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ABSTRACT. We construct F-structures on a Bott manifold and on some other man-
ifolds obtained by Kummer-type constructions. We also prove that if M = E#X
where E is a fiber bundle with structure group G and a fiber admitting a G-invariant
metric of non-negative sectional curvature and X admits an F-structure with one
trivial covering, then one can construct on M a sequence of metrics with sec-
tional curvature uniformly bounded from below and volume tending to zero (i.e.
Volg (M) = 0). As a corollary we prove that all the elements in the Spin cobordism
ring can be represented by manifolds M with Volg (M) = 0.

1. INTRODUCTION

The present paper is concerned with the following invariants of closed smooth man-
ifolds. Given a closed connected smooth n-manifold M and a smooth Riemmanian
metric g, let Vol(M,g) be the volume of g and let K, be its sectional curvature.
Consider the following minimal volumes [5]:

MinVol(M) := inf{Vol(M, g) : |K,| <1}
9

and
Vol (M) :=inf{Vol(M,g) : K, > —1}.
g

A fundamental theorem of J. Cheeger and M. Gromov [2] asserts that if M admits
a polarized F-structure, then MinVol(M) = 0, that is, we can collapse volume with
bounded sectional curvature. An F-structure is a collection of tori acting on finite
Galois coverings of open subsets of the manifold. The actions are virtually effective,
compatible with the finite group of deck transformations of the coverings, and also
compatible between themselves on the overlap of the open subsets. These compat-
ibility conditions ensure that M is partitioned into orbits which are flat manifolds.
The structure is said to be polarized if the dimension of the orbits is locally constant,
in a certain precise way. The F-structure is said to be a 7-structure if the Galois
coverings can all be taken to be trivial. (We review these definitions in Section 2.)

The vanishing of MinVol(M) implies, via Chern-Weil theory, that the Euler char-
acteristic and all the Pontryagin numbers of M are zero. The vanishing of Vol (M)
implies that the simplicial volume of M is zero. Recall that the simplicial volume || M ||
of a closed orientable manifold M is defined as the infimum of ), |r;| where r; are the
coefficients of a real cycle representing the fundamental class of M. In fact, ||M|| =0
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if there exists a sequence of metrics ¢g; with Vol(M, g;) — 0 and Ric,, > —(n — 1)
[5]. The vanishing of the simplicial volume is the only known topological obstruc-
tion to Volg (M) = 0. The topology of closed orientable 3-manifolds with Volx = 0
has been determined by T. Shioya and T. Yamaguchi [15, 16]. However, there could
be smooth obstructions, as it occurs in dimension 4. It is a striking consequence of
Seiberg-Witten theory [10, 11] that if M is a minimal compact complex surface of
general type then

2

. Sg 2re
2> gl
inf {Vol(M, g) : 12> 1} = =5-ci(M),

where s, is the scalar curvature of g and ¢; (M) is the first Chern class of M.

In [13] we showed that if M admits an arbitrary F-structure, then Vol (M) = 0.
We also constructed 7 -structures on several classes of manifolds, including compact
complex elliptic surfaces and any closed simply connected 5-manifold.

In [14] the second author showed that if M is a closed simply connected manifold
of dimension > 5, then

. Sg
P ———2>—1,=0.
IIglf {VOI(M, 9) nn—1) = 1} 0

More recently, C. Sung [18] extended this result by showing that

. Sg
V : + >
1rglf{ ol(M,g) : NK,+ (1 )\)n(n ) 1} 0

for any A € [0,1). All these results naturally raise the following question:

Question 1. Let M be a closed simply connected manifold of dimension n > 5. Is it
true that Volg (M) =07?

Since every closed simply connected 5-manifold admits a 7-structure, we know
that Question 1 has a positive answer for n = 5. One can also speculate that if M
is odd-dimensional or if all its characteristic numbers are zero, then MinVol(M) = 0.
For a large class of highly connected manifolds, including certain exotic spheres which
do not bound spin manifolds, this has been verified by C.Z. Tan [19].

Here we show:

Theorem A. Any closed connected spin manifold M is spin cobordant to a manifold
N with Volg(N) = 0.

