GENERICITY OF GEODESIC FLOWS WITH POSITIVE
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ABSTRACT. We show that the set of C*° riemannian metrics on S% or RP? whose geodesic

flow has positive topological entropy is open and dense in the C? topology. The proof is
partially based on an analogue of Franks’ lemma for geodesic flows on surfaces.

To the memory of Michel Herman
1. Introduction

Let M be a closed surface endowed with a C*° riemannian metric g and let ¢ be the
geodesic flow of g. One of the most important dynamical invariants that one can associate
to ¢J to roughly measure its orbit structure complexity is the topological entropy, which
we shall denote by hiop(g). The first question one asks about hiy(g) is whether it vanishes
or not. If hyep(g) > 0 a well known result of A. Katok [25] states that the dynamics of ¢J
presents transverse homoclinic intersections and as a consequence the number of periodic
hyperbolic geodesics grows exponentially with length. Moreover, other conclusions of a
more geometrical nature can be drawn. Given p and ¢ in M and T > 0, define ny(p, q) as
the number of geodesic arcs joining p and g with length < 7. R. Mané showed in [35] that

. 1
lim — log / nr(p,q) dpdq = hop(g),
T—oo T MxM

and therefore if htop(g) > 0, we have that on average the number of arcs between two points
grows exponentially with length. Even better, K. Burns and G.P. Paternain showed in [13]
that there exists a set of positive area in M such that for any pair of points p and ¢ in that
set, nr(p, q) grows exponentially with exponent hi,(g).

When the Euler characteristic of M is negative a result of E.I. Dinaburg [15] ensures that
hiop(g) > 0 for any metric g. Moreover, Katok in [26] showed that htep(g) is greater than
or equal to the topological entropy of a metric of constant negative curvature and the same
area as g, with equality if and only if g itself has constant curvature. Therefore one is left
with the problem of describing the behavior of the functional g +— htep(g) on the two-sphere
(projective space) and the two-torus (Klein bottle). It is well known that these surfaces
admit various completely integrable metrics with zero topological entropy: flat surfaces,
surfaces of revolution, ellipsoids and Poisson spheres. On the other hand V. Donnay [17]
and Petroll [41] showed how to perturb a homoclinic or heteroclinic connection to create
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transverse intersections. Applying these type of perturbations to the case of an ellipsoid with
three distinct axes one obtains convex surfaces with positive topological entropy. Examples
of these type were first given by G. Knieper and H. Weiss in [30]. Explicit real analytic
convex metrics arising from rigid body dynamics were given by Paternain in [39].

We would like to point out that Katok’s theorem mentioned above about the existence
of transverse homoclinic intersections when the topological entropy is positive, together
with the structural stability of horseshoes implies that the set of C°° metrics for which
hiop(g) > 0 is open in the C" topology for all 2 < r < co. Therefore, the relevant question
about topological entropy for surfaces with non-negative Euler characteristic is the following;:
when is the set of C°° metrics with positive topological entropy dense?

Let us recall that a riemannian metric is said to be bumpy if all closed geodesics are
non-degenerate, that is, if the linearized Poincaré map of every closed geodesic does not
admit a root of unity as an eigenvalue. An important tool for proving generic properties
of geodesic flows is the bumpy metric theorem which asserts that the set of C" bumpy
metrics is a residual subset of the set of all C™ metrics endowed with the C” topology for
all 2 <r < oo. The bumpy metric theorem is traditionally attributed to R. Abraham [1],
but see also Anosov’s paper [3]. Recall that a closed geodesic is said to be hyperbolic if its
linearized Poincaré map has no eigenvalue of norm one and it is said to be elliptic if the
eigenvalues of its linearized Poincaré map all have norm one but are not roots of unity. For
a surface with a bumpy metric the closed geodesics are all elliptic or hyperbolic.

Let us recall some facts about heteroclinic orbits. Let SM be the unit sphere bundle of
(M, g). Given two hyperbolic periodic orbits v, 7, of the geodesic flow ¢, a heteroclinic
orbit from 7 to n is an orbit ¢r(#) such that

t—+o00

The orbit ¢g(6) is said to be homoclinic to v if n = . The weak stable and weak unstable
manifolds of the hyperbolic periodic orbit v are defined as

w9 = {0 SM| tim_d(6(6),7) =0},
Wh(q) : = {9 e SM( Jlim_d(:(6),7) =0 }

The sets W*(vy) and W*(v) are n-dimensional ¢;-invariant immersed submanifolds of the
unit sphere bundle, where n = dim M. Then a heteroclinic orbit is an orbit in the in-
tersection W (y) N W#(n). If W¥(v) and W*(n) are transversal at ¢r(f) we say that the
heteroclinic orbit is transverse. A standard argument in dynamical systems (see [27, §6.5.d]
for diffeomorphisms) shows that if a flow contains a transversal homoclinic orbit then it has
positive topological entropy'. (Note that for geodesic flows the closed orbits never reduce
to fixed points.) Moreover, if there is a loop 7o, ..., yn = 7o of orbits such that for each 1,
0 <i < N —1, there is a transverse intersection of W*(~;) with W*(v;41), then 7o has a
homoclinic orbit and, in particular, ¢; has positive entropy.

n fact it contains a hyperbolic basic set (see below).
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For the case of the two-torus classical results of G.A. Hedlund [22] and H.M. Morse [37]
ensure that for a bumpy metric there are always heteroclinic geodesics. In fact, minimal
periodic geodesics are always hyperbolic (for bumpy surfaces) and if we choose in R? a strip
bounded by two periodic minimal geodesics ¢ and ¢~ such that it does not contain other
periodic minimal geodesics, then there exist minimal geodesics ¢ and c¢* such that c is a-
asymptotic to ¢~ and w-asymptotic to ¢t and viceversa for ¢* (cf. [4, theorem 6.8]). If these
heteroclinic connections are not transverse, they can be perturbed using Donnay’s theorem
to easily obtain C" density of metrics with positive topological entropy for all 2 < r < oo,
for the two-torus. Similar arguments can be used for the Klein bottle. Clearly no argument
like the one just described can be applied to surfaces with no real homology.

One of the main goals of this paper is to show:

Theorem A.

The set of C* riemannian metrics g on S* or RP? for which hiop(g) > 0 is dense in the
C? topology.
Corollary B.

The set of C™ riemannian metrics g on S* or RP? for which hiop(g) > 0 is open and

dense in the C? topology. In particular, if g belongs to this open and dense set, then the
number of hyperbolic prime closed geodesics of length <T grows exponentially with T'.

From the previous discussion and the theorem we obtain the following corollary which
answers a question that Detlef Gromoll posed to the second author in 1988.

Corollary C.

There exists a C? open and dense set U of C™ metrics on S? such that for any g € U
there exists a set G of positive g-area such that for any p and q in G we have

. 1
lim T log nT(Z% Q) = htop(g) > 0.

T—o0

The last corollary is sharp in the sense that the sets G with positive g-area cannot be
taken to have full area. In [12], Burns and Paternain constructed an open set of C'*° metrics

on S? for which there exists a positive area set U C M, such that for all (p,q) € U x U,

lim sup 1 log nr(p, q) < hiop.
Tooo T

It seems quite reasonable to conjecture that on any closed manifold the set of C*° rie-
mannian metrics whose geodesic flow exhibits a transverse homoclinic intersection is open
and dense in the C"-topology for any r with 2 < r < co. Besides its intrinsic interest there
is another motivation for looking at this conjecture. Quite recently, A. Delshams, R. de la
Llave and T. Seara proved the existence of orbits of unbounded energy (Arnold diffusion
type of phenomenon) for perturbations of geodesic flows with a transverse homoclinic in-
tersection by generic quasiperiodic potentials on any closed manifold [16]. Hopefully our
methods here can be further developed to the point where they yield Theorem A for any
closed manifold.
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Let us describe the main elements that go into the proof of theorem A. This will clarify
at the same time why we can only obtain density in the C? topology. An important tool for
proving generic properties for geodesic flows is a local perturbation result of W. Klingenberg
and F. Takens [29]. We recall its precise statement in section 2. We shall also see in section 2
that the bumpy metric theorem, together with Klingenberg-Takens and a new perturbation
lemma (cf. lemma 2.6) imply the analogue of the Kupka-Smale theorem for geodesic flows.
Namely, that C"-generic riemannian metrics on a manifold of any dimension have closed
geodesics whose Poincaré maps have generic (r — 1)-jets and the heteroclinic intersections
of their hyperbolic closed geodesics are transversal.

If there exists an elliptic closed geodesic, using the Kupka-Smale theorem we can approx-
imate our metric by one such that the Poincaré map of the elliptic closed geodesic becomes
a generic exact twist map in a small neighborhood of the elliptic fixed point. Then a result
of Le Calvez [31] implies that the twist map has positive topological entropy and therefore
a metric of class C* with a nonhyperbolic closed geodesic can be approximated by one that
has positive topological entropy. Details of this argument are given in section 3. Now we
are faced with the following question: how can we proceed if all the closed geodesics are
hyperbolic and this situation persists in a neighborhood?

It is not known if the two-sphere (or projective space) admits a metric all of whose closed
geodesics are hyperbolic. A fortiori, it is not known if this can happen for an open set
of metrics (see [6] for a thorough discussion about the existence of a nonhyperbolic closed
geodesic).

Let M be a closed surface and let R'(M) be the set of C™ riemannian metrics on M,
r > 4, all of whose closed geodesics are hyperbolic, endowed with the C? topology and let
FYM) = int(R*(M)) be the interior of R!(M) in the C? topology. Given a metric g let
Per(g) be the union of the hyperbolic (prime) periodic orbits of g.

Using Mané’s techniques on dominated splittings in his celebrated paper [34] and an
analogue of Franks’ lemma for geodesic flows we will show:

Theorem D.
If g € FY(M), then the closure Per(g) is a hyperbolic set.

Theorem D together with results of N. Hingston and H.-B Rademacher (cf. [24, 45, 44)),
will show (cf. section 5):

1.1. Theorem.
If a C* metric on a closed surface cannot be C?-approximated by one having an elliptic
periodic orbit, then it has a non-trivial hyperbolic basic set.

This theorem together with the previous discussion will allow us to prove theorem A.

