
ZERO ENTROPY AND BOUNDED TOPOLOGY
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Abstract. We study the existence of Riemannian metrics with zero topological
entropy on a closed manifold M with infinite fundamental group. We show that
such a metric does not exist if there is a finite simply connected CW complex which
maps to M in such a way that the rank of the map induced in the pointed loop space
homology grows exponentially. This result allows us to prove in dimensions four
and five, that if M admits a metric with zero entropy then its universal covering
has the rational homotopy type of a finite elliptic CW complex. We conjecture that
this is the case in every dimension.

1. Introduction

Let Mn be a closed connected smooth manifold. Given a Riemannian metric g, let
φt be the geodesic flow of g.

One of the most fundamental dynamical invariants that one can associate to φt is
the topological entropy, which we denote by htop(g). It roughly measures the orbit
structure complexity of the flow. Positive entropy means in general, that the geodesic
flow presents somewhere in the phase space (the unit sphere bundle of the manifold)
a complicated dynamical behaviour. There are various equivalent ways of defining
entropy, but for the geodesic flow, Mañé’s formula [14] provides a clear understanding
of this invariant in terms of geodesic arcs. Given points p and q in M and T > 0,
define nT (p, q) to be the number of geodesic arcs joining p and q with length ≤ T .
We have

htop(g) = lim
T→∞

1

T
log

∫
M×M

nT (p, q) dp dq.

The main goal of this paper is to address the following natural question: which
manifolds admit metrics with zero topological entropy?

A classical result of E.I. Dinaburg [3] asserts that if M admits such a metric, then
π1(M) must have subexponential growth. It is still unknown if there are finitely pre-
sented groups which are of subexponential growth, but not of polynomial growth. If
such groups do not exist, then zero entropy implies that π1(M) is virtually nilpo-
tent, thanks to a celebrated theorem of M. Gromov [8]. For closed geometrizable
3-manifolds, this obstruction on the fundamental group is enough to determine those
which admit a metric with zero topological entropy, cf. [1].

In the late 1980’s new topological obstructions were found, this time for simply
connected manifolds. Y. Yomdin [19] proved a fundamental theorem for general C∞
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dynamical systems relating the topological entropy with the volume growth of sub-
manifolds which paved the way to Mañé’s formula. When combined with the Morse
theory of the loop space and a beautiful discovery of Gromov [7] concerning cycles
with bounded length in the pointed loop space ΩM , it gave strong restrictions to
zero entropy. Namely, if M is simply connected and admits a C∞ metric g with
htop(g) = 0, then the sum of the Betti numbers

∑n
i=1 dimHi(ΩM,kp) grows subex-

ponentially with n for any field of coefficients kp, p prime or zero. When kp = Q, this
implies that M is rationally elliptic, i.e. π∗(M)⊗Q is finite dimensional (cf. [6]). We
refer to [16] for an account of these developments.

However, these results only hold for simply connected manifolds (or finite π1(M))
because Gromov’s theorem does require to control the length of paths running on the
1-skeleton of a triangulation of M . When M is simply connected, one can always
collapse the 1-skeleton to a point by a map homotopic to the identity, thus allowing
to ignore -at the level of homology- paths running on the 1-skeleton.

What topological restrictions to zero entropy do we have when π1(M) is infinite
and of subexponential growth? We begun looking at this problem in [18] motivated
by the minimal entropy problem for compact complex surfaces. Here we show:

Technical Lemma. Let M be a closed manifold. Let f : K → M be a continuous
map, where K is a finite simply connected CW complex and let Ω(f) be the induced
map between pointed loop spaces. Let H∗(Ω(f), kp) be the map induced in homology
with some field of coefficients kp and let Ri be the rank of this map in dimension i.
Set

R := lim sup
i→∞

1

i
log

(∑
j≤i

Rj

)
.

If R > 0, then given any smooth Riemannian metric g on M we have:

htop(g) >
λ(g)

2
.

In the inequality, λ(g) is the volume entropy of the Riemannian manifold which
is defined as the exponential growth rate of the volume of balls in the universal
covering of M . Recall that Manning’s inequality [15] asserts that for any metric g,
htop(g) ≥ λ(g) and it is well known that λ(g) > 0 if and only if π1(M) has exponential
growth. We are interested in the inequality as an obstruction to the existence of
metrics with vanishing topological entropy, particularly in the case when π1(M) has
subexponential growth. It would be quite interesting to be able to replace λ(g)/2 by
λ(g) in the Technical Lemma.

It seems useful to note the following point: if M̃ is the universal covering of M ,
then the projection induces an isomorphism between the homology of the loop space

of M̃ and the homology of the connected component of the loop space of M given
by the contractible loops. Therefore one can consider a CW complex K which maps

to M̃ and then compose with the projection to M to be in the conditions of the
Technical Lemma. We will use this remark in all of our examples.
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Recall that a connected CW complexX is said to be nilpotent if π1(X) is a nilpotent
group and operates nilpotently on πi(X) for every i ≥ 2. As an immediate corollary
of the lemma we have:

Corollary. Let M be a closed nilpotent manifold. If M admits a smooth metric with
zero topological entropy, then π∗(ΩM)⊗Q is finite dimensional.

