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Abstract. We construct F-structures on a Bott manifold and on some other man-
ifolds obtained by Kummer-type constructions. We also prove that if M = E#X
where E is a fiber bundle with structure group G and a fiber admitting a G-invariant
metric of non-negative sectional curvature and X admits an F-structure with one
trivial covering, then one can construct on M a sequence of metrics with sec-
tional curvature uniformly bounded from below and volume tending to zero (i.e.
VolK(M) = 0). As a corollary we prove that all the elements in the Spin cobordism
ring can be represented by manifolds M with VolK(M) = 0.

1. Introduction

The present paper is concerned with the following invariants of closed smooth man-
ifolds. Given a closed connected smooth n-manifold M and a smooth Riemmanian
metric g, let Vol(M, g) be the volume of g and let Kg be its sectional curvature.
Consider the following minimal volumes [5]:

MinVol(M) := inf
g
{Vol(M, g) : |Kg| ≤ 1}

and
VolK(M) := inf

g
{Vol(M, g) : Kg ≥ −1}.

A fundamental theorem of J. Cheeger and M. Gromov [2] asserts that if M admits
a polarized F -structure, then MinVol(M) = 0, that is, we can collapse volume with
bounded sectional curvature. An F -structure is a collection of tori acting on finite
Galois coverings of open subsets of the manifold. The actions are virtually effective,
compatible with the finite group of deck transformations of the coverings, and also
compatible between themselves on the overlap of the open subsets. These compat-
ibility conditions ensure that M is partitioned into orbits which are flat manifolds.
The structure is said to be polarized if the dimension of the orbits is locally constant,
in a certain precise way. The F -structure is said to be a T -structure if the Galois
coverings can all be taken to be trivial. (We review these definitions in Section 2.)

The vanishing of MinVol(M) implies, via Chern-Weil theory, that the Euler char-
acteristic and all the Pontryagin numbers of M are zero. The vanishing of VolK(M)
implies that the simplicial volume of M is zero. Recall that the simplicial volume ||M ||
of a closed orientable manifold M is defined as the infimum of

∑
i |ri| where ri are the

coefficients of a real cycle representing the fundamental class of M . In fact, ||M || = 0
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if there exists a sequence of metrics gi with Vol(M, gi) → 0 and Ricgi
≥ −(n − 1)

[5]. The vanishing of the simplicial volume is the only known topological obstruc-
tion to VolK(M) = 0. The topology of closed orientable 3-manifolds with VolK = 0
has been determined by T. Shioya and T. Yamaguchi [15, 16]. However, there could
be smooth obstructions, as it occurs in dimension 4. It is a striking consequence of
Seiberg-Witten theory [10, 11] that if M is a minimal compact complex surface of
general type then

inf
g

{
Vol(M, g) :

sg

12
≥ −1

}
=

2π2

9
c2
1(M),

where sg is the scalar curvature of g and c1(M) is the first Chern class of M .
In [13] we showed that if M admits an arbitrary F -structure, then VolK(M) = 0.

We also constructed T -structures on several classes of manifolds, including compact
complex elliptic surfaces and any closed simply connected 5-manifold.

In [14] the second author showed that if M is a closed simply connected manifold
of dimension ≥ 5, then

inf
g

{
Vol(M, g) :

sg

n(n− 1)
≥ −1

}
= 0.

More recently, C. Sung [18] extended this result by showing that

inf
g

{
Vol(M, g) : λKg + (1− λ)

sg

n(n− 1)
≥ −1

}
= 0

for any λ ∈ [0, 1). All these results naturally raise the following question:

Question 1. Let M be a closed simply connected manifold of dimension n ≥ 5. Is it
true that VolK(M) = 0?

Since every closed simply connected 5-manifold admits a T -structure, we know
that Question 1 has a positive answer for n = 5. One can also speculate that if M
is odd-dimensional or if all its characteristic numbers are zero, then MinVol(M) = 0.
For a large class of highly connected manifolds, including certain exotic spheres which
do not bound spin manifolds, this has been verified by C.Z. Tan [19].

Here we show:

Theorem A. Any closed connected spin manifold M is spin cobordant to a manifold
N with VolK(N) = 0.

We remark that Gromov and Lawson [6] proved that if M and N are spin cobordant
and M is simply connected and of dimension ≥ 5, then M is obtained from N by
performing surgery on spheres of codimension ≥ 3. If M is not spin and in the same
oriented cobordism class as N , then M can also be obtained from N by performing
surgery on spheres of codimension ≥ 3 [6, Proof of Theorem C]. It follows easily from
the description of the generators of ΩSO

∗ as explained in [6, Proof of Theorem C] that
every class in ΩSO

∗ contains a manifold N with VolK(N) = 0. Thus if one can show
that the vanishing of VolK is invariant under surgery on spheres of codimension ≥ 3,
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Theorem A would imply that Question 1 has an affirmative answer. We explicitly
state this problem:

Question 2. Let M and N be closed connected manifolds of dimension n ≥ 5.
Suppose VolK(N) = 0 and M is obtained from N by performing surgery on a sphere
of codimension ≥ 3. Is it true that VolK(M) = 0?