A hyperbolic set of a flow f! (without fixed points) is a compact invariant subset A such
that there is a splitting of the tangent bundle of the phase space TAN = E* @& E* ¢ E¢
which is invariant under the differential of f*: dft(E*%) = E*%, E¢ is spanned by the flow
direction and there exist 0 < A < 1 and N > 0 such that

[N =] < AN, [|dF N e | < AN




GEODESIC FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY 5

A hyperbolic set A is said to be locally mazimal if there exists an open neighborhood U of
A such that
A=) D).
teR
A hyperbolic basic set is a locally maximal hyperbolic set which has a dense orbit. It is said
to be non-trivial if it is not a single closed orbit.

It is well known that non-trivial hyperbolic basic sets have positive topological entropy
[8]. Moreover, the dynamics on such a set can be modelled on suspensions of topological
Markov chains (see [9, 10]). Also, the exponential growth rate of the number of periodic
orbits in the basic set is given by the topological entropy ([8]):

1
hiop(fi|A) = TETOO T log #{ v | v periodic orbit of period < T'}.

(For the case of diffeomorphisms all these facts can be found in [27, Chapter 18].)

Mané’s theory on dominated splittings is based on theorem 5.1 below about families of
periodic sequences of linear maps: if when perturbing each linear map of such a family, the
return linear maps remain hyperbolic, then their stable and unstable subspaces satisfy a
uniform bound

(1) 17N s

TN ]| < A < 1,

for a fixed iterate N (eventually smaller than the periods), where T is the differential of
our dynamical system. A splitting satisfying the uniform bound (1) is called a dominated
splitting. The uniform bound (1) implies the continuity of the splitting, i.e. a dominated
splitting on an invariant subset A of a dynamical system extends continuously to the closure
A.

The family of (symplectic) linear maps in our situation will be the following. Consider
a periodic orbit 7 of the geodesic flow and cut it into segments of length 7(7) between p
and 2p for some p > 0 which is less than the injectivity radius . Construct normal local
transversal sections passing through the cutting points. Our family will be given by the set
of all linearized Poincaré maps between consecutive sections (cf. proof of Proposition 5.5).

In order to apply theorem 5.1, we first have to change “linear map” to “symplectic linear
map” (cf. lemma 5.4). Then we have to be able to modify independently each linearized
Poincaré map of time 7 on the periodic orbits, covering a neighborhood of fixed radius of
the original linearized Poincaré map. This is done with the analogue of Franks’ lemma for
geodesic flows (cf. section 4). Thus we obtain a dominated splitting on the closure of the
set of C? persistently hyperbolic closed geodesics.

In Contreras [14] it is shown that a dominated invariant splitting £ @ F on a non-
wandering (2(A) = A) compact invariant set A of a symplectic diffeomorphism is hyperbolic,
provided that F and F have the same dimension. This is also proved in Ruggiero [48], when
the subspaces E' and F' are assumed to be lagrangian.

A result of N. Hingston [24] (cf. also Rademacher [24, 45, 44]) states that if all the periodic
orbits of a metric in S? are hyperbolic, then they are infinite in number. Assuming that
they are C2-persistently hyperbolic, the theory above and Smale’s spectral decomposition
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theorem imply that their closure contains a non-trivial basic set. (Alternatively, we could
have also used for the 2-sphere the stronger results of Franks and Bangert [5, 19] which

assert that any metric on S? has infinitely many geometrically distinct closed geodesics.)

Unfortunately, Mafié’s techniques only work in the C? topology and that is why in theo-
rem A we can prove density of positive topological entropy on the two-sphere or projective
space only for the C? topology. We remark that the lack of a closing lemma for geodesic
flows prevent us from concluding that the geodesic flow of a metric near g is Anosov as one
would expect.

At this point it seems important to remark that if instead of considering riemannian
metrics we were considering Finsler metrics or hamiltonians, then theorem A would have
been a corollary of well known results for hamiltonians (cf. [38, 46, 47, 51]). However, as
is well known, perturbation results within the set of riemannian metrics are much harder,
basically due to the fact that when we change the metric in a neighborhood of a point of
the manifold we affect all the geodesics leaving from those points; in other words, even if
the size of our neighborhood in the manifold is small, the effect of the perturbation in the
unit sphere bundle could be large. This is the main reason why the closing lemma is not
known for geodesic flows (cf. [43]), even though there is a closing lemma for Finsler metrics.

Another remark concerns the degree of differentiablity of our metrics. Theorem A holds
if instead of requiring our metrics g to be C*° we require them to be C" for r > 2. Given
a C? metric gy, we can approximate it by a C° metric g; in the C? topology. Afterwards
we C?-approximate g; by a C™ metric go with a basic set. Then the structural stability
theorem works for an open C2-neighborhood of g, of C2 metrics. We need g; to be at least
C* in three places: in Franks’ lemma 4.1; in the proof of theorem 1.1; and to make the
Poincaré map of an elliptic closed geodesic a twist map. Observe that we actually find a
hyperbolic basic set and not just hp(g) > 0. Katok’s theorem, which is based on Pesin
theory, requires the riemannian metrics to be of class at least C?*®. This restriction is
overcome in our case by the use of the structural stability theorem. On the other hand for
Corollary C a C'* hypothesis on the metrics is essential because, as in Mané’s formula [35],
Yomdin’s theorem [56] is used.

Related Work. There is an unpublished preprint by H. Weiss [54] that proves that within
the set of positively curved 1/4-pinched metrics, those with positive topological entropy
are C"-dense. Weiss uses a result of G. Thorbergsson [52] which asserts that any positively
curved 1/4-pinched metric on S? has a nonhyperbolic closed geodesic and similar arguments
to the ones we give in section 3, although the Kupka-Smale theorem for geodesic flows is
not proven.

Michel Herman gave a wonderful lecture at IMPA [23] in which he outlined a proof of
the following theorem: within the set of C™ positively curved metrics on S? those with an
elliptic closed geodesic are C?-generic. Among other tools, he used an analogue of Franks’
lemma just like the one we prove in the present paper. As a matter of fact, he not only
pointed out a mistake in a draft of the manuscript we gave him, but he also explained to us
how to solve the self-intersection problem that appears in the proof. This paper is dedicated
to his memory.



GEODESIC FLOWS WITH POSITIVE TOPOLOGICAL ENTROPY 7

It is worth mentioning that Herman’s motivation was a claim by H. Poincaré [42] that
said that any convex surface has a nonhyperbolic closed geodesic without self-intersections.
This claim was proved wrong by A.I. Grjuntal [20].

Acknowlegements. We would like to thank the referees for numerous comments and sugges-
tions for improvement.
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2. Bumpy metrics and the Kupka-Smale theorem.

In this section M is a closed manifold of dimension n. We begin by recalling some
elementary facts. Let ¢f be the geodesic flow of the riemannian metric g acting on SM,
the unit sphere bundle of M. Let w : SM — M be the canonical projection. Non-trivial
closed geodesics on M are in one-to-one correspondence to the periodic orbits of ¢7. For
a closed orbit v = {¢{(2) : t € [0,a]} of period a > 0 we can define the Poincaré map
Py(X,~) as follows: one can choose a local hypersurface ¥ in SM through v and transversal
to v such that there are open neighborhoods ¥, ¥, of v in ¥ and a differentiable mapping
0 : X9 — R with §(v) = a such that the map Py(2,7) : ¥g — X, given by

= Gy (W),

is a diffeomorphism.

Given a closed geodesic ¢ : R/Z — M, all iterates ¢™ : R/Z — M; ¢™(t) = ¢(mt) for a
positive integer m are closed geodesics too. We shall call a closed geodesic prime if it is not
the iterate of a shorter curve. Analogously a closed orbit of ¢J of period a is called prime if
a is the minimal period. A closed orbit v (or the corresponding closed geodesic ¢) is called
non-degenerate if 1 is not an eigenvalue of the linearized Poincaré map P, := dv(O)Pg(Z, 7).
In that case, v is an isolated closed orbit and 7 o« an isolated closed geodesic. Moreover,
one can apply the implicit function theorem to obtain fixed points of the Poincaré map P,.
Thus, for a metric g near g there is a unique closed orbit 49 for ¢J near ~y, given by the
implicit function theorem, that we call the continuation of c.

A riemannian metric g is called bumpy if all the closed orbits of the geodesic flow are non-
degenerate. Since P.m = P this is equivalent to saying that if exp(27i)) is an eigenvalue
of P., then A is irrational. Let us denote by G" the set of metrics of class C" endowed with
the C" topology for r > 2. We state the bumpy metric theorem [1, 3]:

2.1. Theorem.
For 2 <r < oo, the set of bumpy metrics of class C" is a residual subset of G".

The bumpy metric theorem 2.1 clearly implies the following:

2.2. Corollary. There exists a residual set O in G" such that if g € O then for all'T > 0,
the set of periodic orbits of ¢9 with period < T is finite.

The canonical symplectic form w induces a symplectic form on ¥ and P, (X, ) becomes a
symplectic diffeomorphism. Periodic points of Py(X, v) correspond to periodic orbits near ~.
Let N denote the orthogonal complement of v = ¢(0) in the tangent space T (,)M. Recall

that N & N can be identified with the kernel of the canonical contact form and therefore it
is a symplectic vector space with respect to w. One can choose 3 such that the linearized

Poincaré map Py(y) := d,Py(X, ) is a linear symplectic map of N & N and

Py(7)(J(0),J(0)) = (J(a), I (),

where J is a normal Jacobi field along the geodesic m o v and J denotes the covariant
derivative along the geodesic. After choosing a symplectic basis for NV @& N we can identify
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the group of symplectic linear maps of N & N with the symplectic linear group Sp(n — 1)
of R~ g R*1.

Let JI(n — 1) be the set of r-jets of symplectic automorphisms of R*~! @ R"~! that fix
the origin. Clearly one can identify J!(n — 1) with Sp(n —1). A set Q C JI(n — 1) is said
to be invariant if for all ¢ € J7(n — 1), 0Qo~! = Q. The property that says that the r-jet
of a Poincaré map Py(3, ) belongs to @ is independent of the section 3.

Let v = {¢{°(v)} be a periodic orbit of period a of the geodesic flow ¢J° of the metric
go € G". Let W be an open neighborhood of 7(v) € M. We choose W so that the geodesic
m oy does not have any self intersection in W. Denote by G" (v, go, W) the set of metrics
g € G" for which ~ is a periodic orbit of period a and such that the support of g — go lies
in W.

We now state the local perturbation result of Klingenberg and Takens [29, theorem 2].
2.3. Theorem. If Q) is an open and dense invariant subset of J;"*l(n —1), then there is for
every neighborhood V of go in G" a metric g € VN G" (v, go, W) such that the (r — 1)-jet of
Py(X,7) belongs to Q.