Indeed, if M is nilpotent, all the homology groups of M̃ are finitely generated (cf.
[13, Theorem 2.16]) and thus there is a finite simply connected CW complex K and

a homotopy equivalence f : K → M̃ . The complex K must be rationally elliptic by
the Technical Lemma.

We proved the lemma in [18, Theorem C] when K is a smooth compact manifold

with boundary which is embedded in M̃ and for which the corresponding map in the
loop space homology is an injection. The disadvantage of this earlier version is that in

order to use it we need to have some apriori knowledge of M̃ so that we can find our
embedded K, while with the current version K and f will arise by simple topological
considerations as in the corollary above.

Nevertheless the old version was good enough to prove results like the following
[18, Theorem D]: if M admits a metric with zero entropy and it can be decomposed
as X1#X2, where the order of the fundamental group of X1 is at least 3, then X2 is
a homotopy sphere.

We now pose the main topological question that the Technical Lemma suggests:

Question. Let M be a closed manifold whose fundamental group has subexponential

growth. If dimH∗(M̃,Q) = ∞, does there exist a finite 1-connected rationally hyper-
bolic complex K and a map f : K → M for which the rank of H∗(Ω(f),Q) grows
exponentially?

Of course one can formulate similar questions for other fields of coefficients, but we
believe it should be easier to deal first with the case of characteristic zero, due to the
technology at our disposal provided by Rational Homotopy Theory.

If the Question has a positive answer, then the Technical Lemma implies that if

M admits a metric with zero entropy then M̃ has the rational homotopy type of a
finite elliptic 1-complex, so we see that zero entropy implies bounded topology in a
very strong sense.

In the present paper we will prove by simple topological arguments that the Ques-
tion has a positive answer in dimensions 4 and 5. This in turn will give us an
essentially complete picture of which 4-manifolds have metrics with zero entropy and
will allow us to close some gaps left open in [18].

Let us describe these results in more detail. From now on if in ordinary homology
coefficients are not indicated they are meant to be Z. In the next theorem, σ and χ
stand for signature and Euler characteristic respectively.

Theorem A. Let M be a closed 4-manifold with infinite fundamental group π. If M

admits a metric with zero topological entropy, then σ(M) = χ(M) = 0, M̃ has the

rational homotopy type of a finite simply connected elliptic CW complex and H2(M̃) ∼=



4 G. P. PATERNAIN AND J. PETEAN

H2(π,Z[π]). Moreover, if we assume further that π has polynomial growth then, M
is finitely covered by one the following:

(1) S3 × S1;
(2) a manifold s-cobordant to S2 × T2;
(3) a nilmanifold.

Using the results on 4-manifolds, we can now complete the classification of compact
complex surfaces which admit a metric with zero entropy. We begun this classification
in [18], but our results excluded two cases: surfaces of general type and surfaces of
class VII with positive second Betti number. It is unknown if there are surfaces

of general type homeomorphic to S2 × S2 or CP 2#CP 2
, although it is known that

there is no surface of general type diffeomorphic to S2 × S2 or CP 2#CP 2
. We call

such a potential example, an exotic surface of general type. In the next theorem we
view compact complex surfaces as smooth 4-manifolds and we ignore their complex
structures.

Theorem B. Let S be a compact complex surface which is not an exotic surface of
general type. Then S admits a metric with zero topological entropy if and only if S is
diffeomorphic to one of the following: CP 2, a ruled surface of genus 0 or 1, a complex
torus, a hyperelliptic surface, a Hopf surface, a Kodaira surface, or a Kodaira surface
modulo a finite group.

Finally in dimension 5 we prove:

Theorem C. Let M be a closed 5-manifold with infinite fundamental group. If M

admits a metric with zero entropy, then M̃ has the rational homotopy type of a finite

1-connected elliptic complex. Moreover, H3(M̃) ∼= H2(π,Z[π]).

In fact, for most groups π with subexponential growth the second end group
H2(π,Z[π]) is either 0 or Z. Our methods also yield information at the torsion
level. For example we will show that if π has one end and H2(π,Z[π]) is either 0 or

Z, then H2(M̃) has no finite subgroup as a direct summand.
In all the known examples of closed manifolds which admit metrics with zero topo-

logical entropy, M has a finite covering which is a nilpotent space. The following
problem was posed to us by B. Totaro:

Problem. Is it true that if M admits a metric with zero topological entropy, then
there is a finite covering of M which is nilpotent?

A positive answer to the Problem implies that the universal covering of M is ho-
motopy equivalent to a finite CW complex, which by the Technical Lemma must have
loop space homology with subexponential growth. Observe that by Theorem A, the
Problem has a positive answer in dimension 4 if we assume that π has polynomial
growth. As Totaro suggested one can now make the following definition of elliptic
space to incorporate all these observations and allow infinite fundamental group. A
topological space X is elliptic if it is homotopy equivalent to a finite CW complex, it
has a finite covering which is a nilpotent space and the loop space homology of the
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universal covering of X grows polynomially with any field of coefficients. The results
in this paper give considerable evidence of the following conjectural fact: If M admits
a metric with zero topological entropy it must be elliptic in this broader sense.

