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Abstract. We show that the set of C∞ riemannian metrics on S2 or RP 2 whose geodesic

flow has positive topological entropy is open and dense in the C2 topology. The proof is

partially based on an analogue of Franks’ lemma for geodesic flows on surfaces.

To the memory of Michel Herman

1. Introduction

Let M be a closed surface endowed with a C∞ riemannian metric g and let φgt be the
geodesic flow of g. One of the most important dynamical invariants that one can associate
to φgt to roughly measure its orbit structure complexity is the topological entropy, which
we shall denote by htop(g). The first question one asks about htop(g) is whether it vanishes
or not. If htop(g) > 0 a well known result of A. Katok [25] states that the dynamics of φgt
presents transverse homoclinic intersections and as a consequence the number of periodic
hyperbolic geodesics grows exponentially with length. Moreover, other conclusions of a
more geometrical nature can be drawn. Given p and q in M and T > 0, define nT (p, q) as
the number of geodesic arcs joining p and q with length ≤ T . R. Mañé showed in [35] that

lim
T→∞

1
T

log
∫

M×M
nT (p, q) dp dq = htop(g),

and therefore if htop(g) > 0, we have that on average the number of arcs between two points
grows exponentially with length. Even better, K. Burns and G.P. Paternain showed in [13]
that there exists a set of positive area in M such that for any pair of points p and q in that
set, nT (p, q) grows exponentially with exponent htop(g).

When the Euler characteristic of M is negative a result of E.I. Dinaburg [15] ensures that
htop(g) > 0 for any metric g. Moreover, Katok in [26] showed that htop(g) is greater than
or equal to the topological entropy of a metric of constant negative curvature and the same
area as g, with equality if and only if g itself has constant curvature. Therefore one is left
with the problem of describing the behavior of the functional g 7→ htop(g) on the two-sphere
(projective space) and the two-torus (Klein bottle). It is well known that these surfaces
admit various completely integrable metrics with zero topological entropy: flat surfaces,
surfaces of revolution, ellipsoids and Poisson spheres. On the other hand V. Donnay [17]
and Petroll [41] showed how to perturb a homoclinic or heteroclinic connection to create
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transverse intersections. Applying these type of perturbations to the case of an ellipsoid with
three distinct axes one obtains convex surfaces with positive topological entropy. Examples
of these type were first given by G. Knieper and H. Weiss in [30]. Explicit real analytic
convex metrics arising from rigid body dynamics were given by Paternain in [39].

We would like to point out that Katok’s theorem mentioned above about the existence
of transverse homoclinic intersections when the topological entropy is positive, together
with the structural stability of horseshoes implies that the set of C∞ metrics for which
htop(g) > 0 is open in the Cr topology for all 2 ≤ r ≤ ∞. Therefore, the relevant question
about topological entropy for surfaces with non-negative Euler characteristic is the following:
when is the set of C∞ metrics with positive topological entropy dense?

Let us recall that a riemannian metric is said to be bumpy if all closed geodesics are
non-degenerate, that is, if the linearized Poincaré map of every closed geodesic does not
admit a root of unity as an eigenvalue. An important tool for proving generic properties
of geodesic flows is the bumpy metric theorem which asserts that the set of Cr bumpy
metrics is a residual subset of the set of all Cr metrics endowed with the Cr topology for
all 2 ≤ r ≤ ∞. The bumpy metric theorem is traditionally attributed to R. Abraham [1],
but see also Anosov’s paper [3]. Recall that a closed geodesic is said to be hyperbolic if its
linearized Poincaré map has no eigenvalue of norm one and it is said to be elliptic if the
eigenvalues of its linearized Poincaré map all have norm one but are not roots of unity. For
a surface with a bumpy metric the closed geodesics are all elliptic or hyperbolic.

Let us recall some facts about heteroclinic orbits. Let SM be the unit sphere bundle of
(M, g). Given two hyperbolic periodic orbits γ, η, of the geodesic flow φt, a heteroclinic
orbit from γ to η is an orbit φR(θ) such that

lim
t→−∞ d(φt(θ), γ) = 0 and lim

t→+∞ d(φt(θ), η) = 0.

The orbit φR(θ) is said to be homoclinic to γ if η = γ. The weak stable and weak unstable
manifolds of the hyperbolic periodic orbit γ are defined as

W s(γ) : =
{
θ ∈ SM

∣∣∣ lim
t→+∞ d

(
φt(θ), γ

)
= 0

}
,

W u(γ) : =
{
θ ∈ SM

∣∣∣ lim
t→−∞ d

(
φt(θ), γ

)
= 0

}
.

The sets W s(γ) and W u(γ) are n-dimensional φt-invariant immersed submanifolds of the
unit sphere bundle, where n = dimM . Then a heteroclinic orbit is an orbit in the in-
tersection W u(γ) ∩W s(η). If W u(γ) and W s(η) are transversal at φR(θ) we say that the
heteroclinic orbit is transverse. A standard argument in dynamical systems (see [27, §6.5.d]
for diffeomorphisms) shows that if a flow contains a transversal homoclinic orbit then it has
positive topological entropy1. (Note that for geodesic flows the closed orbits never reduce
to fixed points.) Moreover, if there is a loop γ0, . . . , γN = γ0 of orbits such that for each i,
0 ≤ i ≤ N − 1, there is a transverse intersection of W u(γi) with W s(γi+1), then γ0 has a
homoclinic orbit and, in particular, φt has positive entropy.

1In fact it contains a hyperbolic basic set (see below).
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For the case of the two-torus classical results of G.A. Hedlund [22] and H.M. Morse [37]
ensure that for a bumpy metric there are always heteroclinic geodesics. In fact, minimal
periodic geodesics are always hyperbolic (for bumpy surfaces) and if we choose in R2 a strip
bounded by two periodic minimal geodesics c+ and c− such that it does not contain other
periodic minimal geodesics, then there exist minimal geodesics c and c∗ such that c is α-
asymptotic to c− and ω-asymptotic to c+ and viceversa for c∗ (cf. [4, theorem 6.8]). If these
heteroclinic connections are not transverse, they can be perturbed using Donnay’s theorem
to easily obtain Cr density of metrics with positive topological entropy for all 2 ≤ r ≤ ∞,
for the two-torus. Similar arguments can be used for the Klein bottle. Clearly no argument
like the one just described can be applied to surfaces with no real homology.

One of the main goals of this paper is to show:

Theorem A.
The set of C∞ riemannian metrics g on S2 or RP 2 for which htop(g) > 0 is dense in the

C2 topology.

Corollary B.
The set of C∞ riemannian metrics g on S2 or RP 2 for which htop(g) > 0 is open and

dense in the C2 topology. In particular, if g belongs to this open and dense set, then the
number of hyperbolic prime closed geodesics of length ≤ T grows exponentially with T .

From the previous discussion and the theorem we obtain the following corollary which
answers a question that Detlef Gromoll posed to the second author in 1988.

Corollary C.
There exists a C2 open and dense set U of C∞ metrics on S2 such that for any g ∈ U

there exists a set G of positive g-area such that for any p and q in G we have

lim
T→∞

1
T

lognT (p, q) = htop(g) > 0.

The last corollary is sharp in the sense that the sets G with positive g-area cannot be
taken to have full area. In [12], Burns and Paternain constructed an open set of C∞ metrics
on S2 for which there exists a positive area set U ⊂M , such that for all (p, q) ∈ U × U ,

lim sup
T→∞

1
T

lognT (p, q) < htop.

It seems quite reasonable to conjecture that on any closed manifold the set of C∞ rie-
mannian metrics whose geodesic flow exhibits a transverse homoclinic intersection is open
and dense in the Cr-topology for any r with 2 ≤ r ≤ ∞. Besides its intrinsic interest there
is another motivation for looking at this conjecture. Quite recently, A. Delshams, R. de la
Llave and T. Seara proved the existence of orbits of unbounded energy (Arnold diffusion
type of phenomenon) for perturbations of geodesic flows with a transverse homoclinic in-
tersection by generic quasiperiodic potentials on any closed manifold [16]. Hopefully our
methods here can be further developed to the point where they yield Theorem A for any
closed manifold.
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Let us describe the main elements that go into the proof of theorem A. This will clarify
at the same time why we can only obtain density in the C2 topology. An important tool for
proving generic properties for geodesic flows is a local perturbation result of W. Klingenberg
and F. Takens [29]. We recall its precise statement in section 2. We shall also see in section 2
that the bumpy metric theorem, together with Klingenberg-Takens and a new perturbation
lemma (cf. lemma 2.6) imply the analogue of the Kupka-Smale theorem for geodesic flows.
Namely, that Cr-generic riemannian metrics on a manifold of any dimension have closed
geodesics whose Poincaré maps have generic (r − 1)-jets and the heteroclinic intersections
of their hyperbolic closed geodesics are transversal.

If there exists an elliptic closed geodesic, using the Kupka-Smale theorem we can approx-
imate our metric by one such that the Poincaré map of the elliptic closed geodesic becomes
a generic exact twist map in a small neighborhood of the elliptic fixed point. Then a result
of Le Calvez [31] implies that the twist map has positive topological entropy and therefore
a metric of class C4 with a nonhyperbolic closed geodesic can be approximated by one that
has positive topological entropy. Details of this argument are given in section 3. Now we
are faced with the following question: how can we proceed if all the closed geodesics are
hyperbolic and this situation persists in a neighborhood?

It is not known if the two-sphere (or projective space) admits a metric all of whose closed
geodesics are hyperbolic. A fortiori, it is not known if this can happen for an open set
of metrics (see [6] for a thorough discussion about the existence of a nonhyperbolic closed
geodesic).