As pointed out by Anosov [3], once theorem 2.1 is proved, combining corollary 2.2 and
theorem 2.3 one gets:

2.4. Theorem. Let Q C JI~(n — 1) be open, dense and invariant. Then there exists a
residual subset O C G" such that for all g € O, the (r — 1)-jet of the Poincaré map of every
closed geodesic of g belongs to Q.

A closed orbit is said to be hyperbolic if its linearized Poincaré map has no eigenvalues
of modulus 1. If 7 is a hyperbolic closed orbit and § = (0), define the strong stable and
strong unstable manifolds of v at 6 by

W) = {v e SM| lim_d(6{(0), 6{(6) =0},
W (0) ={veSM| 1tlim d(¢f(v),4{(9)) =0}.
——00
Define the weak stable and weak unstable manifolds by
W) = a(W=®). Wiy =] (W0).
teR teR
It turns out that they are immersed submanifolds of dimension
dim W*(y) = dim W¥(y) = dim M.
A heteroclinic point is a point in the intersection W#(v) N W*(n) for two hyperbolic closed
orbits v and 1. We say that § € SM is a transversal heteroclinic point if § € W#(v)NW*(n),
and TyW?*(y) + TyW"(n) = TySM.
In [17], Donnay showed for surfaces how to perturb a heteroclinic point of a metric on
a surface to make it transversal. In fact a similar method has been used by Petroll [41]

for higher dimensional manifolds and this method actually gives C" perturbations. Refer-
ence [41] is difficult to find, but there is a sketch of the proof in [11].
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However, without further analysis, these perturbations do not give control on the size of
the subsets where the stable and unstable manifolds are made transversal, as is needed for
the proof of the Kupka-Smale theorem. Available proofs of the Kupka-Smale theorem [46,
47] for general hamiltonians do not apply to geodesic flows without further arguments.

Using corollary 2.2 and theorem 2.4 we show here how to extend the proof of the Kupka-
Smale theorem for hamiltonian flows to the case of geodesic flows, provided that the pertur-
bations used are local. The perturbations in [47] are not local. The perturbations in claim
a in [46] are local, they are written for volume preserving flows but they can be adapted to
the hamiltonian case. We choose to present in appendix A another kind of perturbation,
suitable for use in the proof of theorem 2.5 and that could be useful for other types of
problems.

2.5. Theorem. Let Q C J'1(n — 1) be open, dense and invariant. Then there exists a
residual subset O C G" such that for all g € O:

e The (r — 1)-jet of the Poincaré map of every closed geodesic of g belongs to Q.
o All heteroclinic points of hyperbolic closed geodesics of g are transversal.

Proof: We are going to modify the proof of the Kupka-Smale theorem for general hamil-
tonians to fit our geodesic flow setting. Let H"(N) be the set of C" riemannian g metrics
such that the (r — 1)-jet of the Poincaré map of every closed geodesic of g with period < N
belongs to Q. If necessary intersect @ with the set A C J"~(n — 1) of jets of symplectic
maps whose derivative at the origin has no eigenvalue equal to 1. Then @ is still open,
dense and invariant. Since the periodic orbits of period < N for such g are generic, there
is a finite number of them. Since @ is open and the Poincaré map depends continuously on
the riemannian metric, H"(/N) is an open subset of G". By theorem 2.4, H"(N) is a dense
subset of G".

Let K"(N) be the subset of H" () of those metrics g such that for any pair of hyperbolic
periodic orbits v and n of g with period < N, the submanifolds W3, (v) and W (n) are
transversal, where W3 () is given by those points 6 € W*(y) with distyys(y(6,7) < N and
similarly for W (n). Since the stable and unstable manifolds of a hyperbolic orbit depend
continuously on compact parts in the C! topology with respect to the vector field, K" (N)
is an open subset of G".

It remains to prove that K" () is dense in G", for then the set

K™= (] K"(N)
NeN
is the residual subset we are looking for.

We see first that in order to prove the density of K"(IN) it is enough to make small local
perturbations. Let «v, n be two hyperbolic periodic orbits v, 1 of period < N. Observe that
if the two invariant manifolds W (), W#*(n) intersect, then they intersect along complete
orbits. If they intersect transversally, then they are transversal along the whole orbit of the
intersection point.

A fundamental domain for W*(~) is a compact subset K C W*"() such that every orbit
in W*() intersects K. Such a fundamental domain can be constructed for example inside
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the strong unstable manifold of 7 using Hartman’s theorem (one considers the linearization
of the Poincaré return map in a neighborhood of 7). Moreover there are fundamental
domains which are arbitrarily small and arbitrarily near to v. Hence it is enough to make
W3R () transversal to W3, (n) in a fundamental domain for W*(v).

We will use the following perturbation lemma whose proof will be given after completing
the proof of theorem 2.5:

2.6. Lemma. For every point § € W*(7y) such that the projection |y u(yy is a diffeomor-

phism in a neighborhood of 6, and sufficiently small neighborhoods @ € V. C V. .C U in SM,
there are riemannian metrics g such that

(1) g is arbitrarily near g in the C"-topology;

(2) g and g coincide outside w(U);

(3) v and n are periodic orbits for g;

(4) the connected component of Wi () NV containing 6 and the submanifold W*(n) are
transversal.

Let 6 be in a fundamental domain K for W"(y). By the inverse function theorem the
projection 7|y () is a local diffeomorphism at ¢ if and only of the tangent space of W*(y)

at 0 is transversal to the vertical subspace i.e. TyW"(y) Nker dym = {0}.

Observe that the manifolds W*"(y) and W#*(y) are lagrangian. A well known property of
the geodesic flow (cf. [40]) asserts that if W is a lagrangian subspace, then the set of times
t for which dp¢ (W) Nker dg, g # {0} is discrete and hence at most countable.

By flowing a bit the point § we obtain another point ¢;(f) satisfying the conditions of
the lemma. We can also choose ¢ such that m(f) does not intersect any closed geodesic
of period < N. One chooses the neighborhood U in lemma 2.6 such that the support
of the perturbation 7(U) does not intersect any closed geodesic of period < N. Choose
a neighborhood V such that ¢;(§) € V C V C U. Applying lemma 2.6 we obtain a
new riemannian metric g such that gl.()e = glz()c and the connected component of

Wi (y) NV containing ¢;(0) is transversal to W#(n). If the perturbation is small enough,

flowing backwards a bit we obtain a neighborhood Vi of 6, where W () and W#(n) are
transversal.

Now cover the compact fundamental domain K by a finite number of these neighborhoods
V1 and call them, let us say, Wi, ... W,. Observe that in lemma 2.6 the perturbations are
arbitrarily small but the neighborhood V' of transversality is fixed. Since transversality of
compact parts of stable (unstable) manifolds is an open condition on g, one can make the
perturbation on W11 small enough so that the invariant manifolds are still transversal on
Wi,...,W,.

In order to make now Wy (n) transverse to Wy (y) one can use the invariance of the
geodesic flow under the flip F(x,v) = (x,—v), so that W*(y) = W¥(F(y)) or repeat the
same arguments for the geodesic flow with the time reversed.

This completes the proof of the density of I"(N).
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Proof of lemma 2.6:
Perhaps, the easiest way to prove lemma 2.6 is to use a perturbation result for general

hamiltonian systems. The Legendre transform L(x,v) = g,(v,-) conjugates the geodesic
flow with the hamiltonian flow of

1 iy
H(z,p) == ) Zgw(x)pz‘pj
ij

on the cotangent bundle 7% M with the canonical (and fized) symplectic form w = )", dp; A

dz;. Here ¢g"(z) is the inverse of the matrix of the riemannian metric.
Observe that the stable and unstable manifolds are lagrangian submanifolds of T* M.
Now use a local perturbation result for the hamiltonian flow (e.g. [46, claim a, th. 3]
or A.3 in appendix A) to obtain a new hamiltonian flow which has W"(y) transversal to
the old W*(n) in a neighborhood V. The stable manifold W*#(n) only depends on the future
times and on the future it only accumulates on the periodic orbit 7 so up to the perturbation
it does not change.

If the perturbation is small enough, then the new piece of unstable manifold W“(y) in
the support of the perturbation U still projects injectively to M. Let p : 7(U) — T:(U)M

be such that the connected component of W“('y) N U containing v is
Graph(p) = { (z,p(x)) ‘x er(U) }.

Define a new riemannian metric by

{2 H(z,p(x)) gij(z) if x € 7(U),
gij(x) if x ¢ w(U).

Then g is C" near g, coincides with g on the complement of 7(U) and its hamiltonian

gij(x) =

satisfies

(,0()) = 5 S7G0) i) 1y (0) = 5 3 5 ) o)
@) v v

_ Hp@) 1
T oAy 2 e

Then W“('y) is a lagrangian submanifold of T* M which is in the energy level H = % of the
hamiltonian for § and which coincides with the unstable manifold of v in a neighborhood of

v. By lemma A.1, VIN/“(W) is invariant under the geodesic flow of g and hence is the unstable

manifold of ~ for g.
O
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3. Twist maps and topological entropy.

We say that a homeomorphism of the annulus f : [0,1] x S! < is a twist map if for all
6§ € S! the function [0,1] > 7 + w0 f(r,0) € S is strictly monotonic.

For a proof of the Birkhoff’s normal form below see Birkhoff [7], Siegel and Moser [49]
or Le Calvez [32, Th. 1.1]. For a higher dimensional version for symplectic maps see
Klingenberg [28, p. 101].

3.1. Birkhoff’s normal form.
Let f be a C* diffeomorphism defined on a neighborhood of 0 in R? such that f(0) =0,

f preserves the area form dx A dy, and the eigenvalues of dof satisfy |A\| =1 and \™ # 1
foralln € {1,...,q} for some q > 4.

Then there exists a C'*° diffeomorphism h, defined on a neighborhood of 0 such that
h(0) =0, h preserves the form dx A dy and in complex coordinates z = x + iy =~ (x,y) one
has:

ho foh™(z) =Xz 2P 4 o(|z]971),
where P(X) = a1 X 4+ -+ + an X™ is a real polynomial of degree m with 2m + 1 < q.
The coefficients a;, 1 <i <m < 4 —1 are uniquely determined by f.