Acknowledgements: We thank Burt Totaro for several useful comments on the first
draft of the manuscript.

2. Proof of the Technical Lemma

Let (M, g) be a Riemannian manifold and let K be a finite simply connected CW
complex. Given a continuous map f : K → M we let Ω(f) : Ω(K) → Ω(M) be the
obvious map induced between the corresponding pointed loop spaces. The following
lemma is essentially due to Gromov [7, 10]:

Lemma 2.1. There exists a constant C = C(K, f,M, g) such that given any homology
class ψ ∈ Hi(Ω(K)), the class Ω(f)∗(ψ) can be represented by a cycle of Lipschitz
curves in M with length bounded by Ci.

Proof. Since K is homotopy equivalent to a finite simply connected simplicial complex
[11, Theorem 2.C5], we can assume that K is actually a simplicial complex. We can
consider K as a subcomplex of a simplex ∆N and restrict the standard metric on
∆N to give a metric on K. Of course, this metric restricts to the standard Euclidean
metric on each simplex of K. It is easy to see that one can approximate f by a
homotopic map which is Lipschitz with respect to this metric. Therefore we will also
assume that the map f is Lipschitz.

Let h : L → Ω(K) be a map from a finite simplicial complex of dimension i
with an i-th homology class mapping to ψ. The map h corresponds to a map H :
L × [0, 1] → K. Given a positive integer k we will consider the simplicial structure
on [0, 1] obtained by subdividing the interval into k subintervals of equal length. The
simplicial structures on L and [0, 1] give a natural cellular decomposition on L× [0, 1].

For this cellular decomposition one can obtain a simplicial approximation similar
to the simplicial case as follows:

Let S be any simplicial complex. We call a map R : L× [0, 1] → S simplicial if it
is a simplicial map when restricted to each L × {j/k} and for any x ∈ L, R(x, j/k)
and R(x, (j + 1)/k) belong to a simplex in S and the restriction of S to the vertical
segment {x} × [j/k, (j + 1)/k] is linear.

Given a continuous map r : L× [0, 1] → S, we say that R is a simplicial approxima-
tion of r if it is a simplicial map such that R(q) ∈ Carrier(r(q)) (the smallest simplex
containing r(q)) for any q ∈ L× [0, 1]. It is easy to see as in the simplicial case that
if R is a simplicial approximation of r, then R and r are homotopic.

Recall now that the open star of a vertex in a simplicial complex is the union of the
interior of all the simplices containing the vertex, and for a vertex (v, j/k) ∈ L× [0, 1]
define its open star as Star(v, j/k) = Star(v)× ((j − 1)/k, (j + 1)/k). It is clear that
after enough subdivisions of the simplicial structure on L and taking k big enough,
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we can assume that the diameter of the open star of any vertex is as small as we
want. Therefore we can assume that for any vertex (v, j/k) ∈ L × [0, 1] there exists
a vertex w ∈ S such that the open star of (v, j/k) is contained in r−1(Star(w)). We
define R(v, j/k) = w. As in the simplicial case, we can extend R to each L × {j/k}
as a simplicial approximation of the restriction of r to L× {j/k}.

Given x ∈ L, let σ = Carrier(x) and let v1, ..., vl be the vertices of σ. Let wi =
R(vi, j/k) and wi+l = R(vi, (j + 1)/k). Note that Interior(σ) × (j/k, (j + 1)/k) is
contained in the open stars of each (vi,m/k)(m = j or j + 1). By construction we
have that r(Interior(σ)×(j/k, (j+1)/k)) is contained in Star(wi) for each i = 1, ..., 2l.
The intersections of these sets is nonempty and this implies that those vertices form
a simplex in S. We have done this to show that there exists a simplex of S which
contains both R(x, j/k) and R(x, (j + 1)/k) and so we can extend R as a simplicial
map on L× [0, 1].

Let us finally check that R is actually a simplicial approximation of r. We have to
show that for any (x, t) ∈ L× [0, 1], R(x, t) ∈ Carrier(r(x, t)). We already know this if
t is a vertex of [0, 1]. So we can assume that t ∈ (j/k, (j+1)/k) for some j. As in the
previous paragraph, let v1, ..., vl be the vertices of Carrier(x) and let w1, ..., w2l be the
corresponding vertices in S. We have that (x, t) ∈ Star(vi, j/k) ∩ Star(vi, (j + 1)/k)
for each i = 1, ..., l. Then r(x, t) ∈ r(Star(vi, j/k) ∩ Star(vi, (j + 1)/k)) ⊂ Star(wi) ∩
Star(wi+l). This implies that wi, wi+l ∈ Carrier(r(x, t)). Since R(x, t) is a linear
combination of w1, ..., w2l and all these vertices belong to the simplex Carrier(r(x, t)),
we get that R(x, t) ∈ Carrier(r(x, t)) and therefore R is a simplicial approximation
of r.

