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1 Introduction

Over the last half-century the study of integrability has grown into a rich and significant branch of
mathematics. The main features of integrable systems are, paradoxically, nonlinearity and tractabil-
ity, which allows the detailed investigation of nonlinear phenomena that would frequently be im-
possible using other techniques. Much of the subject is unified under a particular symmetry, called
self-duality, of the Yang–Mills equations. The Yang–Mills equations arise as generalizations of
Maxwell’s theory of electrodynamics, and in their quantized form constitute the main building block
of the Standard Model of Particle Physics, our currently most accurate and most complete model of
three of the four natural forces that we know about. The fourth, gravity, is described by Einstein’s
General Relativity.

A Yang–Mills theory, or gauge theory, is geometrically a description of a vector bundle over
a region of spacetime, and the curvature of the connection on the bundle is interpreted as the
physical Yang–Mills field. The self-dual Yang–Mills equations turn out to have deep connections
to Roger Penrose’s twistor construction. At its heart, twistor theory is a theory based on complex
geometry. The construction unifies real spactimes of signature (+,+,+,+) and (−,+,+,+) in a
complex space with signature (−,−,+,+) in which the Yang–Mills equations happen to take on
a particularly nice form. Now the self-duality condition can be interpreted geometrically, which
allows one to define complex manifolds that are in some sense “orthogonal” to either the self-dual or
anti-self-dual solutions of the Yang–Mills equations. These are called twistor spaces. A construction
called the Penrose–Ward transform will allow us to take the vector bundle defined by a gauge theory
and transfer it to a holomorphic vector bundle over twistor space. The holomorphic bundle will not
have a connection, but instead will encode some of the information in its holomorphic structure. It
turns out that this leads to a method of generating, in principle, all solutions to certain symmetry
reductions of the self-dual Yang–Mills equations. Einstein’s equations with certain symmetries make
up one class of these reductions.

We will reduce the stationary axisymmetric anti-self-dual Yang–Mills equations to four classes of
solutions of Einstein’s equations. The four classes are stationary axisymmetric gravitational fields,
cylindrical gravitational wave solutions, the Gowdy cosmological models, and the colliding plane
wave solutions. These are all exact solutions of Einstein’s equations. The first two classes are
self-descriptive; the Gowdy cosmological models are solutions describing a spacetime filled with a
regular pattern of gravitational waves of all wavelengths, while the colliding plane wave spacetimes
are another set of exact solutions describing the collision of plane waves that may produce curvature
singularities.

The structure of this essay is as follows. In section 2 we establish the prerequisite mathematical
background. In particular, in section 2.2 we describe Riemann–Hilbert problems, in section 2.3 we
introduce the self-dual Yang–Mills equations, and define twistors in section 2.6. In section 3 we
develop and prove the Ward correspondence. We then discuss symmetry reductions in section 4 and
then concentrate on two particular cases of Einstein fields in sections 5 and 6. The reader unfamiliar
with gauge theories may like to start at the appendix.

The material presented in this essay is classical and well-known. Much of it is taken from
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Mason & Woodhouse [3], but Huggett [1] provides a nice basic introduction to the theory. Ward &
Wells [7] take a slightly different approach to some aspects, but is a good companion to the more
mathematically minded physicist. A good overview of the Ward correspondence in action is provided
in [6], while the material on cylindrical gravitational waves is based on [9].

2 Mathematical Background

2.1 Setting

In special relativity, the spacetime is Minkowksi space, a four-dimensional affine space with the metric
diag(+1,−1,−1,−1), and a choice of orientation. Minkowski space M is geometrically different from
Euclidean space E, which has the trivial metric δij . We will be interested in studying fields on both
Minkowski space and Euclidean space in a unified manner, and for this reason it will be convenient
for us to allow spacetime coordinates to take complex values. That is, we will think of these real
spaces as embedded in complexified Minkowski space. Complexified Minkowski space CM is the set
C4 endowed with the metric

ds2 = ηabdx
adxb = 2(dzdz̃ − dwdw̃)

and the volume form

ν = νabcddx
a ∧ dxb ∧ dxc ∧ dxd = dw ∧ dw̃ ∧ dz ∧ dz̃,

where

νabcd =
1

24

√
det(η)εabcd.

The coordinates (w, z, w̃, z̃) are called double null coordinates. We may recover E and M by imposing
reality conditions on w, z, w̃ and z̃. We retrieve standard Euclidean space, or the Euclidean slice E,
by imposing the conditions(

z̃ w
w̃ z

)
=

1√
2

(
x0 + ix1 −x2 + ix3

x2 + ix3 x0 − ix1

)
,

where x0, x1, x2 and x3 are required to be real. Notice that on E the metric η reduces to the standard
Euclidean metric. Similarly, the Minkowski slice M is given by(

z̃ w
w̃ z

)
=

1√
2

(
x0 + x1 x2 − ix3

x2 + ix3 x0 − x1
)
,

on which the metric reduces to the standard Minkowski metric. Complexified Minkowski space CM
contains other real slices, such as the ultrahyperbolic slice U, which we do not study in detail. For
more details the reader should consult [3].

2.2 Riemann–Hilbert Problems

Suppose we have a smooth function F defined on some smooth closed curve in the complex plane.
In a general sense, Riemann–Hilbert problems are concerned with “splitting” such functions into a
function that is analytic in the exterior of the curve and a function that is analytic in the interior. In
the linear setting, this amounts to writing F as a difference of two functions that are boundary values
of a function analytic in the exterior, and a function analytic in the interior. We will need to know
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about when and how a Riemann–Hilbert problem is soluble when we describe the Penrose–Ward
transform in the later sections.

To study the linear Riemann–Hilbert problem first, let F : S1 → C be a smooth function on the
unit circle S1 = {ζ = eiθ} in the complex ζ-plane. We can then write F as its Fourier series on S1,
in powers of ζ = eiθ:

F (θ) =

∞∑
n=−∞

Fnζ
n =

∞∑
n=0

fnζ
n −

∞∑
n=0

f̃nζ
−n = f(ζ)− f̃(ζ),

where f is the boundary value of a holomorphic function in the interior |ζ| < 1 of the circle (defined
by analytic continuation of the corresponding power series), and f̃ is the boundary value of a
holomorphic function in the exterior |ζ| > 1, including ζ = ∞ (defined similarly). This splitting of
F is unique up to compensating shifts in f0 and f̃0, i.e. up to f 7→ f + c, f̃ 7→ f̃ + c for c ∈ C.

A non-linear Riemann–Hilbert problem is to find an analogous splitting for a function F : S1 → G
when F takes values not in the additive group C, but rather in some more general (non-abelian)
complex Lie group G. If, for example, G = C×, the group of non-zero complex numbers under
multiplication, then the problem is as follows. Given a smooth non-vanishing function F on S1,
we wish to find non-vanishing functions f(ζ) and f̃(ζ) such that f(ζ) is holomorphic in the interior
|ζ| < 1, f̃(ζ) is holomorphic in the exterior |ζ| > 1, including ζ = ∞, and such that F = f̃−1f on
S1 = {ζ = eiθ}. Unlike in the linear (additive) case, such a factorization need not exist. Indeed, if
it does, then we must have∮

S1

dF

F
=

∮
S1

d(log(f̃−1f)) =

∮
S1

df

f
−
∮
S1

df̃

f̃
= 0

by Cauchy’s theorem, as f̃ and f are holomorphic and non-vanishing on the upper and lower half
of the Riemman sphere1 respectively. This imposes a condition on F . Thus we could only hope to
factorize F if its winding number

k =
1

2πi

∮
S1

dF

F
∈ Z

vanishes. In the event that it does, logF is then single-valued and we may construct f and f̃ by
expanding logF in its Fourier series, splitting it as before, and exponentiating. Note that by virtue
of this construction, in particular the exponentiation, the resulting functions are non-vanishing.

Nevertheless, even in the case of a non-zero winding number, not all is lost. If F has finite
winding number k, then ζ−kF has zero winding number, and can therefore be factorized. Indeed,∮

S1

d(ζ−kF )

ζ−kF
=

∮
S1

−kζ−1dζ +

∮
S1

dF

F
= 0.

Thus a smooth non-vanishing function on the circle can always be factorized as

F = f̃−1ζkf,

where k is the winding number of F , f is holomorphic in the interior of the circle, and f̃ is holo-
morphic in the exterior, including infinity. Thus we have completely solved the Riemann–Hilbert
problem in the case G = C×.

1Here we think of the identification of C ∪ {∞} with the Riemann sphere S2 by stereographic projection from the
North Pole. Then the exterior of the unit circle |ζ| > 1, together with ζ = ∞, is identified with the upper half, while
the interior |ζ| < 1 is identified with the lower half of the Riemann sphere.
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2.2.1 Birkhoff’s factorization theorem

A more general result is provided by Birkhoff’s factorization theorem. Let G be a compact Lie
group.

Definition 2.1. The loop group of G is the group of smooth maps LG = {F : S1 → G} under the
composition inherited from the composition law of G.

So LGL(n,C) is the group of smooth maps F : S1 → GL(n,C) under pointwise matrix multiplication.
For this particular loop group we also denote by LGL+(n,C) the subset of loops that are boundary
values of holomorphic maps on {|ζ| < 1}, and by LGL−(n,C) the subset of loops that are boundary
values of holomorphic maps on {|ζ| > 1} ∪ {∞}.

Theorem 2.1 (Birkhoff’s factorization theorem [3, p. 146]). Any loop F ∈ LGL(n,C) can be fac-
torized as

F = f̃−1∆f,

where f ∈ LGL+(n,C), f̃ ∈ LGL−(n,C), and ∆ = diag(ζk1 , . . . , ζkn) for some ki ∈ Z. Furthermore,
the kis are unique up to permutation, and the loops for which ∆ = 1 are a dense open subset of the
component of LGL(n,C) connected to the identity. For loops with ∆ = 1 the factorization is unique
up to f̃ 7→ cf̃ , f 7→ cf for some constant c ∈ GL(n,C).

The same result holds with GL(n,C) replaced with SL(n,C), whence all matrices are required to
have unit determinant (in particular,

∑
ki = 0). Moreover, the theorem still holds if instead of

holomorphic functions of ζ we work with rational functions of ζ, or with analytic functions of ζ.

2.2.2 Jumping points

A consequence of the way Birkhoff’s theorem is proved in [4] is that if a factorization of a loop
F (w, ζ), depending smoothly on some parameters w = (w1, w2, . . . ), exists with ∆ = 1 at some
point w, then in fact a factorization with ∆ = 1 exists in an open neighbourhood of w. Moreover,
the factors f and f̃ may be chosen to depend smoothly and regularly on the parameters. As the
following proposition explicates, the above statement also holds when ‘smooth’ is replaced with
‘holomorphic’: if F (w, ζ) depends holomorphically on ζ in a neighbourhood of the unit circle, and
holomorphically on w, then a factorization with ∆ = 1 at a point extends to a factorization with
∆ = 1 in an open neighbourhood, and the factors f and f̃ may be chosen to be regular almost
everywhere and depend holomorphically on the coordinates w. Let V , Ṽ be a two-set open cover of
the Riemann sphere, where V is a neighbourhood of ζ = 0, Ṽ is a neighbourhood of ζ = ∞, such
that A = V ∩ Ṽ is an annulus in the complex plane containing the unit circle.

Proposition 1 (Ward (1984), [3, pp. 148–149]). Let W be an open ball in Ck and let

F : W ×A→ GL(n,C)

be holomorphic. Suppose that for some point of W there is a Birkhoff factorization of F as a function
of ζ with ∆ = 1. Then there exist holomorphic maps f : W × V → Cn×n, f̃ : W × Ṽ → Cn×n such
that

(i) f̃F = f on W ×A, and

(ii) for almost all w ∈W , det f 6= 0 on V and det f̃ 6= 0 on Ṽ .
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As described in [3, §9.3], attempting to extend the ∆ = 1 factorization to the whole parameter
space typically fails on a submanifold of codimension 1, where ∆ ‘jumps’ to a matrix other than
the identity. Proposition 1 says that in the holomorphic case the jumping singularities are at worst
poles, because if f is holomorphic, then f−1 cannot have an essential singularity. As we will see
in section 3, in the Ward construction, the parameters w are the spacetime coordinates and the
jumping points of ∆ give rise to singularities in the ASDYM potential Φ. In light of this we should
like to know when we can ensure that the condition ∆ = 1 is satisfied.