In polar coordinates the function g = ho f o h™! is written as
(?”,9) — (T+N(T79)a 0+a+a1r2 +oee +amr2m +V(T79))7

where A\ = €*™® If a; # 0 and |r| < € is small enough, then %(wz o g) has the same
non-zero sign as a; and hence g is a twist map in [0,¢] x S?.
We shall use following result:

3.2. Proposition (Le Calvez [33, Remarques p. 34]).
Let f be a diffeomorphism of the annulus R x S' such that it is a twist map, it is area
preserving, the form f*(Rdf) — Rdf is exact and
(i) If = is a periodic point for f and q is its least period, the eigenvalues of d, f? are
not roots of unity.
(i) The stable and unstable manifolds of hyperbolic periodic orbits of f intersect transver-
sally (i.e. whenever they meet, they meet transversally).

Then f has periodic orbits with homoclinic points.
We are now ready to show:

3.3. Proposition.

Let gog be a metric of class C", r > 4, on a surface M with a nonhyperbolic closed geodesic.
Then there exists a C*> metric g arbitrarily close to gg in the C" topology with a non-trivial
hyperbolic basic set. In particular, hiop(g) > 0.

Proof: Let Q, C J2(1) be the subset of 3-jets of symplectic automorphisms which are
hyperbolic at the origin. Given k € Z, k # 0, let Q) C J2(1) be

Qr={0faao o€ J21), a1 #0, a¢ {En€L}}UQs,
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where fo 4, : R? — R? is given by faq, (r,0) = (r,0 + a+a1r?) + o(r?) in polar coordinates.
Now let @ = (), Qx. By Birkhoft’s normal form (with ¢ = 4), the set Q) is open, dense and

invariant.
By the Kupka-Smale theorem 2.5 there is a residual subset O C G" (r > 4) such that

any metric in Oy has the two properties stated in the theorem. Since [, Oy is a residual
subset, we can C"-approximate gg, 7 > 4, by a C'° metric g with a nonhyperbolic closed
orbit v such that the 3-jet of its Poincaré map is in ) and g satisfies the conditions (i)
and (ii) in proposition 3.2.

The symplectic form on T'M induced by the riemannian metric, induces a symplectic form
on a local transverse section ¥ to 7, which is preserved by the Poincaré map P4(%,~). By
Darboux’s theorem, using a change of coordinates we can assume that ¥ is a neighborhood
of 0 in R? and that the symplectic form on ¥ is the area form of R2.

By the definition of @, the Poincaré map f = Py(X,v) is conjugate to a twist map
fo =h f h~! when written in polar coordinates. In order to apply proposition 3.2 we show
below a change of coordinates which transforms fy into an exact twist map of the annulus
R* x S'. Then the existence of a homoclinic orbit implies the existence of a non-trivial
hyperbolic basic set.

Consider the following maps

(@,y) —— (r0) —— (3r%0)=(R.9)

D 2 Rtxsl — Rtxg!
al | ks
D — 5 Rtxst — Rt x St

where D = {z € C||2| < 1}, P7(r,0) = (rcos,rsind). Write G(z,y) = (3r2,0) = (R, 0),
the upper composition. Then G*(R df) = % (xdy — ydx) =: X\. Observe that d\ = dx A dy
is the area form in D. Since D is contractible, fo*(\) — A is exact. Then T*(Rdf) — Rd6
is exact. Since R(r) = 4 r? is strictly increasing on r > 0, T' is a twist map iff f; is a twist
map.

O

4. Franks’ lemma for geodesic flows of surfaces.

Let v = { ¢{(v) |t € ]0,1]} be a piece of an orbit of length 1 of the geodesic flow ¢{ of the
metric g € G". Let Xy and X; be sections at v and ¢;(v) respectively. We have a Poincaré

map Py (X0, Xy, v) going from X to 3;. One can choose 3; such that the linearized Poincaré
map

P,(1)(t) < d,Py(S0, 50, 7)

is a linear symplectic map from Ny := N(v) & N(v) to N; := N(¢v) & N(prv) and

Py(7)(£)(J(0), J(0)) = (J(t), (1)),
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where J is a normal Jacobi field along the geodesic 7 o v and J denotes the covariant
derivative along the geodesic. Let us identify the set of all linear symplectic maps from Ny
to N; with the symplectic group

Sp(1) :={X e R¥*?| X*JX =]},

where J = [_(1) o]

Suppose that the geodesic arc mo ~(t), t € [0, 1], does not have any self intersection and
let W be a tubular neighborhood of it. We denote by G"(y, g, W) the set of metrics g € G"
for which ~ is a piece of orbit of length 1 and such that the support of g — ¢ lies in W.

When we apply the following theorem to a piece of a closed geodesic we cannot avoid to
have self intersections of the whole geodesic. Given any finite set of non-self intersecting
geodesic segments § = {n1,...,nmn} with the following properties:

1. The endpoints of 7); are not contained in W;
2. The segment 7 o 'y|[071] intersects each n; transversally;

denote by G"(v,g, W,F) the set of metrics § € G"(v,g, W) such that g = ¢ in a small
neighborhood of W N U™ 7;([0, 1]).

Consider the map S : G"(y,9, W) — Sp(1) given by S(g) = Py()(1). The following
result is the analogue for geodesic flows of the infinitesimal part of Franks’ lemma [18, lem.

1.1] (whose proof for general diffecomorphisms is quite simple).

4.1. Theorem. Let go € G", r > 4. Given U C G? a neighborhood of go, there exists
d = 6(go,U) > 0 such that given v, W and § as above, the image of U N G" (v, go, W, §)
under the map S contains the ball of radius § centered at S(gop).

The time 1 in the preceding statement was chosen to simplify the exposition and the
same result holds for any time 7 chosen in a closed interval [a,b] C]0,+oc[; now with
§ = 6(go,U,a,b) > 0. In order to fix the setting, take [a,b] = [3,1] and assume that the
injectivity radius of M is larger than 1. This implies that there are no periodic orbits
with period smaller than 2 and that any periodic orbit can be cut into non self-intersecting
geodesic segments of length 7 with 7 € [%, 1]. We shall apply theorem 4.1 to such segments
of a periodic orbit choosing the supporting neighborhoods carefully as we now describe.

Given g € G" and ~y a prime periodic orbit of g let 7 € [%, 1] be such that m7 = period(v)
with m € N. For 0 < k < m, let y(t) := v(t + k7) with ¢t € [0,7]. Given a tubular
neighborhood W of moy and 0 < k < m let Si : G"(v,9,W) — Sp(1) be the map
Sk(@) = Pg(m)(7)-

Let W, be a small tubular neighborhood of vy contained in W. Let Fo = {n{, ... ,779”0} be
the set of geodesic segments 7 given by those subsegments of « of length 7 whose endpoints
are outside Wy and which intersect v transversally at (7/2) (see Figure 1). We now apply
Theorem 4.1 to 79, Wy and Fy. The proof of this theorem also selects a neighborhood
Uy of Wy NUnY([0,7]). We now consider v; and we choose a tubular neighborhood
W1 of 71 small enough so that if 4, intersects g transversally, then W; intersected with
Wy is contained in Uy (see Figure 1). By continuing in this fashion we select recursively
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FIGURE 1. Avoiding self-intersections.

tubular neighborhoods Wy, ..., W,,_1, all contained in W, to which we successively apply
Theorem 4.1. This choice of neighborhoods ensures that there is no interference between
one perturbation and the next. In the end we obtain the following:

4.2. Corollary.
Let go € G", r > 4. Given a neighborhood U of go in G2, there exists 6 = §(go,U) > 0
such that if v is a prime closed orbit of ¢9° and W is a tubular neighborhood of ¢ = wo~y,

then the image of U NG (v, g0, W) — I} ' Sp(1) under the map (So,...,Sm—1) contains
the product of balls of radius § centered at Sk(go) for 0 < k < m.

The arguments below can be used to show that g — gy can be supported not only outside
a finite number of intersecting segments but outside any given compact set? of measure zero
in 7. This is done by adjusting the choice of the function A in (10).

The nature of these results (i.e. the independence on the size of the neighborhood W)
forces us to use the C! topology on the perturbation of the geodesic flow, thus the C?
topology on the metric. The size 6(go,U) > 0 in theorem 4.1 and corollary 4.2 depends on
the C*-norm of gj.

Proof of theorem 4.1.

Let us begin by describing informally the strategy that we shall follow to prove the-
orem 4.1. At the beginning we fix most of the constants and bump functions that are

2But to use this argument to support g — go outside a given infinite set of geodesic segments of length >

1
2
one needs to bound from below their angle of intersection with c.
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needed. Using Fermi coordinates along the geodesic ¢ = 7 oy, we consider a family of
perturbations following Klingenberg and Takens in [29]. We show that the map S is a
submersion when restricted to a suitable submanifold of the set of perturbations. To obtain
a size § that depends only on gg and U and that works for all v and W we find a uniform
lower bound for the norm of the derivative of S using the constants and the bump functions

that we fixed before. This uniform estimate can only be obtained in the C? topology.

The technicalities of the proof can be summarized as follows. To obtain a C? perturba-
tion of the metric preserving the geodesic segment ¢ = 7 oy one needs a perturbation of
the form (12), with a(t,z) = ¢(z) Ba(t), where p(x) is a bump function supported in an
e-neighborhood in the transversal direction to ¢ and (4(t) is given by formula (31). The
derivative of B4(t) with respect to A is given by formula (20). The second factor in (20)

is used to make the derivative of S surjective,® and the first factor h(t) is an approxima-
tion of a characteristic function used to support the perturbation outside a neighborhood
of the intersecting segments in § = {n1,...,mm}. Then inequality (8) shows that if the

neighborhood W of ¢ is taken small enough, the C? norm of the perturbation is essentially
bounded by only the C° norm of 34(¢). In order to bound the C? norm of 34 from (31) in
equation (8), we use the hypothesis gg € G* to have a bound for the second derivative of
the curvature Ky(t,0) of go along the geodesic c.

By shrinking U if necessary, we can assume that
(3) l9llc2 < llgollg=+ 1 for all g € U.
Let k1 = k1(U) > 1 be such that if g € Y and ¢, is the geodesic flow of g, then
(4) |doge|| < k1 and  ||dpy || < ki for all ¢ € [0,1]
and all v € SJM. Let 0 < A < 1 and let ky = ko(U, A) > 0 be such that

dy¢ — dy <k d dy *1fdv < ke
() max - ddipll Sk and max ldu; ! - dudil < ko

for all g € Y and all v € S;M. If A = A(go,U) is small enough, then

1
6 0<ky < —= <1<k
(6) T !