Let M be a closed surface and let R1(M) be the set of Cr riemannian metrics on M ,
r ≥ 4, all of whose closed geodesics are hyperbolic, endowed with the C2 topology and let
F1(M) = int

(R1(M)
)

be the interior of R1(M) in the C2 topology. Given a metric g let
Per(g) be the union of the hyperbolic (prime) periodic orbits of g.

Using Mañé’s techniques on dominated splittings in his celebrated paper [34] and an
analogue of Franks’ lemma for geodesic flows we will show:

Theorem D.
If g ∈ F1(M), then the closure Per(g) is a hyperbolic set.

Theorem D together with results of N. Hingston and H.-B Rademacher (cf. [24, 45, 44]),
will show (cf. section 5):

1.1. Theorem.
If a C4 metric on a closed surface cannot be C2-approximated by one having an elliptic

periodic orbit, then it has a non-trivial hyperbolic basic set.

This theorem together with the previous discussion will allow us to prove theorem A.
A hyperbolic set of a flow f t (without fixed points) is a compact invariant subset Λ such

that there is a splitting of the tangent bundle of the phase space TΛN = Es ⊕ Eu ⊕ Ec
which is invariant under the differential of f t: df t(Es,u) = Es,u, Ec is spanned by the flow
direction and there exist 0 < λ < 1 and N > 0 such that

∥∥dfN |Es

∥∥ < λN ,
∥∥df−N |Eu

∥∥ < λN .
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A hyperbolic set Λ is said to be locally maximal if there exists an open neighborhood U of
Λ such that

Λ =
⋂

t∈R
f t(U).

A hyperbolic basic set is a locally maximal hyperbolic set which has a dense orbit. It is said
to be non-trivial if it is not a single closed orbit.

It is well known that non-trivial hyperbolic basic sets have positive topological entropy
[8]. Moreover, the dynamics on such a set can be modelled on suspensions of topological
Markov chains (see [9, 10]). Also, the exponential growth rate of the number of periodic
orbits in the basic set is given by the topological entropy ([8]):

htop(f t|Λ) = lim
T→+∞

1
T

log #{ γ | γ periodic orbit of period ≤ T}.

(For the case of diffeomorphisms all these facts can be found in [27, Chapter 18].)

Mañé’s theory on dominated splittings is based on theorem 5.1 below about families of
periodic sequences of linear maps: if when perturbing each linear map of such a family, the
return linear maps remain hyperbolic, then their stable and unstable subspaces satisfy a
uniform bound

(1)
∥∥TN |Es

∥∥ · ∥∥T−N |Eu

∥∥ < λ1 < 1,

for a fixed iterate N (eventually smaller than the periods), where T is the differential of
our dynamical system. A splitting satisfying the uniform bound (1) is called a dominated
splitting. The uniform bound (1) implies the continuity of the splitting, i.e. a dominated
splitting on an invariant subset A of a dynamical system extends continuously to the closure
A.

The family of (symplectic) linear maps in our situation will be the following. Consider
a periodic orbit γ of the geodesic flow and cut it into segments of length τ(γ) between ρ

and 2ρ for some ρ > 0 which is less than the injectivity radius . Construct normal local
transversal sections passing through the cutting points. Our family will be given by the set
of all linearized Poincaré maps between consecutive sections (cf. proof of Proposition 5.5).

In order to apply theorem 5.1, we first have to change “linear map” to “symplectic linear
map” (cf. lemma 5.4). Then we have to be able to modify independently each linearized
Poincaré map of time τ on the periodic orbits, covering a neighborhood of fixed radius of
the original linearized Poincaré map. This is done with the analogue of Franks’ lemma for
geodesic flows (cf. section 4). Thus we obtain a dominated splitting on the closure of the
set of C2 persistently hyperbolic closed geodesics.

In Contreras [14] it is shown that a dominated invariant splitting E ⊕ F on a non-
wandering (Ω(Λ) = Λ) compact invariant set Λ of a symplectic diffeomorphism is hyperbolic,
provided that E and F have the same dimension. This is also proved in Ruggiero [48], when
the subspaces E and F are assumed to be lagrangian.

A result of N. Hingston [24] (cf. also Rademacher [24, 45, 44]) states that if all the periodic
orbits of a metric in S2 are hyperbolic, then they are infinite in number. Assuming that
they are C2-persistently hyperbolic, the theory above and Smale’s spectral decomposition
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theorem imply that their closure contains a non-trivial basic set. (Alternatively, we could
have also used for the 2-sphere the stronger results of Franks and Bangert [5, 19] which
assert that any metric on S2 has infinitely many geometrically distinct closed geodesics.)

Unfortunately, Mañé’s techniques only work in the C2 topology and that is why in theo-
rem A we can prove density of positive topological entropy on the two-sphere or projective
space only for the C2 topology. We remark that the lack of a closing lemma for geodesic
flows prevent us from concluding that the geodesic flow of a metric near g is Anosov as one
would expect.

At this point it seems important to remark that if instead of considering riemannian
metrics we were considering Finsler metrics or hamiltonians, then theorem A would have
been a corollary of well known results for hamiltonians (cf. [38, 46, 47, 51]). However, as
is well known, perturbation results within the set of riemannian metrics are much harder,
basically due to the fact that when we change the metric in a neighborhood of a point of
the manifold we affect all the geodesics leaving from those points; in other words, even if
the size of our neighborhood in the manifold is small, the effect of the perturbation in the
unit sphere bundle could be large. This is the main reason why the closing lemma is not
known for geodesic flows (cf. [43]), even though there is a closing lemma for Finsler metrics.

Another remark concerns the degree of differentiablity of our metrics. Theorem A holds
if instead of requiring our metrics g to be C∞ we require them to be Cr for r ≥ 2. Given
a C2 metric g0, we can approximate it by a C∞ metric g1 in the C2 topology. Afterwards
we C2-approximate g1 by a C∞ metric g2 with a basic set. Then the structural stability
theorem works for an open C2-neighborhood of g2 of C2 metrics. We need g1 to be at least
C4 in three places: in Franks’ lemma 4.1; in the proof of theorem 1.1; and to make the
Poincaré map of an elliptic closed geodesic a twist map. Observe that we actually find a
hyperbolic basic set and not just htop(g) > 0. Katok’s theorem, which is based on Pesin
theory, requires the riemannian metrics to be of class at least C2+α. This restriction is
overcome in our case by the use of the structural stability theorem. On the other hand for
Corollary C a C∞ hypothesis on the metrics is essential because, as in Mañé’s formula [35],
Yomdin’s theorem [56] is used.

Related Work. There is an unpublished preprint by H. Weiss [54] that proves that within
the set of positively curved 1/4-pinched metrics, those with positive topological entropy
are Cr-dense. Weiss uses a result of G. Thorbergsson [52] which asserts that any positively
curved 1/4-pinched metric on S2 has a nonhyperbolic closed geodesic and similar arguments
to the ones we give in section 3, although the Kupka-Smale theorem for geodesic flows is
not proven.

Michel Herman gave a wonderful lecture at IMPA [23] in which he outlined a proof of
the following theorem: within the set of C∞ positively curved metrics on S2 those with an
elliptic closed geodesic are C2-generic. Among other tools, he used an analogue of Franks’
lemma just like the one we prove in the present paper. As a matter of fact, he not only
pointed out a mistake in a draft of the manuscript we gave him, but he also explained to us
how to solve the self-intersection problem that appears in the proof. This paper is dedicated
to his memory.
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It is worth mentioning that Herman’s motivation was a claim by H. Poincaré [42] that
said that any convex surface has a nonhyperbolic closed geodesic without self-intersections.
This claim was proved wrong by A.I. Grjuntal [20].

Acknowlegements. We would like to thank the referees for numerous comments and sugges-
tions for improvement.
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2. Bumpy metrics and the Kupka-Smale theorem.

In this section M is a closed manifold of dimension n. We begin by recalling some
elementary facts. Let φgt be the geodesic flow of the riemannian metric g acting on SM ,
the unit sphere bundle of M . Let π : SM → M be the canonical projection. Non-trivial
closed geodesics on M are in one-to-one correspondence to the periodic orbits of φgt . For
a closed orbit γ = {φgt (z) : t ∈ [0, a]} of period a > 0 we can define the Poincaré map
Pg(Σ, γ) as follows: one can choose a local hypersurface Σ in SM through v and transversal
to γ such that there are open neighborhoods Σ0, Σa of v in Σ and a differentiable mapping
δ : Σ0 → R with δ(v) = a such that the map Pg(Σ, γ) : Σ0 → Σa given by

u 7→ φgδ(u)(u),

is a diffeomorphism.
Given a closed geodesic c : R/Z → M , all iterates cm : R/Z → M ; cm(t) = c(mt) for a

positive integer m are closed geodesics too. We shall call a closed geodesic prime if it is not
the iterate of a shorter curve. Analogously a closed orbit of φgt of period a is called prime if
a is the minimal period. A closed orbit γ (or the corresponding closed geodesic c) is called
non-degenerate if 1 is not an eigenvalue of the linearized Poincaré map Pc := dγ(0)Pg(Σ, γ).
In that case, γ is an isolated closed orbit and π ◦ γ an isolated closed geodesic. Moreover,
one can apply the implicit function theorem to obtain fixed points of the Poincaré map Pg.
Thus, for a metric g near g there is a unique closed orbit γg for φg near γ, given by the
implicit function theorem, that we call the continuation of c.

A riemannian metric g is called bumpy if all the closed orbits of the geodesic flow are non-
degenerate. Since Pcm = Pmc this is equivalent to saying that if exp(2πiλ) is an eigenvalue
of Pc, then λ is irrational. Let us denote by Gr the set of metrics of class Cr endowed with
the Cr topology for r ≥ 2. We state the bumpy metric theorem [1, 3]:

2.1. Theorem.
For 2 ≤ r ≤ ∞, the set of bumpy metrics of class Cr is a residual subset of Gr.
The bumpy metric theorem 2.1 clearly implies the following:

2.2. Corollary. There exists a residual set O in Gr such that if g ∈ O then for all T > 0,
the set of periodic orbits of φg with period ≤ T is finite.