We remark that Gromov and Lawson [6] proved that if M and N are spin cobordant
and M is simply connected and of dimension > 5, then M is obtained from N by
performing surgery on spheres of codimension > 3. If M is not spin and in the same
oriented cobordism class as N, then M can also be obtained from N by performing
surgery on spheres of codimension > 3 [6, Proof of Theorem C]. It follows easily from
the description of the generators of Q79 as explained in [6, Proof of Theorem C] that
every class in Q29 contains a manifold N with Volg(N) = 0. Thus if one can show
that the vanishing of Volg is invariant under surgery on spheres of codimension > 3,
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Theorem A would imply that Question 1 has an affirmative answer. We explicitly
state this problem:

Question 2. Let M and N be closed connected manifolds of dimension n > 5.
Suppose Volg (N) = 0 and M is obtained from N by performing surgery on a sphere
of codimension > 3. Is it true that Volx (M) =07

The proof of Theorem A is based on two novel ingredients. The first ingredient
is the description of an F-structure on an 8manifold Jg with fl—genus equal to 1 (a
Bott manifold). The manifold Jg is one of the examples of 8-manifolds with special
holonomy Spin(7) constructed by D. Joyce in [9]. In fact, we exhibit F-structures
on several manifolds with special holonomy. These manifolds are all obtained by
Kummer-type constructions, desingularizing a torus orbifold. Besides the K3 and
Js we exhibit polarized F-structures on a Calabi-Yau 3-fold with zero Fuler charac-
teristic and on a 7-manifold with holonomy G,. The case of the Calabi-Yau 3-fold
is particularly interesting because it provides an example of a closed simply con-
nected 6-manifold manifold M = X#Y with MinVol(M) = 0, but with MinVol(X)
and MinVol(Y') non-zero. Also X is obtained from S® by surgery on a complicated
configuration of 3-spheres. We explain these observations in Remark 3.4.

To our knowledge these examples of F-structures on manifolds with special holo-
nomy constitute the first ones, besides the motivating case of flat manifolds, in which
one can really appreciate the advantage of the concept of F-structure as opposed to
the simpler concept of 7 -structure. On the other hand we do not know of an example
of a manifold which carries an F-structure but not a 7 -structure.

We observe that the existence of F-structures on K3 and Jg implies right away by
our results in [13] that Voly (K3) = Volg(Jg) = 0. This fact seems to simplify some
of the proofs of the main results in [14, 18].

The second novel ingredient in the proof of Theorem A is the following:

Theorem B. Let M = X#E where X is an n-manifold, n > 3, which admits an
F-structure with one trivial Galois covering and E is the total space of a fiber bundle
with fiber F' and structure group G, where F' has a G-invariant metric of non-negative
sectional curvature and G is a compact connected Lie group. Then Volg (M) = 0.

In fact, it seems plausible that a manifold like £ might always admit an F-structure.
If that were the case, then we could deduce the vanishing of Volx (X#FE) from [13,
Theorem 5.9] which asserts that the connected sum of two manifolds with F-structures
admits an F-structure, provided that the F-structures have at least one open set with
a trivial Galois covering. The proof of Theorem B uses a mixture of the collapsing
techniques of Cheeger and Gromov with computations of K. Fukaya and T. Yamaguchi
[4, Theorem 0.18] (see also [21, Example 1.2]) for the case of bundles like E. One can
see why Theorem B is important in the proof of Theorem A by recalling a celebrated
result of S. Stolz [17]: a closed spin manifold M with zero K O-characteristic number
a(M) € KO, (point) is spin cobordant to the total space of a fibre bundle with fibre
HP? and structure group PSp(3).
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It is also important to note that in the condition Volgx = 0 there is no implication
on the diameter of the manifold; there are plenty of examples of manifolds which
are not almost non-negatively curved but nevertheless can be volume-collapsed with
curvature bounded from below (note for instance that for any closed manifold M,
Volg (5% x M) = 0). One does not expect spin manifolds with non-zero A-genus like
K3 and Jg to be almost non-negatively curved (see [12]) nor do we expect such a
conclusion for manifolds obtained as connected sums as in the previous paragraph.

Finally we mention that the existence of F-structures also implies the vanishing of
the minimal entropy h(M) which is given by the infimum of the topological entropy
of the geodesic flow of a metric g, as g ranges over all metrics with volume 1 [13].
Most likely Theorem A holds also for h(A), but this would require to prove a result
like Theorem B for minimal entropy. We do not pursue this issue here. What we do
obtain right away is h(K3) = h(Jg) = 0 as well as zero minimal entropy for all the
manifolds with special holonomy described in Section 3.

Acknowledgements: The second author thanks the Department of Pure Mathemat-
ics and Mathematical Statistics at the University of Cambridge and Trinity College
for hospitality and financial support while this work was in progress.

2. PRELIMINARIES ON F-STRUCTURES

The notion of an F-structure was first introduced by J. Cheeger and M. Gromov
in [5, 2, 3]. Although the definition is more elegantly expressed in terms of sheaves
of tori and local actions of them, in order to construct examples one usually uses
equivalent definitions in terms of an open cover of the manifold and torus actions on
finite Galois coverings of them. Since an important part of this article will be devoted
to explicit constructions of F-structures we begin by giving the definition that we will
use.