Let 65 and Ay : [0,1] — [0, +oo[ be C*° functions such that dy has support on [£ — X, 3],
Ay has support on |3,3 + A], [x(t) dt = [A\(t) dt = 1 and the support of Ay is an
interval.

Let k3 = k’g(go,u,/\) = kg(g(),U) = kg()\) be
(7) ks == k3 [ 1xllco + |84l co + AN o (1+ [lgollc2) + 1A%l o ]

where ), and A are the first and second derivatives of the functions 6y and Ay with respect
to t.

3The functions 6x(t) and Ay (t) are approximations to a Dirac delta at ¢ = i
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Given ¢ with 0 < e < 1, let ¢, : R — [0,1] be a C* function such that ¢.(z) = 1 if

re[-5,5] and p(x) = 0if x ¢ [-5,5]. In Lemma 4.5 it is proven that y.(x) can be
chosen such that
(8) (@) B(t) 2*|| 2 < kallBllco + Kac l|Bller +&* 1Bl o

for some fixed k4 > 0 (independent of £) and any 3 : [0,1] — R of class C?.
Choose 0 < ¢ < 1/(4k?k3). From (6), we have that

1 1
9 — —kso—4kk —.
(9) o 30 12>2k%

Let h : [0,1] — [0,1] be a C* function supported outside a neighborhood of the inter-
secting points and the endpoints of the support of Ay,

supp(h) € [0, 1]\ [y~ (UzZymi) U dsupp(A,) |

and such that

1
(10) /0 Ih(t) — 1] dt < o.

We now introduce Fermi coordinates along the geodesic arc ¢ = wo~y. All the facts that
we will use about Fermi coordinates can be found in [21, 28]. Take an orthonormal frame
{¢(0), B} in T,qyM. Let E(t) denote the parallel translation of £ along c. Consider the

differentiable map ® : [0,1] x R — M given by
D(t, ) = expey (E(1)).

This map has maximal rank at (¢,0), t € [0,1]. Since ¢(¢) has no self intersections on
t € [0, 1], there exists a neighborhood V' of [0, 1] x {0} in which ®|y is a diffeomorphism.
Choose

(11) e1 = €1(g90,U,7,8) >0

such that the segments 7; do not intersect the points with coordinates (¢, x) with |z| < &1
and t € supp(h) and such that [0,1] x [—e1,e1] C V and ®([0, 1] X [—e1,e1]) C W.
Let [go(t,x)]i; denote the components of the metric go in the chart (®,V). Let a(t,z)

denote a C* function on [0,1] x R with support contained in V' \ @~ U™ n;([0, 1])]. We
can define a new riemannian metric g by setting

goo(t, z) = [go(t, 2)]oo + a(t, z) z?;
(12) go1(t, x) = [go(t, x)]o1;
g (t,z) = [go(t, ¥)]i1;

where we index the coordinates by zg =t and x1 = x.
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For any such metric g we have that (cf. [21, 28]):
g7 (t,0) = gi;(t,0) =0d;, 0<ij<1;
O g (t,0) = By gi5(t,0) =0, 0<4,4,k<1;

where [¢] is the inverse matrix of [g;;].
We need the differential equations for the geodesic flow ¢; in hamiltonian form. It is well
known that the geodesic flow is conjugated to the hamiltonian flow of the function

1 g
H(z,y) =5 Y 9" (@) viy;.
i

Hamilton’s equations are
Gei= Hy = Y g7@)y;
J
G =—Ho,=—5) 59" (@) yiy;.
2%
Let F be the set of the riemannian metrics given by (12) endowed with the C? topology.
One easily checks that F C G" (v, go, W, F). Let
V:i=FNU.

Using the identity % (doy) = (dX opy) - depy, with X = %¢t‘t:0’ we obtain the differential

equations for the linearized hamiltonian flow, on the geodesic ¢(t) (given by: ¢, x = 0,
yo = 1, y1 = 0), which we call the Jacobi equation:

d
A7 P < P
where
(14) K(t,0) = 325 9%(t,0) = -5 25 goo(t, 0).
Let

It is easy to check that
(15) K(t,0) = Ko(t,0) — a(t,0).

By comparison with the usual Jacobi equation? we get that K (t,0) is the curvature at the
point ¢(t) for the metric g.

AThe geometric notion of curvature is not really used. The reader might just use equation (14) as the
definition of curvature in this section.
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Observe from (12) that the conditions®
ao(t) = (h,¢)g = 32 9" (£,0) ai(t) =0,
(2

bo(t) = ao(t) = (b,¢)g =0,
are invariant among the metrics g € F and satisfy (13). In particular the subspaces

M:{(a,b)ETC(t)TM‘a():bQZO}%RXR

(16)

are invariant under (13) for all ¢ € F. From now on reduce the Jacobi equation (13) to the
subspaces N;.
We need uniform estimates for all g € V. Fix g € V and write

o w=t = .

where K is from (15). Let X; = X7 = dei|n, : No — N; be the solution of the Jacobi
equation (13) for g:

(18) X = A Xy

The time 1 map X; is a symplectic linear isomorphism: XjJX; = J, where J = [_? (1)]
Differentiating this equation we get the tangent space of the symplectic isomorphisms at
X1: Tx, = {Y € R?*2| X;{JY is symmetric }. Observe that, since X; is symplectic:

(19) Tx, = X171

and that 77 is the space of 2x2 matrices of the form® Z = [Z _Z].

Let us consider the map given by
F 395 X9 e Sp(1).

Equivalently, H is the restriction of S : G"(v, go, W) — Sp(1) to F. We shall show that H
is a submersion at any g € V. We start by finding a uniform lower bound for the norm of
dyH restricted to a suitable subspace.

4.3. Lemma.
Consider a small parameter s near zero and write gs = g + a*x? dzg ® dwvg € F where

a’(t, ) := pe(x) (1),
where (3%(t) satisfies 3°=°(t) = 0 and

op°(t)
0s

(20) =h(t) {6(t) a+8'(t)b— (Ax(t) K(t,0) + 3 AY(t)) c },
0

Ss=

SHere the products (h,¢), and (b, ¢), are not needed to follow the argument. In fact, here é(t) is the
hamiltonian orbit corresponding to the geodesic c(t) in the cotangent bundle and ( , )4 is the riemannian
metric in the cotangent bundle induced by g, whose coefficients are those of the inverse matrix [¢*/]. These
products are included in (16) to suggest the reader that the following subspace N; is just the reduction of
the space of Jacobi fields to those Jacobi fields which are orthogonal to the geodesic.

6If dim M > 2 the elements of 77 have the form [b¢], with @ and ¢ symmetric and d = —b*. The
arguments shown here are not sufficient to cover this case.
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where a,b,c € R, 0 < h(t) < 1 satisfies (10), K(¢,0) is the curvature of g at (t,0) and
0 < e <er. In particular o® has support contained in V.
Then

1 C
ot (Ggslo)ll = 5 e )1

We use h(t) to support the perturbation of the riemannian metric outside the intersecting

segments and also to bound the C? norm of the term 2?8 (e_hA*C

— 1) in equation (31).
Proof: From (13) and K, (¢,0) = K,4(¢,0) — a®(¢,0), we see that X/* satisfies
X{" = (Ac+ D) X7,

where A; is from (17) and D; = [as&o) 8] Thus the derivative of the map H satisfies
d H(dSQS‘S 0) Z1, where
Zy =M Zy + E Xy,

where F; = D; = h(t) [ 28| 0 t) 8] Writing Z; = X, W, and using that X; = A; X,
s 1s=0

&
ds 1s=0
we get that Wt = X{l FE; X;. Hence

1
(21) 7 =X, / X E X, dt.
0
Write A := [2 _2]. We have to prove that

121 = 2k3 |A||  forall g € V.
We compute the integral in (21). Write B = [90] and C = [ By 0] Then, using (18),
1
/ XL, (t) B X, dt — / 5 (1) [( SV BX+ X BX{] dt

/ 5)\ AtB BAt] Xt dt
_/0 )X, 5 9] Xedt.
1 1 _c o
/ XA O Xy dt:/ A;(t)Xgl 32} X, dt
0 0 2
1
S R CE P AR i AT B

1
_ 0 c
:/0 A(t) X [%(K(t,0)0+cK(t,0)) 0 } Xy dt .
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Hence,

1 E 1 1
/ X;l—t X, dt:/ ) X, 0 X, dt+/ At X1 [96] X dt
0 0

Write P(t) = X; '35 Xe, Qit) = X;'[) 3] X, Qat) = X;'[§§] Xe and
Q) =X; "' [? ¢] X;. Then

(22 [ rwyai= [ @ [ s

Using (4) we have that
1ox(#) Qu) | < dxllco [|X;7 || V2 max{]al, [bl} |1 X
< I0allco - k1 - [JA]l - Ky
Similarly
IANE) Q)] < ANl K lel < (1Al co KT (| Al-
Hence, using (7), we have that

1Pllo < & (l1oxllco + 1Al o) [IA]

(23) < k3(A) [ Al
From (21), we have that
(24) 7 =X /O "1t P(t) di
Observe that
/ 5 (1) Qi (1) dt — Q1 (3) / 6(8) Q1) — (D] dt < Ox(@Q1, b,
/ ANt Qa(t) dt — Qs (1) / A(®) [|Qa(t) — QoL dt < Ox(Qa, 1),
where O, ( QZ,Q) '= max,_ 1/2\</\HQ1 % H Thus, using (22),

H/ t)dt — Q(3 H/tht—/Pdt—{—/Pdt— Q(3)

<H/(h—l)PH+H/6A<t>c21<t> a(d)|+[ [ mo@0- ).

<1l / h— 1]+ 0y(Q1, 1) + Or(Qs, 1)

<112l / h—1+205Q.1),  because Q= Q1 + Qa.

If f,g:[0,1] — R?>*2 by adding and subtracting f(t) g (%) we obtain the formula

(25) Ox(f9,3) <Ifllo Oxlg,3) + O (f53) [l9(3)] -
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Also, if e € R?*2 is constant, then
(26) Ox(e f,3) < llell OA(f, 3)-
Write A = [Z _¢]. Using formulas (25), (26), we obtain from (4) and (5) that
OA(Q,3) = OA(X;'A Xy, 5)
< 1X7 o OA(AXe, 5) + OAX T 5) AL X0 pallo
< 1X7 o 1A Ox(Xe, 5) + OA(X 7 5) AL X0 palo
<2k ko ||A]l.
Also, from (23) and (10),
1Pl [ 1= 11 < 141 ka3) [ 1h=1 <o 4T e

Moreover

14l = [1%.2 Q(5) Xiall < K [lQG)]I-

H/thtH = HQ(%)H - H/hP_ Q(%)

(& —kso—4akk) 4]

Hence, using (9),

A\

1
> oo Al

This implies that the transformation 77 3 A — fol h(t) P(t) dt € 77 is onto. From (19)
and (24), the map 7; 5 A — Z; € Tx, is surjective. Moreover, using (4) and (24),

ky (|20 > || X7 20| = H/ hP dtH > e 4]

Thus
|1 Z1]] > 2k3 |A||  forall g € V.

