Levi subgroup L ⊂ HZp .

Observe that if w = gv,p · v for some v ∈ W2
p , then the derived subalgebra of zh(zs) is isomorphic to sl3,Fp

(i.e. is split) and its grading is conjugate to the Z/3Z-grading given by the formula ζ 7→ Ad(diag(1, ζ, ζ2))
(in fact, it coincides with the derived subalgebra of zh(ys) in the above discussion). We can therefore assume

without loss of generality that zh(zs) is split and has a grading of this form (otherwise Πp(w) is empty).

If we fix an isomorphism between zh(zs)
der and sl3,Fp which identifies θ|zh(zs)der with the Z/3Z-grading ζ 7→

Ad(diag(1, ζ, ζ2)), then there is a compatible morphism SL3,Zp → L, uniquely determined up to conjugation
by diagonal elements of PGL3(Zp), and we get an element hp ∈ H(Qp), image of diag(p−1, 1, p) ∈ SL3(Qp).

There are three possible choices of isomorphism between zh(zs)
der and sl3,Fp , up to SLθ3,Fp -conjugacy, so we

get three elements hp ∈ L(Qp). The set Πp(w) is contained in the set of elements hp constructed this way,
showing that Πp(w) has cardinality at most 3. The other claimed properties of the set Πp(w) follow from
the definition. We have therefore completed the proof of Theorem 6.5.

7 The main theorem

We can now prove the theorems stated in the introduction. We begin by re-establishing notation. Thus E
denotes the set of polynomials f(x) = x5 + c12x

3 + c18x
2 + c24x+ c30 ∈ Z[x] of non-zero discriminant, and

Emin ⊂ E denotes the set of polynomials f(x) not of the form n · g = n10g(x/n2) ∈ E for any g ∈ E and
integer n ≥ 2. If f ∈ E , then we define the height of f by the formula

ht(f) = sup
i
|ci|120/i.
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Thus for any a > 0, the set {f ∈ E | ht(f) < a} is finite. We recall that the set Emin is in bijection with
the set of isomorphism classes of pairs (C ,P) where C is a (smooth, projective, connected) genus-2 curve
over Q and P ∈ C (Q) is a marked Weierstrass point, via the map which takes f ∈ E to the projective
completion of the affine curve C 0

f : y2 = f(x).

Theorem 7.1. We have

lim
a→∞

∑
f∈Emin,ht(f)<a |Sel3(Jf )|
|{f ∈ Emin | ht(f) < a}|

= 4.

We first prove a ‘local’ result. Let G,V be the group and representation defined in §4, and let N ≥ 1 be the
integer of §4.5; thus our main constructions make sense over Z[1/N ]. If p is a prime, then we write Ep for the
set of polynomials f(x) = x5 + c12x

3 + c18x
2 + c24x+ c30 ∈ Zp[x] of non-zero discriminant, and Ep,min ⊂ Ep

for the set of polynomials not of the form p10g(x/p2) for any polynomial g(x) ∈ Ep.

Proposition 7.2. Let f0(x) ∈ Emin. Then we can find for each prime p ≤ N an open compact neighbourhood
Wp of f0(x) in Ep such that the following condition holds. Let EW = E ∩ (

∏
p≤N Wp), and let EW,min =

EW ∩ Emin. Then we have

lim
a→∞

∑
f∈EW,min,ht(f)<a |Sel3(Jf )|
|{f ∈ EW,min | ht(f) < a}|

= 4.

(The intersection E ∩ (
∏
p≤N Wp)) is taken in

∏
p≤N Ep, where we view E as a subset via the diagonal

embedding.)

Proof. We choose the sets Wp for p ≤ N , together with integers np ≥ 0, so that the conclusion of Corollary
5.8 holds. If p > N , let Wp = Ep,min and np = 0. Let M =

∏
p p

np . After possibly shrinking the Wp with
p ≤ N , we can assume that the Wp with p ≤ N satisfy Wp ⊂ Ep,min.

For v ∈ V (Z) with π(v) = f , define w(v) ∈ Q≥0 by the following formula:

w(v) =

{ (∑
v′∈G(Z)\(G(Q)·v∩V (Z))

|ZG(v′)(Q)|
|ZG(v′)(Z)|

)−1

if f ∈M · EW,min and G(Q) · v′ ∈ ηf (Sel3(Jf ))

0 otherwise.

We have ∑
f∈EW,min

ht(f)<a

|Sel3(Jf )| − 1

|Jf [3](Q)|
=

∑
v∈G(Z)\V (Z)irr

ht(v)<M120a

w(v).

For v ∈ V (Zp) with π(v) = f , define wp(v) ∈ Q≥0 by the following formula:

wp(v) =

{ (∑
v′∈G(Zp)\(G(Qp)·v∩V (Zp)

|ZG(v′)(Qp)|
|ZG(v′)(Zp)|

)−1

if f ∈ pnpWp and G(Qp) · v′ ∈ ηf (Jf (Qp))
0 otherwise.