An F-structure on a closed manifold M is given by the following data and condi-
tions:

(1) a finite open cover {Uy,...,Un} of M;

(2) m; : U; — Uj is a finite Galois covering with group of deck transformations I';,
1<i<N;

(3) asmooth torus action with finite kernel of the k;-dimensional torus, ¢; : T% —
Diff(U;), 1 < i < N;

(4) a homomorphism ¥; : I'; — Aut(7%) such that

V(i(t) () = di(Wi(7)(1)) ()

for all v € Ty, t € T% and x € Us;
(5) for any finite sub-collection {Uj,, ..., U, } such that U, 4, :==U;;N---NU;, # 0
the following compatibility condition holds: let (leil be the set of all points
(Tiy,y .o 2qy) € [71'1 X e X [7” such that m; (z;,) = -+ = m,(z;). The set

Ui,..i, covers W;l(Uil...il) C U, for all 1 < j < [. Then we require that ¢;,
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leaves ﬂgl(Uilmil) invariant and it lifts to an action on ﬁil_.il such that all
lifted actions commute.

A subset S C M is called invariant if for any y € SNU;, any = € U, with mi(r) =y
and any ¢t € T%  we have m;(¢;(t)(x)) € S. The orbit of a point in M is the minimal
invariant set containing the point. The F-structure is called polarized if given any
subset I C {1,..., N}, if U is the intersection of the U/s with ¢ € I (assumed non-
empty) and V is the union of the U/s with ¢ € I¢, then the dimension of the orbits is
constant in U — V. The simplest case in which the structure is polarized is when all
the torus actions appearing in the definition are locally free. An F-structure is called
a 7 -structure if all the Galois coverings are trivial.

We know of no previous example of an F-structure which is not a 7-structure or
the F-structure on a flat manifold given by the holonomy covering. We will construct
in the following section a number of F-structures on some interesting manifolds for
which one of the Galois coverings is not trivial. It is also not known to the authors
if those manifolds admit any 7 -structure, except for the case of the K3 surface for
which a 7 -structure has been constructed in [13, Theorem 5.10]). It is important to
note that in all these examples some of the Galois coverings (actually all but one) are
trivial: this is needed in order to be able to construct F-structures on their connected
sums as in [13, Theorem 5.9].

3. AN EXHIBITION OF F-STRUCTURES

All the examples below will be desingularizations of torus orbifolds as in [7, 8, 9].
The singularities will be resolved using exclusively the Eguchi-Hanson space X which
is just a 4-manifold diffeomorphic to T*S? or to the blow up of C?/{+1}. For the sake
of clarity we will display the F-structures in explicit cases although one can proceed
in essentially the same way in more general cases.

3.1. The K3 surface. The first exhibit in our gallery is the K3 surface. It is already
known that the K3 surface, as any compact complex elliptic surface, admits a 7-
structure [13, Theorem 5.10]. In this subsection we will put an F-structure on the
K3 surface described by the Kummer construction. This will give a simpler way to
see such a structure on the surface and will also provide a simple example for the
constructions in the following sections.

The K3 surface can be obtained as follows: first consider the map J = —1: T* —
T*, an involution of the four-dimensional torus T* = R*/Z*. The involution has 16
fixed points, those which have each coordinate equal to 0 or 1/2. Let P be the fixed
point set of J. Then T* — P is invariant through J and .J acts there without fixed
points. The quotient (T* — P)/J is a smooth manifold with 16 ends diffeomorphic to
RP3? x R. The K3 surface is obtained by attaching a copy of X = T*S5? to each one
of the ends.

We describe an F-structure on the K3 surface. Let A; be the circle action on T*
given by 1 — x; + 6 where 6 € R/Z. For € > 0 small, let

U:={(x1,...,24) € T": d((w2,23), (p1,p2)) > /2 with p; = 0 or 1/2}.
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The open set U is invariant through J and A;. Let U := U/J The set U is an open
subset of K3 and U is a 2 : 1 covering of U. The homomorphism U : {Id, J} —
Aut(S') given by
U(J)(t) = —t
satisfies condition (4) in the definition of F-structure.
Let

Vii={(21,...,24) € T*: d((x2,73),(0,0)) < }.

And define also V3, V3 and Vj replacing (0, 0) by (0,1/2), (1/2,0) and (1/2,1/2). Each
V; is an open set of T* diffeomorphic to D? x T?. Let B; be the circle action on V;
given by the obvious action on the D?-factor. The action B; commutes with the
action A; and with J, and so it gives an action on (V; — P)/J, which we will also call
B;. The set (V; — P)/J is an open subset of K3 with 4 ends diffeomorphic to RP3.
On each of these ends the action of B; is just the multiplication on two coordinates
of S? which descends to an action on RIP3.

Finally in a small metric ball around each of the points in P consider the usual
Hopf action on S* which descends to RP3. Call this action C;; it commutes with B;
and it extends to the whole X.

The open subsets U, Vi, Vs, V3, V4 and the 16 copies of X cover the whole K3 and
the circle actions Ay, B;, C; define an F-structure.