We shall combine lemma 4.3 with the next lemma to prove the theorem.

4.4. Lemma.

Let N be a smooth connected riemannian 3-manifold and let F : R3 — N be a smooth
map such that

(27) |d,F(v)] >a>0 for all (z,v) € TR3 with |v| =1 and |z| < r.
Then for all0 <b < ar,

{weN|d(w F0) <b} CF{zeR||z| < 2}
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Proof: Let w € N with d(w, F(0)) < b. Let 8:[0,1] — N be a differentiable curve with
5(0) = F(0), (1) = w and |3 < b. Let 7 = sup(A), where A C [0,1] is the set of t € [0,1]
such that there exist a unique C' curve « : [0,t] — R3 such that a(0) = 0, |a(s)| < r and
F(a(s)) = B(s) for all s € [0,t]. By the inverse function theorem 7 > 0, A is open in [0, 1]
and there exist a unique « : [0, 7[— R3 such that F oo = 3. By (27),

(28) ’ )| = ||dags) F|| - [(s)] > a |é(s)], for all s € [0,7].

Thus, |¢| < 1
continuously to [0, 7]. Observe that |a(7)| < r, for if |a(7)| > r, then

maxo<i<i ‘ B (t) ‘ This implies that « is Lipschitz and hence it can be extended

beTz/TW(S)}dsZa/T|d(s)| ds > ar,
0 0

contradicting the hypothesis b < ar. This implies that the set A is also closed in [0, 1].
Thus A = [0,1] and 7 = 1. From (28), writing = = a(1) € F~Y{w},

2] < length(a /\a ) dt <t /m \dt<f
O

We now see that the condition (27) of Lemma 4.4 holds in our setting. Let k5 =
k5(907u777{§) and kﬁ = k6(907u7773) be

= 118allg + |85l + [12xllo llgollce + 5[ AK]|o] el ®To,
ko = max {2 [hllca [ Inloa + 11881 ca] +2 g0l [[(e7 = 1) |
A” —hA c
+ HQA)\ ’ _1)‘02}’

observe that since Ay > 0 on supp(h), the last term in kg is finite.
Let 0 < p1 < 1 be such that the closed ball

(29) Bgz(g0, 1) CU.
Choose 0 < € = ¢(go,U,7,§) < €1, small enough so that
(eka+e) ke < 3 p1.
Choose 0 < § < 1 such that
(30) kiks (2k36) 4+ (eks +e%) kg <p1 <1 and 2k35<1.
For A = [2 _g], let

A/l(t)

(81)  Ba(t) == h(t) { Sx(B)a+ 1)1} + (Ko(t,0) + 5305 ) (7O 20 1),
and let ga € G"2(7, go, W, ) be the riemannian metric

ga = go + e (x) Ba(t) 2? dt @ dt.
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Observe that 84 = 0 when h(t) = 0, so that ¢ = go in a neighborhood of the intersections
of the segments 7; with ¢ = mo~. Then the choice of ¢ < £ from (11), ensures that g = go

in a neighborhood of the intersecting segments.
Observe that

Ta = hO B0, G =h 50,
88%1 = —h(t) { Ax(t) (Ko(t,0) + Ba(t)) + 5 AX(H)},

In particular, the directional derivatives of the map 7; 3 A +— (34 are given by formula (20).
(Note that Ky(t,0) + Ba(t) is the curvature of g4 at (¢,0).) Indeed,

9BA Lty Ax(t) Ba(t) = h(H)2 Ax(t) { Sx(t) a+ a\(t) b} — h(t) { Ko(t,0) Ax(t) + 5 AX(1) }

Oc
= —h(t) { Ko(t,0) An(1) + F A5 }
because Ay (t) 6 (t) = 0 and Ax(t) 03 (t) = 0.
Define F': Ty — Sp(1) by
F(A) = S(ga) = de(o)@“ ‘Nl'
Applying lemma 4.3, we get that if gg € V), then the derivative dgF satisfies

1 .
(32) [(dBF) - Al > BYE] |All, ifgpeV.
i

Let G : T — G"~2(v, go, W, T) be the map G(A) = ga. By lemma 4.5, we have that
IG(A) = gollcz = [|e() Ba(t) 2| oo
(33) < kallBallgo +ekallBaller + € lIBallc
Observe that for |c| <1 we have that

[ 1] < o max | (e~ 1) <[l Arelo, i e <1,
<

Then, if |c| <1,

‘Ko(t,O) + QAA*ffz)‘ |e=haxe — 1| < [ Kol Ay + 1]A%]] el®alo ¢l

< Iel [ lgollen 18l + B[1A5], ] €12l

Hence
[Ballco < ks || All if [|A] <1.

Since || - gllz < 211l lglln [18allor < I8allez < ko Then from (33) we get that
IG(A) — gollen < kaks 1A + (cka + ) ks, i [[A] < 1and G(A) €.

By definition of p; in (29), we can write W := Bg2(go, p1) N G(77) C V C U. Then (30)
implies that
G(B71,(0,2k75)) CW C V.
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Thus the hypothesis gg € V of (32) is satisfied and we can consider the following diagram.

T O B(0,2k30) & Wcycg?
F .
A\
Sp(1)

Applying lemma 4.4 to F in (32), with r =2k$§ and a = ﬁ, we get that
1

Bgp(1)(S(90),0) € F(B1;(0,2k1 6)) € F(G™H(W)) € SUNG" (7, 90, W, F))-

]

Bump functions
4.5. Lemma. There exist ky > 0 and a family of C*® functions @, : [—¢,e]" "t — [0,1]
such that o-(z) = 1 if x € [=5,5]"7!, po(x) =0 if o & [—5,5]""" and for any C* map

B :[0,1] — RO=Dx(=1) the function a(t,z) := p.(x) z*B(t) x satisfies,

ladlce < ka | Bllco +ka || Bllcr +€* | Bllce,
with k4 independent of 0 < e < 1.
Proof: Let ¢ : [-1,1] — [0,1] be a C* function such that ¢(z) = 1 for |z| < I and ¢(z) =
0 for [z| > L. Givene > 0let p = . : [—¢,£]" ! — [0,1] be defined by ¢(z) = = (Z).
Let B € R®=Dx(=1) and let 3(z) = ¢(z) 2*Bz. Then
(34) 181lp < €* 1Bl

dy8 = (dzp) *Bzx + ¢(z) (B + B)

P n—1
852 - é W (%) [T »(%)
ki

(35) Ideoll < £ [ldel]g
(36) dB]l < 3e Bl ¥l
d23 = (d2¢) 2* Bz + 2 (dyp) ™ (B + B*) 4+ ¢(z) (B + B*)

85225@]. = % (%) kl;[,lb(m?'“) 8+ = V(%) ¥ (%) k}] P(E) (1= dy).
7 2¥)

2| < 2 max{ |||, , Ndells } < & [¢lZ:-
28] < lw]122 |BIl(1+4+2)
(37) <7 |¢lZ: |IB].
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Let kg =443 |[¢]|o1 + 7 ||[¥]|22. Then from (34), (36) and (37), we have that

(38) 1Bllca < ke 1B
Now let a(t,x) := p(z) * B(t) x. Observe that
2
lallge < sup a(t, Vea + sup s +2 |85
2
< 11Bllga + 2 1Bllc= + 2 || 25|

But, using (35),
2o —dyp 2" B(1) 7+ p(x) [+° B'(t) + B(t) «]

|

Hence, using (38),

2
Zall <elllen 1B o+ 22 1Bl

N

skaellBlcn.

lodlge < ka [1Bligo + ke [|Bllcr +* || Bllc -

5. Dominated splittings for geodesic flows.

We say that a linear map 7 : RN — R is hyperbolic if it has no eigenvalue of modulus
1. The stable and unstable subspaces of T" are

ES(T) :={veRY| Jim TM(v) =0}, EM(T) = {veRY| lim T7"(v)=0}.

n—-+00
5.1. Periodic sequences of symplectic maps.

Let GL(RY) be the group of linear isomorphisms of RY. We say that a sequence ¢ : Z —
GL(RY) is periodic if there exists ng > 1 such that &, = &; for all j € Z. We say that a
periodic sequence ¢ is hyperbolic if the linear map [[;°; ! & is hyperbolic. In this case the
stable and unstable subspaces of [ [ ! {i+j are denoted by E7(£) and EY(€) respectively.

Given two periodic families of sequences in GL(RY), ¢ = {¢®|a € A} and n =
{0 a € A}, define

d(&,n) = sup{”f,(f‘) — nﬁf‘)H | ae A, ne Z}.

We say that two periodic families are periodically equivalent if they have the same indexing
set A and for all & € A the minimum periods of £ and n(® coincide. We say that a

family € is hyperbolic if for all a € A, the periodic sequence £(®) is hyperbolic. Finally, we
say that a hyperbolic periodic family £ is stably hyperbolic if there exists € > 0 such that
any periodically equivalent family 1 satisfying d(n, ) < € is also hyperbolic.
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5.1. Theorem (Mané, [34, lemma II.3]).
If { gl |a € A} is a stably hyperbolic family of periodic sequences of linear isomorphisms
of RN then there exist constants m € Zt and 0 < A < 1 such that for all a € A, j € Z:

11) gJ+z ) H [ H £]+Z:| ‘Eu (a)

Denote by Sp(1) = SL(2,R) the group of symplectic linear maps in R2. Lemma 5.4 below
shows that if a periodic sequence ¢ of symplectic maps in R? is stably hyperbolic among the
periodic sequences in Sp(1) and sup, Hf (e) H < 00, then it is also stably hyperbolic among
the sequences in GL(R?). Thus we get:

5.2. Corollary.

If {9 a e A} is a family of periodic sequences in Sp(1) which is stably hyperbolic in
Sp(1), and sup,, ||€@]| < co. Then there exist constants m € Zt and 0 < A < 1 such that
foralae A, j€Z:

SIS

5.3. Remark. Write T := [[N ' €\7). Using that [|AB|| < ||A|| |B| for A, B € GL(R?)

we get that for all N > 1 and all a € A, j € Z,
|7 5] 1 v €| < X
5.4. Lemma. Let Fy, € GL(R?), T}, € Sp(1) with ||Fy —Ty|| < e fork=1,...,N, where

) 1
2¢ (142 max [T])) < 4.