Therefore we can take a simplicial approximation R of the map H : L× [0, 1] → K.
It is clear from the discussion above that we may assume that R fixes the end points
and thus it can be viewed also as a map r : L → Ω(K). Let us consider the space
Ω(K)pl,k ⊂ Ω(K) given by those paths which are linear on each segment of the form

[j/k, (j+1)/k]. Note that by construction there exists a k such that the image of r is
contained in Ω(K)pl,k. Each element in Ω(K)pl,k determines a point in Kk−1 and in

this way we identify Ω(K)pl,k with a subset of Kk−1 (recall that the initial and final

points are fixed). The simplicial structure on K induces a cellular decomposition in
Kk−1 and Ω(K)pl,k is a subcomplex: it is the union of all the cells σ1× ...×σk−1 such
that σi and σi+1 are contained in a simplex of K and the same for the initial point
and σ1 and the end point and σk−1.

After another homotopy we can assume that the image of r is contained in the i-th
skeleton of Ω(K)pl,k with respect to the cell decomposition described above.

Since K is simply connected there exists a Lipschitz map α : K → K homotopic
to the identity, which maps the whole 1-skeleton of K to a point.

Now let c be a path in the i-th skeleton of Ω(K)pl,k. This means that c belongs to

a cell of the form σ1 × ...× σk−1 with Σjdim(σj) ≤ i. Thus, the path c is formed by
segments joining a pair of vertices of the triangulation and at most 2i segments in
which one of the points is not a vertex. After composing with the map α the former
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are sent to a point while the latter are sent to paths of length bounded by a constant
which depends on α but not on i. Hence there exists a constant C ′ such that the
image of the i-th skeleton of Ω(K)pl,k is sent by composition with α to a set of paths
with length bounded by C ′i. In this way we see that we can represent ψ by a cycle
formed with paths with length bounded by C ′i. Composing with f we see that we
can represent Ω(f)∗(ψ) by a cycle formed with paths of length bounded by Ci, where
C is a constant depending only on α and the Lipschitz constant of f .

�

We will use the lemma in the form of the following corollary:

Corollary 2.2. Let (N, g) be a connected complete Riemannian manifold. Let K be a
finite simply connected CW complex and f : K → N be a continuous map. Denote by
Hi(Ω(f), kp) the induced map between the i-th homology groups of the corresponding
pointed loop spaces (for some field of coefficients kp) and let Ri be the rank of this map.
Then, there exists a positive constant C depending only on K, f, g such that for any
x ∈ K, T ≥ Ci and any y ∈ B(f(x), T/2) we have that bi(Ω

T (N, f(x), y), kp) ≥ Ri.

Proof. We know from the lemma that for any i-th homology class ψ in Ω(K, x, x),
Ω(f)∗(ψ) can be represented by a cycle in ΩC′i(N, f(x), f(x)). Consider now a min-
imizing geodesic between f(x) and y. Following the paths in the cycle by this
geodesic we obtain a cycle in ΩC′i+d(f(x),y)(N, f(x), y). If C = 2C ′, T ≥ Ci and
y ∈ B(f(x), T/2) we get that our new cycle is in ΩT (N, f(x), y) and the corollary
follows. �

We are now ready to prove the Technical Lemma in the introduction:

Technical Lemma. Let M be a closed manifold. Let f : K → M be a continuous
map, where K is a finite simply connected CW complex and let Ω(f) be the induced
map between pointed loop spaces. Let H∗(Ω(f), kp) be the map induced in homology
with some field of coefficients kp and let Ri be the rank of this map in dimension i.
Set

R := lim sup
i→∞

1

i
log

(∑
j≤i

Rj

)
.

If R > 0, then given any smooth Riemannian metric g on M we have:

htop(g) >
λ(g)

2
.

Proof. By the lifting property of covering spaces we can assume that we have a map

f : K → M̃ . Let us recall that for any x ∈M (cf. [16])

htop(g) ≥ lim sup
T→∞

1

T
log

∫
M

nT (x, y) dy.
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Let p : M̃ → M be the covering projection. It is easy to check that given any

x ∈ M̃ we have∫
M

nT (p(x), y) dy =

∫
M̃

nT (x, y) dy =

∫
B(x,T )

nT (x, y) dy.

Thus for any x ∈ M̃ we have

(1) htop(g) ≥ lim sup
T→∞

1

T
log

∫
B(x,T )

nT (x, y) dy.

Now assume that x = f(z) for some z ∈ K. Morse theory tells us that if y and x
are not conjugate, then

nT (x, y) ≥
∑
j≥0

bj(Ω
T (M̃, x, y), kp).

But now, using the previous corollary we get that if y ∈ B(x,Ci/2),∑
j≥0

bj(Ω
Ci(M̃, x, y), kp) ≥

∑
j≤i

Rj,

where C is the constant appearing in the corollary. Integrating the previous inequal-
ities with respect to y ∈ B(x,Ci/2) yields:∫

B(x,Ci/2)

nCi(x, y) dy ≥

(∑
j≤i

Rj

)
Vol(B(x,Ci/2)).