Proposition 2 (Gohberg and Krein (1958), [3, p. 149]). Suppose that F ∈ LGL(n,C) and that
F + F † is positive definite. Then in the Birkhoff factorization of F we have ∆ = 1.

Proof. Suppose F has the factorization F = f̃−1∆f , where ∆ = diag(ζk1 , . . . , ζkn). Put

Q = ff̃† and P = f̃(F + F †)f̃†.

Then for any z ∈ Cn, as F + F † is positive definite,

z†Pz = z†f̃(F + F †)f̃†z = (f̃†z)†(F + F †)(f̃†z) > 0,

i.e. P is positive definite. Moreover,

∆Q+Q†∆† = ∆ff̃† + f̃f†∆†

= f̃(f̃−1∆f + f†∆†f̃−†)f̃†

= f̃(F + F †)f̃† = P.

Now as f is holomorphic on |ζ| < 1, and f̃ is holomorphic on |ζ| > 1, including ζ = ∞, it follows
that the Fourier series of the entries of Q contain only positive powers of ζ, while the Fourier series
of the entries of Q† contain only negative powers of ζ. As P is positive definite, the diagonal entries
of P are positive real functions of ζ. Thus we must have ki 6 0 for each i. An analogous argument
with Q replaced with R = f−†(F + F †)f−1 shows that ki > 0 for each i, whence ki = 0 for each
i.

Proposition 2 holds for almost all w ∈W whenever F , f and f̃ depend on additional parameters
w, by virtue of proposition 1.

2.3 The Yang–Mills Equations

Consider a gauge theory with a connection Φ on a vector bundle E → M over a manifold M . The
connection defines a differential operator D (which we also sometimes refer to as the connection)
that maps sections s of E to E-valued 1-forms. In a local trivialization,

Ds = (Das)dx
a = ds+ Φs.

We define the curvature of D to be the matrix-valued 2-form F = Fabdx
a ∧ dxb, where

Fab = [Da,Db] = DaDb −DbDa.

The Yang–Mills equations are DF = 0 and D ∗ F = 0. In components these read

D[aFbc] = 0 and DaFab = 0

respectively. These are generalizations of Maxwell’s equations, as described in appendix A.3. The
first of these is a consequence of the Jacobi identity for the operator Da, while the second is the
Euler–Lagrange equation of the Lagrangian density

L =
1

4
Tr(FabF

ab).
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2.3.1 The anti-self-dual Yang–Mills equation

The anti-self-dual Yang–Mills (ASDYM) equation is the condition

∗F = −F. (1)

As the terminology suggests, a solution to (1) necessarily satisfies the Yang–Mills equations, since
DF = 0 is true for an arbitrary connection, and (1) implies that D ∗ F = −DF = 0.

One alternative way of expressing the anti-self-duality condition is in terms of the commutativity
of a so-called Lax pair. Let Φ be a connection on a complex rank-n vector bundle E over some
region U in real or complex spacetime, and let F be its curvature 2-form. In a local trivialization
the components of F are

Fab = ∂aΦb − ∂bΦa + [Φa,Φb].

In double null coordinates (w, z, w̃, z̃) the anti-self-duality condition ∗F = −F becomes

∂zΦw − ∂wΦz + [Φz,Φw] = 0, (2)

∂z̃Φw̃ − ∂w̃Φz̃ + [Φz̃,Φw̃] = 0, (3)

∂zΦz̃ − ∂z̃Φz − ∂wΦw̃ + ∂w̃Φw + [Φz,Φz̃]− [Φw,Φw̃] = 0. (4)

Writing
Dw = ∂w + Φw, Dz = ∂z + Φz, Dw̃ = ∂w̃ + Φw̃ and Dz̃ = ∂z̃ + Φz̃,

these become
[Dz,Dw] = 0, [Dz̃,Dw̃] = 0 and [Dz,Dz̃]− [Dw,Dw̃] = 0,

or equivalently that the Lax pair of operators

L = Dw − ζDz̃ and M = Dz − ζDw̃ (5)

should commute for all complex values of the spectral parameter ζ. The operators L and M are
referred to as a linear system for the anti-self-dual Yang–Mills equations.

2.3.2 Yang’s equation

The anti-self-duality condition ∗F = −F is coordinate independent and manifestly gauge-invariant,
as well as invariant under conformal isometries of spacetime, which we will introduce in section 2.5.
However, it is possible to break one or more of these symmetries to rewrite the equation in a more
tractable way. The first anti-self-duality condition in double null coordinates (2) is the statement
that the operators ∂w + Φw and ∂z + Φz commute, which is a local Frobenius integrability condition
for the existence of a matrix-valued function h such that

∂wh+ Φwh = 0,

∂zh+ Φzh = 0.

It is uniquely determined by Φ up to h 7→ hP̃ , where P̃ depends only on w̃ and z̃. Similarly, (3) is
a local integrability condition for the existence of a matrix-valued function h̃ such that

∂w̃h̃+ Φw̃h̃ = 0,

∂z̃h̃+ Φz̃h̃ = 0,
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which is uniquely determined by Φ up to h̃ 7→ h̃P , where P depends only on w and z. How do h
and h̃ transform under a gauge transformation? Under a gauge transformation

Φ→ g−1Φg + g−1dg

so that, for example,
Φw → g−1Φwg + g−1∂wg.

We then wish to find out how h transforms under a gauge transformation, say h → g(h), in a way
that

(∂wh)h−1 = −Φw

becomes
(∂wg(h))g(h)−1 = −g−1Φwg − g−1∂wg.

Observing that if h→ g(h) = g−1h, then

(∂wg(h))g(h)−1 = −g−1(∂wg) + g−1(∂wh)h−1g,

we conclude that h→ g−1h is the correct gauge transformation for h. Similarly, of course, h̃→ g−1h̃
under a gauge transformation. Notice that then

h̃−1h→ (g−1h̃)−1g−1h = h̃−1gg−1h = h̃−1h,

so that J = h̃−1h is a gauge invariant quantity. The matrix J is called Yang’s matrix. It is
determined by Φ up to J 7→ P−1JP̃ , and conversely J determines Φ. Indeed,

J−1∂̃J = J−1∂w̃Jdw̃ + J−1∂z̃Jdz̃ = h−1(Φw̃dw̃ + Φz̃dz̃)h, (6)

J∂J−1 = J∂wJ
−1dw + J∂zJ

−1dz = h̃−1(Φwdw + Φzdz)h̃,

where ∂ = dw∂w + dz∂z and ∂̃ = dw̃∂w̃ + dz̃∂z̃ are the components of the Dolbeault decomposition
of the exterior derivative d = ∂ + ∂̃. Comparing these to the gauge transformations

Φ→ h−1Φh+ h−1dh, (7)

Φ→ h̃−1Φh̃+ h̃−1dh̃, (8)

we see that J−1∂̃J and J∂J−1 are both simply Φ in the gauges (7) and (8) respectively. So it is
enough to consider only one of them, say J−1∂̃J , to deduce Φ. It is easy to check that the first two
anti-self-duality conditions (2) and (3) are satisfied identically by J−1∂̃J . Putting J−1∂̃J and

(h−1dh)w = h−1∂wh = −Φw

(h−1dh)z = h−1∂zh = −Φz

into the third condition (4), we find that, since ∂z̃(J
−1∂zJ) = 0 = ∂w̃(J−1∂wJ),

∂zΦz̃ − ∂z̃Φz − ∂wΦw̃ + ∂w̃Φw + [Φz,Φz̃]− [Φw,Φw̃] = 2∂z(J
−1∂z̃J)− 2∂w(J−1∂w̃J).

So the third anti-self-duality condition (4) is satisfied if and only if

∂w(J−1∂w̃J)− ∂z(J−1∂z̃J) = 0. (9)
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Equation (9) is called Yang’s equation, and is equivalent to the ASDYM equations. However, it is
not covariant under coordinate transformations which change the tangent planes spanned by ∂w and
∂z, and by ∂w̃ and ∂z̃.

We will see that J is the zeroth Fourier coefficient of F , i.e. that the factorization F = f̃−1(ζ)f(ζ)
can be reduced to give J = f̃−1(∞)f(0). If we impose the gauge condition that f(0) = 1, then J is
determined uniquely by F and given by

J = f̃−1(∞).

2.4 Spinors

The two main particle types that occur in nature, bosons and fermions, are characterized by an
observationally inferrable quantity s, called spin, which takes values in {0, 1/2, 1, 3/2, 2, . . . }. Bosons
are the particles with integer spin, while fermions are the ones with half-integer spin. A familiar
example of a boson is the photon (a boson of spin 1), which is described by the Maxwell 2-form F .
The correct mathematical tools for describing bosons are tensor fields, but to describe fermions it
turns out that we need objects called spinors. Our main use of spinors will be to make covariance
of certain equations explicit, but their power extends much further.

Our starting point is the isomorphism of groups

SO(4,C) ' SL(2,C)L × SL(2,C)R/Z2, (10)

under which complex rotations in four dimensions are decomposed into products of left and right
rotations (corresponding to the two factors of SL(2,C), respectively), up to a sign. Tensors in
complex spacetime, then, since they transform under SO(4,C), may be replaced by products of
spinors, which will transform under SL(2,C).

Definition 2.2. We denote by S the fundamental representation of SL(2,C)L and by S ′ the anti-
fundamental (or conjugate) representation of SL(2,C)R. We call the complex vector space S the
spin space and S ′ the primed spin space.

Definition 2.3. A spinor of type (m,n,m′, n′) is an element of the tensor product

m︷ ︸︸ ︷
S ⊗ · · · ⊗ S ⊗

n︷ ︸︸ ︷
S∗ ⊗ · · · ⊗ S∗⊗

m′︷ ︸︸ ︷
S ′ ⊗ · · · ⊗ S ′⊗

n′︷ ︸︸ ︷
S ′∗ ⊗ · · · ⊗ S ′∗,

where ∗ denotes the dual space.

The abstract spinor indices are capital Roman letters, either primed (A′, B′, . . . ) or unprimed
(A,B, . . . ), and we denote the elements of S,S∗,S ′,S ′∗ by αA, βB , γ

C′ , and δD′ respectively. We
use primed indices in the primed spin spaces and lower indices in the dual spaces. The four spin
spaces are two-dimensional, and we make the convention that the values of the indices run over the
two values 0 and 1, and denote by 0′ and 1′ the particular values of primed indices to be able to
distinguish which spaces our spinors live in.

The SL(2,C) transformations of S and S ′ are symplectic: they preserve the skew-symmetric
2-spinors εAB , εA

′B′ , εAB , εA′B′ , each with components(
0 1
−1 0

)
.

We may interpret εAB as a bilinear form on S, whence εAB is the dual symplectic form on S∗ by
virtue of the fact that εABεCB = δAC . This provides an identity endomorphism on both S and S∗,
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and the symplectic forms εAB and εAB provide natural isomorphisms between S and S∗ which we
use to raise and lower indices. Due to the skew-symmetry it is important to keep track of the order
of indices, and we follow the convention of Ward & Wells [7] and Mason & Woodhouse [3] and define

εABψB = ψA

ψBεBA = ψA.

A useful mnemonic is ‘adjacent indices, descending to the right’. Note that αAβA = −αAβA.
Of course all of this structure has a primed version, and the two are, by definition, related by

complex conjugation. More precisely, complex conjugation is an anti-isomorphsim from the primed
to the unprimed spin space,

A : S → S ′,

ψA 7→ ψ
A′

.