Suppose that F = Fy o Fy_10---0 Fy is not hyperbolic. Then there exist Ay € Sp(1) such

that
2
4 = Tel < 16¢ (2+ max [T5]])

and A := Ay o Ay_10---0 Ay is not hyperbolic.

Proof:
Suppose first that F has complex eigenvalues A and A. Since F is not hyperbolic, |\| =

|A| =1, and hence detF = +1.
Let e; = (1,0), e2 = (0,1) and

A :=det F, = w(Fy e, Fie).
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Since w(a, b) < |a| |b], we have that
‘)\k — 1‘ = \w(erl, erg) — w(Tkel,Tkeg)|
< |w(Frey — Tyer, Frea) — w(Tier, Trea — Frea)|
< e [|Fill + & || 7]l
<2e[2| Tyl +1] < 3,
in particular, Ay is positive. Since ‘1 — %’ < 2|z — 1] for % <z< %, we obtain

’1 - ﬁ’ < 4e2|| Tyl +1].

Since Hszl A =detF =1,

N
1 _
] 7 =1
k=1
Observe that Sp(1) = { A € GL(R?)| det A = +1}. Write
|

Then Ay € Sp(1). Also

A=Ayo-od = (I, &) F=F

is not hyperbolic. Finally,
Ak = Till < | Ak — Fill + [ Fr — Tk|l

<[1- | 1R +e
<de 2|l + 1+

< de 2|7 + 217

29

Now suppose that F has an eigenvalue 1. The case of an eigenvalue —1 follows from this

case using —77 and —F} instead of 71 and F.
Take a; # 0 such that F(a;) = a;. Define inductively
ag

A1 = Fk(ak), Uk = m

We shall construct a symplectic map A, € Sp(1) such that ||Ay — T|| < (3 + ||T%||) € and
Ay (u) = Fi(ug). This will imply that Ag(ax) = ag+1, A(a1) = a1 and thus that A is not

hyperbolic.
Let J(z,y) := (—y,x) and

. w(TkJuk,Tkuk) N 1
N w(FkJuk,Fkuk) N w(FkJuk,Fkuk)'

YA
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Define Ay, € GL(R2) by Ak(uk) = Fk(uk) and Ak(Juk) =\ Fk(Juk) Then
w(AgJug, Agur) = N w(FJug, Fruy) = 1 = w(Jug, ug),

so that Ay € Sp(1).
Since w(a,b) < |al|b|, we have that

\i — 1| = |w(FpJup, Fyuy) — w(TpJug, Tru)|
= |w(FpJup, Fur, — Trug) + w(FpJup — TeJug, Truy))|
< & ([[Fxll + 1Tk 1)
<e(2||Tk]| + 1).

Since |z — 1| < 4 ‘1—%‘ for 2 <z <3,
|Ap(Jug) = Ti(Jug)| = | A Fie(Jug) — Ti(Jug)|
< Ak = 1 [F(Jug)| + [Fr(Jug) — Ti(Jug)|
< Ak = 1 |Fxll + [ Fr — Ti|
<de [2|| Tl + 1] (1Tl +1) + &
<de (242 ||Ti))*
Also,
| A (ur) — Tie(ug)| = [Fie(ur) — Ti(ug)| < e.

Since the basis { ug, Juy} is orthonormal, we have that

2
A — Til| < 16e (1 + [Tk )" + <.

5.2. The hyperbolic splitting.

Let M be a closed 2-dimensional smooth manifold and let R!(M) be the set of C” rie-
mannian metrics on M, r > 4, all of whose closed geodesics are hyperbolic, endowed with
the C? topology and let ' (M) = int(R'(M)) be the interior of R*(M) in the C? topology.

Given g € G"(M) let Per(g) be the union of the hyperbolic (prime) periodic orbits of g.
We say that a closed ¢9 -invariant subset A C SM is hyperbolic if there exists a (continuous)
splitting T) (SM) = E° @ E° @ E* such that

e E¢ = (X9Y) is generated by the vector field of ¢9.
e There exist constants K > 0 and 0 < A < 1 such that

|ded?(€)] < KM'|¢|,  forallt>0, 6 €A, &c E0);
|dgo? ()| < KA'[¢],  forallt>0, €A, &cE“).
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We shall show now

Theorem D.
If g € FY(M), then the closure Per(g) is a hyperbolic set.

We state a local version which implies theorem D. Let U C SM be an open subset and
let RY(U) be the set of riemannian metrics g € G"(M) such that all the periodic orbits of
@9 contained in U are hyperbolic. Let Per(g,U) be the union of the periodic orbits of ¢¢
entirely contained in U. Let F*(U) = intc2 (R (U)).

5.5. Proposition. If g € FY(U), then the closure Per(g,U) is hyperbolic.

Proof: Observe that on a C? neighborhood U of g each periodic orbit in Per(g,U) can be
continued and its continuation (see section 2) is hyperbolic, because otherwise one could
produce a non-hyperbolic orbit.

Cut the closed orbits in Per(g,U) into segments of length in [/, 3¢] where ¢ is the
injectivity radius of g. Given a closed orbit 7y in Per(g, U) construct normal local transversal
sections ¥; to ¢Y passing through the cutting points 7(¢;) of 7. Given a nearby metric g,
cut the continuation 49 of y along the X;’s: 79(t7) € ;. Then 47 is cut in the same number
of segments as 7 is, so that the families

F@) ={da P _alvagaey | 7 € Per(9,0), 0<i<n(v)}

in Sp(N9(0)) are periodically equivalent, where

NT(0) = {€ € TyS(M,g) | {dr€, 0)5 = 0}
and n(7y) is the number of segments in which we cut ~.
5.6. Lemma. If g € F(U) then the family F(g) is stably hyperbolic.

Proof: Since g € F1(U), there exists a C2-neighborhood U of g in G"(M) such that for all
g € U, the family F(g) is hyperbolic. Let § = 6(g,U) > 0 be given by corollary 4.2. For
v € Per(g,U), write

eV = dyydl, e ti=t Ni = NI(I(L).
Suppose that the family

Flg)= {7 |7 € Per(g,U), 1 <i <mi(7) }

is not stably hyperbolic. Then there exist a periodic orbit v € Per(g,U) for g and a

sequence of symplectic linear maps 7; : N; — N;11 such that H i — {w H < 6 and HZL('{ 7

is not hyperbolic. Observe that the perturbations of Franks’ lemma 4.1 do not change
the subspaces N () along the selected segment of ¢(t). By corollary 4.2 there is another
=t ./\/'g(t?) = N, and

riemannian metric g € U such that v is also a closed orbit for g, t?
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dv(ti)¢t§i+1—ti Inv; = mi. Let 7(y) := Z?:(z) t; be the period of v. Since the linearized Poincaré
map for (v,9) is
g — 170
dv(0)¢g(y)’M =[L=1

the closed orbit v is not hyperbolic for the metric g € . This contradicts the choice of
U. O

Applying corollary 5.2 — and remark 5.3 if necessary (the time spacing between cut
points may vary) — we get that there exist A < 1 and 7" > 0 such that

(39) Hd(;qST\ES(G)H . Hd¢T9 gﬁ,T‘Eu((Z)T 9)H <A for all 8 € Per(g, U),
where ¢ = ¢9.
Write A(g) = Per(g,U). For 0 € A(g) let

(0, )CPer(g,U), limy, 6,=0;
S(Q) = span {f S Ng(e) ‘ <3€’Z,EES((0€L)7) lim,, £, =¢€. }

(0, )CPer(g,U), limy, 6,=0;
U(G) © = span { § S Ng(e) ‘ <3§2€Eu((9€1),) limy, &n=¢. }

Then the domination condition (39) implies that
(40) Hd0¢T|S(9)H || dgro ¢—T|U(¢T9)H <A for all § € A(g).
We show now that the domination condition (40) implies that S @& U is a continuous

splitting of NV|x(y) = S @ U. First observe that S(0) NU(6) = {0} for all 6§ € A(g); because
if & € S(0) NU(0), writing & := dgdr (&), we would have that
1&r| < Hd9¢T|S(9)H &0 < Hd9¢T|S(9)H |dgro ¢—T‘U(¢T9)H ér] < Alép|.
But the definitions of S and U imply that dimS(f) > dimFE*(f,) and that
dimU(#) > dim E“(0,,) if lim,, 6,, = 0 and 6,, € Per(g,U). Therefore N'(0) = S(0) ® U(6)
and lim,, S(6,) = S(0), limU(0,) = U(0) in the appropriate Grassmann manifold.
The continuity of the bundles S and U and their definition imply that S(0) = E*(f) and

U(#) = E*(0) when 6 € Per(g,U). Observe that if § € Per(g,U) then E*(6) and E*(6) are’
lagrangian subspaces of N (6) because

wy(u,v) = tEeroo wgy (dgpe(u), dggy(v)) = 0,

where w, is the symplectic form induced by g. The continuity of the bundles S and U and
the continuity of w, imply that the subspaces S(#) and U(6) are lagrangian for all § € A(g).
Then the next proposition due to Ruggiero [48, proposition 2.1] (cf. also [14]) shows that

Per(g,U) is hyperbolic.

5.7. Proposition. Let S(8)®U(0) be a continuous, invariant lagrangian splitting defined on
a compact invariant set X C SM. The splitting is dominated if and only if it is hyperbolic.

O

"This is trivial in our case of dim A/(f) = 2 and dim E°(#) = dim E*(#) = 1.
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A hyperbolic set A is said to be locally mazimal if there exists an open neighborhood U
of A, such that A is the maximal invariant subset of U, i.e.

A=) dg{(U).

teR

A basic set is a locally maximal hyperbolic set with a dense orbit. It is non-trivial if it is
not a single closed orbit.

Given a continuous flow ¢; on a topological space X a point z € X is said wandering if
there is an open neighborhood U of z and T' > 0 such that ¢(U)NU = ) for all ¢t > T.