The canonical symplectic form ω induces a symplectic form on Σ and Pg(Σ, γ) becomes a
symplectic diffeomorphism. Periodic points of Pg(Σ, γ) correspond to periodic orbits near γ.
Let N denote the orthogonal complement of v = ċ(0) in the tangent space Tπ(v)M . Recall
that N ⊕N can be identified with the kernel of the canonical contact form and therefore it
is a symplectic vector space with respect to ω. One can choose Σ such that the linearized
Poincaré map Pg(γ) := dvPg(Σ, γ) is a linear symplectic map of N ⊕N and

Pg(γ)(J(0), J̇(0)) = (J(a), J̇(a)),

where J is a normal Jacobi field along the geodesic π ◦ γ and J̇ denotes the covariant
derivative along the geodesic. After choosing a symplectic basis for N ⊕N we can identify
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the group of symplectic linear maps of N ⊕N with the symplectic linear group Sp(n− 1)
of Rn−1 ⊕ Rn−1.

Let Jrs (n− 1) be the set of r-jets of symplectic automorphisms of Rn−1 ⊕ Rn−1 that fix
the origin. Clearly one can identify J1

s (n− 1) with Sp(n− 1). A set Q ⊂ Jrs (n− 1) is said
to be invariant if for all σ ∈ Jrs (n− 1), σQσ−1 = Q. The property that says that the r-jet
of a Poincaré map Pg(Σ, γ) belongs to Q is independent of the section Σ.

Let γ = {φg0t (v)} be a periodic orbit of period a of the geodesic flow φg0t of the metric
g0 ∈ Gr. Let W be an open neighborhood of π(v) ∈M . We choose W so that the geodesic
π ◦ γ does not have any self intersection in W . Denote by Gr(γ, g0,W ) the set of metrics
g ∈ Gr for which γ is a periodic orbit of period a and such that the support of g − g0 lies
in W .

We now state the local perturbation result of Klingenberg and Takens [29, theorem 2].

2.3. Theorem. If Q is an open and dense invariant subset of Jr−1
s (n− 1), then there is for

every neighborhood V of g0 in Gr a metric g ∈ V ∩ Gr(γ, g0,W ) such that the (r − 1)-jet of
Pg(Σ, γ) belongs to Q.

As pointed out by Anosov [3], once theorem 2.1 is proved, combining corollary 2.2 and
theorem 2.3 one gets:

2.4. Theorem. Let Q ⊂ Jr−1
s (n − 1) be open, dense and invariant. Then there exists a

residual subset O ⊂ Gr such that for all g ∈ O, the (r− 1)-jet of the Poincaré map of every
closed geodesic of g belongs to Q.

A closed orbit is said to be hyperbolic if its linearized Poincaré map has no eigenvalues
of modulus 1. If γ is a hyperbolic closed orbit and θ = γ(0), define the strong stable and
strong unstable manifolds of γ at θ by

W ss(θ) = { v ∈ SM | lim
t→+∞ d

(
φgt (v), φ

g
t (θ)

)
= 0 },

W su(θ) = { v ∈ SM | lim
t→−∞ d

(
φgt (v), φ

g
t (θ)

)
= 0 }.

Define the weak stable and weak unstable manifolds by

W s(γ) :=
⋃

t∈R
φt

(
W ss(θ)

)
, W u(γ) :=

⋃

t∈R
φt

(
W su(θ)

)
.

It turns out that they are immersed submanifolds of dimension

dimW s(γ) = dimW u(γ) = dimM.

A heteroclinic point is a point in the intersection W s(γ)∩W u(η) for two hyperbolic closed
orbits γ and η. We say that θ ∈ SM is a transversal heteroclinic point if θ ∈W s(γ)∩W u(η),
and TθW s(γ) + TθW

u(η) = TθSM .
In [17], Donnay showed for surfaces how to perturb a heteroclinic point of a metric on

a surface to make it transversal. In fact a similar method has been used by Petroll [41]
for higher dimensional manifolds and this method actually gives Cr perturbations. Refer-
ence [41] is difficult to find, but there is a sketch of the proof in [11].
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However, without further analysis, these perturbations do not give control on the size of
the subsets where the stable and unstable manifolds are made transversal, as is needed for
the proof of the Kupka-Smale theorem. Available proofs of the Kupka-Smale theorem [46,
47] for general hamiltonians do not apply to geodesic flows without further arguments.

Using corollary 2.2 and theorem 2.4 we show here how to extend the proof of the Kupka-
Smale theorem for hamiltonian flows to the case of geodesic flows, provided that the pertur-
bations used are local. The perturbations in [47] are not local. The perturbations in claim
a in [46] are local, they are written for volume preserving flows but they can be adapted to
the hamiltonian case. We choose to present in appendix A another kind of perturbation,
suitable for use in the proof of theorem 2.5 and that could be useful for other types of
problems.

2.5. Theorem. Let Q ⊂ Jr−1
s (n − 1) be open, dense and invariant. Then there exists a

residual subset O ⊂ Gr such that for all g ∈ O:
• The (r − 1)-jet of the Poincaré map of every closed geodesic of g belongs to Q.
• All heteroclinic points of hyperbolic closed geodesics of g are transversal.

Proof: We are going to modify the proof of the Kupka-Smale theorem for general hamil-
tonians to fit our geodesic flow setting. Let Hr(N) be the set of Cr riemannian g metrics
such that the (r− 1)-jet of the Poincaré map of every closed geodesic of g with period ≤ N
belongs to Q. If necessary intersect Q with the set A ⊂ Jr−1(n − 1) of jets of symplectic
maps whose derivative at the origin has no eigenvalue equal to 1. Then Q is still open,
dense and invariant. Since the periodic orbits of period ≤ N for such g are generic, there
is a finite number of them. Since Q is open and the Poincaré map depends continuously on
the riemannian metric, Hr(N) is an open subset of Gr. By theorem 2.4, Hr(N) is a dense
subset of Gr.

Let Kr(N) be the subset of Hr(N) of those metrics g such that for any pair of hyperbolic
periodic orbits γ and η of g with period ≤ N , the submanifolds W s

N (γ) and W u
N (η) are

transversal, where W s
N (γ) is given by those points θ ∈W s(γ) with distW s(γ)(θ, γ) < N and

similarly for W u
N (η). Since the stable and unstable manifolds of a hyperbolic orbit depend

continuously on compact parts in the C1 topology with respect to the vector field, Kr(N)
is an open subset of Gr.

It remains to prove that Kr(N) is dense in Gr, for then the set

Kr :=
⋂

N∈N
Kr(N)

is the residual subset we are looking for.
We see first that in order to prove the density of Kr(N) it is enough to make small local

perturbations. Let γ, η be two hyperbolic periodic orbits γ, η of period ≤ N . Observe that
if the two invariant manifolds W u(γ), W s(η) intersect, then they intersect along complete
orbits. If they intersect transversally, then they are transversal along the whole orbit of the
intersection point.

A fundamental domain for W u(γ) is a compact subset K ⊂W u(γ) such that every orbit
in W u(γ) intersects K. Such a fundamental domain can be constructed for example inside
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the strong unstable manifold of γ using Hartman’s theorem (one considers the linearization
of the Poincaré return map in a neighborhood of γ). Moreover there are fundamental
domains which are arbitrarily small and arbitrarily near to γ. Hence it is enough to make
W u
N (γ) transversal to W s

N (η) in a fundamental domain for W u(γ).
We will use the following perturbation lemma whose proof will be given after completing

the proof of theorem 2.5:

2.6. Lemma. For every point θ ∈ W u(γ) such that the projection π|Wu(γ) is a diffeomor-

phism in a neighborhood of θ, and sufficiently small neighborhoods θ ∈ V ⊂ V ⊂ U in SM ,
there are riemannian metrics g such that

(1) g is arbitrarily near g in the Cr-topology;
(2) g and g coincide outside π(U);
(3) γ and η are periodic orbits for g;
(4) the connected component of W u

N (γ)∩V containing θ and the submanifold W s(η) are
transversal.

Let θ be in a fundamental domain K for W u(γ). By the inverse function theorem the
projection π|Wu(γ) is a local diffeomorphism at θ if and only of the tangent space of W u(γ)
at θ is transversal to the vertical subspace i.e. TθW u(γ) ∩ ker dθπ = {0}.

Observe that the manifolds W u(γ) and W s(γ) are lagrangian. A well known property of
the geodesic flow (cf. [40]) asserts that if W is a lagrangian subspace, then the set of times
t for which dθφt(W ) ∩ ker dφt θπ 6= {0} is discrete and hence at most countable.

By flowing a bit the point θ we obtain another point φt(θ) satisfying the conditions of
the lemma. We can also choose t such that πt(θ) does not intersect any closed geodesic
of period ≤ N . One chooses the neighborhood U in lemma 2.6 such that the support
of the perturbation π(U) does not intersect any closed geodesic of period ≤ N . Choose
a neighborhood V such that φt(θ) ∈ V ⊂ V ⊂ U . Applying lemma 2.6 we obtain a
new riemannian metric g such that g|π(U)c = g|π(U)c and the connected component of

W u
N (γ) ∩ V containing φt(θ) is transversal to W s(η). If the perturbation is small enough,

flowing backwards a bit we obtain a neighborhood V1 of θ, where W u
N (γ) and W s(η) are

transversal.
Now cover the compact fundamental domainK by a finite number of these neighborhoods

V1 and call them, let us say, W1, . . .Wr. Observe that in lemma 2.6 the perturbations are
arbitrarily small but the neighborhood V of transversality is fixed. Since transversality of
compact parts of stable (unstable) manifolds is an open condition on g, one can make the
perturbation on Wi+1 small enough so that the invariant manifolds are still transversal on
W1, . . . ,Wi.