Therefore we obtain:

htop(g) ≥ lim sup
i→∞

1

Ci
log

∫
B(x,Ci)

nCi(x, y) dy

≥ lim sup
i→∞

1

Ci
log

(∑
j≤i

Rj

)
Vol(B(x,Ci/2)).

And thus, if R is the exponential growth rate of
∑

j≤iRj,

htop(g) ≥
R

C
+
λ(g)

2
.

�

3. Topological preliminaries

In the following sections we will try to apply the Technical Lemma to find ob-
structions to zero entropy. This is of course a purely topological problem and in this
section we will summarize some general techniques and concepts we will use.
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3.1. Domination. Recall that a topological space Z is dominated by a topological
space Y if there exist continuous maps r : Y → Z and ι : Z → Y such that r ι is
homotopic to the identity of Z. In several occasions we will make use of the following
lemma, sometimes without explicit mention to it.

Lemma 3.1. Let X and Y be simply connected spaces which are rational homotopy
equivalent. Suppose Z is dominated by Y . Then there is a map g : Z → X such that

H∗(Ω(g),Q) : H∗(Ω(Z),Q) → H∗(Ω(X),Q)

is an injection.

Proof. Let f : Y → X be a rational homotopy equivalence. Since Y dominates Z,
there is a map ι : Z → Y such that H∗(Ω(ι),Q) : H∗(Ω(Z),Q) → H∗(Ω(Y ),Q) is
an injection. By the Whitehead-Serre theorem, cf. [6, Theorem 8.6], H∗(Ω(f),Q) :
H∗(Ω(Y ),Q) → H∗(Ω(X),Q) is an isomorphism and thus g := f ◦ ι has the desired
property. �

3.2. Moore spaces. Given G an abelian group, let M(G, n), n > 1, be the Moore
space (uniquely determined up to homotopy type) whose n-th homology group is G
and whose i-th homology group is zero for i 6= n. For example, M(Z, n) = Sn and
M(Zm, n) = en+1∪f S

n, where f : Sn → Sn is a map of degree m. Note that M(G, n)
has the rational homotopy type of a wedge of spheres.

We will use the following properties of Moore spaces (cf. [2, Proposition 1.7]):

(1) M(A⊕B, n) = M(A, n) ∨M(B, n);
(2) A morphism f : A → B induces a continuous map M(f) : M(A, n) →

M(B, n), so that M(fg) = M(f)M(g) and M(f)∗ = f .

In particular if f : A → B is an injection and there exists g : B → A such that
gf = 1A then M(B, n) dominates M(A, n). If G is a finitely generated abelian group,
then M(G, n) is given by the wedge sum of copies of Sn and copies of M(Zm, n) and
M(G, n) dominates any of these Moore subspaces.

3.3. Homology decompositions. Every simply connected CW complex Y has a
homology decomposition (cf. Theorem 4H.3 in [11] or [2, Theorem 2.2]). This means
that there exists a homotopy equivalence f : X → Y such that X can be constructed
by the following iterated procedure.

Let Gn := Hn(Y ). There exists an increasing sequence of complexes X1 ⊂ X2 ⊂ · · ·
with Hi(Xn) = Gi for i ≤ n and Hi(Xn) = 0 for i > n where:

(1) X1 is a point and X2 is the Moore space M(G2, 2);
(2) Xn+1 is the mapping cone of a cellular map hn : M(Gn+1, n) → Xn such that

the induced map (hn)∗ : Hn(M(Gn+1, n)) → Hn(Xn) is trivial;
(3) X = ∪nXn.

If Y is a simply connected CW complex whose only non-zero homology groups are
Hn(Y ) and Hn+1(Y ), and Hn+1(Y ) is a free abelian group, the homology decomposi-
tion says in this case that Y has the homotopy type of M(Gn, n) ∨M(Gn+1, n + 1)
(cf. for example [2, Lemma 2.6.5]). It follows that:
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Proposition 3.2. Suppose Y is a simply connected CW complex whose only non-zero
homology groups are Hn(Y ) and Hn+1(Y ), where Hn+1(Y ) is a free abelian group.
Then Y dominates M(Hn(Y ), n) and M(Hn+1(Y ), n+ 1).

Remark 3.3. An important point in the proofs of Theorems A and C will be the

fact that the rational Hurewicz map π∗(M̃)⊗Q → H+(M̃,Q) is surjective.
Let X be an arbitrary simply connected CW complex. By Theorem 4.5 in [6] the

property of π∗(X) ⊗ Q → H+(X,Q) being surjective is equivalent to saying that X
has the rational homotopy type of a wedge of spheres or that X has the rational
homotopy type of a suspension.

Proposition 3.4. Suppose X is a simply connected CW complex whose only non-zero
homology groups are Hn(X) and Hn+1(X).