3.2. An F-structure on Jg. This would be the main attraction of our exhibition.
The existence of such a structure plays a key role in the proof of Theorem A as we
explained in the introduction.

Consider the following involutions of the torus T® = R®/Z8:

CY(.Tl, S ,fﬂg) = (—%1, —%2, —X3, —T4,T5, L6, L7, x8)7
Ts

ﬁ(l’l,...,

(
) = ($17$2,$3,$4, —5, —Tg, —T7, —1‘8)7

1 1 1 1
’Y(xla"'ain) = 5 _x17§ —.’132,1'3,1'4,5 _xf)aé — Te, L7, T8

5( ) 1 1 1
oo 8) = | =21, X9, = — T3, T4, = — T5, L, = — T7,T .
1 ) &8 1 272 3 472 5 672 7y 48

The fixed point sets of these involutions are:

So = {(p1, 2, p3, Pa, 5, 76, 07, 78) : p; = 0 or 1/2},
Sﬁ = {(@1, T2, 73, T4, D5, 6, P7,P8) : Pi = 0 or 1/2},
= {(q1, %2, 73,74, G5, 46, 7, 78) : @ = 1/4 or 3/4},
Ss = {(p1, 72,43, T4, G5, T6, g7, x8) : p1 =0or 1/2, q; =1/4 or 3/4}.
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It is also easy to see that the involutions commute and generate a group I' isomor-
phic to (Z3)*. The fixed point set of a3 is S, N Sz while all the other elements of T
are fixed point free [9, Example 1]. We will call Jg the manifold obtained by resolving
the singularities of T®/T" as below.

The set S, is given by 16 copies of T* and the group generated by «, 3 and &
divides these into 2 groups of 8. Note also that S, is disjoint from S,, Sz and Ss.
A neighbourhood of S, then projects to T®/T" onto 2 copies of T* x (B*/£1). This
singularity will be resolved by replacing this open subset by T* x X. We will then
have 2 open subsets Vi, V5 on Jg which are diffeomorphic to T* x X. Note that if
7 is the zero section of X = T*S? then T* x (X — Z) lifts via the projection to 8
disjoint copies of T4 x (B* — {0}) in T®. The circle action on the last coordinate of
the T*-factor will lift to each of the connected components as either as £ the circle
action Ag on the last coordinate of T® (Ag is given by g +— x5 + 6 where § € R/Z).

The set Ss is resolved in the same way, producing open subsets V3 and Vj of Jg
where we also consider the circle action induced by As.

The sets S, and Ss are also each of them equal to 16 copies of T*. The 16 T*’s
corresponding to .S, are divided into 4 groups of 4 by the action of the group generated
by v and §; and the same happens with S3z. The sets S, and Ss intersect in 256 points
which are divided into 64 groups of 4 points by the action of v and ¢. Each of the
components of S, is invariant by # and [ acts on them as multiplication by —1; and
the same is true interchanging o and 3. Therefore in resolving the singularities S,
we obtain 4 copies of X x K3 and resolving Sz we obtain 4 copies of K3 x X (see
the construction of K3 in the previous section). A connected component of the first
type will intersect a connected component of the second in 4 copies of X x X.

Consider the open subset U C T® given by

U ={x €T®: d((x1, 9, 25,76), (41, G2, G5, G6)) > £/2,
(21, 23,5, 27), (P1, 93,45, G7)) > €/2,

((x1,23), (p1,p3)) > €/2 and

d((xs,x7), (ps, p7) > €/2, where

pi=0or1/2 ¢ =1/4 or 3/4}.

d
d

The set U is an open subset of T8 which is disjoint from Sy, Sg, S, and S5 and is
invariant through Ag and I'. Then U = U /T is an open subset of Jg and 7 : U—U
is an 8 : 1 covering with deck transformation group I'.  We consider the action Ag
on U. The homomorphism ¥ : T' — Aut(S') given by ¥(a) = ¥(y) = ¥(8) = Id
and W(0)(t) = —t will satisfy the compatibility condition (4) in the definition of
F-structure.

As we mentioned before, the action Ag will give a circle action on the open subsets
corresponding to the resolutions of S, and Ss; the preimage of the end of each X x T*
(or T* x X)) under the projection will have 8 connected components: in some of them
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we will have the action of Ag and in some of them we will have —Ag. Alternatively,
one could also put the Hopf action on X.

Fix p; = 0 or 1/2 and consider a small ball V around (p1, pa, ps3, ps) € T% Then V x
T* contains one of the components of S,. Note that 8 will act here as multiplication
by —1 in the T* factor. After resolving the singularities in the projection T®/T" we will
have an open subset of Jg diffeomorphic to X x K3. In Jg there are 4 open subsets
of this type. Call them Wy, Wy, W5 and W,. And consider on them the Hopf action
on the X-factor. By considering the last 4 coordinates instead of the first, we obtain
open subsets W5, Wy, W7 and Wy which contain (the resolutions of) the singularities
Ss. And we put again the Hopf action on the X-factor. For each ¢ < 4,j > 5, W,
will intersect W) in 4 copies of X x X, which will be invariant through both actions.
These actions clearly commute.