For mixed spinors such as ψABA′ the rules for abstract indices dictate that we observe the ordering
of primed indices, whether subscripts or superscripts, and also the ordering of unprimed indices.
But the relative ordering between a primed and unprimed index is irrelevant. Moreover, the two-
dimensionality of the spin spaces implies that ‘skew spinors are pure traces’. For example, if ξAB is
any spinor, then

ξAB − ξBA = εABξ
C

C .

2.4.1 Tensors as spinors

Let T be the space of complex 4-vectors in CM. We construct the identification T = S ⊗ S ′ by
identifying the displacement vector from the origin xa = (w, z, w̃, z̃) in double null coordinates with
the 2-spinor xAA

′
given by

xAA
′

=

(
z̃ w
w̃ z

)
. (11)

The dual of this map of course identifies T ∗ = S∗⊗S ′∗, so that a 1-form ωa in CM is identified with
a 2-spinor ωAA′ . In particular, the coordinate derivatives ∂a become

∂AA′ =

(
∂z̃ ∂w
∂w̃ ∂z

)
.

Under a coordinate transformation of the double null system,(
z̃ w
w̃ z

)
7→ Λ

(
z̃ w
w̃ z

)
Λ̃t

for some Λ, Λ̃ ∈ SL(2,C), which are determined up to a sign. In spinor notation,

xAA
′
7→ ΛABΛ̃A

′

B′x
BB′ .

So in a similar way to tensorial expressions, which, if true in one coordinate system, then are true in
all coordinate systems, spinorial expressions are “covariant up to a sign”. The idea is that if we work
with spinors but eventually reconvert our expressions to tensorial expressions, the sign ambiguity
disappears2.

2In flat spacetime. See [3, §9.9]
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With this notation the spinor equivalents of the Minkowski metric ηab and the alternating tensor
εabcd are

ηab = ηABA′B′ = εABεA′B′ ,

εabcd = εABCDA′B′C′D′ = εACεBDεA′D′εB′C′ − εADεBCεA′C′εB′D′ .

Thus
ds2 = εABεA′B′dx

AA′dxBB
′
.

We also extend the domain of definition of the space time connection ∇a = ∇AA′ so that it
acts on spinor as well as tensor fields. This is done in such a way that the derivative of ε vanishes:
∇AA′εBC = 0.

2.4.2 SD and ASD 2-forms

A spin frame in S is a basis oA, ιA of S such that

oAι
A = 1.

Unless otherwise stated, we will use the standard spin frames for S and S ′ given by oA = (1, 0) = oA
′

and ιA = (0, 1) = ιA
′
.

Any 2-form γab = γABA′B′ can be written as

γABA′B′ = γ(AB)[A′B′] + γ[AB](A′B′),

since γab = −γba. As noted above, any skew-symmetric 2-spinor is necessarily a multiple of ε, and
so

γABA′B′ = φABεA′B′ + ψA′B′εAB

for some symmetric spinors φ an ψ. This is the decomposition of γ into its ASD and SD parts
respectively, as can be checked by using the spinor decomposition of the alternating tensor.

Thus for the curvature 2-form Fab of a connection Da, the ASDYM equation is the statement
that the SD part of F vanishes, i.e. that

FABA′B′ = ψABεA′B′ ,

where ψAB = ψ(AB).

2.4.3 Spinorial version of Yang’s equation

Noting (11), we may rewrite Yang’s equation (9) in spinorial form:

∂01′(J
−1∂10′J)− ∂11′(J−1∂00′J) = 0.

By raising the first index on the outer partial derivatives, we get

∂11′ (J
−1∂10′J) + ∂01′ (J

−1∂00′J) = 0,

which is
ιA
′
∂BA′ (J

−1oB
′
∂BB′J) = 0. (12)

This form of Yang’s equation is manifestly covariant, and will be useful for our geometric description
of the Penrose–Ward transform.
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2.5 Compactified Complexified Minkowski Space

2.5.1 Geometry of null planes in CM

Definition 2.4. We say that a 2-plane in CM is totally null if η(A,B) = 0 for every pair of tangent
vectors A,B. With each totally null plane Π we associate a tangent bivector π = A ∧ B, that is
πab = A[aBb], for two independent tangent vectors A and B. A tangent bivector π determines the
tangent space to the 2-plane, and is determined by the tangent space up to multiplication by a
non-zero scalar.

Proposition 3. If Π is a null 2-plane, then πabπ
ab = 0 and π = πabdx

a ∧ dxb is either self-dual or
ant-self-dual.

Proof. A calculation shows that πabπ
ab = −2(ηabA

aBb)2 = 0. We also calculate

(∗π)ab =
√

det(η)εabcdA
cBd,

so as A and B span Π, for any P ∈ Π we have (∗π)abP
a = 0. In fact this characterizes (∗π) up to a

non-zero scalar multiple. But we also have πabP
a = 0 since A and B span Π. Thus (∗π) = µπ for

some µ 6= 0. But the eigenvalues of the Hodge star ∗ here are ±1, so ∗π = ±π.

Definition 2.5. We say a totally null plane Π is an α-plane whenever π is self-dual and a β-plane
whenever π is anti-self-dual.

It is an exercise in applying the Hodge star operator to check that the self-dual 2-forms on CM
are spanned by

ω1 = dw ∧ dz,

ω2 = dw ∧ dw̃ − dz ∧ dz̃,

ω3 = dz̃ ∧ dw̃,

and the anti-self-dual 2-forms on CM are spanned by

ρ1 = dw ∧ dz̃,

ρ2 = dw ∧ dw̃ + dz ∧ dz̃,

ρ3 = dw̃ ∧ dz.

Furthermore, ωi ∧ρj = 0 for all i, j = 1, 2, 3. We thus immediately see that surfaces of constant w, z
are α-planes, as are surfaces of constant w̃, z̃. A general α-plane has a tangent bivector corresponding
to the 2-form π = θ1ω1+θ2ω2+θ3ω3 for some complex numbers θi, i = 1, 2, 3. A mundane calculation
to raise the indices of πab and split it into a wedge product of two linearly independent vectors then
shows the following. Every α-plane passing through the origin, apart from the plane w = z = 0, has
a unique (up to a constant) tangent bivector π given by

πab = l[amb],

where
l = ∂w − ζ∂z̃, m = ∂z − ζ∂w̃

for some ζ ∈ C. Conversely, for every ζ ∈ C the span of l and m is an α-plane through the origin.
Thus by associating with ζ = ∞ the span of ∂w̃ and ∂z̃ we obtain a one-to-one correspondence
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Πζ ←→ ζ between α-planes through the origin and points on the Riemann sphere C ∪ {∞}. The
parameter ζ is called the spectral parameter.

The similarities between the tangent vectors l and m and the Lax pair of operators L and
M for the ASDYM equation are not accidental; indeed, by the same reasoning the parameter ζ
of section 2.3 is an affine coordinate on PS ′ = CP1 = S2 = C ∪ {∞}. We can even make this
correspondence explicitly covariant by using spinor notation as follows. Since the components π0′

and π1′ of πA′ = (π0′ , π1′) are homogeneous coordinates on S ′, defining

ζ =
π1′

π0′

gives a coordinate on PS ′. For ζ 6=∞ we may take π0′ = 1 and π1′ = ζ, or

πA′ = ζoA′ − ιA′

in the standard spin frame. Similarly, for ζ 6= 0 we may write ζ̃ = 1/ζ and take

πA′ = oA′ − ζ̃ιA′ .

Now as we saw in section 2.4.2, the spinor equivalent of an SD 2-form is ψA′B′εAB , so any null
SD 2-form has the form πA′πB′εAB . Since conversely πA′πB′εAB = πab defines an α-plane, we see
that every α-plane through the origin is labelled by a non-zero spinor πA′ , up to scale. Putting
πA′ = ζoA′− ιA′ in V = {ζ 6=∞} and πA′ = oA′− ζ̃ιA′ in Ṽ = {ζ 6= 0}, we obtain the same labelling
of the manifold CP1 of null planes as above.

We shall see shortly that in the twistor construction a general α-plane, one not necessarily passing
through the origin, is labelled by three complex coordinates: the parameter ζ, which determines the
tangent space, together with ζw + z̃ and ζz + w̃, which are constant on the α-plane. This can be
seen immediately by considering the action of the vectors l and m on ζw+ w̃ and ζz+ w̃. The whole
space of α-planes, including those at infinity, turns out to be CP3 as a manifold.

2.5.2 The complex conformal group

A natural question to consider in connection with spinor calculus is how to define the Lie derivative
of a spinor αA along a vector field K. A sensible definition would have to satisfy the Leibniz rule, so
the Lie derivative of the symplectic form εAB , being skew-symmetric, would have to be a multiple
of itself:

LKεAB = λεAB .

Recalling the decomposition of the metric ηab = εABεA′B′ , we see that this would entail that

LKηab = (λ+ λ)ηab = kηab (13)

for some real number k. Thus we could only hope to define the Lie derivative of a spinor along a
vector field K if K satisfies eq. (13). Such vector fields are called conformal Killing vector fields.
Equation (13) is equivalent to

∇aKb +∇bKa = kηab,

which is in turn the same as

∂aKb + ∂bKa =
1

4
∂cK

cηab. (14)

The general solution to eq. (14) is

Ka = Ta + Labx
b +Rxa + xbxbSa − 2Sbx

bxa,
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where the coefficients are constants, and Lab = −Lba. Thus a general conformal Killing field has
15 parameters, which are four translations Ta and six rotations Lab corresponding to the Poincaré
group, one dilation R, and four special conformal transformations Sa. To investigate the latter, we
consider the integral curves of Sa, which are solutions xa to

dxa

dt
= Saxbxb − 2Sbx

bxa.

A calculation shows that the solution to this is given by

xa(t) =
xa(0) + tSaxb(0)xb(0)

1 + 2tSbxb(0) + t2SbSbxc(0)xc(0)
.

From this we immediately see that the vector field xa(t) is incomplete on CM: the special conformal
transformations may map finite points of CM to infinity. Thus in order to have a proper description
of the complex conformal group we adjoin to CM a light cone at infinity to obtain compactified
complexified Minkowski space CM#. This has a conformal structure (that is, it is a complex manifold
with a metric defined up to the conformal equivalence ηab ∼ Ω2ηab) and an orientation. We call
transformations ρ of CM# such that ρ∗η = Ω2η and ρ∗ν = Ω4ν proper conformal transformations.
These map CM# → CM#, and form a fifteen-dimensional group called the complex conformal group.

Conformal Killing vector fields are natural objects when the geometry of CM# is considered in
terms of α-planes and β-planes. It can be shown that the flow along a conformal Killing vector K
moves α-planes into α-planes, and β-planes into β-planes. Moreover, if the 2-form dK[ is everywhere
self-dual, then the flow along K maps β-planes to parallel β-planes, and if dK[ is everywhere anti-
self-dual, the flow along K maps α-planes to parallel α-planes. The conformal Killing vector K is
said to be SD (ASD) whenever the 2-form dK[ is SD (ASD) everywhere.

We were led to the conformal group by the desire to define the Lie derivative of a spinor. Although
we will not be using it, for completeness we now give this definition.

Definition 2.6. For a spinor αA and a conformal Killing vector K we define

LKαA = Kb∇bαA − φABαB −
k

4
αA,

where k = 1
2∇bK

b and φAB is the ASD part of the 2-form Fab given by

Fab = ∇aKb −
k

2
ηab.