The proof of Theorem A is based on two novel ingredients. The first ingredient
is the description of an F -structure on an 8-manifold J8 with Â-genus equal to 1 (a
Bott manifold). The manifold J8 is one of the examples of 8-manifolds with special
holonomy Spin(7) constructed by D. Joyce in [9]. In fact, we exhibit F -structures
on several manifolds with special holonomy. These manifolds are all obtained by
Kummer-type constructions, desingularizing a torus orbifold. Besides the K3 and
J8 we exhibit polarized F -structures on a Calabi-Yau 3-fold with zero Euler charac-
teristic and on a 7-manifold with holonomy G2. The case of the Calabi-Yau 3-fold
is particularly interesting because it provides an example of a closed simply con-
nected 6-manifold manifold M = X#Y with MinVol(M) = 0, but with MinVol(X)
and MinVol(Y ) non-zero. Also X is obtained from S6 by surgery on a complicated
configuration of 3-spheres. We explain these observations in Remark 3.4.

To our knowledge these examples of F -structures on manifolds with special holo-
nomy constitute the first ones, besides the motivating case of flat manifolds, in which
one can really appreciate the advantage of the concept of F -structure as opposed to
the simpler concept of T -structure. On the other hand we do not know of an example
of a manifold which carries an F -structure but not a T -structure.

We observe that the existence of F -structures on K3 and J8 implies right away by
our results in [13] that VolK(K3) = VolK(J8) = 0. This fact seems to simplify some
of the proofs of the main results in [14, 18].

The second novel ingredient in the proof of Theorem A is the following:

Theorem B. Let M = X#E where X is an n-manifold, n ≥ 3, which admits an
F-structure with one trivial Galois covering and E is the total space of a fiber bundle
with fiber F and structure group G, where F has a G-invariant metric of non-negative
sectional curvature and G is a compact connected Lie group. Then VolK(M) = 0.

In fact, it seems plausible that a manifold like E might always admit an F -structure.
If that were the case, then we could deduce the vanishing of VolK(X#E) from [13,
Theorem 5.9] which asserts that the connected sum of two manifolds with F -structures
admits an F -structure, provided that the F -structures have at least one open set with
a trivial Galois covering. The proof of Theorem B uses a mixture of the collapsing
techniques of Cheeger and Gromov with computations of K. Fukaya and T. Yamaguchi
[4, Theorem 0.18] (see also [21, Example 1.2]) for the case of bundles like E. One can
see why Theorem B is important in the proof of Theorem A by recalling a celebrated
result of S. Stolz [17]: a closed spin manifold M with zero KO-characteristic number
α(M) ∈ KO∗(point) is spin cobordant to the total space of a fibre bundle with fibre
HP2 and structure group PSp(3).
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It is also important to note that in the condition VolK = 0 there is no implication
on the diameter of the manifold; there are plenty of examples of manifolds which
are not almost non-negatively curved but nevertheless can be volume-collapsed with
curvature bounded from below (note for instance that for any closed manifold M ,

VolK(S2 ×M) = 0). One does not expect spin manifolds with non-zero Â-genus like
K3 and J8 to be almost non-negatively curved (see [12]) nor do we expect such a
conclusion for manifolds obtained as connected sums as in the previous paragraph.

Finally we mention that the existence of F -structures also implies the vanishing of
the minimal entropy h(M) which is given by the infimum of the topological entropy
of the geodesic flow of a metric g, as g ranges over all metrics with volume 1 [13].
Most likely Theorem A holds also for h(M), but this would require to prove a result
like Theorem B for minimal entropy. We do not pursue this issue here. What we do
obtain right away is h(K3) = h(J8) = 0 as well as zero minimal entropy for all the
manifolds with special holonomy described in Section 3.

Acknowledgements: The second author thanks the Department of Pure Mathemat-
ics and Mathematical Statistics at the University of Cambridge and Trinity College
for hospitality and financial support while this work was in progress.

2. Preliminaries on F-structures

The notion of an F -structure was first introduced by J. Cheeger and M. Gromov
in [5, 2, 3]. Although the definition is more elegantly expressed in terms of sheaves
of tori and local actions of them, in order to construct examples one usually uses
equivalent definitions in terms of an open cover of the manifold and torus actions on
finite Galois coverings of them. Since an important part of this article will be devoted
to explicit constructions of F -structures we begin by giving the definition that we will
use.