In order to make now W u
N (η) transverse to W s

N (γ) one can use the invariance of the
geodesic flow under the flip F (x, v) = (x,−v), so that W s(γ) = W u(F (γ)) or repeat the
same arguments for the geodesic flow with the time reversed.

This completes the proof of the density of Kr(N).
¤
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Proof of lemma 2.6:
Perhaps, the easiest way to prove lemma 2.6 is to use a perturbation result for general

hamiltonian systems. The Legendre transform L(x, v) = gx(v, ·) conjugates the geodesic
flow with the hamiltonian flow of

H(x, p) :=
1
2

∑

ij

gij(x) pi pj

on the cotangent bundle T ∗M with the canonical (and fixed) symplectic form ω =
∑

i dpi ∧
dxi. Here gij(x) is the inverse of the matrix of the riemannian metric.

Observe that the stable and unstable manifolds are lagrangian submanifolds of T ∗M .
Now use a local perturbation result for the hamiltonian flow (e.g. [46, claim a, th. 3]

or A.3 in appendix A) to obtain a new hamiltonian flow which has W u(γ) transversal to
the old W s(η) in a neighborhood V . The stable manifold W s(η) only depends on the future
times and on the future it only accumulates on the periodic orbit η so up to the perturbation
it does not change.

If the perturbation is small enough, then the new piece of unstable manifold W̃ u(γ) in
the support of the perturbation U still projects injectively to M . Let p : π(U) → T ∗π(U)M

be such that the connected component of W̃ u(γ) ∩ U containing γ is

Graph(p) =
{ (
x, p(x)

) ∣∣x ∈ π(U)
}
.

Define a new riemannian metric by

gij(x) =

{
2H(x, p(x)) gij(x) if x ∈ π(U),
gij(x) if x /∈ π(U).

Then g is Cr near g, coincides with g on the complement of π(U) and its hamiltonian
satisfies

(2)

H
(
x, p(x)

)
=

1
2

∑

ij

gij(x) pi(x) pj(x) =
1
2

∑

ij

gij(x)
2H(x, p(x))

pi(x) pj(x)

=
H(x, p(x))
2H(x, p(x))

=
1
2
, for x ∈ π(U).

Then W̃ u(γ) is a lagrangian submanifold of T ∗M which is in the energy levelH ≡ 1
2 of the

hamiltonian for g and which coincides with the unstable manifold of γ in a neighborhood of

γ. By lemma A.1, W̃ u(γ) is invariant under the geodesic flow of g and hence is the unstable
manifold of γ for g.

¤
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3. Twist maps and topological entropy.

We say that a homeomorphism of the annulus f : [0, 1] × S1 ←↩ is a twist map if for all
θ ∈ S1 the function [0, 1] 3 r 7→ π2 ◦ f(r, θ) ∈ S1 is strictly monotonic.

For a proof of the Birkhoff’s normal form below see Birkhoff [7], Siegel and Moser [49]
or Le Calvez [32, Th. 1.1]. For a higher dimensional version for symplectic maps see
Klingenberg [28, p. 101].

3.1. Birkhoff’s normal form.
Let f be a C∞ diffeomorphism defined on a neighborhood of 0 in R2 such that f(0) = 0,

f preserves the area form dx ∧ dy, and the eigenvalues of d0f satisfy |λ| = 1 and λn 6= 1
for all n ∈ {1, . . . , q} for some q ≥ 4.

Then there exists a C∞ diffeomorphism h, defined on a neighborhood of 0 such that
h(0) = 0, h preserves the form dx ∧ dy and in complex coordinates z = x+ iy ≈ (x, y) one
has:

h ◦ f ◦ h−1(z) = λ z e2πiP (zz) + o(|z|q−1),

where P (X) = a1X + · · ·+ amX
m is a real polynomial of degree m with 2m+ 1 < q.

The coefficients ai, 1 ≤ i ≤ m ≤ q
2 − 1 are uniquely determined by f .

In polar coordinates the function g = h ◦ f ◦ h−1 is written as

(r, θ) 7−→ (
r + µ(r, θ), θ + α+ a1r

2 + · · ·+ amr
2m + ν(r, θ)

)
,

where λ = e2πi α. If a1 6= 0 and |r| ≤ ε is small enough, then ∂
∂r (π2 ◦ g) has the same

non-zero sign as a1 and hence g is a twist map in [0, ε]× S1.

We shall use following result:

3.2. Proposition (Le Calvez [33, Remarques p. 34]).
Let f be a diffeomorphism of the annulus R × S1 such that it is a twist map, it is area

preserving, the form f∗(Rdθ)−Rdθ is exact and

(i) If x is a periodic point for f and q is its least period, the eigenvalues of dxf q are
not roots of unity.

(ii) The stable and unstable manifolds of hyperbolic periodic orbits of f intersect transver-
sally (i.e. whenever they meet, they meet transversally).

Then f has periodic orbits with homoclinic points.

We are now ready to show:

3.3. Proposition.
Let g0 be a metric of class Cr, r ≥ 4, on a surface M with a nonhyperbolic closed geodesic.

Then there exists a C∞ metric g arbitrarily close to g0 in the Cr topology with a non-trivial
hyperbolic basic set. In particular, htop(g) > 0.

Proof: Let Qh ⊂ J3
s (1) be the subset of 3-jets of symplectic automorphisms which are

hyperbolic at the origin. Given k ∈ Z, k 6= 0, let Qk ⊂ J3
s (1) be

Qk =
{
σfα,a1σ

−1
∣∣σ ∈ J3

s (1), a1 6= 0, α /∈ { nk |n ∈ Z}
} ∪Qh,
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where fα,a1 : R2 → R2 is given by fα,a1(r, θ) = (r, θ+α+a1r
2)+ o(r3) in polar coordinates.

Now let Q =
⋂
kQk. By Birkhoff’s normal form (with q = 4), the set Qk is open, dense and

invariant.
By the Kupka-Smale theorem 2.5 there is a residual subset Ok ⊂ Gr (r ≥ 4) such that

any metric in Ok has the two properties stated in the theorem. Since
⋂
kOk is a residual

subset, we can Cr-approximate g0, r ≥ 4, by a C∞ metric g with a nonhyperbolic closed
orbit γ such that the 3-jet of its Poincaré map is in Q and g satisfies the conditions (i)
and (ii) in proposition 3.2.

The symplectic form on TM induced by the riemannian metric, induces a symplectic form
on a local transverse section Σ to γ, which is preserved by the Poincaré map Pg(Σ, γ). By
Darboux’s theorem, using a change of coordinates we can assume that Σ is a neighborhood
of 0 in R2 and that the symplectic form on Σ is the area form of R2.

By the definition of Q, the Poincaré map f = Pg(Σ, γ) is conjugate to a twist map
f0 = h f h−1 when written in polar coordinates. In order to apply proposition 3.2 we show
below a change of coordinates which transforms f0 into an exact twist map of the annulus
R+ × S1. Then the existence of a homoclinic orbit implies the existence of a non-trivial
hyperbolic basic set.

Consider the following maps

(x, y) −−−−→ (r, θ) −−−−→ (1
2r

2, θ) = (R, θ)

D P−−−−→ R+ × S1 −−−−→ R+ × S1

f0

y
y

yT
D −−−−→ R+ × S1 −−−−→ R+ × S1

where D = { z ∈ C | |z| < 1 }, P−1(r, θ) = (r cos θ, r sin θ). Write G(x, y) = (1
2r

2, θ) = (R, θ),

the upper composition. Then G∗(Rdθ) = 1
2 (x dy − y dx) =: λ. Observe that dλ = dx ∧ dy

is the area form in D. Since D is contractible, f0
∗(λ) − λ is exact. Then T ∗(Rdθ) − Rdθ

is exact. Since R(r) = 1
2 r

2 is strictly increasing on r > 0, T is a twist map iff f0 is a twist
map.

¤

4. Franks’ lemma for geodesic flows of surfaces.

Let γ = {φgt (v) | t ∈ [0, 1]} be a piece of an orbit of length 1 of the geodesic flow φgt of the
metric g ∈ Gr. Let Σ0 and Σt be sections at v and φt(v) respectively. We have a Poincaré
map Pg(Σ0,Σt, γ) going from Σ0 to Σt. One can choose Σt such that the linearized Poincaré
map

Pg(γ)(t)
def= dvPg(Σ0,Σt, γ)

is a linear symplectic map from N0 := N(v)⊕N(v) to Nt := N(φtv)⊕N(φtv) and

Pg(γ)(t)(J(0), J̇(0)) = (J(t), J̇(t)),
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where J is a normal Jacobi field along the geodesic π ◦ γ and J̇ denotes the covariant
derivative along the geodesic. Let us identify the set of all linear symplectic maps from N0

to Nt with the symplectic group

Sp(1) := {X ∈ R2×2 |X∗JX = J },
where J =

[
0 1

−1 0

]
.

Suppose that the geodesic arc π ◦ γ(t), t ∈ [0, 1], does not have any self intersection and
let W be a tubular neighborhood of it. We denote by Gr(γ, g,W ) the set of metrics ḡ ∈ Gr
for which γ is a piece of orbit of length 1 and such that the support of ḡ − g lies in W .

When we apply the following theorem to a piece of a closed geodesic we cannot avoid to
have self intersections of the whole geodesic. Given any finite set of non-self intersecting
geodesic segments F = {η1, . . . , ηm} with the following properties:

1. The endpoints of ηi are not contained in W ;
2. The segment π ◦ γ|[0,1] intersects each ηi transversally;

denote by Gr(γ, g,W,F) the set of metrics g ∈ Gr(γ, g,W ) such that g = g in a small
neighborhood of W ∩ ∪mi=1ηi([0, 1]).