2.6 Twistors

2.6.1 The twistor space of CM and CM#

In general, an α-plane passing through the point xa = (w, z, w̃, z̃) has equations of the form

ζw + z̃ = λ and ζz + w̃ = µ, (15)

where λ and µ are constant. Its tangent space is spanned by the vectors

l = ∂w − ζ∂z̃ and m = ∂z − ζ∂w̃,

or by ∂z̃ and ∂w̃ in the limiting case ζ = ∞. Thus the α-planes in complex spacetime, other than
those corresponding to infinite ζ, are labelled by the three complex coordinates λ, µ and ζ, and the

14



set of α-planes through a given point has the structure of a Riemann sphere with affine coordinate
ζ, as discussed in section 2.5.1. We see then that the set of all α-planes in complex spacetime is a
three-dimensional complex manifold, which we denote by PCM.

We can rewrite (15) in the homogeneous form

z̃Z2 + wZ3 = Z0 and w̃Z2 + zZ3 = Z1 (16)

for some complex Zα, α = 0, 1, 2, 3, where Z2 6= 0. Equations (15) and (16) are equivalent with

λ =
Z0

Z2
, µ =

Z1

Z2
, and ζ =

Z3

Z2
.

Moreover, we may identify the case Z2 = 0, Z3 6= 0 with ζ =∞, when the tangent space is spanned
by ∂w̃ and ∂z̃ (this corresponds to the α-planes of constant w and z). Thus interpreting {Zα} as
homogeneous coordinates, we may identify the twistor space of CM,

PCM = {(w, w̃, z, z̃) ∈ CM : ζw + z̃ = λ, ζz + w̃ = µ for some λ, µ ∈ C},

with an open subset of CP3. The points of CP3 that are excluded lie on the line I = {Z2 = 0 = Z3},
i.e. the set CP3 ⊃ {Z0, Z1, 0, 0} = CP1. Thus as a complex manifold, the twistor space of CM is
PCM = CP3 − CP1. It may be covered by two charts, V and Ṽ , given by

V = {Z2 6= 0} = {ζ 6=∞},
Ṽ = {Z3 6= 0} = {ζ 6= 0}.

On the coordinate patch V we simply use λ, µ, and ζ as coordinates, whereas on Ṽ we use

λ̃ =
Z0

Z3
, µ̃ =

Z1

Z3
, and ζ̃ =

Z2

Z3
.

On the intersection V ∩ Ṽ = {ζ 6= 0} ∩ {ζ 6=∞} we then have

λ̃ =
λ

ζ
, µ̃ =

µ

ζ
, and ζ̃ =

1

ζ
.

Moreover, we denote by T the copy of C4 on which (Z0, Z1, Z2, Z3) are linear coordinates, and
by PT the corresponding projective space, which is of course a copy of CP3. To construct the twistor
space of CM in the previous paragraph we excised the line I, a copy of CP1, out of CP3. It turns
out that the excluded points of I can be interpreted as α-planes at infinity (see [3, §10.3]). We may
then adjoin I to PCM to recover PT = CP3 in a manner similar to the conformal compactification
of CM, and it turns out that the entire twistor space PT is the twistor space of the conformal
compactification of CM, that is PT = PCM# in the notation of the following subsections. Moreover,
the action of the conformal group on the α-planes is given by the natural action of GL(4,C) on CP3.
For the precise details of these constructions we refer the reader to [3, §§9,10].

It should be noted that the space T is what is sometimes called the twistor space in general
relativity, while PT is referred to as the projective twistor space. We will stick to the differential
geometry nomenclature and call PT, and its subsets, twistor spaces.
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2.6.2 The twistor space of an elementary set

In the previous paragraph we defined the twistor space of CM and the twistor space of all of CM#. We
can also define the twistor space of U ⊂ CM as follows. Suppose U ⊂ CM and that the intersection
of U with each α-plane is connected and simply connected (such a U is called elementary). Then
the twistor space of U is

PU = {Z ∈ PT : Z ∩ U 6= ∅}.
If U is open in CM, then PU is open in PT. When U = CM, PU is the complement of the line
I = {Z2 = 0 = Z3}, as discussed in the previous paragraph. As long as U ⊂ CM, PU may be
covered by the coordinate patches V and Ṽ .

Occasionally we do not wish to specify the subset U of complex spacetime and simply work with
a twistor space P.

2.6.3 The correspondence space

It is useful when passing between U ⊂ CM and the corresponding twistor space PU to make use of
the correspondence space FU .

Definition 2.7. The correspondence space FU is the set of ordered pairs (x, Z), where x ∈ U and
Z is an α-plane through x.

The correspondence space FU fibres over U and PU by the surjective projections

q : FU → U,

(x, Z) 7→ x,

and

p : FU → PU ,
(x, Z) 7→ Z;

U PU .

FU
.......................................................................................................................................

....
............

........................................................................................................................................
.......
.

...........
......

q

........................................................................................................................................... ........
....

..........................................................................................................................................
......
.........
.......
.

p

We may label the points of FU by (w, z, w̃, z̃, ζ), including ζ = ∞, whence the two projections are
given by

p : (w, z, w̃, z̃, ζ) 7→ (λ, µ, ζ) = (ζw + z̃, ζz + w̃, ζ)

q : (w, z, w̃, z̃, ζ) 7→ (w, z, w̃, z̃).

Then, as before, the tangent spaces to the “leaves” of the fibration p are spanned at each point by
the vector fields

l = ∂w − ζ∂z̃ and m = ∂z − ζ∂w̃
(or ∂z̃ and ∂w̃ when ζ =∞) on FU . A function on PU is a function of the three twistor coordinates
(λ, µ, ζ). By pulling it back by p, we may represent it as a function on the correspondence space, so
that it will be constant along l and m.
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2.6.4 The twistor space of a point: lines in PT

There is a different way of reading equations (16), which is to hold the spacetime coordinates
(w, z, w̃, z̃) fixed and allow Zα to vary. These are two equations in four variables, so they determine
a two-dimensional subspace of T. One of these dimensions collapses under the projection T → PT,
so they also determine a projective line in PT. As we saw in section 2.5.1, geometrically this is the
Riemann sphere of α-planes through the spacetime point xa = (w, z, w̃, z̃). We denote the projective
line corresponding to x ∈ CM by x̂. In fact, x̂ is the twistor space of the set U = {x}, that is x̂ = Px.

The geometry of null vectors in CM is neatly encoded in the geometry of PT. Suppose we have
two points x, y ∈ CM, and consider the lifts q∗(x) and q∗(y) to F , i.e. the sets of ordered pairs
{(x, Z)} and {(y,W )}, where Z is any α-plane passing through x, and W is any α-plane passing
through y. The points x and y are null-separated exactly when there exists a common α-plane that
they lie on, that is there exists a Z such that (x, Z) ∈ q∗(x) and (y, Z) ∈ q∗(y). Under the projection
p : F → P the lines x̂ and ŷ will intersect at an α-plane Z exactly when such a Z as above exists,
thus two lines in PT intersect if and only if the corresponding spacetime points are null-separated.

3 The Twistor Correspondence

3.1 The Penrose–Ward Transform

The Penrose–Ward transform is a way of relating solutions to the ASDYM equation on a domain
U ⊂ CM and holomorphic vector bundles on the twistor space P = PU of U . For a general analytic
solution, the vector bundle can be represented by a patching matrix F , which eats three complex
variables. The matrix F patches the two open sets covering P (see section 2.6), and the three
complex variables are coordinates on P. It turns out that F can be constructed from a linear system
(a Lax pair), and that the solution to the ASDYM equation can be recovered from F by solving
a Riemann–Hilbert problem. The key observation is that the ASDYM equation is equivalent to
the vanishing of the curvature Fab = [Da, Db] on every α-plane. We first describe a constructive,
coordinate-dependent picture of this correspondence, and later give a purely geometric description.

Let U ⊂ CM and let D = d + Φ be an anti-self-dual connection (that is, the curvature 2-form of
Φ be ASD) on a vector bundle E → U with fibre Cn. Suppose that U is an elementary open subset
of CM, i.e. each α-plane Z intersects U in a connected and simply connected set. We denote by PU
the twistor space of U , and by V , Ṽ the two-set open cover of PU , as defined in section 2.6.

Proposition 4. The curvature F is ASD if and only if for every α-plane Z that intersects U , the
restriction of D to Z ∩ U is integrable, or flat.

Sketch proof. Self-dual 2-forms are orthogonal to anti-self-dual 2-forms, so the restriction of an ASD
curvature to a SD 2-plane vanishes, and therefore the restricted connection is flat.

3.1.1 The fundamental solutions

By theorem A.3, the compatibility condition [L,M ] = 0 for the Lax pair

L = Dw − ζDz̃, M = Dz − ζDw̃

implies that the linear system
Ls = 0, Ms = 0,

where s is a section of E, represented by a column vector of length n, is integrable for each fixed
value of ζ. We can put together n independent solutions to form an n×n matrix-valued fundamental
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solution f , the columns of which form a frame field for E. This frame field is made up of sections that
are covariantly constant on the α-planes tangent to ∂w− ζ∂z̃ and ∂z− ζ∂w̃ (recall that the curvature
of Φ is assumed to be ASD, so that Ls = 0 = Ms does indeed mean that s is covariantly constant
on α-planes with these tangent vectors). The sections are single-valued because the α-planes Z
intersect U in simply-connected sets. So f satisfies

Dwf − ζDz̃f = 0, (17)

Dzf − ζDw̃f = 0, (18)

and we can make f holomorphic in ζ ∈ C, as well as holomorphic in the spacetime coordinates
w, z, w̃, z̃, but we cannot make f regular (holomorphic with non-vanishing determinant) at ζ = ∞
as well, because then f would be a holomorphic function on the whole Riemann sphere and by
Liouville’s theorem would thus be constant in ζ. Then we would have Daf = 0 for each coordinate
a, which would make the connection Φ flat everywhere.

In a given gauge f is unique up to f 7→ fH for some non-singular matrix-valued function
H = H(ζ, w, z, w̃, z̃) that is holomorphic on V = {ζ 6=∞} and satisfies

∂wH − ζ∂z̃H = 0, ∂zH − ζ∂w̃H = 0. (19)

That is, f is unique up to a function H that is constant along tangents to a given α-plane, i.e. up
to a function only of λ = ζw + z̃, µ = ζz + w̃ and ζ.

As we have seen, when D is not flat it is impossible to choose f so that it is regular on the whole
Riemann sphere. However, we can find another fundamental solution, f̃ , which is holomorphic on
ζ 6= 0, including ζ =∞, by setting ζ̃ = 1/ζ and solving the system

ζ̃Dwf̃ −Dz̃ f̃ = 0, ζ̃Dz f̃ −Dw̃f̃ = 0. (20)

Analogously to f , f̃ is unique up to f̃ 7→ f̃ H̃, where is H̃ is a non-singular matrix-valued function
of λ, µ and ζ that is holomorphic on Ṽ = {ζ 6= 0}.

3.1.2 The patching matrix

On V ∩ Ṽ , where the domains of f and f̃ overlap, they are related by

f = f̃F,

where F satisfies (19). The matrix F is called the patching matrix associated with D. Due to the
non-uniqueness of f and f̃ discussed above, F is determined by D up to F 7→ H̃−1FH, the matrix
H̃ being regular on Ṽ , and H regular on V . We set up an equivalence relation on patching matrices,
F ∼ H̃−1GH, and call the equivalence class of F the patching data of D. Now if F lies in the
equivalence class of the identity, it can, of course, be factorized as

F = H̃−1H.