(1) if bn := dimHn(X,Q) ≥ 2 there exists a map g : Sn ∨ Sn → X such that
H∗(Ω(g),Q) is an injection;

(2) if bn ≥ 1 and Hn+1(X) = Z, then there exists a map g : Sn ∨ Sn+1 → X such
that H∗(Ω(g),Q) is an injection.

Proof. Note that the Hurewicz map π∗(X) → H+(X) is surjective. Hence X has the
rational homotopy type of a wedge of spheres and by Lemma 3.1, if bn ≥ 2 there
exists a map g : Sn ∨ Sn → X such that H∗(Ω(g),Q) is an injection which proves
the first item. Similarly, if bn ≥ 1 and Hn+1(X) = Z, then Lemma 3.1 gives a map
g : Sn ∨ Sn+1 → X such that H∗(Ω(g),Q) is an injection, which proves the second
item.

�

3.4. Ends of groups, `2-Betti numbers and amenability. The space of ends
E(X) of a locally compact separable metric space X is given by the inverse limit

lim
K⊂X

π0(X −K),

where the sets K are compact. The space E(X) is a totally disconnected topological
space and when X is connected and locally connected, E(X) is compact. Given a
group π acting freely on a connected simplicial complex X with finite quotient, the
homeomorphism type of E(X) only depends on π. The cardinality of E(X) is usually
denoted by e(π) and is called number of ends of π. A finitely generated group π has
0, 1, 2 or infinitely many ends. It has 0 ends if and only if it is finite.

The higher order end groups of a group π are defined as the cohomology groups
of a K(π, 1) space with coefficients in the group ring Z[π]. We denote them by
Hk(π,Z[π]), k ≥ 0. If the group is infinite, then H1(π,Z[π]) is a free abelian group
of rank e(π)− 1.

The group π has two ends if and only if it is virtually Z. If π has infinitely many
ends, then it must contain a non-cyclic free subgroup by virtue of Stallings’ structure
theorem.

Finally, we note that if M̃ is the universal covering of a closed n-dimensional

manifold M with infinite fundamental group π, then H1(π,Z[π]) ∼= Hn−1(M̃). Of

course, one also has Hn(M̃) = 0.
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Let M be a closed manifold with an infinite amenable fundamental group and let

β
(2)
k be the k-th `2-Betti number of the universal covering of M . It is interesting to

note the following fact:

• If dimHk(M̃,Q) is finite, then β
(2)
k = 0 [4].

This prompts the following question which is closely related to the Question in the

introduction: if for some k, β
(2)
k 6= 0, is it true that there exists a finite 1-connected

rationally hyperbolic complex K and a map f : K → M̃ for which the rank of
H∗(Ω(f),Q) grows exponentially?

We will make use of the following theorem.

Theorem 3.5. Let M be a closed n-manifold with an infinite amenable fundamental

group π and let M̃ be the universal covering of M . Suppose M̃ is (k − 1)-connected,

k ≥ 2, and dimHk(M̃,Q) is finite. Then Hn−k(M̃) ∼= Hk(π,Z[π]).

Proof. The proof is exactly the same as the proof of Theorem 3.1 in [5]. The hypothe-

sis dimHk(M̃,Q) <∞ and the amenability of π ensures that the k-th `2-Betti number
vanishes and one argues with the commutative diagram on page 507 to conclude that

Hk
comp(M̃,Z) ∼= Hk(π,Z[π]). By Poincaré duality Hn−k(M̃) ∼= Hk

comp(M̃,Z).
�

4. Proof of Theorems A and B

We first show:

Theorem 4.1. Let M be a closed 4-manifold with infinite fundamental group π. If M
admits a Riemannian metric with zero topological entropy, then χ(M) = σ(M) = 0

and H2(M̃) ∼= H2(π,Z[π]). Moreover, M̃ has the rational homotopy type of a point,
S2 or S3.

Proof. If M admits a metric with zero entropy, π has subexponential growth and
hence it is amenable and can only have 1 or 2 ends. Following B. Eckmann in [4], we
note that if π is amenable we can construct a Fφlner sequence, that is, an increasing

sequence Yj, j = 1, 2, 3, · · · , of finite subcomplexes of M̃ with the following properties:

(1) Yj consists of Nj translates of a closed cellular fundamental domain D for the
action of π;

(2) ∪jYj = M̃ ;

(3) let Ṅj be the number of translates of D which meet the topological boundary
of Yj; then

lim
j→∞

Ṅj

Nj

= 0.

Eckmann shows in [4, p. 389] that

χ(M) = lim
j→∞

b2(Yj)

Nj

,
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where b2(Yj) = dim H2(Yj,Q). Moreover, by Proposition 2.1 in [4] we know that if

b2(M̃) is finite, we must have limj→∞
b2(Yj)

Nj
= 0.

Note that H1(M̃) = H4(M̃) = 0 and hence the Hurewicz map π∗(M̃) → H+(M̃) is

onto and M̃ has the rational homotopy type of a wedge of spheres

X :=
(
∨αS

2
α

)
∨
(
∨βS

3
β

)
.