Now consider

‘/\/1,3 = {ZC € TS : d(<xlax3)7 (p17p3)) <g, pi = 0 or 1/2} - S7

where S is the union of S, and Sz. And let

‘7577 ={z € TS . d((zs,x7), (ps,p7)) <&, p;=0o0r 1/2} — S.

Note that \71,3 and 17577 are invariant through I'.
Then V; 3/T and Vi 7/T together with U, Vi, Va, V3, Vi, Wy, ..., Wy cover the whole
of Jg. The set V} 3/T" is diffeomorphic to

(D* x T?)/{£1} x T*/{£1} — S/T

and we put in this set the canonical circle action on the D?-factor (it clearly leaves
(D* x T%)/{£1} x T*/{+1} N S/T invariant).

This action lifts to the corresponding open subset of U and commutes there with
the Ag-action. We do the same thing for 1757/ I'. It is easy to see that these two
actions will commute between themselves and with the actions on the W;’s in the
corresponding intersections.

In summary: we covered Jg with 15 open subsets. The sets U, ‘71,3/11 andf/g,J/F are
obtained as quotients of T® by I' (away from fixed points). On U we have the only non-
trivial covering for the F-structure. The sets Vi, V5, V3,V are open neighbourhoods
of the resolutions of the singularities S, and S5. They intersect U but are disjoint
from 17173/F and f/},g/F. The sets W1, ..., Wsg cover the resolutions of the singularities
Sa and Sz. They only intersect ‘71,3/F and 17577/I‘.

3.3. A polarized F-structure on a closed 7-manifold with special holonomy
G5. An interesting addition to the collection.
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Let (x1,...,27) be coordinates in T = R7/Z" where x; € R/Z. Let «, 3 and ~ be
involutions of T” defined by

a(zy,...,x7) = (—x1, —T2, —T3, —T4, T5, Te, T7),

1
ﬁ(mla s >ZE7) = (—1'1, 5 — T2,X3, Ty, —T5, —T6, L7 |,

1 1
7(1’17"'71'7) = 5—xl,mg,é—$3,$4,_$5,5E6,—ZE7 .

One can easily check that «, 8 and v commute and hence they generate a group of
isometries T' of the flat torus T7 which is isomorphic to Z3. The following elementary
properties of the action of I' are proved in [7]. The only non-trivial elements of I"
that have fixed points are o, 3 and . The fixed points of o in T7 are 16 copies of
T3 and the group generated by 3 and « acts freely on the set of 16 tori fixed by «.
Similarly the fixed points of 3, v in T are each 16 copies of T2, and the groups {(«, )
and («, 3) act freely on the sets of 16 tori fixed by 3 and ~y respectively.

Note that the 48 tori that make the set S of points that are fixed by some non-
trivial element in ' are all disjoint. The singular set S/T" in the orbifold T7/T" is
exactly the image of S and consists of 12 copies of T?. For ¢ sufficiently small each
component of S/T has a neighbourhood isometric to T? x B2/{41}. If we now resolve
the singularities by replacing T? x B2/{+1} by T? x X, where X is the Eguchi-Hanson
space, we obtain a closed simply connected 7-manifold M which admits a family of
metrics with holonomy G» [8]. The manifold M has betti numbers by = 12, by = 43
and non-zero Pontryagin class py (M) € H*(M,Z).

Consider the following open sets in T":

Wa(g) = {('Ib s 7‘r7) € T7 : d(($‘17$27$3)7 <a17a27a3)) <é
and a; =0,1/2, i = 1,2,3};

Wﬂ(g) = {(x17 s 71;7) € T7 : d((x17x27x57$6)7 (a17a27a37a4)) <é
and a; =0,1/2, i =1,5,6, ay = 1/4,3/4};

W (e) :={(xy,...,27) € T - d((zq,x3,25), (a1,as3,a;5)) < &
and a; = 1/4,3/4, i = 1,3, a5 = 0,1/2}.

Note that for € small these sets are pairwise disjoint. Note also that I' leaves the 3
sets invariant. The sets W®(¢) and W°(e) both have 8 connected components which
are copies of T* x B3, while W (&) has 16 connected components which are copies of
T3 x B2
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Now consider the open set V in T7 given by the complement of the closure of
We(e/2) UWh(e/2) UWP(g/2). Observe that T' acts freely on V and V/T is an open
set in M.