Then the fundamental solution fH = f̃ H̃ is regular on the Riemann sphere, and so by Liouville’s
theorem is independent of ζ. In this case (17) and (18) imply that the columns of f are covariantly
constant, so the curvature vanishes. Conversely, when such a factorization does not exist, the
curvature is non-zero. In fact, as we will see shortly, the clash of notation is deliberate: it turns out
that the patching matrix F encodes the ASDYM field, since D can be recovered from F . The map
that assigns the patching data to an ASDYM field is called the forward Penrose–Ward transform.
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3.1.3 The reverse transform

Conversely, suppose we start with a given holomorphic matrix-valued function F (λ, µ, ζ) with non-
vanishing determinant, defined on V ∩ Ṽ . By applying Birkhoff’s theorem at each spacetime point,
we obtain a factorization of F in the form

F (ζw + z̃, ζz + w̃, ζ) = f̃−1∆f,

where f(w, z, w̃, z̃, ζ) is regular for |ζ| 6 1, f̃(w, z, w̃, z̃, ζ) is regular for |ζ| > 1, including ζ = ∞,
and ∆ = diag(ζk, . . . , ζm) for some integer-valued functions k, . . . ,m. If F happens to factorize
with ∆ = 1 at some point in spacetime, then ∆ = 1 in an open neighbourhood U of that point,
as discussed in section 2.2.2. We show that in this case F is the patching matrix associated with
some solution to the ASDYM equation on U . Because F is constant along ∂w − ζ∂z̃, differentiating
f̃F = f along this vector field shows that

(∂wf − ζ∂z̃f) = (∂f̃ − ζ∂z̃ f̃)F = (∂wf̃ − ζ∂z̃ f̃)f̃−1f,

and so
(∂wf − ζ∂z̃f)f−1 = (∂wf̃ − ζ∂z̃ f̃)f̃−1 (21)

in U , for all ζ in some neighbourhood of the unit circle. Similarly,

(∂zf − ζ∂w̃f)f−1 = (∂z f̃ − ζ∂w̃f̃)f̃−1. (22)

Now since f is regular (and so invertible) on |ζ| 6 1, the left-hand side of (21) is holomorphic for
|ζ| < 1, and similarly the right-hand side of (21) is holomorphic for |ζ| > 1, except for a simple pole
at ζ = ∞. So both sides of (21) must be an entire function of ζ with a simple pole at ζ = ∞, and
by the generalized Liouville’s theorem (theorem A.2) must thus be a polynomial of order 1 in ζ. We
write

(∂wf − ζ∂z̃f)f−1 = (∂wf̃ − ζ∂z̃ f̃)f̃−1 = −Φw + ζΦz̃, (23)

and interpret the constants Φw(w, z, w̃, z̃) and Φz̃(w, z, w̃, z̃) as two of the components of the connec-
tion Φ that we aim to construct. We perform the same construction starting from (22) to construct
the other two components of Φ, and rearranging arrive at

Dwf − ζDz̃f = 0, Dzf − ζDw̃f = 0,

Dwf̃ − ζDz̃ f̃ = 0, Dz f̃ − ζDw̃f̃ = 0,

where D = d+Φ acts on the columns of f and f̃ . By Frobenius’ theorem, the linear system associated
with Φ is integrable, so [L,M ] = 0, i.e. Φ is ASD.

One might reasonably wonder about the uniqueness of this construction. Indeed, by the unique-
ness statement in Birkhoff’s theorem, if we choose to factorize F as

F (ζw + z̃, ζz + w̃, ζ) = f̃−1(·, ζ)f(·, ζ),

(where the dots represent dependence on other variables) then any other factorization must be given
by

f ′ = gf, f̃ ′ = gf̃ ,

where g is an element of the gauge group GL(n,C) and is independent of ζ. Putting these into our
definition of the potential (23) (and an analogous equation for the other two components Φz and
Φw̃), we find that the new potential Φ′ satisfies

Φ = g−1Φ′g + g−1dg.
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That is, F determines Φ up to a choice of gauge.
Thus given a holomorphic matrix of three complex coordinates such that it has a Birkhoff fac-

torization with ∆ = 1 at at least one point, we can recover the connection Φ, up to a gauge
transformation, in an open subset of spacetime. Moreover, this connection is a solution to the
ASDYM equation in said open set.

3.1.4 Recovering the gauge potential

Once we have factorized the patching matrix F (·, ζ) = f̃−1(·, ζ)f(·, ζ), we may write down the
solution to the ASDYM equation explicitly. Recall that Φ is ASD if and only if eq. (9) is satisfied.

Proposition 5. The gauge potential Φ is given in terms of f and f̃ by

Φ = h∂h−1 + h̃∂̃h̃−1,

where h = f(0) and h̃ = f̃(∞).

Proof. Setting ζ = 0 in eqs. (17) and (18), we obtain

Φw = −(∂wh)h−1 = h∂wh
−1 and Φz = −(∂zh)h−1 = h∂zh

−1,

and similar expressions for Φz̃ and Φw̃ by setting ζ̃ = 0 in eq. (20).

This also shows that the functions of spacetime coordinates h = f(0) and h̃ = f̃(∞) (we omit
the variables (w, z, w̃, z̃) for simplicity) actually satisfy the same defining relations as the functions
h and h̃ of section 2.3.2, so consistency of notation is salvaged. We then have that Yang’s matrix is
given by

J = h̃−1h = f̃−1(∞)f(0),

that is J is given by the zeroth Fourier coefficient of F = f̃−1(ζ)f(ζ). Recalling proposition 1, we
note that if the Birkhoff factorization of F does not have ∆ = 1, the functions f(w, z, w̃, z̃, ζ) and
f̃(w, z, w̃, z̃, ζ) may possess singularities. These would then carry over to h and h̃, and by extension
to Φ. Thus the jumping points of ∆ give rise to singularities in the ASDYM potential. Conversely,
if ∆ = 1 then everything is regular and we may impose the gauge condition f(0) = 1 (this amounts
to choosing a gauge in which Φw = 0 = Φz) to set

J = f̃−1(∞).

Example 1 (The scalar wave equation [3, p. 175]). Consider the patching matrix3

F =

(
ζ γ
0 ζ−1

)
,

defining a vector bundle over P, where γ = γ(ζ) is any holomorphic function on V ∩ Ṽ . As usual,
let λ = ζw + z̃ and µ = ζz + w̃. We may expand γ in a Laurent series valid on the whole Riemann
sphere,

γ(ζ) =

∞∑
n=−∞

γ−nζ
n = γ+ + φ+ γ−,

3This is known as the Atiyah–Ward ansatz.
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where the γn’s are functions of λ, µ and ζ, γ+ contains only positive powers of ζ, γ− contains only
negative powers of ζ, and φ = γ0. As, by assumption, lγ = 0 = mγ, we obtain the recursion relations

∂wγn = ∂z̃γn+1 and ∂zγn = ∂w̃γn+1. (24)

The Birkhoff factorization F = f̃−1f is given by4

f =
1√
φ

(
ζ φ+ γ+
−1 −ζ−1γ+

)
and f̃ =

1√
φ

(
1 −ζγ−
−ζ−1 φ+ γ−

)
whenever φ 6= 0. When φ = 0, F is diagonal so we must take

∆ =

(
ζ 0
0 ζ−1

)
.

These are examples of jumping points: the gauge potential Φ is singular at the points (w, z, w̃, z̃)
where φ = 0. Now for φ 6= 0 we find that

h =
1√
φ

(
0 φ
−1 −γ−1

)
and h̃ =

1√
φ

(
1 −γ1
0 φ

)
,

so

J = h̃−1h = − 1

φ

(
γ1 γ1γ−1 − φ2
1 γ−1

)
.

A somewhat tedious calculation shows that Yang’s equation reduces to the wave equation on log φ,

2η log φ = (∂w∂w̃ − ∂z∂z̃) log φ = 0.

We may also explicitly recover the gauge potential. Using proposition 5 and the recursion relations
(24), we calculate

Φ =
1

2φ

(
∂̃φ− ∂φ 2(∂zφ dw̃ + ∂wφ dz̃)

2(∂z̃φ dw + ∂w̃φ dz) ∂φ− ∂̃φ

)
.

3.2 The Ward Correspondence

We have now given a concrete description of the Penrose–Ward transform, which is useful for explicit
constructions. However, from a mathematical point of view, this approach gives a false impression
that the choice of the two-set cover V and Ṽ and the coordinates plays a special role. There exists
a purely geometric description of the correspondence between ASDYM fields on U and holomorphic
vector bundles over PU . In this form, the correspondence between ASD connections and holomorphic
bundles is manifestly covariant with respect to coordinate transformations of complex spacetime.
The problem is that of transferring the gauge potential Φ, a connection on a vector bundle E over a
subset of complex spacetime U , to a vector bundle over the twistor space. It is worth emphasizing
that in the CM-picture one has a vector bundle with a connection, while in the P-picture one has
only a vector bundle and no connection. All of the information about the connection D on E → U
is encoded in the holomorphic structure of the corresponding vector bundle over P.

4In general there is no systematic way of performing the Birkhoff factorization, and for this reason this is the most
problematic part of the construction. Nevertheless, there are many special constructions that deal with particular
forms of the matrix F . For more details see [7, §8.2].
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Theorem 3.1 (Ward (1977), [3, p. 177]). Let U ⊂ CM be an open set such that for every α-plane Z,
the intersection Z ∩U is connected and simply connected whenever Z ∩U is non-empty. Then there
is a one-to-one correspondence between solutions to the ASDYM equation on U with gauge group
GL(n,C) and holomorphic vector bundles E′ → PU such that E′ |x̂ is trivial for every x ∈ U .

Proof. To go in the forward direction, let D be an ASD connection on a rank-n vector bundle E → U
and define a vector bundle E′ → P by setting the fibre of E′ at Z ∈ P to be

E′Z = {s ∈ Γ(Z ∩ U,E) : Ds |Z∩U = 0} ,

where Γ(Z ∩ U,E) is the space of sections of E over Z ∩ U . As we saw in proposition 4, because D
is ASD, its curvature vanishes on the restriction to Z, and because Z ∩ U is connected and simply
connected, the covariantly constant sections on Z ∩U are single-valued and uniquely determined by
their values at any one point. Hence E′Z is an n-dimensional complex vector space. Furthermore, it
varies holomorphically with Z.

Conversely, suppose that we are given a holomorphic bundle E′ → P such that E′ |x̂ is trivial
for every x ∈ U . Define a bundle E → U by setting

Ex = Γ(x̂, E),

where Γ is the space of holomorphic sections of E′ over x̂. Now E′ |x̂ = x̂×Cn, so in this trivialization
the global sections of E′x̂ are holomorphic maps x̂ → Cn. Since these are globally holomorphic, by
Liouville’s theorem they are constant, and so Ex is the space of constant maps with values in Cn,
i.e. an n-dimensional complex vector space.

Our goal is to construct a connection D on E such that for each Z ∈ P, E′Z is the space of
covariantly constant sections of E over Z ∩ U . Now an element of Ex is, by definition, a section of
E′ |x̂ , so for each α-plane Z ∈ P we identify the fibres Ex, for x ∈ Z ∩ U , with E′Z by evaluation at
Z. But this is a characterization of parallel transport over α-planes! If D exists, then the covariantly
constant sections over Z ∩U are the constant sections in E′Z . Since null vectors tangent to α-planes
span the tangent space at each point of spacetime, the connection is unique if it exists.

Now to show existence of the connection D, we will have to work on the correspondence space
F . Consider the pullbacks p∗E′ and q∗E, which are bundles over F . By construction, p∗E′ = q∗E.

U P

F

E E′

q∗E p∗E′
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....
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.......
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......
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Figure 1: Constructing the connection D

22



Let Z ∈ P. By the definition of the pullback, the fibre of p∗E′ at p−1(Z) ∈ F is E′Z , so p∗E′
∣∣
p−1(Z)

is the product bundle p−1(Z)×E′Z . The leaves of the foliation p : F → P are spanned by the vector
fields

l = ∂w − ζ∂z̃ and m = ∂z − ζ∂w̃.

We can define a ‘partial’ connection D that allows us to differentiate the sections of p∗E′ along the
twistor fibration by requiring that on each leaf p−1(Z) we must have

Dls = l(s) and Dms = m(s)

in the trivialization p∗E′ = p−1(Z)× E′Z . The sections for which Dls and Dms vanish are then the
pullbacks of F to local sections of E′.