An F -structure on a closed manifold M is given by the following data and condi-
tions:

(1) a finite open cover {U1, . . . , UN} of M ;

(2) πi : Ũi → Ui is a finite Galois covering with group of deck transformations Γi,
1 ≤ i ≤ N ;

(3) a smooth torus action with finite kernel of the ki-dimensional torus, φi : T ki →
Diff(Ũi), 1 ≤ i ≤ N ;

(4) a homomorphism Ψi : Γi → Aut(T ki) such that

γ(φi(t)(x)) = φi(Ψi(γ)(t))(γx)

for all γ ∈ Γi, t ∈ T ki and x ∈ Ũi;
(5) for any finite sub-collection {Ui1 , . . . , Uil} such that Ui1...il := Ui1∩· · ·∩Uil 6= ∅

the following compatibility condition holds: let Ũi1...il be the set of all points

(xi1 , . . . , xil) ∈ Ũi1 × · · · × Ũil such that πi1(xi1) = · · · = πil(xil). The set

Ũi1...il covers π−1
ij

(Ui1...il) ⊂ Ũij for all 1 ≤ j ≤ l. Then we require that φij
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leaves π−1
ij

(Ui1...il) invariant and it lifts to an action on Ũi1...il such that all
lifted actions commute.

A subset S ⊂ M is called invariant if for any y ∈ S∩Ui, any x ∈ Ũi with πi(x) = y
and any t ∈ T ki , we have πi(φi(t)(x)) ∈ S. The orbit of a point in M is the minimal
invariant set containing the point. The F -structure is called polarized if given any
subset I ⊂ {1, . . . , N}, if U is the intersection of the U ′

is with i ∈ I (assumed non-
empty) and V is the union of the U ′

is with i ∈ Ic, then the dimension of the orbits is
constant in U − V . The simplest case in which the structure is polarized is when all
the torus actions appearing in the definition are locally free. An F -structure is called
a T -structure if all the Galois coverings are trivial.

We know of no previous example of an F -structure which is not a T -structure or
the F -structure on a flat manifold given by the holonomy covering. We will construct
in the following section a number of F -structures on some interesting manifolds for
which one of the Galois coverings is not trivial. It is also not known to the authors
if those manifolds admit any T -structure, except for the case of the K3 surface for
which a T -structure has been constructed in [13, Theorem 5.10]). It is important to
note that in all these examples some of the Galois coverings (actually all but one) are
trivial: this is needed in order to be able to construct F -structures on their connected
sums as in [13, Theorem 5.9].

3. An exhibition of F-structures

All the examples below will be desingularizations of torus orbifolds as in [7, 8, 9].
The singularities will be resolved using exclusively the Eguchi-Hanson space X which
is just a 4-manifold diffeomorphic to T ∗S2 or to the blow up of C2/{±1}. For the sake
of clarity we will display the F -structures in explicit cases although one can proceed
in essentially the same way in more general cases.

3.1. The K3 surface. The first exhibit in our gallery is the K3 surface. It is already
known that the K3 surface, as any compact complex elliptic surface, admits a T -
structure [13, Theorem 5.10]. In this subsection we will put an F -structure on the
K3 surface described by the Kummer construction. This will give a simpler way to
see such a structure on the surface and will also provide a simple example for the
constructions in the following sections.

The K3 surface can be obtained as follows: first consider the map J = −1 : T4 →
T4, an involution of the four-dimensional torus T4 = R4/Z4. The involution has 16
fixed points, those which have each coordinate equal to 0 or 1/2. Let P be the fixed
point set of J . Then T4 − P is invariant through J and J acts there without fixed
points. The quotient (T4−P )/J is a smooth manifold with 16 ends diffeomorphic to
RP3 × R. The K3 surface is obtained by attaching a copy of X = T ∗S2 to each one
of the ends.

We describe an F -structure on the K3 surface. Let A1 be the circle action on T4

given by x1 7→ x1 + θ where θ ∈ R/Z. For ε > 0 small, let

Û := {(x1, . . . , x4) ∈ T4 : d((x2, x3), (p1, p2)) > ε/2 with pi = 0 or 1/2}.
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The open set Û is invariant through J and A1. Let U := Û/J . The set U is an open

subset of K3 and Û is a 2 : 1 covering of U . The homomorphism Ψ : {Id, J} →
Aut(S1) given by

Ψ(J)(t) = −t

satisfies condition (4) in the definition of F -structure.
Let

V1 := {(x1, . . . , x4) ∈ T4 : d((x2, x3), (0, 0)) < ε}.
And define also V2, V3 and V4 replacing (0, 0) by (0, 1/2), (1/2, 0) and (1/2, 1/2). Each
Vi is an open set of T4 diffeomorphic to D2 × T2. Let Bi be the circle action on Vi

given by the obvious action on the D2-factor. The action Bi commutes with the
action A1 and with J , and so it gives an action on (Vi−P )/J , which we will also call
Bi. The set (Vi − P )/J is an open subset of K3 with 4 ends diffeomorphic to RP3.
On each of these ends the action of Bi is just the multiplication on two coordinates
of S3 which descends to an action on RP3.

Finally in a small metric ball around each of the points in P consider the usual
Hopf action on S3 which descends to RP3. Call this action Ci; it commutes with Bi

and it extends to the whole X.
The open subsets U, V1, V2, V3, V4 and the 16 copies of X cover the whole K3 and

the circle actions A1, Bi, Cj define an F -structure.

3.2. An F-structure on J8. This would be the main attraction of our exhibition.
The existence of such a structure plays a key role in the proof of Theorem A as we
explained in the introduction.