Let 7 : T” — T7/T be the projection map. The set 7(WW*(¢)) will be an open set
with 2 connected components which contain the 4 singular 3-tori corresponding to a.
When we resolve these singularities, 7(W(«)) is modified into an open set U*(¢) of
M. Similarly we obtain open sets U”(g) and U°(g) in M. By construction, the open
sets U®, UP, U° and V/I" cover M.

We now describe the torus actions. Let A; be the circle action on T7 given by
x; — x; + 0 where 6 € R/Z. Observe that the action of T? given by Ay x Ay leaves
invariant W<(e), W#(e), Wo(e) and V (in fact, this property explains why we have
taken the above as relevant open sets).

Let us describe the circle action on U%*(e). Note that A; commutes with o and
(. Since § swaps the connected components of W%(e) we can define using A; and
x7 — 7 — 0 a circle action on W%(g) that will commute also with . This action
descends to (W (e)) and since the resolution of the singularities only affects the
first 4 coordinates we obtain a circle action ¢, on U*(¢).

Arguing similarly with A; and « for the sets UP(g) and U’(¢) we obtain circle
actions ¢ and ¢5 on UP(e) and U°(e) respectively.

On the set V/T' we consider the action of Ay x A7 on V. The homomorphism
U : T — Aut(7T?) given by

U(a)(t,t2) = (—t1,ta),
W(B)(t1,t2) = (t1,t2),
W(0)(t1,t2) = (L1, —t2)

will clearly satisfy condition (4) in the definition of F-structure.

Condition (5) in the definition of F-structure follows quite easily from the fact that
the only possible overlaps are (V/T')NU®, (V/T)NUP, (V/T)NU° and on them the
actions lift and commute.

Finally, all actions are locally free and hence the F-structure is polarized.

3.4. A polarized F-structure on a Calabi-Yau 3-fold. The final exhibit.
Let (z1,...,76) be coordinates in T® = R®/Z5 where z; € R/Z. Let o and 3 be
involutions of T® defined by

Oé(l'l, s 7x6) = (_xb —X2, —T3, —T4, Ts, Iﬁ)a
1
6(3717 cee 7',];6) == (5 — T, —T2,T3, T4, —Ts, —$6> .

As before, one can easily check that o and  commute and hence they generate a
group of isometries T of the flat torus T® which is isomorphic to Z3. The singular set of
TS /T consists of 16 copies of T? each with a neighbourhood isometric to T?x B2 /{+1}.
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Desingularizing these using the Eguchi-Hanson space yields a closed simply connected

6-manifold M which carries a family of metrics with holonomy SU(3) [8, Example 2].

The manifold M has betti numbers b, = 19, b3 = 40 and thus zero Euler characteristic.
Consider the following open sets in T®:

We(e) .= {(z1,...,x¢) € TS . d((zq,x2,23), (a1,a2,a3)) < €
and a; =0,1/2, i = 1,2,3};

Wﬁ(é‘) = {(.1:1, st 7x6) S T6 : d((x1,$2,x5), (al,CLQ,CLE})) <é
and a; =0,1/2, i =25, a; = 1/4,3/4};

Note that for ¢ small these sets are disjoint and I' leaves them invariant. The sets
We(g) and W¥(e) both have 8 connected components which are copies of T3 x B3.

Now consider the open set V in T® given by the complement of the closure of
We(e/2) UWHF(g/2). Observe that I' acts freely on V and V/T" is an open set in M.

Let m : T — T®/T be the projection map. The set 7(WW*(¢)) will be an open set
with 4 connected components which contain the 8 singular 2-tori corresponding to a.
When we resolve these singularities, 7(W(«)) is modified into an open set U%(¢) of
M. Similarly we obtain an open set U”(g) in M. By construction, the open sets U?,
UP and V/T cover M.

We now describe the torus actions. Observe that the action of T2 given by A, x Ag
leaves invariant We(g), W¥(e) and V.

As before we get a circle action on U%(¢) as follows. Note that Ag commutes with
«. Since [ swaps the connected component of W*(e) we can define using Ag and
xg — xg — 0 a circle action on W?(e) that will commute also with 3. This action
descends to m(W*(e)) and since the resolution of the singularities only affects the
first 4 coordinates we obtain a circle action ¢, on U*(¢).

Arguing similarly with A; and « for the set U”(g) we obtain a circle action ¢g on
UB(e).

On the set V/T' we consider the action of Ay x Ag on V. The homomorphism
U : T — Aut(T?) given by

U(a)(ti, ta) = (—t1, t2),

U (5)(t1,ta) = (t1, —t2).

will clearly satisfy condition (4) in the definition of F-structure.

Condition (5) in the definition of F-structure follows quite easily from the fact that
the only possible overlaps are (V/T') N U® and (V/T') N UP and on them the actions
lift and commute.