Since X dominates any finite subcollection of them and the rational loop space ho-
mology of the wedge of at least two spheres grows exponentially, the Technical Lemma

implies that M̃ must have the rational homotopy type of either a point, S2 or S3.

Thus b2(M̃) is finite and χ(M) = 0 as desired.
To prove that σ(M) = 0, we use the following observation of Gromov in [9, p. 85]:

if σ(M) 6= 0, then b2(M̃) must be infinite (this is a consequence of the amenability of
π and the index theorem for infinite coverings).

Once we know χ(M) = 0, the isomorphism between H2(M̃) and H2(π,Z[π]) is
precisely Theorem 3.1 in [5] or Theorem 3.5.

�

Remark 4.2. Let M be a closed manifold of dimension 2k and suppose that πi(M) =
0 for 1 < i ≤ k − 1 (the condition is vacuous for k = 2). Suppose further that π :=
π1(M) satisfies the following property: it is infinite and the end groups H i(π,Z[π])
are zero for 0 < i < k. It is quite easy to check (see Proposition 2.1 in [5]) that

Hi(M̃) ∼= H2k−i(π,Z[π]) for k < i ≤ 2k. Thus Hk(M̃) is the only non-zero homology
group. If M admits a metric with zero entropy, then χ(M) = 0. The proof is the
same as in the 4-dimensional case.

Corollary 4.3. Let M be a closed 4-manifold whose fundamental group has two ends.
If M admits a metric with zero topological entropy, it is finitely covered by S3 × S1.

Proof. Theorem 11.1 in [12] says that a closed 4-manifold whose fundamental group
has two ends and χ(M) = 0 is finitely covered by S3 × S1. �

Finding the homeomorphism types of such manifolds is a fairly complicated prob-
lem, we refer the interested reader to Chapter 11 in [12].

The last corollary and Theorem 4.1 tell us that if we wish to move further into
the classification of closed 4-manifolds which admit a metric of zero entropy we need
to know more about H2(π,Z[π]) for π with subexponential growth and one end. As
far as we know, there is no general result in this direction. However, note that if π
is the fundamental group of a closed manifold whose universal covering is Rn, then
H2(π,Z[π]) is zero if n 6= 2 and Z if n = 2.

We can state:

Corollary 4.4. Let M be a closed 4-manifold with H2(π,Z[π]) = Z. If M admits
a metric with zero topological entropy, M has a covering space of degree dividing 4
which is s-cobordant to S2 × T2.
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Proof. By Theorem 4.1, π2(M) ∼= H2(M̃) ∼= H2(π,Z[π]) = Z. The corollary now
follows from Theorem 10.1 in [12]. �

There is no example known of a finitely presented group which is of subexponential
growth, but not of polynomial growth. Recall that the existence of a metric with zero
entropy implies subexponential growth of π.

Theorem 4.5. Let M be a closed 4-manifold whose fundamental group π is infinite
and has polynomial growth. If M admits a metric with zero topological entropy, then
M is finitely covered by one of the following:

(1) S3 × S1;
(2) a manifold s-cobordant to S2 × T2;
(3) a nilmanifold.

Proof. By a celebrated theorem of Gromov, π is virtually nilpotent. Thus by passing
to a finite covering we can assume that π is nilpotent. It follows that π coincides with
its Hirsch-Plotkin radical

√
π, which is the maximal nilpotent normal subgroup.

Let h(π) denote the Hirsch length of π, i.e., the number of cyclic factors of a
composition series. If h(π) ≤ 2, then up to finite index, π must be Z or Z2. If π is Z,
then by Corollary 4.3, M falls under item 1. Similarly, if π is Z2, by Corollary 4.4,
M falls under item 2.

Finally if h(π) = h(
√
π) ≥ 3, Corollary 8.1.1 in [12] implies that M is finitely

covered by a nilmanifold, since by Theorem 4.1, χ(M) = 0.
�

Theorems 4.1 and 4.5 give Theorem A.

4.1. Compact complex surfaces. Using the results on 4-manifolds from the pre-
vious subsection, we can now complete the classification of compact complex surfaces
which admit a metric with zero entropy. We begun this classification in [18], but our
results excluded two cases:

(1) surfaces of general type;
(2) surfaces of class VII with positive second Betti number.

Recall that a compact complex surface is of general type if it has Kodaira dimension
2. The surface is said to be of class VII if it has Kodaira dimension −∞ and first
Betti number equal to 1. More precisely, in [18, Theorems E and F] we proved:

Theorem 4.6. Let S be a compact complex surface which is not of general type.
Moreover, suppose that S is not a surface of class VII with positive second Betti
number. Then S admits a metric with zero topological entropy if and only if S is
diffeomorphic to one of the following: CP 2, a ruled surface of genus 0 or 1, a complex
torus, a hyperelliptic surface, a Hopf surface, a Kodaira surface, or a Kodaira surface
modulo a finite group.

