

RIEMANNIAN GEOMETRY. EXAMPLES 2.

G.P. Paternain Lent 2004

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

1. Let M^n be a Riemannian manifold and let $p \in M$. Given a unit norm vector $u \in T_p M$ show that the volume density $\theta(t, u)$ satisfies:

$$\theta(t, u) = t^{n-1} - \frac{(n-1) \operatorname{Ric}_p(u)}{6} t^{n+1} + O(t^{n+2}).$$

2. If q is a cut point of p along the geodesic γ , show that p is a cut point of q along the geodesic $-\gamma$.

3. Assume that the sectional curvatures of M are less than or equal to k . Show that for every $p \in M$ we have $V(p, r) \geq V_k(r)$ for all $r \leq \min\{\operatorname{inj}(p), \pi/\sqrt{k}\}$. Show that equality holds for some fixed r if and only if $B(p, r)$ is isometric to the ball of radius r in the constant curvature space form of curvature k . [Hint: you may find this problem a bit difficult, see Theorem 3.7 in Chavel's book.]

4. Let M be a Riemannian manifold let $p \in M$. Given a unit norm vector $u \in T_p M$ show that if $t \in [0, \operatorname{inj}(p))$ then $\theta(t, u) = \theta(t, -\dot{\gamma}(t))$, where $\gamma(t)$ is the geodesic with initial conditions (p, u) .

5. (Due to E. Calabi and S.T. Yau.) Show that if M is complete non-compact, with nonnegative Ricci curvature, then for any $p \in M$ we have

$$V(p, r) \geq \operatorname{const}_p r$$

as $r \rightarrow +\infty$. (Hint: Pick a unit speed ray $\gamma : [0, +\infty) \rightarrow M$ from p to ∞ and let $x_k = \gamma(k)$. Show first that

$$V(x_k, k-1) \geq \left(\frac{k-1}{k+1} \right)^n V(x_k, k+1),$$

which implies (why?)

$$V(p, 2k) \geq V(x_k, k-1) \geq \frac{(k-1)^n}{(k+1)^n - (k-1)^n} V(p, 1).$$

Show that the result is sharp, i.e., exhibit a Riemannian manifold for which $V(p, r) \sim \operatorname{const}_p r$ as $r \rightarrow +\infty$.

6. Show that a complete Riemannian manifold M^n with nonnegative Ricci curvature such that

$$\lim_{r \rightarrow +\infty} \frac{V(p, r)}{\omega_n r^n} = 1$$

for some $p \in M$, must be isometric to the Euclidean space. (Here ω_n is the volume of the unit ball in the Euclidean n -space.)

7. Let M^n be a closed Riemannian manifold ($n \geq 2$). Show that M is simply connected if and only if the cut locus of any point is simply connected. (You may assume that the inclusion map $\iota : C_p \hookrightarrow M$ induces isomorphisms $\iota_* : \pi_i(C_p) \rightarrow \pi_i(M)$ for $1 \leq i \leq n-2$ and an epimorphism $\iota_* : \pi_{n-1}(C_p) \rightarrow \pi_{n-1}(M)$.)

8. Given $p \in M$, let C_p be the cut locus of p and Q_p^1 be the set of first conjugate points to p . For S^2 show that $C_p \cap Q_p^1$ is not empty for any point p and any metric on S^2 . A. Weinstein has constructed on any Riemannian manifold other than S^2 a metric for which $C_p \cap Q_p^1$ is empty for some point p .

9. Let M be a closed Riemannian manifold. Show that M is simply connected if $Q_p^1 = C_p$.

10. A Riemannian manifold M is said to be *two-point homogeneous* if given $p, q \in M$ and unit vectors $u \in T_p M$, $v \in T_q M$, there exists an isometry f such that $f(p) = q$ and $df_q(u) = v$. Show that M is two-point homogeneous if and only if given p_1, p_2 and q_1, q_2 in M such that $d(p_1, p_2) = d(q_1, q_2)$ there exists an isometry f such that $f(p_i) = q_i$ for $i = 1, 2$.

11. A complete Riemannian manifold M is said to be *harmonic* if for any point $p \in M$, the volume density $\theta(t, u)$ is independent of the unit norm vector $u \in T_p M$, for all positive t . Show that a two-point homogeneous space is harmonic. Show that if M is harmonic then θ depends only on t and not on p . (The Lichnerowicz conjecture states that the universal covering of a harmonic manifold must be two-point homogeneous. Recently, Z. Szabo verified the conjecture for closed harmonic manifolds with finite fundamental group.)