Consider the following involutions of the torus T8 = R8/Z8:

α(x1, . . . , x8) = (−x1,−x2,−x3,−x4, x5, x6, x7, x8),

β(x1, . . . , x8) = (x1, x2, x3, x4,−x5,−x6,−x7,−x8) ,

γ(x1, . . . , x8) =

(
1

2
− x1,

1

2
− x2, x3, x4,

1

2
− x5,

1

2
− x6, x7, x8

)
δ(1, . . . , x8) =

(
−x1, x2,

1

2
− x3, x4,

1

2
− x5, x6,

1

2
− x7, x8

)
.

The fixed point sets of these involutions are:

Sα = {(p1, p2, p3, p4, x5, x6, x7, x8) : pi = 0 or 1/2},
Sβ = {(x1, x2, x3, x4, p5, p6, p7, p8) : pi = 0 or 1/2},
Sγ = {(q1, q2, x3, x4, q5, q6, x7, x8) : qi = 1/4 or 3/4},
Sδ = {(p1, x2, q3, x4, q5, x6, q7, x8) : p1 = 0 or 1/2, qi = 1/4 or 3/4}.
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It is also easy to see that the involutions commute and generate a group Γ isomor-
phic to (Z2)

4. The fixed point set of αβ is Sα ∩ Sβ while all the other elements of Γ
are fixed point free [9, Example 1]. We will call J8 the manifold obtained by resolving
the singularities of T8/Γ as below.

The set Sγ is given by 16 copies of T4 and the group generated by α, β and δ
divides these into 2 groups of 8. Note also that Sγ is disjoint from Sα, Sβ and Sδ.
A neighbourhood of Sγ then projects to T8/Γ onto 2 copies of T4 × (B4/±1). This
singularity will be resolved by replacing this open subset by T4 × X. We will then
have 2 open subsets V1, V2 on J8 which are diffeomorphic to T4 × X. Note that if
Z is the zero section of X = T ∗S2 then T4 × (X − Z) lifts via the projection to 8
disjoint copies of T4 × (B4 − {0}) in T8. The circle action on the last coordinate of
the T4-factor will lift to each of the connected components as either as ± the circle
action A8 on the last coordinate of T8 (A8 is given by x8 7→ x8 + θ where θ ∈ R/Z).

The set Sδ is resolved in the same way, producing open subsets V3 and V4 of J8

where we also consider the circle action induced by A8.
The sets Sα and Sβ are also each of them equal to 16 copies of T4. The 16 T4’s

corresponding to Sα are divided into 4 groups of 4 by the action of the group generated
by γ and δ; and the same happens with Sβ. The sets Sα and Sβ intersect in 256 points
which are divided into 64 groups of 4 points by the action of γ and δ. Each of the
components of Sα is invariant by β and β acts on them as multiplication by −1; and
the same is true interchanging α and β. Therefore in resolving the singularities Sα

we obtain 4 copies of X × K3 and resolving Sβ we obtain 4 copies of K3 × X (see
the construction of K3 in the previous section). A connected component of the first
type will intersect a connected component of the second in 4 copies of X ×X.

Consider the open subset Û ⊂ T8 given by

Û ={x ∈ T8 : d((x1, x2, x5, x6), (q1, q2, q5, q6)) > ε/2,

d((x1, x3, x5, x7), (p1, q3, q5, q7)) > ε/2,

d((x1, x3), (p1, p3)) > ε/2 and

d((x5, x7), (p5, p7) > ε/2, where

pi = 0 or 1/2, qi = 1/4 or 3/4}.

The set Û is an open subset of T8 which is disjoint from Sα, Sβ, Sγ and Sδ and is

invariant through A8 and Γ. Then U = Û/Γ is an open subset of J8 and π : Û → U
is an 8 : 1 covering with deck transformation group Γ. We consider the action A8

on Û . The homomorphism Ψ : Γ → Aut(S1) given by Ψ(α) = Ψ(γ) = Ψ(δ) = Id
and Ψ(β)(t) = −t will satisfy the compatibility condition (4) in the definition of
F -structure.

As we mentioned before, the action A8 will give a circle action on the open subsets
corresponding to the resolutions of Sγ and Sδ; the preimage of the end of each X×T4

(or T4×X) under the projection will have 8 connected components: in some of them
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we will have the action of A8 and in some of them we will have −A8. Alternatively,
one could also put the Hopf action on X.

Fix pi = 0 or 1/2 and consider a small ball V around (p1, p2, p3, p4) ∈ T4. Then V ×
T4 contains one of the components of Sα. Note that β will act here as multiplication
by −1 in the T4 factor. After resolving the singularities in the projection T8/Γ we will
have an open subset of J8 diffeomorphic to X ×K3. In J8 there are 4 open subsets
of this type. Call them W1, W2, W3 and W4. And consider on them the Hopf action
on the X-factor. By considering the last 4 coordinates instead of the first, we obtain
open subsets W5, W6, W7 and W8 which contain (the resolutions of) the singularities
Sβ. And we put again the Hopf action on the X-factor. For each i ≤ 4, j ≥ 5, Wi

will intersect Wj in 4 copies of X ×X, which will be invariant through both actions.
These actions clearly commute.