Denote by Q(¢¢|x) the set of non-wandering points for (X, ¢;). Recall

5.8. Smale’s spectral decomposition theorem for flows. [50, 27]
If A is a locally maximal hyperbolic set for a flow ¢, then there exists a finite collection

satisfies

of basic sets A1,... Ay such that the non-wandering set of the restriction d)t‘A

N
Q(‘MA) = ,L:JlAi‘

5.9. Corollary. If the number of geometrically distinct periodic geodesics is infinite and

g € FY(M), then Per(g) contains a non-trivial hyperbolic basic set.

Proof: Let A = Per(g). Since g € F(M), theorem D implies that A is a hyperbolic set.
By proposition 6.4.6 in [27], there exists an open neighborhood U of A such that the set

. 9(77

Ay = ﬂteR th (U)
is hyperbolic. Since A = Per(g), its non-wandering set is Q(¢¢|p) = A. By definition of
Ay, A C Ay and hence A = Q(¢d¢|a) € Q(de|a, ). By corollary 6.4.20 in [27], the periodic
orbits are dense in the non-wandering set €(¢¢|a,) of the locally maximal hyperbolic set

Ay. Thus A C Q(¢ée|a,) C Per(g) = A. By theorem 5.8, the set A = Q(¢¢|a,,) decomposes
into a finite collection of basic sets. Since the number of periodic orbits in A is infinite, at
least one of the basic sets A; is not a single periodic orbit, i.e. it is non-trivial. U

N. Hingston proves in [24] that if M is a simply-connected manifold rational homotopy
equivalent to a compact rank-one symmetric space with a metric all of whose closed geodesics
are hyperbolic then

lim inf n(¢) log(¢)

l—o00 14 - 0’

where n(¢) is the number of geometrically distinct closed geodesics of length < /4.
Rademacher proves

5.10. Theorem (Rademacher [44, cor. 2]).

For a C*-generic metric on a compact riemannian manifold with finite fundamental group
there are infinitely many geometrically distinct closed geodesics.
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Thus we have (As we mentioned in the introduction, we could have also used the stronger
results of Franks and Bangert [5, 19] which assert that any metric on S? has infinitely many
geometrically distinct closed geodesics.),

1.1. Theorem.
If a C* metric on a closed surface cannot be C?-approzimated by one having an elliptic
closed geodesic, then it has a non-trivial hyperbolic basic set.

Theorem 1.1 together with proposition 3.3 completes the proof of theorem A.

APPENDIX A. PERTURBATION OF LAGRANGIAN MANIFOLDS.

In this appendix we prove a perturbation lemma for invariant lagrangian submanifolds
of an autonomous hamiltonian suitable for use in the proof of the Kupka-Smale theorem
for geodesic flows.

Let V' be a 2n-dimensional vector space. A symplectic form w on V' is an antisymmetric
bilinear map which is non-degenerate, i.e. for all v € V'\ {0} there exists w € V such that
w(v,w) # 0. We say that a subspace E C V is isotropic if w|g = 0 and that it is lagrangian
if F is isotropic and dim E =n = %dim V. This is the maximal dimension that an isotropic
subspace can have.

A symplectic manifold (M,w) is a 2n-dimensional smooth manifold together with a
symplectic form w, i.e. a 2-form which is non-degenerate at each tangent space. A lagrangian
submanifold N' C M is a submanifold such that each tangent space T,N is a lagrangian
subspace of T, M. In particular, dimN = n.

A.l.Lemma. Let (M, w) be a symplectic manifold and H : M — R be a smooth function.

If N is a lagrangian submanifold of (M,w) such that N C H='{k} for some k € R then
the hamiltonian vector field X of H is tangent to N'. In particular, N is a union of orbit
segments of the hamiltonian flow.

Proof: The hamiltonian vector field X is defined by ixw = —dH. In particular, on the
level set ¥ = H~'{k} we have that ixw|s = dH|g = 0. Then ixw|y = 0. Then for all
x € N the subspace E, := T, N & (X (z)) is isotropic. If X (z) ¢ T, N then dimE, =n+1
which is impossible. Thus X (z) € T, N. O

We shall use a special coordinate system associated to a lagrangian submanifold that we
shall call Darboux coordinates for the lagrangian manifold.

A.2. Lemma. Let N be a lagrangian submanifold contained in an energy level H='{k} of
a hamiltonian H : M — R on a symplectic manifold (M,w). Let 6 € N and suppose that
0 is not a singularity of the hamiltonian vector field of H. Then there exist a neighborhood
U in M and a coordinate system (x,p): U — R™ x R™ such that

(a) w=">,dp; \dx;.

(b) NNU =[p=0].

(¢) The hamiltonian vector field of H on N is given by Xp|n = (%0.
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Proof: By Weinstein’s theorem [53], [2, th. 5.3.18], [36, th. 3.32] there is a neighborhood
Wy of N which is symplectomorphic to a neighborhood of the zero section of T*N with its
canonical symplectic form, sending A to the zero section N x 0.

By lemma A.1, NV is invariant under the hamiltonian flow ¢; of H. Let V be a flow box
for the restriction ¢¢|x containing § € V' and choose a local chart x : V. — R” for N such

that z(6) =0 € R” and X|y = 8%0, where X |y is the restriction of the hamiltonian vector

field to N NV.
The canonical symplectic coordinates associated to the chart (V,z) are given by (z,p) :

V xR" — TN, p; = dz;. The pull-back of the canonical symplectic form for 7*N in these
coordinates is Y, dp; A dx;. The zero section V x 0 C N x 0 C T*N is given by [p = 0].

Now compose this chart (z,p) with the symplectomorphism to obtain the required chart.
O

This is our perturbation lemma for invariant lagrangian submanifolds.

A.3. Lemma. Let N and K be two lagrangian submanifolds inside an energy level H=*{k}
of a hamiltonian H : M — R of a symplectic manifold (M,w). Let 8 € N be a non-
singular point for the hamiltonian vector field. Let (t,z;p), t = xg, be Darboux coordinates
coordinates for N, 0 <t < 1, |z| < € as in lemma A.2. Choose 0 < e < g1 < €. Then
there exist a sequence Ny, of lagrangian submanifolds of (M, w) such that

(a) N, — N in the C topology.

(b) NuNA=NNA, where A:={ (t,z;p) | max;|z;| > e or 0<t <1}

(c) HWNn, N B) = {k}, where B=AU{ (t,z;p) |3 <t <1}.

(d) N, N D is transversal to K, where D = { (t,z;p) |t =1, and max; |z;| < &2 }.
Proof: Let ¢ : [—¢,e]"! — [0,1] be a C™ function such that p(z) = 0 if max; |z;| > &
and ¢(z) = 1 if © € [~e2,e9]" 1. Given s = (s1,...,8,-1) € R""! with |s| small, let
hs : [—€,e]""! — R be the function hs(z) := 1+ () Z;:ll s; ;. Then

n—1,

dyhs = (81, -, 8n-1), if x€[—e9,e"

dzhs =0, if  max|x;| > €.
(2

Let p* : {1} x [—¢,e]"! — R™ be defined by p*(1,2) = (p§(z),dshs), where pi(z) :
[—&,e]""! — R is defined by the equation

(11) H((1,2): ph(x)) = k.

Since the curves t — (t,x,p = 0) are solutions of the hamiltonian equations,

Hp,((1,),0) =1 #0.

By the implicit function theorem, for s small we can solve equation (41) for (s, z) — p§(x)

and this is a C* function on s and z.
The graph of p®:

Graph(p®) := { ((1,1:);p5(x)) ‘x € [—5,5]”_1} C H_l{k}
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is an isotropic submanifold of H _1{%}. Indeed, its tangent vectors are generated by &; =
((O el), s ) and

S

dp A dz (€, ;) Z 8p’f d*( g];’f dz* (e;)
=0 J

8p§ op;  9%h 0%h

T ox; ox; - Ox;0x; B x;0; =0

When s is near zero, the submanifold Graph(p®) is C*° near
Graph(p®) := ({1} x [~e,e]" ™) x {eo} C N

The tangent subspace to Graph(p®) is generated by the vectors &Y = ((O, ei);()). Condi-
tion (¢) in lemma A.2 implies that, the hamiltonian vector field on N is X = ((1, 0); O).
Then X is transversal to Graph(p"). Then for s small, the hamiltonian vector field X is

also transversal to Graph(p®).
Let

Ny =[5 <t <1 () [l] <] () d-2c0( Craph(p*)),

We are adding the flow direction to the isotropic submanifold Graph(p®) of the energy level
[H = k]. Then Nj is also isotropic. Since dim Ny = n, Ny is a lagrangian submanifold.
Since the projection 7|y is a diffeomorphism and when s — 0, N converges to N in the C*
topology, it follows that 7|y, is also a diffeomorphism for s small. Then Ny is the graph of

a 1-form 7(t, z) € T*B defined on [%,1] x [—¢,e]""!. Since N is a lagrangian submanifold,
the 1-form 7 is closed. Since its domain is contractible, 7 is exact: ns = d(t,x)us. Adding

a constant if necessary we can assume that us = hs on {1} x [—¢,¢]"" . Extend u, to a C*®

function on B such that

us(t,x) =t, if m;ax|mi| >e or t<i

liH(l) us(t,z) =t, in the C*° topology.
S—>

This can be done using the Whitney extension theorem [55].

By construction H(du,) = k = H(K) on t € [3,1]. Since Graph(du,) and K are

lagrangian submanifolds, they are invariant under the hamiltonian vector field. Hence

Graph(dus) and K are transversal over (t,z) € [,1] x [—e2,e2]" 1 if and only if their inter-

sections with [t = 1], (z,0,us(1,2)) and K N [t = 1] are transversal over @ € [—e2,e2]" 1.
By construction of us; we have that

Opus(l,z) = s € R"1 for 2 € [—e9, e9)" !
Observe that the submanifolds Graph(dus) on (t,z) € [,1] x [—e2, 9], parametrized by s

3.1] X [—e2,29]" 71 x [—6,6]"" 1. The projection of K N [t = 1]

into the transverse direction to the foliation is given by [—&a, 52]”*1 S = — dgv where the
function v : [—¢,]""! — R is defined by K N [t = 1] = Graph(dv). Therefore Graph(dus)

are a foliation of (¢,z;p) € |
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is transversal to IC if and only if s is a regular value for x — d,v. By Sard’s theorem the

set of regular values of dv has total measure, in particular there is a sequence s,, — 0 of
regular values. The sets N, := Graph(dus, ) are the required lagrangian manifolds. t
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