Consider the map S : Gr(γ, g,W ) → Sp(1) given by S(ḡ) = Pḡ(γ)(1). The following
result is the analogue for geodesic flows of the infinitesimal part of Franks’ lemma [18, lem.
1.1] (whose proof for general diffeomorphisms is quite simple).

4.1. Theorem. Let g0 ∈ Gr, r ≥ 4. Given U ⊂ G2 a neighborhood of g0, there exists
δ = δ(g0,U) > 0 such that given γ, W and F as above, the image of U ∩ Gr(γ, g0,W,F)
under the map S contains the ball of radius δ centered at S(g0).

The time 1 in the preceding statement was chosen to simplify the exposition and the
same result holds for any time τ chosen in a closed interval [a, b] ⊂]0,+∞[; now with
δ = δ(g0,U , a, b) > 0. In order to fix the setting, take [a, b] = [12 , 1] and assume that the
injectivity radius of M is larger than 1. This implies that there are no periodic orbits
with period smaller than 2 and that any periodic orbit can be cut into non self-intersecting
geodesic segments of length τ with τ ∈ [12 , 1]. We shall apply theorem 4.1 to such segments
of a periodic orbit choosing the supporting neighborhoods carefully as we now describe.

Given g ∈ Gr and γ a prime periodic orbit of g let τ ∈ [12 , 1] be such that mτ = period(γ)
with m ∈ N. For 0 ≤ k < m, let γk(t) := γ(t + kτ) with t ∈ [0, τ ]. Given a tubular
neighborhood W of π ◦ γ and 0 ≤ k < m let Sk : Gr(γ, g,W ) → Sp(1) be the map
Sk(g) = Pg(γk)(τ).

Let W0 be a small tubular neighborhood of γ0 contained in W . Let F0 = {η0
1, . . . , η

0
m0
} be

the set of geodesic segments η given by those subsegments of γ of length τ whose endpoints
are outside W0 and which intersect γ0 transversally at η(τ/2) (see Figure 1). We now apply
Theorem 4.1 to γ0, W0 and F0. The proof of this theorem also selects a neighborhood
U0 of W0 ∩ ∪m0

i=1η
0
i ([0, τ ]). We now consider γ1 and we choose a tubular neighborhood

W1 of γ1 small enough so that if γ1 intersects γ0 transversally, then W1 intersected with
W0 is contained in U0 (see Figure 1). By continuing in this fashion we select recursively
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Figure 1. Avoiding self-intersections.

tubular neighborhoods W0, . . . ,Wm−1, all contained in W , to which we successively apply
Theorem 4.1. This choice of neighborhoods ensures that there is no interference between
one perturbation and the next. In the end we obtain the following:

4.2. Corollary.
Let g0 ∈ Gr, r ≥ 4. Given a neighborhood U of g0 in G2, there exists δ = δ(g0,U) > 0

such that if γ is a prime closed orbit of φg0 and W is a tubular neighborhood of c = π ◦ γ,
then the image of U ∩ Gr(γ, g0,W ) → Πm−1

k=0 Sp(1) under the map (S0, . . . , Sm−1) contains
the product of balls of radius δ centered at Sk(g0) for 0 ≤ k < m.

The arguments below can be used to show that g− g0 can be supported not only outside
a finite number of intersecting segments but outside any given compact set2 of measure zero
in γ. This is done by adjusting the choice of the function h in (10).

The nature of these results (i.e. the independence on the size of the neighborhood W )
forces us to use the C1 topology on the perturbation of the geodesic flow, thus the C2

topology on the metric. The size δ(g0,U) > 0 in theorem 4.1 and corollary 4.2 depends on
the C4-norm of g0.

Proof of theorem 4.1.

Let us begin by describing informally the strategy that we shall follow to prove the-
orem 4.1. At the beginning we fix most of the constants and bump functions that are

2But to use this argument to support g−g0 outside a given infinite set of geodesic segments of length ≥ 1
2

one needs to bound from below their angle of intersection with c.
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needed. Using Fermi coordinates along the geodesic c = π ◦ γ, we consider a family of
perturbations following Klingenberg and Takens in [29]. We show that the map S is a
submersion when restricted to a suitable submanifold of the set of perturbations. To obtain
a size δ that depends only on g0 and U and that works for all γ and W we find a uniform
lower bound for the norm of the derivative of S using the constants and the bump functions
that we fixed before. This uniform estimate can only be obtained in the C2 topology.

The technicalities of the proof can be summarized as follows. To obtain a C2 perturba-
tion of the metric preserving the geodesic segment c = π ◦ γ one needs a perturbation of
the form (12), with α(t, x) = ϕ(x)βA(t), where ϕ(x) is a bump function supported in an
ε-neighborhood in the transversal direction to c and βA(t) is given by formula (31). The
derivative of βA(t) with respect to A is given by formula (20). The second factor in (20)
is used to make the derivative of S surjective,3 and the first factor h(t) is an approxima-
tion of a characteristic function used to support the perturbation outside a neighborhood
of the intersecting segments in F = {η1, . . . , ηm}. Then inequality (8) shows that if the
neighborhood W of c is taken small enough, the C2 norm of the perturbation is essentially
bounded by only the C0 norm of βA(t). In order to bound the C2 norm of βA from (31) in
equation (8), we use the hypothesis g0 ∈ G4 to have a bound for the second derivative of
the curvature K0(t, 0) of g0 along the geodesic c.

By shrinking U if necessary, we can assume that

(3) ‖g‖C2 ≤ ‖g0‖C2 + 1 for all g ∈ U .
Let k1 = k1(U) > 1 be such that if g ∈ U and φt is the geodesic flow of g, then

(4) ‖dvφt‖ ≤ k1 and ‖dvφ−1
t ‖ ≤ k1 for all t ∈ [0, 1]

and all v ∈ S1
gM . Let 0 < λ¿ 1

2 and let k2 = k2(U , λ) > 0 be such that

(5) max
|t−1/2|≤λ

‖dvφt − dvφ1/2‖ ≤ k2 and max
|t−1/2|≤λ

‖dvφ−1
t − dvφ−1

1/2‖ ≤ k2

for all g ∈ U and all v ∈ S1
gM . If λ = λ(g0,U) is small enough, then

(6) 0 < k2 <
1

16 k3
1

< 1 < k1.

Let δλ and ∆λ : [0, 1]→ [0,+∞[ be C∞ functions such that δλ has support on [12 − λ, 1
2 [,

∆λ has support on ]12 ,
1
2 + λ],

∫
δλ(t) dt =

∫
∆λ(t) dt = 1 and the support of ∆λ is an

interval.
Let k3 = k3(g0,U , λ) = k3(g0,U) = k3(λ) be

(7) k3 := k2
1

[ ‖δλ‖C0 +
∥∥δ′λ

∥∥
C0 + ‖∆λ‖C0

(
1 + ‖g0‖C2

)
+

∥∥∆′′
λ

∥∥
C0

]

where δ′λ and ∆′′
λ are the first and second derivatives of the functions δλ and ∆λ with respect

to t.

3The functions δλ(t) and ∆λ(t) are approximations to a Dirac delta at t = 1
2
.
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Given ε with 0 < ε < 1, let ϕε : R → [0, 1] be a C∞ function such that ϕε(x) = 1 if
x ∈ [− ε

4 ,
ε
4 ] and ϕε(x) = 0 if x /∈ [− ε

2 ,
ε
2 ]. In Lemma 4.5 it is proven that ϕε(x) can be

chosen such that

(8)
∥∥ϕε(x)β(t)x2

∥∥
C2 ≤ k4 ‖β‖C0 + k4 ε ‖β‖C1 + ε2 ‖β‖C2 .

for some fixed k4 > 0 (independent of ε) and any β : [0, 1]→ R of class C2.
Choose 0 < %¿ 1/(4k2

1k3). From (6), we have that

(9)
1
k2

1

− k3 %− 4 k1k2 >
1

2k2
1

.

Let h : [0, 1] → [0, 1] be a C∞ function supported outside a neighborhood of the inter-
secting points and the endpoints of the support of ∆λ,

supp(h) ⊂ [0, 1] \ [
γ−1(∪mi=1ηi) ∪ ∂ supp(∆λ)

]

and such that

(10)
∫ 1

0
|h(t)− 1| dt ≤ %.

We now introduce Fermi coordinates along the geodesic arc c = π ◦ γ. All the facts that
we will use about Fermi coordinates can be found in [21, 28]. Take an orthonormal frame
{ċ(0), E} in Tc(0)M . Let E(t) denote the parallel translation of E along c. Consider the
differentiable map Φ : [0, 1]× R→M given by

Φ(t, x) = expc(t)
(
xE(t)

)
.

This map has maximal rank at (t, 0), t ∈ [0, 1]. Since c(t) has no self intersections on
t ∈ [0, 1], there exists a neighborhood V of [0, 1]× {0} in which Φ|V is a diffeomorphism.

Choose

(11) ε1 = ε1(g0,U , γ,F) > 0

such that the segments ηi do not intersect the points with coordinates (t, x) with |x| < ε1
and t ∈ supp(h) and such that [0, 1]× [−ε1, ε1] ⊂ V and Φ([0, 1]× [−ε1, ε1]) ⊂W .