Finally, all actions are locally free and hence the F-structure is polarized.
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Remark 3.1. By Wall’s splitting theorem for simply connected 6-manifolds [20,
Theorem 1], M can be written as M = X#Y, where X has b3 = 0 and Y is a
connected sum of 20 copies of S x S3. Clearly X has positive Euler characteristic
and Y has negative Euler characteristic. Hence the minimal volumes MinVol of X and
Y are non-zero, but MinVol(M) = 0 since M admits a polarized F-structure. Note
that S3 x S3#S53 x S? gives an example of manifold with non-zero minimal volume,
but MinVol(S? x S%) = 0. We conclude that the minimal volume does not behave
well under connected sums. According to Wall [20, Theorem 2], the manifold X can
be obtained from S° by performing surgery on a disjoint set of (framed) embedded
3-spheres. The spheres produce a link in S® and one can read off the cup form on
X (or M) from certain link invariants associated with the link ([20, Theorem 4]).
The group H?*(M,R) admits a basis with 19 elements, 16 of which come from the
desingularization of T? x B2/{+1}, and the other 3 come from T-invariant constant
2-forms in T [8, Section 2.3]. If e; is any of these 19 elements, one can check that
e3 = 0. Since M is a Calabi-Yau 3-fold, the first Pontryagin class p; of M is —2c,
where ¢y is the second Chern class of M and the latter must be non-zero. If we
consider p; as a linear form on H?(M,R) we conclude that p;(e;) is not zero for some
i and by [20, Theorem 4], the class e; gives a rise to an embedding of S? in S which
is knotted. In principle one could compute completely the cup form for this example
as well as all the link invariants, but we do not pursue this matter here.

4. COLLAPSING VOLUME WITH CURVATURE BOUNDED FROM BELOW

In this section we prove Theorem B.

Lemma 4.1. Let s: [2,4] — R be an non-decreasing smooth function which vanishes
close to 2, is equal to 1 close to 4, 8 < 1 and s" > —2. Let h be a metric of non-
negative sectional curvature on a manifold F. For a small positive number §, the
metric g = dt* + §°h on X = [2,4] x F has sectional curvature bounded from below
by —41og?(6).

Proof. The metric ¢g is a warped product metric. Every plane P C T'X has a g-
orthonormal basis of the form x + v, w, where v and w are tangent to F' and z is
horizontal. Let f = 6°. The sectional curvature K (P) is then computed by Bishop
and O’Neill [1, page 27]:

Kn(@Q) = (f'(1)*

()
i EONE

Ky(P) =~ o) +

where () is the plane spanned by v and w. It follows that

WORRe:
R ==~ P
Now f' = s'log(d)f and f” = s"1log(0)f + s'*log*(6)f. The lemma follows.
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Let G be a compact connected Lie group and E be the total space of a fiber bundle
with structure group G and fiber F' such that F' admits a G-invariant metric gp
of non-negative sectional curvature. Then there is a metric on E for which the G-
action is isometric and the fibers are totally geodesic and have non-negative sectional
curvature. If we do not consider the diameters of the manifolds, the computations
of K. Fukaya and T. Yamaguchi [4, Theorem 0.18] show that by shrinking the fibers
one obtains a sequence of metrics on E with sectional curvature uniformly bounded
from below and collapsing volume. In [13] the authors showed that the same is true
for manifolds which admit an F-structure; the sequence of metrics is obtained by
shrinking the orbits of the F-structure (away from the fixed points of the local torus
actions). In the next lemma we will prove that one can combine both cases at least
when in one of the open subsets of the F-structure the covering is trivial (i.e. on one
of the open subsets there is a torus acting). Note that one can assume in this case
that the torus acting is 1-dimensional.

Theorem B. Let M = X#FE where X is an n-manifold, n > 3, which admits an
F-structure with one trivial covering and E is the total space of a fiber bundle with
fiber F' and structure group G, where F has a G-invariant metric of non-negative
sectional curvature and G is a compact connected Lie Group. Then Vol (M) = 0.

Proof. Let g be a metric on E such that all the fibers are totally geodesic and isometric
to some fixed Riemannian manifold (F, gr) of non-negative sectional curvature (on
which G acts by isometries). We will moreover assume that over some disk B* in the
base space, the bundle is trivial and the metric is a nice Riemannian product; namely,
there is an open subset of £ which is diffeomorphic to B¥ x F' and the restriction
of g is the product of gr and a metric of non-negative sectional curvature on B* for
which the end is isometric to [1,5] x S*1.