Now pick a local trivialization of E over some open subset of U . This determines a local trivial-
ization of p∗E′ in which

Dl = l + Φl, Dm = m+ Φm,

where Φl and Φm are matrix-valued functions of ζ and the spacetime coordinates (w, z, w̃, z̃). Then
ζ−1l and ζ−1m are regular at ζ = ∞. By considering the partial connection along these rescaled
vector fields, we see that ζ−1Φl and ζ−1Φm must also be regular at ζ =∞. Hence by the generalized
Liouville’s theorem A.2, Φl and Φm are polynomials in ζ of degree at most 1, that is

Φl = Φw − ζΦw̃, Φm = Φz − ζΦw̃.

Then
Φ = Φwdw + Φzdz + Φw̃dw̃ + Φz̃dz̃

is independent of ζ and gives the desired connection via D = d + Φ.

Finally, we note that an analogous theorem holds when we include the α-planes at infinity, that
is the correspondence extends to a correspondence between solutions of the ASDYM equation on
U ⊂ CM# and holomorphic vector bundles over subset of PT of α-planes that intersect U .

4 Symmetry Reductions

We have now seen that the Penrose–Ward transform gives a correspondence between solutions to
the ASDYM equation and holomorphic vector bundles over twistor space. The central aim of this
essay is to study not the full ASDYM equation, however, but systems obtained under the reduction
by a certain subroup of the conformal group. We hope to study Einstein’s equations in particular,
and it turns out that the ASDYM equation may be reduced to many special cases of the Einstein
equations possessing certain symmetries. We impose these symmetries by defining Killing vectors
on complex spacetime CM, but eventually we will need a way of seeing how the symmetries behave
in twistor space. We discuss broadly how this works in section 4.3.

4.1 The Ernst Equation

One physically relevant reduction of the ASDYM equation by a two-dimensional subgroup of the
conformal group is generated by the vector fields

X = w∂w − w̃∂w̃, Y = ∂z̃ + ∂z. (25)
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If we restrict ourselves to the Minkowski slice M of complex spacetime CM, we may change coordinates
by

w =
r√
2

e−iθ, w̃ =
r√
2

eiθ, z =
1√
2

(t− x), z̃ =
1√
2

(t+ x) (26)

for (t, x, r, θ) real. Then the metric becomes

ds2 = dt2 − dx2 − dr2 − r2dθ2, (27)

and the symmetries generated by X and Y become rotations θ 7→ θ + θ0 and time translations
t 7→ t+t0 respectively. Having imposed these symmetries, we are looking at stationary axisymmetric
solutions to the ASDYM equations, and their continuations to CM. As originally noticed by Witten
in [8], these reduced ASDYM equations turn out to be equivalent to the Ernst equation for stationary
axisymmetric gravitational fields in general relativity. It will be useful to know the reduction of
Yang’s equation (9) under the action of the group generated by X and Y . If we start with eq. (9),
make the change of variables (26), and perform the calculations assuming J is independent of θ and
t, then Yang’s equation becomes

∂x(J−1∂xJ) +
1

r
∂r(rJ

−1∂rJ) = 0.

Following Witten’s observation, we may study stationary axisymmetric solutions of Einstein’s
equations using the twistor methods that we have developed. In fact, while one set of reality
conditions corresponds to actual stationary axisymmetric solutions to Einstein’s equations, others
correspond to cylindrical gravitational waves, or a pair of colliding plane waves, or to the Gowdy
cosmological models. These four sets of solutions are essentially characterized by whether the reality
conditions make the Killing fields X and Y both timelike, both spacelike, or one timelike and one
spacelike. In particular, if x = it is purely imaginary, we get cylindrical gravitational waves and
Yang’s matrix becomes

∂t(J
−1∂tJ)− 1

r
∂r(rJ

−1∂rJ) = 0.

4.2 Reductions of Einstein’s Equations

Let (M, g) be a four-dimensional manifold, either real or complex, and let X1, X2 be two commuting
Killing vectors. By commuting, of course, here we mean that their Lie bracket vanishes, [X1, X2] = 0.

Definition 4.1. We say X1 and X2 generate an orthogonally transitive isometry group if whenever
vector fields U and V are orthogonal to the orbits, then so is [U, V ].

Suppose X1 and X2 generate an orthogonally transitive isometry group with non-null 2-dimensional
orbits. Put J = (Jij) = (gabX

a
i X

b
j ), and let S be any of the 2-surfaces orthogonal to the orbits (i.e.

the quotient space). Let h be the metric on S and D the corresponding Levi–Civita connection.
We will use the roman indices a, b, . . . to denote components of tensors on the full four-dimensional
manifold M , and the greek indices µ, ν, . . . to denote components of tensors on the two-dimensional
quotient space S.

Proposition 6. Let gab be a solution to the vacuum Einstein equations in four dimensions. Suppose
that it admits two commuting Killing vectors with orbits orthogonal to a family of non-null surfaces,
and suppose that the gradient of r is non-null. Then the metric on S can be written in the form

h = ±Ω2(dr2 + dx2),

and J(x, r) is Yang’s matrix corresponding to a stationary axisymmetric solution to the ASDYM
equation with gauge group GL(n,C).
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Sketch proof. Let ∇ denote the Levi–Civita connection of g. Since the Killing vectors commute, J
is constant along the orbits: ∇Xk

Jij = 0. Furthermore, by the definition of a Killing vector,

∇aXib +∇bXia = 0

for all i. So because [Xi, Xj ] = 0 for all i and j, we have

Xa
j∇aXib = Xa

i ∇aXjb = −Xa
j∇bXia = −Xa

i ∇bXja = −1

2
∂b(Jij).

Also, for any vector fields U and V orthogonal to the orbits, that is U bXib = 0 = V bXib for all i,

UaV b∇aXib − V aU b∇aXib = −XibU
a∇aV b +XibV

a∇aU b

= −Xib(U
a∇aV b − V a∇aU b)

= −Xib[U, V ]b = 0

by orthogonal transitivity. A calculation then shows that

∇aXib =
1

2
Jjk ((∂aJki)Xjb − (∂bJki)Xja) , (28)

where Jjk is the inverse of Jjk. Now by virtue of the first Bianchi identity, any Killing vector X
satisfies the differential equation

∇b∇cXd = RabcdX
a,

where Rabcd is the Riemann tensor. Thus by taking the covariant derivative of eq. (28) and con-
tracting over a pair of indices we obtain

RabX
a
i X

b
j = −1

2
Jik

1√
det g

∂a

(√
det ggabJkl∂bJlj

)
,

where Rab = Rcacb is the Ricci tensor. If the vacuum Einstein equations

Rab = 0

are satisfied, then
1√

det g
∂a(
√

det ggabJ−1∂bJ) = 0. (29)

This equation reduces to an equation on S: we have that det g = −r2 deth, where r2 = −det J , so
eq. (29) becomes

Dµ(rJ−1hµνDνJ) = 0. (30)

Since J is two-dimensional, we easily calculate that

Tr(J−1DµJ) =
1

r2
Dµr

2 =
2

r
Dµr.

Thus by taking the trace of eq. (30) we find that DµDµr = 0, so that r is a harmonic function on
S. Since we assumed that the gradient of r is non-null, a standard result in geometry tells us that
the metric on S is conformal to dr2 + dx2, where x is the harmonic conjugate to r. Recall that the
harmonic conjugate x to r is the function such that ξ = x+ ir is holomorphic, and is defined up to
the addition of a constant. So

h = ±Ω2(dr2 + dx2),
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the sign being chosen depending on whether h is timelike or spacelike, and in these coordinates
eq. (30) reduces to

∂x(J−1∂xJ) +
1

r
∂r(rJ

−1∂rJ) = 0,

which is Yang’s equation for a stationary axisymmetric solution to the ASDYM equations with gauge
group GL(n,C), as we saw in section 4.1.

Proposition 6 has a partial converse, which makes the ASDYM equations a useful tool for studying
Einstein’s equations.

Proposition 7. Every real symmetric solution to

∂x(J−1∂xJ) +
1

r
∂r(rJ

−1∂rJ) = 0 (31)

such that det J = −r2 determines a solution to the vacuum Einstein equations.

Sketch proof. If we reconstruct a metric from a given solution J to eq. (31) and an Ω in a vein similar
to that in the proof of proposition 6, then, as we saw, eq. (31) is equivalent to the vanishing of the
Ricci tensor Rab along the Killing vectors, while the remaining components of Rab = 0 reduce to

2i∂ξ log(rΩ2) = rTr(∂ξJ
−1∂ξJ),

where ξ = x+ir. This latter equation is of course equivalent to two real equations (when x and r are
real), which are overdetermined but compatible when Yang’s equation (31) is satisfied. Conversely,
if J is known, they determine Ω up to a multiplicative constant.

Proposition 6 and proposition 7 in fact hold in any dimension n+s and for spacetimes admitting
an arbitrary number s of Killing vector fields, but in our case, when n = s = 2, the condition
det J = −r2 is enough to determine the components of J in terms of two functions of x and r. We
write

J =

(
fα2 − r2f−1 −fα
−fα f

)
,

where f and α are complex functions of x and r. As locally the metric is

ds2 = Jµνdyµdyν − Ω2
(
dr2 + dx2

)
, (32)

where ∂/∂y1 and ∂/∂y2 are the Killing vectors, it becomes

ds2 = f(dt− αdθ)2 − f−1r2dθ2 − Ω2(dr2 + dx2).

When f = f(x, r) and α = α(x, r) are real for real x and r, this is a stationary axisymmetric
gravitational field in Weyl canonical coordinates. These reality conditions correspond to the existence
of one timelike and one spacelike Killing vector. Other reality conditions correspond to different types
of solutions to Einstein’s equations. For example, when α is purely imaginary for purely imaginary
x, the metric becomes a cylindrical gravitational wave. Indeed, writing

t = ix̃, x = it̃, α
(
r, it̃
)

= −iα̃
(
r, t̃
)

for real x̃, t̃ and α̃
(
r, t̃
)

corresponds to the metric5 (dropping the tildes)

dτ2 = −f(dx+ αdθ)2 − f−1r2dθ2 − Ω2(dr2 − dt2),

5We must also change the sign of f and Ω2 so that the line element ds2 becomes timelike.
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which is a gravitational wave in Weyl’s canonical coordinates. The reduction to a cylindrical gravi-
tational wave corresponds to the existence of two spacelike Killing vectors. Indeed, since the Killing
vectors in the stationary axisymmetric case were ∂/∂θ and ∂/∂t, spacelike and timelike respectively,
these became ∂/∂θ and −i∂/∂x̃, the latter turning timelike due to the factor of i. Yet other reality
conditions correspond to colliding plane waves, or to the Gowdy cosmological models. We study the
former two in sections 5 and 6.

4.3 Reductions of the Penrose–Ward Transform

In order to use twistor methods to study the reductions of Einstein’s equations to stationary axisym-
metric solutions, or cylindrical gravitational waves, or any other system that is not the full ASDYM
equation, we require a way of transferring the action of the conformal group on CM#, or a subset
U (perhaps CM), to the corresponding twistor space P. The correspondence space F introduced in
section 2.6.3 comes in handy in passing from complex spacetime to the twistor space. We do not
aim to give a full and precise account of the reductions of the Penrose–Ward transform, since for
our purposes it will be sufficient to only know broadly how the reductions are constructed, and in
particular to be aware of the existence of an invariant spectral parameter, a complex variable which
will effectively replace some of the complex variables that the patching matrix F depends on.