Let [g0(t, x)]ij denote the components of the metric g0 in the chart (Φ, V ). Let α(t, x)
denote a C∞ function on [0, 1] × R with support contained in V \ Φ−1[∪mi=0ηi([0, 1])]. We
can define a new riemannian metric g by setting

(12)

g00(t, x) = [g0(t, x)]00 + α(t, x)x2 ;

g01(t, x) = [g0(t, x)]01;

g11(t, x) = [g0(t, x)]11;

where we index the coordinates by x0 = t and x1 = x.
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For any such metric g we have that (cf. [21, 28]):

gij(t, 0) = gij(t, 0) = δij , 0 ≤ i, j ≤ 1;

∂k g
ij(t, 0) = ∂k gij(t, 0) = 0, 0 ≤ i, j, k ≤ 1;

where [gij ] is the inverse matrix of [gij ].
We need the differential equations for the geodesic flow φt in hamiltonian form. It is well

known that the geodesic flow is conjugated to the hamiltonian flow of the function

H(x, y) =
1
2

∑

ij

gij(x) yi yj .

Hamilton’s equations are

d
dt xi = Hyi =

∑

j

gij(x) yj ,

d
dt yk = −Hxk

= −1
2

∑

i,j

∂
∂xk

gij(x) yi yj .

Let F be the set of the riemannian metrics given by (12) endowed with the C2 topology.
One easily checks that F ⊂ Gr(γ, g0,W,F). Let

V := F ∩ U .
Using the identity d

dt (dφt) = (dX ◦φt) ·dφt, with X = d
dtφt

∣∣
t=0

, we obtain the differential
equations for the linearized hamiltonian flow, on the geodesic c(t) (given by: t, x = 0,
y0 = 1, y1 = 0), which we call the Jacobi equation:

(13)
d

dt

∣∣∣∣
(t,x=0)

[
a
b

]
=

[
Hyx Hyy

−Hxx −Hxy

] [
a
b

]
=

[
0 I

0 0
0 −K 0

] [
a
b

]
,

where

(14) K(t, 0) = 1
2
∂ 2

∂x2 g
00(t, 0) = −1

2
∂ 2

∂x2 g00(t, 0).

Let

K0(t, 0) := 1
2
∂ 2

∂x2 g
00
0 (t, 0).

It is easy to check that

(15) K(t, 0) = K0(t, 0)− α(t, 0).

By comparison with the usual Jacobi equation4 we get that K(t, 0) is the curvature at the
point c(t) for the metric g.

4The geometric notion of curvature is not really used. The reader might just use equation (14) as the
definition of curvature in this section.
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Observe from (12) that the conditions5

(16)
a0(t) = 〈h, ċ〉g =

∑
i
g0i(t, 0) ai(t) ≡ 0 ,

b0(t) = ȧ0(t) = 〈b, ċ〉g ≡ 0 ,

are invariant among the metrics g ∈ F and satisfy (13). In particular the subspaces

Nt = { (a, b) ∈ Tc(t)TM | a0 = b0 = 0 } ≈ R× R
are invariant under (13) for all g ∈ F . From now on reduce the Jacobi equation (13) to the
subspaces Nt.

We need uniform estimates for all g ∈ V. Fix g ∈ V and write

(17) At = Agt =
[

0 1
−K(t, 0) 0

]

2×2

where K is from (15). Let Xt = Xg
t = dφt|N0 : N0 → Nt be the solution of the Jacobi

equation (13) for g:

(18) Ẋt = AtXt.

The time 1 map X1 is a symplectic linear isomorphism: X∗
1JX1 = J, where J =

[
0 1

−1 0

]
.

Differentiating this equation we get the tangent space of the symplectic isomorphisms at
X1: TX1 = {Y ∈ R2×2 |X∗

1JY is symmetric }. Observe that, since X1 is symplectic:

(19) TX1 = X1 · TI
and that TI is the space of 2×2 matrices of the form6 Z =

[
b c
a −b

]
.

Let us consider the map given by

F 3 g H7−→ Xg
1 ∈ Sp(1).

Equivalently, H is the restriction of S : Gr(γ, g0,W )→ Sp(1) to F . We shall show that H
is a submersion at any g ∈ V. We start by finding a uniform lower bound for the norm of
dgH restricted to a suitable subspace.

4.3. Lemma.
Consider a small parameter s near zero and write gs = g + αsx2

1 dx0 ⊗ dx0 ∈ F where

αs(t, x) := ϕε(x) βs(t),

where βs(t) satisfies βs=0(t) ≡ 0 and

(20)
∂βs(t)
∂s

∣∣∣∣
s=0

= h(t)
{
δ(t) a+ δ′(t) b− (

∆λ(t)K(t, 0) + 1
2 ∆′′

λ(t)
)
c
}
,

5Here the products 〈h, ċ〉g and 〈b, ċ〉g are not needed to follow the argument. In fact, here ċ(t) is the
hamiltonian orbit corresponding to the geodesic c(t) in the cotangent bundle and 〈 , 〉g is the riemannian
metric in the cotangent bundle induced by g, whose coefficients are those of the inverse matrix [gij ]. These
products are included in (16) to suggest the reader that the following subspace Nt is just the reduction of
the space of Jacobi fields to those Jacobi fields which are orthogonal to the geodesic.

6If dim M > 2 the elements of TI have the form [ b c
a d ], with a and c symmetric and d = −b∗. The

arguments shown here are not sufficient to cover this case.
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where a, b, c ∈ R, 0 ≤ h(t) ≤ 1 satisfies (10), K(t, 0) is the curvature of g at (t, 0) and
0 < ε < ε1. In particular αs has support contained in V .

Then
∥∥dgH

(
d
dsgs

∣∣
s=0

)∥∥ ≥ 1
2k3

1

∥∥[
b c
a −b

]∥∥

We use h(t) to support the perturbation of the riemannian metric outside the intersecting

segments and also to bound the C2 norm of the term ∆′′λ(t)

∆λ(t)

(
e−h∆λc − 1

)
in equation (31).

Proof: From (13) and Kgs(t, 0) = Kg(t, 0)− αs(t, 0), we see that Xgs
t satisfies

Ẋgs
t = (At +Ds

t )X
gs
t ,

where At is from (17) and Dt =
[

0 0
αs(t,0) 0

]
. Thus the derivative of the map H satisfies

dgH
(
d
dsgs

∣∣
s=0

)
= Z1, where

Żt = At Zt + EtXt,

where Et = d
ds

∣∣
s=0

Ds
t = h(t)

[
0 0

∂β
∂s |s=0

(t) 0

]
. Writing Zt = XtWt and using that Ẋt = AtXt,

we get that Ẇt = X−1
t EtXt. Hence

(21) Z1 = X1

∫ 1

0
X−1
t EtXt dt .

Write A :=
[
b c
a −b

]
. We have to prove that

‖Z1‖ ≥ 1
2k3

1

‖A‖ for all g ∈ V.

We compute the integral in (21). Write B =
[

0 0
b 0

]
and C =

[
0 0

−c/2 0

]
. Then, using (18),

∫ 1

0
X−1
t δ′λ(t)B Xt dt = −

∫ 1

0
δλ(t)

[
(X−1

t )′BXt +X−1
t BX ′

t

]
dt

=
∫ 1

0
δλ(t)X−1

t

[
AtB −B At

]
Xt dt

=
∫ 1

0
δλ(t)X−1

t

[
b 0
0 −b

]
Xt dt .

∫ 1

0
X−1
t ∆′′

λ(t)C Xt dt =
∫ 1

0
∆′
λ(t)X

−1
t

[− c
2

0

0 c
2

]
Xt dt

=
∫ 1

0
∆λ(t)X−1

t

[
At

[−c/2 0
0 c/2

]− [−c/2 0
0 c/2

]
At

]
Xt dt

=
∫ 1

0
∆λ(t)X−1

t

[
0 c

1
2
(K(t,0) c+ cK(t,0)) 0

]
Xt dt .
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Hence,
∫ 1

0
X−1
t

Et
h(t)

Xt dt =
∫ 1

0
δλ(t) X−1

t

[
b 0
a −b

]
Xt dt+

∫ 1

0
∆λ(t) X−1

t [ 0 c
0 0 ] Xt dt .

Write P (t) = X−1
t

Et
h(t) Xt, Q1(t) = X−1

t

[
b 0
a −b

]
Xt, Q2(t) = X−1

t [ 0 c
0 0 ] Xt and

Q(t) = X−1
t

[
b c
a −b

]
Xt. Then

(22)
∫ 1

0
P (t) dt =

∫ 1

0
δλ(t)Q1(t) dt+

∫ 1

0
∆λ(t)Q2(t) dt.

Using (4) we have that

‖δλ(t)Q1(t)‖ ≤ ‖δλ‖C0

∥∥X−1
t

∥∥ √2 max{|a|, |b|} ‖Xt‖
≤ ‖δλ‖C0 · k1 · ‖A‖ · k1.

Similarly
‖∆λ(t)Q1(t)‖ ≤ ‖∆λ‖C0 k

2
1 |c| ≤ ‖∆λ‖C0 k

2
1 ‖A‖ .

Hence, using (7), we have that

‖P‖0 ≤ k2
1 (‖δλ‖C0 + ‖∆λ‖C0) ‖A‖

≤ k3(λ) ‖A‖ .(23)

From (21), we have that

(24) Z1 = X1

∫ 1

0
h(t) P (t) dt.

Observe that∥∥∥∥
∫ 1

0
δλ(t)Q1(t) dt−Q1

(
1
2

)∥∥∥∥ ≤
∫ 1

0
δλ(t)

∥∥Q1(t)−Q1(1
2)

∥∥ dt ≤ Oλ(Q1,
1
2),

∥∥∥∥
∫ 1

0
∆λ(t)Q2(t) dt−Q2

(
1
2

)∥∥∥∥ ≤
∫ 1

0
∆λ(t)

∥∥Q2(t)−Q2(1
2)

∥∥ dt ≤ Oλ(Q2,
1
2),

where Oλ(Qi, 1
2) := max|t−1/2|≤λ

∥∥Qi(t)−Qi(1
2)

∥∥. Thus, using (22),
∥∥∥∥
∫ 1

0
h(t)P (t) dt−Q(

1
2

)∥∥∥∥ =
∥∥∥∥
∫
hP dt−

∫ 1

0
P dt+

∫
P dt−Q(

1
2

)∥∥∥∥

≤
∥∥∥∥
∫

(h− 1)P
∥∥∥∥ +

∥∥∥∥
∫
δλ(t)Q1(t)−Q1

(
1
2)

∥∥∥∥ +
∥∥∥∥
∫

∆λ(t)Q2(t)−Q2

(
1
2)

∥∥∥∥ ,

≤ ‖P‖0
∫
|h− 1|+Oλ(Q1,

1
2) +Oλ(Q2,

1
2)

≤ ‖P‖0
∫
|h− 1|+ 2 Oλ(Q, 1

2) , because Q = Q1 +Q2.