Inside B* consider the sets V; = [4,5] x S¥=1 V, = [2,4] x S¥1 V5 = [1,2] x SF1
and By, = B(0,2) C B*,

To perform the connected sum of X and E we will pick a point e € V3 x F' and
a point x in the open subset of X with a trivial covering, x a regular point for the
corresponding circle action. Pick any linear circle action on S*~! and use it to define
a circle action on B* x F'. Assume that e lies on a regular orbit for this action. On the
connected sum of X with By x F' we construct an F-structure as in [13, Theorem 5.9]:
consider tubular neighbourhoods of the orbits through z and e, S' x Bx and S* x Bg.
One then uses that S' x B¥ 1451 x B*~1 is diffeomorphic to S! x B¥~! — §k=2 x B2
to construct an F-structure on the connected sum of S' x By and S' x By which
will match the original actions on both connected components of the boundary.

Define a Riemannian metric h on M so that it coincides with g away from V3 x F
and is invariant for the F-structure above. This is achieved by the same procedure
as in [2, Lemma 1.3|, averaging by the local torus actions a metric which coincides
with g away from V3 x F.

Fix 6 small. We are going to construct a metric hg on M.
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Let us denote by X* the part of M where we have the F-structure; namely, the
connected sum of By x F' with X. On X* we proceed as in [13]: we consider X* x T
(for some appropriate N) and define a diagonal polarized F-structure on X* x T,
Namely, if for the F-structure we have open subsets Uy, ..., U; where the correspond-
ing local torus action is not locally free we put N = k; +- - -+ k; and on each U; x TV
we consider the corresponding diagonal action. On X* x T all the local actions are
locally free and we can perform the construction of Cheeger and Gromov [2, Section
3] obtaining a sequence of metrics with bounded sectional curvature. Recall that
the sequence of metrics is obtained by first multiplying the metric by log*(§) and
then multiplying by § (or more precisely by some appropriate function of ¢) in the
direction of the orbits. Then we take the quotient by the TV-action. The result is a
sequence of metrics hY on X* so that Vol(X*, hY) — 0 while the sectional curvature
remains bounded from below (this computation is carried out in [13]). Moreover on
the boundary the metric hY will be the Riemannian quotient by the S action of

log”(d) (QF X dt2‘[2—g,2] X %) ;

where g5 is the metric on S*~! x S! obtained from the product metric by multiplying
by ¢ in the tangent space of the diagonal action.

Away from B* x F we put the metric h} obtained from log?(§)g by multiplying
the metric by ¢ in the directions of the fiber. The fact that the curvature remains
bounded from below follows from the O’Neill formulas as shown in [4, Theorem 0.18]
(see also [21, Example 1.2]). It is also clear that the volume of this region also goes
to 0 with 4.

Finally we have to join h{ and hj along [2,5] x S*~! x F. On V; x F we leave the
metric equal to d log®(8)gr on the F-factor and we modify the metric on [4, 5] x S¥~1:
let s1 : [4,5] — R be a smooth function which is equal to 0 near 5 and equal to 1 near
4, consider the product metric on [4,5] x S*~! x S1 and multiply by §°! the tangent
space of the diagonal action. Multiplying by log?(6) and taking the quotient by the
S'-factor we obtain a metric which glues well with h} on one extreme and on the
other extreme will coincide with h{ on the Vj-factor. It is trivial that the volume
of this region will go to 0 with §. Cheeger and Gromov [2, Theorem 3.1] prove that
the sequence of metrics on V; x S have bounded sectional curvature as ¢ tends to
0. Since the sectional curvature does not decrease by Riemannian submersions, the
sectional curvature of the metric on V; will remain bounded from below.

Now we modify the metric on V4 x F: here we prolong the metric defined at ¢t = 4
in the previous paragraph on the S¥~!-factor and on the [2, 4] x F-factor we put the
metric log?(8)(dt? + 0°2gr), where s, : [2,4] — R is a smooth function as in Lemma
4.1. The fact that in this region the curvature remains bounded from below follows
from Lemma 4.1. The fact that the volume collapses is clear since the volume of
the S¥~!-factor is already collapsed. This metric will glue well with the previous one
where s, = 1 and will glue well with h} when s, = 0.

Il
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5. PROOF OoF THEOREM A

We need to show that every element of the Spin cobordism ring Q*Spm can be repre-
sented by a manifold N with Volg(/N) = 0. There is a surjective ring homomorphism

a: Q?pin — KO,(point). S. Stolz [17] proved that every element in the kernel of «
is represented by the total space of a fiber bundle with fiber HP? and structure group

PSp(3).

On the other hand if a € KO, then there exists a closed spin manifold X with
an F-structure with one trivial Galois covering such that o[X] = a: if B is a Bott
manifold, multiplication by a([B]) gives an isomorphism between KO, and KO, s.
Then the construction in Subsection 3.2 proves the claim in dimension > 8 and the

low dimensions can be easily dealt with by hand as in [14, Theorem 2].

Therefore every element of Q§pm can be represented by a manifold of the form
N = E#X where X admits an F-structure with one trivial Galois covering and E
is the total space of a fiber bundle with fiber HP? and structure group PSp(3). The

theorem follows from Theorem B.
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