Recall that for U ⊂ CM, the twistor space PU is the quotient of FU by the flows of the vector
fields

l = ∂w − ζ∂z̃ and m = ∂z − ζ∂w̃,
and we have the projections

U PU .
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q
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p

One transfers the action of the conformal group from spacetime to twistor space by lifting the
conformal Killing vectors from U to FU and then projecting them onto PU . The proper conformal
transformations of complex spacetime map α-planes to α-planes, and hence induce holomorphic
motions of twistor space. These coincide with the natural action of GL(4,C) on CP3. If a given
ASDYM field is invariant under a subgroup of the conformal group, then its transform, a holomorphic
bundle over twistor space, is invariant under the corresponding subgroup of GL(4,C). In simple
cases we can transfer the symmetry group to the twistor space essentially by quotienting out by our
symmetries to construct a reduced twistor space R. These simpler cases correspond to situations
where we can simply ignore some of the coordinates. It should be noted that it is not always possible
to perform this procedure, when non-trivial information is encoded in the action of the symmetry
group on the fibres over the singular set of the symmetry group, the set of α-planes that are fixed by
a non-trivial subgroup of the symmetry group. In this case one has to work with invariant bundles
over a larger space.

4.3.1 Stationary axisymmetric solutions

Reduction by the commuting Killing vectors

X = w∂w − w̃∂w̃ and Y = ∂z̃ + ∂z
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gives the stationary axisymmetric case, as we saw in section 4.1. We would expect that a reduction
by two Killing vectors should reduce the dimension of the twistor space from three to one, and
indeed the reduced twistor space R turns out to be a compact, one-dimensional, but non-Hausdorff
complex manifold, [10]. It is, in a sense, two Riemann spheres glued together at a face, and requires
four coordinate patches to cover. The invariant spectral parameter on R may be taken to be

γ = x+
1

2
r
(
ζ−1 − ζ

)
,

(see [3, §11.3], [10] for details), but due to the way the four coordinate patches cover R, we must
keep the coordinate ζ to describe the most general holomorphic bundle over R. The patching matrix
describing such a holomorphic vector bundle has the form

F (γ, ζ) =

(
φ (−ζ)kψ

ζ−kψ χ

)
, (33)

where detF = −1, k is an integer, and φ = φ(γ), ψ = ψ(γ) and χ = χ(γ) are meromorphic functions
of the complex parameter γ which satisfy the reality conditions Υ(γ) = Υ(γ) for Υ = φ, χ, ψ. The
integer k is in some sense a “winding number” describing how the symmetry acts on the axis r = 0.
If k = 0, for example, the symmetry acts trivially on the axis. Moreover, in the case of stationary
axisymmetric gravitational fields, the solution J is regular on the axis r = 0 if and only if k = 1,
since, in the notation of the next section, the norm squared of the timelike Killing vector Y on the
axis is −r1−kφ(γ)−1. In the case k 6= 0 the construction of J , which we describe in section 5, is
slightly different from the construction we described in the previous chapters. The details can be
found in [6] and [10].

5 Stationary Axisymmetric Gravitational Fields

Suppose we have a vacuum spacetime admitting two commuting Killing vector fields X = ∂/∂θ and
Y = ∂/∂t, X being spacelike and Y timelike. If the spacetime symmetry group generated by X and
Y is orthogonally transitive, and the determinant (XaXa)(Y bYb) − (XaYa)2 is non-constant, then
locally the spacetime metric can be written as [6, 10]

ds2 = rJµνdyµdyν − Ω2
(
dr2 + dx2

)
, (34)

where ∂/∂y1 = ∂/∂θ and ∂/∂y2 = ∂/∂t are the Killing vectors, Ω = Ω(r, x), and J is a symmetric
2 × 2 matrix of real-valued functions of r and x with det J = −1. This is the same as the metric
(32), except we have taken a factor of r out of J . The only coordinate freedom remaining in writing
(34) is that of making constant SL(2,C) transformations on y1 and y2.

As we saw in section 4.2, the vacuum Einstein equations Rab = 0 of (34) reduce to

∂x
(
J−1∂xJ

)
+

1

r
∂r
(
rJ−1∂rJ

)
= 0 (35)

together with 4i∂ξ log Ω = rTr(∂ξJ
−1∂ξJ)− 1

r , or the two equivalent real equations

∂x log Ω2 = −1

2
rTr

(
∂rJ

−1∂xJ
)
, (36)

∂r log Ω2 =
1

4
rTr

(
∂xJ

−1∂xJ
)
− 1

4
rTr

(
∂rJ

−1∂rJ
)
− 1

r
. (37)
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Equation (35) is Yang’s equation (9) under the reduction by the symmetry group generated by
the Killing vectors ∂/∂θ and ∂/∂t, as we saw in section 4.1, and ensures the compatibility of
the overdetermined system (36)–(37), as can be quickly shown by cross-differentiating. Moreover,
eqs. (36) and (37), are easily integrable once J is known because their right-hand sides do not depend
on Ω. Thus it is evident that solving eq. (35) is the core of the problem of finding (all) stationary
axisymmetric solutions of Einstein’s equations.

5.1 The Twistor Solution to Yang’s Equation

As we saw, Yang’s equation can be written in spinorial form, where it is an equation in background
Minkowski space. So eq. (35), even though originally arising as an equation from curved spacetime,
can effectively be rewritten as an equation in flat space,

ιA
′
∂BA′ (J

−1oB
′
∂BB′J) = 0, (12)

which is manifestly covariant. Here we work on the Minkowski slice M, that is we impose the reality
conditions

xAA
′

=

(
z̃ w
w̃ z

)
=

1√
2

(
x0 + x1 x2 − ix3

x2 + ix3 x0 − x1
)

=
1√
2

(
t+ x re−iθ

reiθ t− x

)
,

where in the second equality we make use of Ernst’s coordinates (26). Notice that the GL(n,C)
gauge freedom here reduces to the freedom

J 7→ J ′ = WJV,

where W = W (xAA
′
oA′) = W (w, z) and V = V (xAA

′
ιA′) = V (w̃, z̃) are GL(n,C) matrices. That

is, if J is a solution to eq. (12), then so is J ′.
To construct solutions of eq. (35), we thus wish to solve eq. (12). An abstract characterization

of solutions to eq. (12) is of course provided by theorem 3.1, which here states the following.

There is a natural one-to-one correspondence between analytic solutions J to eq. (12) (equivalently,
eq. (35)) on U ⊂ CM, modulo the freedom J 7→ J ′, and holomorphic rank-2 vector bundles E over
PU , such that E |x̂ is trivial for all x ∈ U .

So solutions to eq. (35) correspond to holomorphic vector bundles, which can be described by
a patching matrix F . We next construct the solution J from such a patching matrix, following a
generalized version of the construction introduced in section 3.1.

5.2 Constructing Solutions

The reduced twistor space R in the stationary axisymmetric case is one-dimensional, and the patch-
ing matrix has the form (33). We apply Birkhoff’s theorem to split the patching matrix

F

(
x+

1

2
rζ − 1

2
rζ−1, ζ

)
= f̃−1(r, x, ζ)f(r, x, ζ),

where f is analytic on |ζ| 6 1, f̃ is analytic on |ζ| > 1, including ζ = ∞, and both f and f̃ are
non-singular almost everywhere in M. We then let

J(r, x) = P f̃−1(r, x,∞)f(r, x, 0)P,
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where P = diag(rk/2, r−k/2). Evidently det J = −1, and of course the construction ensures that J
satisfies the reduced Yang’s equation. We saw that it is equivalent to the reduced ASDYM equation,
which in turn is (essentially) equivalent to the reduced Einstein equation. Furthermore, the case
k = 0, which corresponds to F not depending on ζ, clearly reduces to our usual construction of J .

6 Cylindrical Gravitational Waves

Section 5 explored the reality conditions that reduce stationary axisymmetric solutions to the AS-
DYM equation to stationary axisymmetric gravitational fields. We next study the reduction to
cylindrical gravitational waves. We saw that the invariant spectral parameter on R is

γ = x+
1

2
r
(
ζ − ζ−1

)
,

which on the unit circle ζ = eiθ becomes

γ = x+ ir sin θ = i(t+ r sin θ)

after we impose the reality condition x = it. So in the cylindrical gravitational wave case we may
use, abusing the notation slightly, x = t+ r sin θ. We study the hyperbolic version of Ward’s k = 0
ansatz that we introduced in the section 4.3.1, with a quick digression into the k = 1 case.

Let us step back for a moment and consider the scalar wave equation on M in cylindrical polar
coordinates. This has cylindrically symmetric solutions of the form

ϕ(r, t) =
1

2π

∫ 2π

0

P (t+ r sin θ)dθ, (38)

where P (x) is an arbitrary generating function. The generating function is equal to the solution on
the symmetry axis r = 0 and is determined by the Cauchy data on t = 0 by

P (x) = u(0) +
x

2

∫ π

0

(u′(x sin θ) + v(x sin θ) sin θ) dθ, (39)

where u and v are the even functions such that u(r) = J(r, 0) and v(r) = Jt(r, 0) for r > 0. Some
details on where these come from are given in [9]. Notice that eq. (38) equates ϕ(r, t) to the zeroth
Fourier coefficient of P . This is a pattern we have already seen in the Ward construction, and indeed
our purpose here is to describe the nonlinear, or exponentiated, versions of eqs. (38) and (39). In the
nonlinear theory we use the notation ϕ; J and P ; F . We have said a lot about the construction
of solutions J , but nothing about how the generating function F is propagated from Cauchy data.
Woodhouse, [9, §4], describes precisely this in the nonlinear setting. For proofs the reader should
consult the Appendix of [9].

As we saw, the metric of a cylindrical gravitational wave can be put in the form

dτ2 = Ω2(dt2 − dr2)− f(dx+ αdθ)2 − f−1r2dθ2,

and the hyperbolic version of Yang’s equation is

∂t(J
−1∂tJ)− 1

r
∂r(rJ

−1∂rJ) = 0. (40)

If we perform the Bäcklund transformation by defining, up to the addition of a constant, ψ(r, t) by

r∂rψ = φ2∂tα and r∂tψ = φ2∂rα, (41)

30



then Yang’s equation (40) still holds with J replaced with

J ′ = φ−1
(
φ2 + ψ2 −ψ
−ψ 1

)
.

The motivation for this transformation is as follows. Whereas previously the determinant of the
matrix J , defined in terms of the Killing vectors via Jij = gabX

a
i X

b
j , was −r2, the determinant of

J ′ is manifestly 1. Thus J ′ is regular on the axis r = 0, unlike J . This is essentially because the
above Bäcklund transformation shifts k from 0 to 1.

The remaining field equations are

∂r log fΩ2 = −rTr(Jt(J
−1)t + Jr(J

−1)r), (42)

∂t log fΩ2 = −2rTr(Jr(J
−1)t). (43)

As before, eqs. (42) and (43) are overdetermined, and cross differentiation shows that they are
compatible if eq. (40) is satisfied.

Equation (40) is a nonlinear generalization of the scalar wave equation for cylindrical waves. One
class of its solutions, given by J = diag(eϕ, e−ϕ), are called the Einstein–Rosen waves, and reduce
to eq. (38) in the sense that such a J is a solution of eq. (40) if and only if ϕ satisfies eq. (38).

6.1 The Nonlinear Generating Function

Given a generating function F : R → GL(2,R), we construct J in the usual way as follows. We let
x = t+ r sin θ, and using Birkhoff’s theorem we factorize

F (t+ r sin θ) = f̃−1(r, t, ζ)f(r, t, ζ),

where f̃ ∈ LGL+(2,C) and f ∈ LGL−(2,C). The matrix J is then given by

J(r, t) = f̃−1(r, t,∞)f(r, t, 0).

This is the hyperbolic version of the Ward k = 0 ansatz.. If F is symmetric and has determinant 1,
the so does J and the splitting can be made unique by requiring that f(r, t, 0) = 1. Note that the
cylindrical gravitational wave reality conditions reverse the sign of the determinant of J .