If f, g : [0, 1]→ R2×2, by adding and subtracting f(t) g(1
2), we obtain the formula

(25) Oλ(f g, 1
2) ≤ ‖f‖0 Oλ(g, 1

2) +Oλ(f, 1
2)

∥∥g(1
2)

∥∥ .
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Also, if e ∈ R2×2 is constant, then

(26) Oλ(e f, 1
2) ≤ ‖e‖ Oλ(f, 1

2).

Write A =
[
b c
a −b

]
. Using formulas (25), (26), we obtain from (4) and (5) that

Oλ(Q, 1
2) = Oλ(X−1

t AXt,
1
2)

≤ ‖X−1
t ‖0Oλ(AXt,

1
2) +Oλ(X−1

t , 1
2) ‖A‖ ‖X1/2‖0

≤ ‖X−1
t ‖0 ‖A‖ Oλ(Xt,

1
2) +Oλ(X−1

t , 1
2) ‖A‖ ‖X1/2‖0

≤ 2 k1 k2 ‖A‖ .
Also, from (23) and (10),

‖P‖0
∫
|h− 1| ≤ ‖A‖ k3(λ)

∫
|h− 1| ≤ k3 ‖A‖ %.

Moreover
‖A‖ =

∥∥X1/2 Q
(

1
2

)
X−1

1/2

∥∥ ≤ k2
1

∥∥Q(
1
2

)∥∥ .
Hence, using (9), ∥∥∥∥

∫
hP dt

∥∥∥∥ ≥
∥∥Q(1

2)
∥∥−

∥∥∥∥
∫
hP −Q(1

2)
∥∥∥∥

≥
(

1
k2
1
− k3 %− 4 k1 k2

)
‖A‖

≥ 1
2k2

1

‖A‖ .

This implies that the transformation TI 3 A 7→
∫ 1
0 h(t)P (t) dt ∈ TI is onto. From (19)

and (24), the map TI 3 A 7→ Z1 ∈ TX1 is surjective. Moreover, using (4) and (24),

k1 ‖Z1‖ ≥
∥∥X−1

1 Z1

∥∥ =
∥∥∥∥
∫ 1

0
hP dt

∥∥∥∥ ≥
1

2k2
1

‖A‖ .

Thus

‖Z1‖ ≥ 1
2k3

1

‖A‖ for all g ∈ V.

¤

We shall combine lemma 4.3 with the next lemma to prove the theorem.

4.4. Lemma.
Let N be a smooth connected riemannian 3-manifold and let F : R3 → N be a smooth

map such that

(27) |dxF (v)| ≥ a > 0 for all (x, v) ∈ TR3 with |v| = 1 and |x| ≤ r.
Then for all 0 < b < a r,

{
w ∈ N | d(w,F (0)

)
< b

} ⊆ F{
x ∈ R3 | |x| < b

a

}
.
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Proof: Let w ∈ N with d
(
w,F (0)

)
< b. Let β : [0, 1] → N be a differentiable curve with

β(0) = F (0), β(1) = w and |β̇| < b. Let τ = sup(A), where A ⊂ [0, 1] is the set of t ∈ [0, 1]
such that there exist a unique C1 curve α : [0, t] → R3 such that α(0) = 0, |α(s)| < r and
F (α(s)) = β(s) for all s ∈ [0, t]. By the inverse function theorem τ > 0, A is open in [0, 1]
and there exist a unique α : [0, τ [→ R3 such that F ◦ α = β. By (27),

(28)
∣∣β̇(s)

∣∣ =
∥∥dα(s)F

∥∥ · |α̇(s)| ≥ a |α̇(s)| , for all s ∈ [0, τ [.

Thus, |α̇| ≤ 1
a max0≤t≤1

∣∣β̇(t)
∣∣. This implies that α is Lipschitz and hence it can be extended

continuously to [0, τ ]. Observe that |α(τ)| < r, for if |α(τ)| ≥ r, then

b ≥ b τ ≥
∫ τ

0

∣∣β̇(s)
∣∣ ds ≥ a

∫ τ

0
|α̇(s)| ds ≥ a r,

contradicting the hypothesis b < ar. This implies that the set A is also closed in [0, 1].
Thus A = [0, 1] and τ = 1. From (28), writing x = α(1) ∈ F−1{w},

|x| ≤ length(α) =
∫ 1

0
|α̇(t)| dt ≤ 1

a

∫ 1

0
|β̇(t)| dt < b

a
.

¤

We now see that the condition (27) of Lemma 4.4 holds in our setting. Let k5 =
k5(g0,U , γ,F) and k6 = k6(g0,U , γ,F) be

k5 : = ‖δλ‖0 +
∥∥δ′λ

∥∥
0
+

[ ‖∆λ‖0 ‖g0‖C2 + 1
2

∥∥∆′′
λ

∥∥
0

]
e‖∆λ‖0 ,

k6 : = max
|c|≤1

{
2 ‖h‖C2

[
‖δλ‖C2 +

∥∥δ′λ
∥∥
C2

]
+ 2 ‖g0‖C4

∥∥(
e−h∆λc − 1

)∥∥
C2

+
∥∥∥ ∆′′

λ

2∆λ
(e−h∆λc − 1)

∥∥∥
C2

}
,

observe that since ∆λ > 0 on supp(h), the last term in k6 is finite.
Let 0 < ρ1 < 1 be such that the closed ball

(29) BG2(g0, ρ1) ⊆ U .
Choose 0 < ε = ε(g0,U , γ,F) < ε1, small enough so that

(ε k4 + ε2) k6 ≤ 1
2 ρ1.

Choose 0 < δ < 1 such that

(30) k4 k5 (2k3
1 δ) + (ε k4 + ε2) k6 ≤ ρ1 < 1 and 2 k3

1δ ≤ 1.

For A =
[
b c
a −b

]
, let

(31) βA(t) := h(t)
{
δλ(t) a+ δ′λ(t) b

}
+

(
K0(t, 0) + ∆′′λ(t)

2∆λ(t)

) (
e−h(t)∆λ(t) c − 1

)
;

and let gA ∈ Gr−2(γ, g0,W,F) be the riemannian metric

gA := g0 + ϕε(x)βA(t)x2 dt⊗ dt.
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Observe that βA = 0 when h(t) = 0, so that g = g0 in a neighborhood of the intersections
of the segments ηi with c = π ◦ γ. Then the choice of ε < ε1 from (11), ensures that g = g0
in a neighborhood of the intersecting segments.

Observe that
∂βA
∂a

= h(t) δλ(t),
∂βA
∂b

= h(t) δ′λ(t),

∂βA
∂c

= −h(t) {
∆λ(t)

(
K0(t, 0) + βA(t)

)
+ 1

2 ∆′′
λ(t)

}
,

In particular, the directional derivatives of the map TI 3 A 7→ βA are given by formula (20).
(Note that K0(t, 0) + βA(t) is the curvature of gA at (t, 0).) Indeed,
∂βA
∂c

+ h(t)∆λ(t)βA(t) = h(t)2 ∆λ(t)
{
δλ(t) a+ δ′λ(t) b

}
− h(t)

{
K0(t, 0)∆λ(t) + 1

2 ∆′′
λ(t)

}

= −h(t)
{
K0(t, 0)∆λ(t) + 1

2 ∆′′
λ(t)

}
,

because ∆λ(t) δλ(t) ≡ 0 and ∆λ(t) δ′λ(t) ≡ 0.
Define F : TI → Sp(1) by

F (A) = S(gA) = dċ(0)φ
gA
1

∣∣
N1
.

Applying lemma 4.3, we get that if gB ∈ V, then the derivative dBF satisfies

(32) ‖(dBF ) ·A‖ ≥ 1
2 k3

1

‖A‖ , if gB ∈ V.

Let G : TI → Gr−2(γ, g0,W,F) be the map G(A) = gA. By lemma 4.5, we have that

‖G(A)− g0‖C2 =
∥∥ϕε(x)βA(t)x2

∥∥
C2

≤ k4 ‖βA‖C0 + ε k4 ‖βA‖C1 + ε2 ‖βA‖C2(33)

Observe that for |c| ≤ 1 we have that
∣∣ e−h∆λc − 1

∣∣ ≤ |c| max
|c|≤1

∣∣∣ ∂∂c
(
e−h∆λc − 1

)∣∣∣ ≤ |c|∆λ e
‖∆λ‖0 , if |c| ≤ 1.

Then, if |c| ≤ 1,∣∣∣K0(t, 0) + ∆′′λ(t)

2∆λ(t)

∣∣∣
∣∣ e−h∆λc − 1

∣∣ ≤ [ |K0|∆λ + 1
2 |∆′′

λ|
]
e‖∆λ‖0 |c|

≤ |c|
[
‖g0‖C2 ‖∆λ‖0 + 1

2

∥∥∆′′
λ

∥∥
0

]
e‖∆λ‖0

Hence
‖βA‖C0 ≤ k5 ‖A‖ , if ‖A‖ ≤ 1.