Now consider

V̂1,3 = {x ∈ T8 : d((x1, x3), (p1, p3)) < ε, pi = 0 or 1/2} − S,

where S is the union of Sα and Sβ. And let

V̂5,7 = {x ∈ T8 : d((x5, x7), (p5, p7)) < ε, pi = 0 or 1/2} − S.

Note that V̂1,3 and V̂5,7 are invariant through Γ.

Then V̂1,3/Γ and V̂5,7/Γ together with U, V1, V2, V3, V4, W1, . . . ,W8 cover the whole

of J8. The set V̂1,3/Γ is diffeomorphic to

(D2 × T2)/{±1} × T4/{±1} − S/Γ

and we put in this set the canonical circle action on the D2-factor (it clearly leaves
(D2 × T2)/{±1} × T4/{±1} ∩ S/Γ invariant).

This action lifts to the corresponding open subset of Û and commutes there with
the A8-action. We do the same thing for V̂5,7/Γ. It is easy to see that these two
actions will commute between themselves and with the actions on the Wi’s in the
corresponding intersections.

In summary: we covered J8 with 15 open subsets. The sets U , V̂1,3/Γ andV̂5,7/Γ are
obtained as quotients of T8 by Γ (away from fixed points). On U we have the only non-
trivial covering for the F -structure. The sets V1, V2, V3, V4 are open neighbourhoods
of the resolutions of the singularities Sγ and Sδ. They intersect U but are disjoint

from V̂1,3/Γ and V̂5,7/Γ. The sets W1, . . . ,W8 cover the resolutions of the singularities

Sα and Sβ. They only intersect V̂1,3/Γ and V̂5,7/Γ.

3.3. A polarized F-structure on a closed 7-manifold with special holonomy
G2. An interesting addition to the collection.
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Let (x1, . . . , x7) be coordinates in T = R7/Z7 where xi ∈ R/Z. Let α, β and γ be
involutions of T7 defined by

α(x1, . . . , x7) = (−x1,−x2,−x3,−x4, x5, x6, x7),

β(x1, . . . , x7) =

(
−x1,

1

2
− x2, x3, x4,−x5,−x6, x7

)
,

γ(x1, . . . , x7) =

(
1

2
− x1, x2,

1

2
− x3, x4,−x5, x6,−x7

)
.

One can easily check that α, β and γ commute and hence they generate a group of
isometries Γ of the flat torus T7 which is isomorphic to Z3

2. The following elementary
properties of the action of Γ are proved in [7]. The only non-trivial elements of Γ
that have fixed points are α, β and γ. The fixed points of α in T7 are 16 copies of
T3 and the group generated by β and γ acts freely on the set of 16 tori fixed by α.
Similarly the fixed points of β, γ in T7 are each 16 copies of T3, and the groups 〈α, γ〉
and 〈α, β〉 act freely on the sets of 16 tori fixed by β and γ respectively.

Note that the 48 tori that make the set S of points that are fixed by some non-
trivial element in Γ are all disjoint. The singular set S/Γ in the orbifold T7/Γ is
exactly the image of S and consists of 12 copies of T3. For ε sufficiently small each
component of S/Γ has a neighbourhood isometric to T3×B4

ε/{±1}. If we now resolve
the singularities by replacing T3×B4

ε/{±1} by T3×X, where X is the Eguchi-Hanson
space, we obtain a closed simply connected 7-manifold M which admits a family of
metrics with holonomy G2 [8]. The manifold M has betti numbers b2 = 12, b3 = 43
and non-zero Pontryagin class p1(M) ∈ H4(M, Z).

Consider the following open sets in T7:

W α(ε) := {(x1, . . . , x7) ∈ T7 : d((x1, x2, x3), (a1, a2, a3)) < ε

and ai = 0, 1/2, i = 1, 2, 3};

W β(ε) := {(x1, . . . , x7) ∈ T7 : d((x1, x2, x5, x6), (a1, a2, a3, a4)) < ε

and ai = 0, 1/2, i = 1, 5, 6, a2 = 1/4, 3/4};

W γ(ε) := {(x1, . . . , x7) ∈ T7 : d((x1, x3, x5), (a1, a3, a5)) < ε

and ai = 1/4, 3/4, i = 1, 3, a5 = 0, 1/2}.

Note that for ε small these sets are pairwise disjoint. Note also that Γ leaves the 3
sets invariant. The sets Wα(ε) and W δ(ε) both have 8 connected components which
are copies of T4 ×B3

ε , while W β(ε) has 16 connected components which are copies of
T3 ×B4

ε .
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Now consider the open set V in T7 given by the complement of the closure of
Wα(ε/2)∪W β(ε/2)∪W β(ε/2). Observe that Γ acts freely on V and V/Γ is an open
set in M .

Let π : T7 → T7/Γ be the projection map. The set π(W α(ε)) will be an open set
with 2 connected components which contain the 4 singular 3-tori corresponding to α.
When we resolve these singularities, π(Wα(α)) is modified into an open set Uα(ε) of
M . Similarly we obtain open sets Uβ(ε) and U δ(ε) in M . By construction, the open
sets Uα, Uβ, U δ and V/Γ cover M .