Then for any v ∈ V (Z), we have w(v) =
∏
p wp(v), and the function w satisfies the conditions described

before the statement of Theorem 6.5.

Let W0 ∈ Q× be the constant of Proposition 4.17. That proposition implies that for any prime p, we have
the formula ∫

v∈V (Zp)

wp(v) dv = |W0/9|pp− dimQ V ·np vol(Wp) vol(G(Zp)),
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where we have used the equality |Jf (Qp)/3Jf (Qp)| = |1/9|p|ZG(σ(f))(Qp)| for any f ∈ Ep. By Theorem
6.5 and Proposition 4.16, we therefore have

lim
a→∞

∑
f∈EW,min

ht(f)<a

|Sel3(Jf )| − 1

a7/10|Jf [3](Q)|
=
M120

9
|W0|∞ vol(G(Z)\G(R))

∏
p

|W0/9|pp− dimV ·np vol(Wp) vol(G(Zp))

= 3
∏
p

vol(Wp).

On the other hand, we have

lim
a→∞

|{f ∈ EW,min | ht(f) < a}|
a7/10

=
∏
p

vol(Wp).

At this point we have proved that

lim
a→∞

 ∑
f∈EW,min

ht(f)<a

|Sel3(Jf )| − 1

Jf [3](Q)|

 (|{f ∈ EW,min | ht(f) < a}|)−1
= 3.

It remains to eliminate the appearance of the term |Jf [3](Q)|. This can be done by combining Proposition
6.4 and Theorem 6.1.

To deduce Theorem 7.1 from Proposition 7.2, we choose for each i ≥ 1 sets Wp,i (p ≤ N) giving a countable
partition Emin = EW1,min t EW2,min t EW3,min t . . . . We will show that for all ε > 0, there exists k ≥ 1 such
that

lim sup
a→∞

∑
f∈ti≥kEWi,min,ht(f)<a |Sel3(Jf )| − 1

|{f ∈ EW,min | ht(f) < a}|
< ε.

Combined with Proposition 7.2, which applies to each set EWi,min taken individually, this will imply the
desired result. For each f ∈ E , let

Sel3(Jf )r = ker(Sel3(Jf )→
∏
p≤N

Jf (Qp)/3Jf (Qp)).

Then there exists an integer N0 ≥ 1, depending only on N , such that for any f ∈ E , |Sel3(Jf )| ≤
N0|Sel3(Jf )r|. It will therefore suffice to show that for all ε > 0, there exists k ≥ 1 such that

lim sup
a→∞

∑
f∈ti≥kEWi,min,ht(f)<a |Sel3(Jf )r| − 1

|{f ∈ EW,min | ht(f) < a}|
< ε.

Fix k ≥ 1 and let Ek = ti≥kEWi,min. We now use that for any f ∈ B(Z), σ(N · f) ∈ V (Z) (see §4.5). It
follows that we have ∑

f∈Ek,ht(f)<a

|Sel3(Jf )r| − 1

|Jf [3](Q)|
=

∑
v∈G(Z)\V (Z)irr

ht(v)<N120a

wr(v),

where the weight wr(v) is defined in the formula

wr(v) =

{ (∑
v′∈G(Z)\(G(Q)·v∩V (Z))

|ZG(v′)(Q)|
|ZG(v′)(Z)|

)−1

if f ∈ N · Ek and G(Q) · v′ ∈ ηf (Sel3(Jf )r)

0 otherwise.
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Running through the same argument as in the proof of Proposition 7.2, we get

lim sup
a→∞

∑
f∈Ek,ht(f)<a |Sel3(Jf )r| − 1

a7/10|Jf [3](Q)|
≤ 3

∏
p≤N

vol(ti≥kWp,i),

which becomes arbitrarily small as k →∞. This completes the proof of Theorem 7.1.

Remark 7.3. Using Theorem 6.5 and [BG13, Theorem 44], one can prove the analogue of Theorem 7.1 for any
‘large’ subset of Emin, where ‘large’ has the same meaning as in [BG13, §11]; this includes in particular any
subset defined by finitely many congruence conditions on the cofficients of f(x) = x5+c12x

3+c18x
2+c24x+c30.

Our final result (Theorem 1.2 of the introduction) follows readily from the above techniques and from the
work of Poonen–Stoll:

Theorem 7.4. We have

lim inf
a→∞

|{f ∈ Emin | ht(f) < a, |Cf (Q)| = 1}|
|{f ∈ Emin | ht(f) < a}|

> 0.

Proof. According to [PS14, Remark 10.5], this follows if one can establish property Eq2(3) of op. cit., which
asserts that after fixing a ‘trivializing congruence class’ U3 ⊂ E3,min in which the groups Jf (Q3)/3Jf (Q3) =
F are independent of f ∈ U3, the images x|3 of 3-Selmer elements x ∈ Sel3(Jf ) in the local groups
Jf (Q3)/3Jf (Q3) = F are equidistributed for f ∈ Emin ∩ U3. This can be proved by a small modification
of the proof of Theorem 7.1, analogous to the proof of [BG13, Theorem 47]. We omit the details.
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