It is well known that surfaces of general type have χ > 0. A surface of class VII
has first Betti number equal to one, thus a surface of class VII with positive second
Betti number must also have χ > 0. Hence in both cases, Theorem 4.1 implies that
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neither of these classes admits a metric of zero entropy unless the fundamental group
is finite. Obviously, surfaces of class VII have an infinite fundamental group. On
the other hand, we know that a closed simply connected 4-manifold that admits a

metric with zero entropy must be homeomorphic to to S4, CP 2, S2 × S2, CP 2#CP 2

or CP 2#CP 2 (cf. [17]). Thus if there exists a surface of general type with a metric
of zero entropy and finite fundamental group, its universal covering (which is also a

surface of general type) would have to be homeomorphic to S2×S2 or CP 2#CP 2
. It

is unknown whether there are such exotic examples, although it is known that there

is no surface of general type diffeomorphic to S2 × S2 or CP 2#CP 2
. Below we call

such a potential example, an exotic surface of general type.
We now combine this discussion with Theorem 4.6 to obtain:

Theorem B. Let S be a compact complex surface which is not an exotic surface of
general type. Then S admits a metric with zero topological entropy if and only if S is
diffeomorphic to one of the following: CP 2, a ruled surface of genus 0 or 1, a complex
torus, a hyperelliptic surface, a Hopf surface, a Kodaira surface, or a Kodaira surface
modulo a finite group.

5. Proof of Theorem C

Theorem C. Let M be a closed 5-manifold with infinite fundamental group. If M

admits a metric with zero entropy, then M̃ has the rational homotopy type of a finite

1-connected elliptic complex. Moreover, H3(M̃) ∼= H2(π,Z[π]).

Proof. We know that since π is infinite amenable it can only have one or two ends.

Moreover, we know that H5(M̃) = 0 and H4(M̃) ∼= H1(π,Z[π]).

Suppose first that π has one end. Since H4(M̃) = 0, the Hurewicz map π∗(M̃) →
H+(M̃) is surjective and M̃ has the rational homotopy type of a wedge of spheres

X :=
(
∨αS

2
α

)
∨
(
∨βS

3
β

)
.

Since X dominates any finite wedge K of spheres from the collection of S2
α and S3

β, we

conclude that if dimH+
k (M̃,Q) ≥ 2, there exist a finite simply connected rationally

hyperbolic complex K and a map f : K → M̃ such that H∗(Ω(f),Q) is injective.

Hence the Technical Lemma implies that dimH+
k (M̃,Q) ≤ 1 and M̃ has the rational

homotopy type of a point, S2 or S3.

Suppose now that π has two ends and so H4(M̃) = Z. Let us consider the homology

decomposition of M̃ and note that M̃ has the homotopy type of the mapping cone of
a cellular map h3 : M(Z, 3) → X3 such that (h3)∗ : H3(M(Z, 3)) → H3(X3) is trivial.
Since the Hurewicz map π∗(X3) → H+(X3) is onto, X3 has the rational homotopy
type of a wedge of spheres

Y :=
(
∨αS

2
α

)
∨
(
∨βS

3
β

)
and let f : X3 → Y be a rational homotopy equivalence. The image of the map
h3 ◦ f can only intersect a finite number of spheres from the collection. Therefore if
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the collection is infinite it would follow that M̃ has the rational homotopy type of
a space that dominates the wedge product of two spheres. Since the rational loop
space homology of the wedge of two spheres grows exponentially the Technical Lemma
would imply positive entropy. Therefore there are only a finite number of 2-spheres

and 3-spheres in the collection and M̃ has the rational homotopy type of a finite CW
complex (which of course must be elliptic).

The conclusion H3(M̃) ∼= H2(π,Z[π]) follows now directly from Theorem 3.5.
�

5.1. Torsion of 5-manifolds.

Theorem 5.1. Let M be a closed 5-manifold whose fundamental group has one end
and H2(π,Z[π]) is either 0 or Z. If M admits a metric with zero entropy, then:

(1) dimH2(M̃,Q) ≤ 1 and H2(M̃) has no finite subgroup as a direct summand;

(2) H3(M̃) is either 0 or Z;

(3) if H3(M̃) = Z, then H2(M̃) is a torsion group with no finite subgroup as a
direct summand.

An example of a group as in item 3 is the quasicyclic group of type p∞ (p prime)
given by the pk-th roots of unity, k running over all natural integers. We do not know
if such a group can be realized as π2(M) of a 5-manifold.

Proof. Since the fundamental group of M has one end, H4(M̃) = 0. By Theorem C,

H3(M̃) is 0 or Z and we can apply Proposition 3.4 to M̃ . This proposition combined
with the Technical Lemma proves all the claims in the theorem except the one re-

garding the abscence of finite groups of H2(M̃) as a direct sumand. Suppose there
is such a group. Then there exists a prime p such that the group Zpk appears as

a direct summand for some k ≥ 1. By Proposition 3.2, M̃ dominates the Moore
space M(Zpk , 2), but the latter has the property that its loop space homology with
coefficients in Zp grows exponentially. Again, this cannot happen by the Technical
Lemma. �
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