We now describe the torus actions. Let Ai be the circle action on T7 given by
xi 7→ xi + θ where θ ∈ R/Z. Observe that the action of T 2 given by A4 × A7 leaves
invariant W α(ε), W β(ε), W δ(ε) and V (in fact, this property explains why we have
taken the above as relevant open sets).

Let us describe the circle action on Uα(ε). Note that A7 commutes with α and
β. Since δ swaps the connected components of Wα(ε) we can define using A7 and
x7 7→ x7 − θ a circle action on Wα(ε) that will commute also with δ. This action
descends to π(W α(ε)) and since the resolution of the singularities only affects the
first 4 coordinates we obtain a circle action φα on Uα(ε).

Arguing similarly with A4 and α for the sets Uβ(ε) and U δ(ε) we obtain circle
actions φβ and φδ on Uβ(ε) and U δ(ε) respectively.

On the set V/Γ we consider the action of A4 × A7 on V . The homomorphism
Ψ : Γ → Aut(T 2) given by

Ψ(α)(t1, t2) = (−t1, t2),

Ψ(β)(t1, t2) = (t1, t2),

Ψ(δ)(t1, t2) = (t1,−t2)

will clearly satisfy condition (4) in the definition of F -structure.
Condition (5) in the definition of F -structure follows quite easily from the fact that

the only possible overlaps are (V/Γ) ∩ Uα, (V/Γ) ∩ Uβ, (V/Γ) ∩ U δ and on them the
actions lift and commute.

Finally, all actions are locally free and hence the F -structure is polarized.

3.4. A polarized F-structure on a Calabi-Yau 3-fold. The final exhibit.
Let (x1, . . . , x6) be coordinates in T6 = R6/Z6 where xi ∈ R/Z. Let α and β be

involutions of T6 defined by

α(x1, . . . , x6) = (−x1,−x2,−x3,−x4, x5, x6),

β(x1, . . . , x6) =

(
1

2
− x1,−x2, x3, x4,−x5,−x6

)
.

As before, one can easily check that α and β commute and hence they generate a
group of isometries Γ of the flat torus T6 which is isomorphic to Z4

2. The singular set of
T6/Γ consists of 16 copies of T2 each with a neighbourhood isometric to T2×B4

ε/{±1}.
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Desingularizing these using the Eguchi-Hanson space yields a closed simply connected
6-manifold M which carries a family of metrics with holonomy SU(3) [8, Example 2].
The manifold M has betti numbers b2 = 19, b3 = 40 and thus zero Euler characteristic.

Consider the following open sets in T6:

Wα(ε) := {(x1, . . . , x6) ∈ T6 : d((x1, x2, x3), (a1, a2, a3)) < ε

and ai = 0, 1/2, i = 1, 2, 3};

W β(ε) := {(x1, . . . , x6) ∈ T6 : d((x1, x2, x5), (a1, a2, a5)) < ε

and ai = 0, 1/2, i = 2, 5, a1 = 1/4, 3/4};

Note that for ε small these sets are disjoint and Γ leaves them invariant. The sets
W α(ε) and W β(ε) both have 8 connected components which are copies of T3 ×B3

ε .
Now consider the open set V in T6 given by the complement of the closure of

W α(ε/2) ∪W β(ε/2). Observe that Γ acts freely on V and V/Γ is an open set in M .
Let π : T6 → T6/Γ be the projection map. The set π(W α(ε)) will be an open set

with 4 connected components which contain the 8 singular 2-tori corresponding to α.
When we resolve these singularities, π(Wα(α)) is modified into an open set Uα(ε) of
M . Similarly we obtain an open set Uβ(ε) in M . By construction, the open sets Uα,
Uβ and V/Γ cover M .

We now describe the torus actions. Observe that the action of T 2 given by A4×A6

leaves invariant Wα(ε), W β(ε) and V .
As before we get a circle action on Uα(ε) as follows. Note that A6 commutes with

α. Since β swaps the connected component of Wα(ε) we can define using A6 and
x6 7→ x6 − θ a circle action on Wα(ε) that will commute also with β. This action
descends to π(Wα(ε)) and since the resolution of the singularities only affects the
first 4 coordinates we obtain a circle action φα on Uα(ε).

Arguing similarly with A4 and α for the set Uβ(ε) we obtain a circle action φβ on
Uβ(ε).

On the set V/Γ we consider the action of A4 × A6 on V . The homomorphism
Ψ : Γ → Aut(T 2) given by

Ψ(α)(t1, t2) = (−t1, t2),

Ψ(β)(t1, t2) = (t1,−t2).

will clearly satisfy condition (4) in the definition of F -structure.
Condition (5) in the definition of F -structure follows quite easily from the fact that

the only possible overlaps are (V/Γ) ∩ Uα and (V/Γ) ∩ Uβ and on them the actions
lift and commute.