6.2 Propagation from Cauchy Data

Equation (39) exponentiates similarly. Define, for 0 6 θ 6 π and fixed x, S(θ) by

dS

dθ
=

1

2
xS(θ) ((1 + cos θ)u′(x sin θ) + v(x sin θ) sin θ) and S(0) = 1. (44)

Integrating shows that eu(0)S(π) = eP (x). Notice that the right-hand side is not exactly the integrand
in the definition of P (x), but that the term cos θu′(x sin θ) does not contribute to S(π). Equation (44)
may thus be used to generalize eq. (39) to the nonlinear setting. There, S, u′ and v are matrix-valued,
with u′ and v given by

u′(r) = J−1(r, 0)Jr(r, 0) and v(r) = J−1(r, 0)Jt(r, 0)

for r > 0. The generating function for J(r, t) is then given by F (x) = J(0, 0)S(π). For a proof we
refer the reader to [9].
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It is manifest from eq. (44) that if J is real, then so are u′ and v, and thus so is S, and hence F .
If J has unit determinant, then so does F , since detF = det J(0, 0) detS(π), and

detS(π) = exp (−Tr(u(0)) + Tr(P (x)))

= exp

((
1

2
x

∫ π

0

Tr(u′(x sin θ)) + Tr(v(x sin θ)) sin θdθ

))
= exp

(
1

2
x

∫ π

0

Tr(J−1Jr + J−1Jt sin θ)(x sin θ, 0)dθ

)
= 1.

To see that the symmetry of J implies that of F , notice that if S(θ) satisfies eq. (44), the so does
Ŝ(θ), defined by

Ŝ(π − θ)t = J(x sin θ, 0)S(θ)−1.

It then follows that F is given by

F (x) = J(0, 0)L(x)J(x, 0)−1L(x)tJ(0, 0)t, (45)

where L(x) = S(π/2). This form of F is manifestly symmetric whenever J is symmetric, and also
positive definite whenever J is positive definite.

We stated earlier that the Einstein–Rosen solutions of eq. (40) reduce to the solutions of the
scalar wave equation. The scalar wave equation of course possesses the superposition principle,
and this linearity carries over to a superposition principle for the Einstein–Rosen solutions of the
exponentiated equation (40) in the following way. If J1 and J2 are two Einstein–Rosen solutions
of eq. (40) with generating functions F1 and F2 respectively, then J1J2 is also an Einstein–Rosen
solution, and has generating function F1F2. Interestingly, it turns out that eq. (45) implies that
a restricted version of this superposition principle holds for general cylindrical gravitational waves.
Suppose that J1 and J2 are solutions of eq. (40) whose Cauchy data at t = 0 is supported in the
non-intersecting intervals on the r-axis [a1, b1] and [a2, b2], respectively. Let L1(x) and L2(x) be
their corresponding L functions as in the above construction, and let J be the solution obtained by
combining the two sets of Cauchy data. Then this solution J is generated by

F (x) = J(0, 0)L(x)J(x, 0)−1L(x)tJ(0, 0)t,

where L(x) = L1(x)L2(x).

A Appendix

A.1 Liouville’s Theorems

The following Liouville’s theorems are stated, in a somewhat more general form including the infinite-
dimensional case, in [5]. In the case X = C, theorem A.1 reduces to the familiar statement that a
bounded entire function must be constant. In the article we frequently make use of this, and also
the generalized version of Liouville’s theorem, theorem A.2, with X = GL(n,C), or another gauge
group G, as appropriate.

Theorem A.1 (Liouville’s Theorem). Let X be a finite-dimensional complex topological vector space
and let f : C→ X be holomorphic. If f(C) is a bounded subset of X, then f is constant.
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Theorem A.2 (Generalized Liouville’s Theorem). Let X be a finite-dimensional complex Banach
space, f : C→ X be holomorphic, and suppose that there exist positive numbers K and γ such that

‖f(ζ)‖ 6 K (1 + ‖ζ‖γ)

for all ζ ∈ C. Then f(ζ) is a polynomial in ζ of degree at most γ.

A.2 Frobenius Theorem

The Frobenius theorem is a local existence theorem for a maximal set of independent solutions to
an underdetermined system of first-order homogeneous linear PDEs. Its most general formulation
is in terms of differential geometric concepts, but in simple cases it reduces to a more elementary
and tractable form.

Definition A.1. A subbundle E of a vector bundle F → M over a manifold M is a collection of
linear subspaces Ex of the fibres Fx of the bundle F such that E →M is itself a vector bundle.

Definition A.2. Let E be a tangent subbundle over M , i.e. a subbundle of the tangent bundle
TM . We say E is integrable at x ∈M if there exists a submanifold N of M such that at each point
y ∈ N the differential map of the inclusion ι : N ↪→M ,

dyι : TyN ↪→ TyM,

induces a toplinear isomorphism of TyN on Ey. We say E is integrable if it is integrable at every
point.

Theorem A.3 (Frobenius Theorem, [2, §6.1]). Let M be a manifold of class Ck, k > 2 and let E
be a tangent subbundle over M . Then E is integrable if and only if for all points x ∈ M and all
vector fields X,Y (defined in a neighbourhood of x) such that at x they lie in E, the Lie bracket of
the vector fields [X,Y ] at x also lies in E.

Thus theorem A.3 states that, e.g., on an n-dimensional manifold a set of r first-order linear differ-
ential operators (vector fields) Li = lki (x)∂k(x) are involutive, i.e.

[Li, Lj ](u)(x) = αkij(x)Lk(u)(x)

for some functions αkij(x), if and only if locally there exist n− r solutions u1, . . . , un−r to the system
Liu(x) = 0 for all 1 6 i 6 r such that their gradients ∇u1, . . . ,∇un−r are linearly independent.

A.3 Gauge Theories

Gauge theories arise as generalizations of Maxwell’s theory of electrodynamics, which is a set of
partial differential equations for the electric and magnetic fields E and B. Maxwell’s equations can
be recast in terms of a 4-vector potential Φµ, which determines E and B, but is itself only defined
up to the gauge transformation Φµ → eiθΦµ. Since the gauge transformations {eiθ} form the group
U(1), Maxwell’s theory is called a U(1) gauge theory. The step up to a general gauge theory requires
a more geometric approach. A first change is to regard the potential Φ as the fundamental variable
of the theory in place of E and B. One then interprets Φ as a connection 1-form, that is encodes
it in a differential operator D = d + iΦ. This allows one to change the gauge group U(1) to a more
general Lie group G. The theory produces a system of PDEs, called the Yang–Mills equations, for
each choice of the gauge group G, and different choices of G can produce systems with quite different
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properties. For example, the corresponding system of PDEs is linear exactly when G is abelian. Of
course, in the case G = U(1) these equations reduce to Maxwell’s equations.

In what follows we give several rather informal geometric definitions which should provide us
with sufficient background for a quick description of gauge theories.

Definition A.3. A vector bundle of rank n over a manfold M is a manifold E together with the
projection map π : E → M such that each fibre π−1(x) (for x ∈ M) has the structure of an n-
dimensional vector space. The projection is required to be locally trivial, so that for each x ∈ M
there exists a neighbourhood U ⊂ M of x such that π−1(U) = U × Rn or U × Cn, depending on
whether the vector bundle is real or complex. We frequently write E →M to denote a vector bundle
E over a manifold M .

Definition A.4. A local section of a vector bundle E is a map s : U ⊂M → E such that π(s(x)) = x
for all x ∈ U . The map s is a global section if it is defined on all of M , that is U = M . If M is
a real manifold, then the fibres can be either real or complex vector spaces, and the sections are
required to be smooth. If M is a complex manifold, then the fibres must be complex vector spaces
and the sections are required to be holomorphic. In this case the vector bundle E is said to be a
holomorphic vector bundle. We say more about these below.

Definition A.5. A local frame field of a vector bundle E →M is a family of local sections e1, . . . , en
such that {ei(x)} is a basis for Ex at each x. Given a local frame field we represent a local section
s by a column vector with components s1, . . . , sn and write s = sjej .

Two local frame fields are related by ẽj = eigij , and the corresponding sections are related by
si = gij s̃j . The maps g = (gij) relating the local sections are called transition functions or patching
matrices, and form a group. The map g takes values in Cn×n, and is defined wherever the domains
of definitions of the local frame fields overlap. The group of matrices {g} is called the structure
group, and in the absence of any special structure on the bundle is GL(n,C). If the fibres of the
vector bundle have extra structure, e.g. a Hermitian metric, then the structure group reduces to a
subgroup of GL(n,C). In the case of the existence of a Hermitian metric it is U(n).

Definition A.6. A connection on E is a first-order differential operator D that maps sections s of
E to E-valued 1-forms. In a local trivialization this is given by

Ds = Das dxa = ds+ Φs,

where Φ = Φadxa is a matrix-valued 1-form which we also call the connection, or sometimes the
gauge potential.

A connection defines a covariant exterior derivative on E-valued forms via

Dα = dα+ Φ ∧ α.

In a gauge theory, a choice of local trivialization is called a gauge, and the structure group is
referred to as the gauge group. A gauge transformation is a change of local trivialization, ẽj = eigij .
Under this change the local sections transform as s→ s̃ = g−1s, and the gauge potential transforms
as

Φ→ Φ̃ = g−1Φg + g−1dg.

Definition A.7. The curvature of D is the matrix-valued 2-form F = Fabdx
a∧dxb with components

Fab = ∂aΦb − ∂bΦa + [Φa,Φb].
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It measures the extent to which the operators Da,Db fail to commute, since

Fab = [Da,Db] = DaDb −DbDa.

The curvature F takes values in the Lie algebra of the structure group.

Under a gauge transformation the curvature transforms by

F → g−1Fg,

so it is an obstruction to finding a gauge in which Φ = 0. Indeed, if there exists a frame in which
Φ = 0, then F must be zero in all frames. Conversely, if F = 0, then there exists a local gauge such
that Φ = 0, since then F = 0 is the local Frobenius integrability condition for the system of linear
equations

Daei = 0, i = 1, . . . , n.

As F takes values in the Lie algebra, we have

DaFbc = ∂aFbc + [Φa, Fbc].

Then DF = D[aFbc]dx
a ∧ dxb ∧ dxc = dF + Φ∧F −F ∧Φ. A calculation yields the Jacobi identity,

[Da, [Db,Dc]] + [Db, [Dc,Da]] + [Dc, [Da,Db]] = 0,

which implies the Bianchi identity
DF = 0.

This is true for an arbitrary connection.

A.4 Holomorphic Vector Bundles

Let a complex manifold M be covered by open sets {Vσ}, and suppose that we have a vector bundle
E → M of rank n such that on each chart Vσ, the bundle E has a given holomorphic frame field
eσi, where i = 1, . . . , n. On each non-empty intersection Vσ ∩ Vτ ,

(eτ1, . . . , eτn) = (eσ1, . . . , eσn)Fστ

for some holomorphic maps
Fστ : Vσ ∩ Vτ → GL(n,C).

For a fixed pair of (σ, τ) we call Fστ the patching matrix from Vσ to Vτ , and the collection of all
patching matrices the patching data of the vector bundle E. By the definition of a complex vector
bundle, the patching data satisfy the following conditions.

(i) Each patching matrix Fστ is holomorphic and non-singular,

(ii) Fστ = F−1τσ whenever Vσ ∩ Vτ is non-empty,

(iii) Fστ ◦ Fτν ◦ Fνσ = 1 whenever Vσ ∩ Vτ ∩ Vν is non-empty.

Any collection of matrices satisfying these conditions will define a holomorphic vector bundle.
We say two holomoprhic vector bundles E and E′ are equivalent if around every point on M

there exist local trivializations for E and E′, covered by the same open sets Vσ, such that their
patching matrices are related by

Fστ = h−1σ F ′στhτ

for some family of holomorphic maps hσ : Vσ → GL(n,C). In particular, E is in the equivalence class
of the trivial bundle if and only if its patching matrices can be factorized as Fστ = h−1σ hτ . Note that
this definition of equivalence of vector bundles amounts to saying that there exists a biholomorphic
map E → E′ that maps the fibres of E linearly onto the corresponding fibres of E′.
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