Finally, all actions are locally free and hence the F -structure is polarized.
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Remark 3.1. By Wall’s splitting theorem for simply connected 6-manifolds [20,
Theorem 1], M can be written as M = X#Y , where X has b3 = 0 and Y is a
connected sum of 20 copies of S3 × S3. Clearly X has positive Euler characteristic
and Y has negative Euler characteristic. Hence the minimal volumes MinVol of X and
Y are non-zero, but MinVol(M) = 0 since M admits a polarized F -structure. Note
that S3 × S3#S3 × S3 gives an example of manifold with non-zero minimal volume,
but MinVol(S3 × S3) = 0. We conclude that the minimal volume does not behave
well under connected sums. According to Wall [20, Theorem 2], the manifold X can
be obtained from S6 by performing surgery on a disjoint set of (framed) embedded
3-spheres. The spheres produce a link in S6 and one can read off the cup form on
X (or M) from certain link invariants associated with the link ([20, Theorem 4]).
The group H2(M, R) admits a basis with 19 elements, 16 of which come from the
desingularization of T2 × B4

ε/{±1}, and the other 3 come from Γ-invariant constant
2-forms in T6 [8, Section 2.3]. If ei is any of these 19 elements, one can check that
e3

i = 0. Since M is a Calabi-Yau 3-fold, the first Pontryagin class p1 of M is −2c2

where c2 is the second Chern class of M and the latter must be non-zero. If we
consider p1 as a linear form on H2(M, R) we conclude that p1(ei) is not zero for some
i and by [20, Theorem 4], the class ei gives a rise to an embedding of S3 in S6 which
is knotted. In principle one could compute completely the cup form for this example
as well as all the link invariants, but we do not pursue this matter here.

4. Collapsing volume with curvature bounded from below

In this section we prove Theorem B.

Lemma 4.1. Let s : [2, 4] → R be an non-decreasing smooth function which vanishes
close to 2, is equal to 1 close to 4, s′ ≤ 1 and s′′ ≥ −2. Let h be a metric of non-
negative sectional curvature on a manifold F . For a small positive number δ, the
metric g = dt2 + δsh on X = [2, 4] × F has sectional curvature bounded from below
by −4 log2(δ).

Proof. The metric g is a warped product metric. Every plane P ⊂ TX has a g-
orthonormal basis of the form x + v, w, where v and w are tangent to F and x is
horizontal. Let f = δs. The sectional curvature Kg(P ) is then computed by Bishop
and O’Neill [1, page 27]:

Kg(P ) = −f ′′(t)

f(t)
g(x, x) +

Kh(Q)− (f ′(t))2

f 2(t)
g(v, v)

where Q is the plane spanned by v and w. It follows that

Kg(P ) ≥ −f ′′(t)

f(t)
− (f ′(t))2

f 2(t)
.

Now f ′ = s′ log(δ)f and f ′′ = s′′ log(δ)f + s′2 log2(δ)f . The lemma follows.
�
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Let G be a compact connected Lie group and E be the total space of a fiber bundle
with structure group G and fiber F such that F admits a G-invariant metric gF

of non-negative sectional curvature. Then there is a metric on E for which the G-
action is isometric and the fibers are totally geodesic and have non-negative sectional
curvature. If we do not consider the diameters of the manifolds, the computations
of K. Fukaya and T. Yamaguchi [4, Theorem 0.18] show that by shrinking the fibers
one obtains a sequence of metrics on E with sectional curvature uniformly bounded
from below and collapsing volume. In [13] the authors showed that the same is true
for manifolds which admit an F -structure; the sequence of metrics is obtained by
shrinking the orbits of the F -structure (away from the fixed points of the local torus
actions). In the next lemma we will prove that one can combine both cases at least
when in one of the open subsets of the F -structure the covering is trivial (i.e. on one
of the open subsets there is a torus acting). Note that one can assume in this case
that the torus acting is 1-dimensional.

Theorem B. Let M = X#E where X is an n-manifold, n ≥ 3, which admits an
F-structure with one trivial covering and E is the total space of a fiber bundle with
fiber F and structure group G, where F has a G-invariant metric of non-negative
sectional curvature and G is a compact connected Lie Group. Then VolK(M) = 0.

Proof. Let g be a metric on E such that all the fibers are totally geodesic and isometric
to some fixed Riemannian manifold (F, gF ) of non-negative sectional curvature (on
which G acts by isometries). We will moreover assume that over some disk Bk in the
base space, the bundle is trivial and the metric is a nice Riemannian product; namely,
there is an open subset of E which is diffeomorphic to Bk × F and the restriction
of g is the product of gF and a metric of non-negative sectional curvature on Bk for
which the end is isometric to [1, 5]× Sk−1.

Inside Bk consider the sets V1 = [4, 5]× Sk−1, V2 = [2, 4]× Sk−1, V3 = [1, 2]× Sk−1

and B2 = B(0, 2) ⊂ Bk.
To perform the connected sum of X and E we will pick a point e ∈ V3 × F and

a point x in the open subset of X with a trivial covering, x a regular point for the
corresponding circle action. Pick any linear circle action on Sk−1 and use it to define
a circle action on Bk×F . Assume that e lies on a regular orbit for this action. On the
connected sum of X with B2×F we construct an F -structure as in [13, Theorem 5.9]:
consider tubular neighbourhoods of the orbits through x and e, S1×BX and S1×BE.
One then uses that S1 ×Bk−1#S1 ×Bk−1 is diffeomorphic to S1 ×Bk−1 −Sk−2 ×B2

to construct an F -structure on the connected sum of S1 × BX and S1 × BE which
will match the original actions on both connected components of the boundary.

Define a Riemannian metric h on M so that it coincides with g away from V3 × F
and is invariant for the F -structure above. This is achieved by the same procedure
as in [2, Lemma 1.3], averaging by the local torus actions a metric which coincides
with g away from V3 × F .

Fix δ small. We are going to construct a metric hδ on M .
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Let us denote by X∗ the part of M where we have the F -structure; namely, the
connected sum of B2×F with X. On X∗ we proceed as in [13]: we consider X∗×TN

(for some appropriate N) and define a diagonal polarized F -structure on X∗ × TN .
Namely, if for the F -structure we have open subsets U1, . . . , Ul where the correspond-
ing local torus action is not locally free we put N = k1 + · · ·+kl and on each Ui×TN

we consider the corresponding diagonal action. On X∗ × TN all the local actions are
locally free and we can perform the construction of Cheeger and Gromov [2, Section
3] obtaining a sequence of metrics with bounded sectional curvature. Recall that
the sequence of metrics is obtained by first multiplying the metric by log2(δ) and
then multiplying by δ (or more precisely by some appropriate function of δ) in the
direction of the orbits. Then we take the quotient by the TN -action. The result is a
sequence of metrics h0

δ on X∗ so that Vol(X∗,h0
δ) → 0 while the sectional curvature

remains bounded from below (this computation is carried out in [13]). Moreover on
the boundary the metric h0

δ will be the Riemannian quotient by the S1 action of

log2(δ)
(
gF × dt2|[2−ε,2] × qδ

)
,

where qδ is the metric on Sk−1×S1 obtained from the product metric by multiplying
by δ in the tangent space of the diagonal action.

Away from Bk × F we put the metric h1
δ obtained from log2(δ)g by multiplying

the metric by δ in the directions of the fiber. The fact that the curvature remains
bounded from below follows from the O’Neill formulas as shown in [4, Theorem 0.18]
(see also [21, Example 1.2]). It is also clear that the volume of this region also goes
to 0 with δ.

Finally we have to join h0
δ and h1

δ along [2, 5]× Sk−1 × F . On V1 × F we leave the
metric equal to δ log2(δ)gF on the F -factor and we modify the metric on [4, 5]×Sk−1:
let s1 : [4, 5] → R be a smooth function which is equal to 0 near 5 and equal to 1 near
4, consider the product metric on [4, 5]× Sk−1 × S1 and multiply by δs1 the tangent
space of the diagonal action. Multiplying by log2(δ) and taking the quotient by the
S1-factor we obtain a metric which glues well with h1

δ on one extreme and on the
other extreme will coincide with h0

δ on the V1-factor. It is trivial that the volume
of this region will go to 0 with δ. Cheeger and Gromov [2, Theorem 3.1] prove that
the sequence of metrics on V1 × S1 have bounded sectional curvature as δ tends to
0. Since the sectional curvature does not decrease by Riemannian submersions, the
sectional curvature of the metric on V1 will remain bounded from below.

Now we modify the metric on V2 × F : here we prolong the metric defined at t = 4
in the previous paragraph on the Sk−1-factor and on the [2, 4]× F -factor we put the
metric log2(δ)(dt2 + δs2gF ), where s2 : [2, 4] → R is a smooth function as in Lemma
4.1. The fact that in this region the curvature remains bounded from below follows
from Lemma 4.1. The fact that the volume collapses is clear since the volume of
the Sk−1-factor is already collapsed. This metric will glue well with the previous one
where s2 = 1 and will glue well with h0

δ when s2 = 0.
�
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5. Proof of Theorem A

We need to show that every element of the Spin cobordism ring Ω
Spin
∗ can be repre-

sented by a manifold N with VolK(N) = 0. There is a surjective ring homomorphism

α : Ω
Spin
∗ → KO∗(point). S. Stolz [17] proved that every element in the kernel of α

is represented by the total space of a fiber bundle with fiber HP2 and structure group
PSp(3).

On the other hand if a ∈ KOn then there exists a closed spin manifold X with
an F -structure with one trivial Galois covering such that α[X] = a: if B is a Bott
manifold, multiplication by α([B]) gives an isomorphism between KOn and KOn+8.
Then the construction in Subsection 3.2 proves the claim in dimension ≥ 8 and the
low dimensions can be easily dealt with by hand as in [14, Theorem 2].

Therefore every element of Ω
Spin
∗ can be represented by a manifold of the form

N = E#X where X admits an F -structure with one trivial Galois covering and E
is the total space of a fiber bundle with fiber HP2 and structure group PSp(3). The
theorem follows from Theorem B.
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