Since ‖f · g‖C2 ≤ 2 ‖f‖C2 ‖g‖C2 , ‖βA‖C1 ≤ ‖βA‖C2 ≤ k6. Then from (33) we get that

‖G(A)− g0‖C2 ≤ k4 k5 ‖A‖+ (ε k4 + ε2) k6, if ‖A‖ ≤ 1 and G(A) ∈ U .
By definition of ρ1 in (29), we can write W := BG2(g0, ρ1) ∩ G(TI) ⊂ V ⊂ U . Then (30)
implies that

G
(
BTI

(0, 2 k3
1 δ)

) ⊆ W ⊂ V.
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Thus the hypothesis gB ∈ V of (32) is satisfied and we can consider the following diagram.

TI ⊃ B(0, 2 k3
1δ) W ⊂ V ⊂ G2

Sp(1)

-G

HHHHHHHj
F

pppppppp?
H

Applying lemma 4.4 to F in (32), with r = 2 k3
1 δ and a = 1

2 k3
1
, we get that

BSp(1)(S(g0), δ) ⊆ F
(
BTI

(0, 2 k3
1 δ)

) ⊆ F (G−1(W)) ⊂ S(U ∩ Gr(γ, g0,W,F)
)
.

¤

Bump functions

4.5. Lemma. There exist k4 > 0 and a family of C∞ functions ϕε : [−ε, ε]n−1 → [0, 1]
such that ϕε(x) ≡ 1 if x ∈ [− ε

4 ,
ε
4 ]n−1, ϕε(x) ≡ 0 if x 6∈ [− ε

2 ,
ε
2 ]n−1 and for any C2 map

B : [0, 1]→ R(n−1)×(n−1) the function α(t, x) := ϕε(x) x∗B(t)x satisfies,

‖α‖C2 ≤ k4 ‖B‖C0 + ε k4 ‖B‖C1 + ε2 ‖B‖C2 ,

with k4 independent of 0 < ε < 1.

Proof: Let ψ : [−1, 1]→ [0, 1] be a C∞ function such that ψ(x) ≡ 1 for |x| ≤ 1
4 and ψ(x) ≡

0 for |x| ≥ 1
2 . Given ε > 0 let ϕ = ϕε : [−ε, ε]n−1 → [0, 1] be defined by ϕ(x) =

∏n−1
i=1 ψ

(
xi
ε

)
.

Let B ∈ R(n−1)×(n−1) and let β(x) = ϕ(x)x∗Bx. Then

‖β‖0 ≤ ε2 ‖B‖(34)

dxβ = (dxϕ) x∗Bx+ ϕ(x) x∗(B +B∗)

∂ϕ
∂xi

= 1
ε ψ

′ (xi
ε

) n−1∏
k 6=i

ψ(xk
ε )

‖dxϕ‖ ≤ 1
ε ‖dψ‖0(35)

‖dxβ‖ ≤ 3 ε ‖B‖ ‖ψ‖C1(36)

d2
xβ = (d2

xϕ) x∗Bx+ 2 (dxϕ) x∗ (B +B∗) + ϕ(x) (B +B∗)

∂2ψ
∂xi ∂xj

= 1
ε2
ψ′′

(
xi
ε

) ∏
k 6=i

ψ
(
xk
ε

)
δij + 1

ε2
ψ′

(
xi
ε

)
ψ′

(
xi
ε

) ∏
k 6=i,j

ψ
(
xk
ε

)
(1− δij).

∥∥d2
xϕ

∥∥ ≤ 1
ε2

max
{ ∥∥d2ψ

∥∥
0
, ‖dψ‖20

} ≤ 1
ε2
‖ψ‖2C2 .

∥∥d2
xβ

∥∥ ≤ ‖ψ‖2C2 ‖B‖ (1 + 4 + 2)

≤ 7 ‖ψ‖2C2 ‖B‖ .(37)
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Let k4 := 4 + 3 ‖ψ‖C1 + 7 ‖ψ‖2C2 . Then from (34), (36) and (37), we have that

(38) ‖β‖C2 ≤ k4 ‖B‖ .
Now let α(t, x) := ϕ(x)x∗B(t)x. Observe that

‖α‖C2 ≤ sup
t
‖α(t, ·)‖C2 + sup

x
‖α(·, x)‖C2 + 2

∥∥∥ ∂2 α
∂x ∂t

∥∥∥
0
.

≤ ‖β‖C2 + ε2 ‖B‖C2 + 2
∥∥∥ ∂2 α
∂x ∂t

∥∥∥
0
.

But, using (35),
∂2 α
∂x ∂t = dxϕ · x∗B′(t)x+ ϕ(x)

[
x∗B′(t) +B′(t)x

]
∥∥∥ ∂2 α
∂x ∂t

∥∥∥ ≤ ε ‖ψ‖C1 ‖B′ ‖0 + 2 ε ‖B′ ‖0
≤ 1

2 k4 ε ‖B‖C1 .

Hence, using (38),

‖α‖C2 ≤ k4 ‖B‖C0 + k4 ε ‖B‖C1 + ε2 ‖B‖C2 .

¤

5. Dominated splittings for geodesic flows.

We say that a linear map T : RN → RN is hyperbolic if it has no eigenvalue of modulus
1. The stable and unstable subspaces of T are

Es(T ) := { v ∈ RN | lim
n→+∞T

n(v) = 0 } , Eu(T ) := { v ∈ RN | lim
n→+∞T

−n(v) = 0 }.

5.1. Periodic sequences of symplectic maps.

Let GL(RN ) be the group of linear isomorphisms of RN . We say that a sequence ξ : Z→
GL(RN ) is periodic if there exists n0 ≥ 1 such that ξj+n0 = ξj for all j ∈ Z. We say that a

periodic sequence ξ is hyperbolic if the linear map
∏n0−1
i=0 ξi is hyperbolic. In this case the

stable and unstable subspaces of
∏n0−1
i=0 ξi+j are denoted by Esj (ξ) and Euj (ξ) respectively.

Given two periodic families of sequences in GL(RN ), ξ = {ξ(α) |α ∈ A} and η =

{ η(α) |α ∈ A}, define

d(ξ, η) = sup
{‖ξ(α)

n − η(α)
n ‖

∣∣ α ∈ A, n ∈ Z}
.

We say that two periodic families are periodically equivalent if they have the same indexing
set A and for all α ∈ A the minimum periods of ξ(α) and η(α) coincide. We say that a
family ξ is hyperbolic if for all α ∈ A, the periodic sequence ξ(α) is hyperbolic. Finally, we
say that a hyperbolic periodic family ξ is stably hyperbolic if there exists ε > 0 such that
any periodically equivalent family η satisfying d(η, ξ) < ε is also hyperbolic.
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5.1. Theorem (Mañé, [34, lemma II.3]).

If { ξ(α) |α ∈ A} is a stably hyperbolic family of periodic sequences of linear isomorphisms
of RN , then there exist constants m ∈ Z+ and 0 < λ < 1 such that for all α ∈ A, j ∈ Z:

∥∥∥∥∥
m−1∏

i=0

ξ
(α)
j+i

∣∣∣Esj (ξ(α))

∥∥∥∥∥ ·
∥∥∥∥∥
[m−1∏

i=0

ξ
(α)
j+i

]−1∣∣∣Euj+m(ξ(α))

∥∥∥∥∥ ≤ λ.

Denote by Sp(1) = SL(2,R) the group of symplectic linear maps in R2. Lemma 5.4 below
shows that if a periodic sequence ξ of symplectic maps in R2 is stably hyperbolic among the
periodic sequences in Sp(1) and supα

∥∥ξ(α)
∥∥ < ∞, then it is also stably hyperbolic among

the sequences in GL(R2). Thus we get:

5.2. Corollary.
If { ξ(α) |α ∈ A} is a family of periodic sequences in Sp(1) which is stably hyperbolic in

Sp(1), and supα ‖ξ(a)‖ < ∞. Then there exist constants m ∈ Z+ and 0 < λ < 1 such that
for all α ∈ A, j ∈ Z:

∥∥∥∥∥
m−1∏

i=0

ξ
(α)
j+i

∣∣∣Esj (ξ(α))

∥∥∥∥∥ ·
∥∥∥∥∥
[m−1∏

i=0

ξ
(α)
j+i

]−1∣∣∣Euj+m(ξ(α))

∥∥∥∥∥ ≤ λ.

5.3. Remark. Write TNj :=
∏N−1
i=0 ξ

(α)
j+i. Using that ‖AB‖ ≤ ‖A‖ ‖B‖ for A,B ∈ GL(R2)

we get that for all N ≥ 1 and all α ∈ A, j ∈ Z,

∥∥∥TmNj

∣∣Esj (ξ(α))
∥∥∥

∥∥∥
[
TmNj

]−1∣∣Euj+Nm(ξ(α))
∥∥∥ < λN .

5.4. Lemma. Let Fk ∈ GL(R2), Tk ∈ Sp(1) with ‖Fk − Tk‖ < ε for k = 1, . . . , N , where

2 ε
(
1 + 2 max

1≤j≤N
‖Tj‖

)
< 1

2 .

Suppose that F = FN ◦ FN−1 ◦ · · · ◦ F1 is not hyperbolic. Then there exist Ak ∈ Sp(1) such
that

‖Ak − Tk‖ < 16 ε
(
2 + max

1≤j≤N
‖Tj‖

)2

and A := AN ◦AN−1 ◦ · · · ◦A1 is not hyperbolic.

Proof:
Suppose first that F has complex eigenvalues λ and λ. Since F is not hyperbolic, |λ| =

|λ| = 1, and hence detF = +1.
Let e1 = (1, 0), e2 = (0, 1) and

λk := detFk = ω(Fk e1, Fk e2).
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Since ω(a, b) ≤ |a| |b|, we have that

|λk − 1| = |ω(Fke1, Fke2)− ω(Tke1, Tke2)|
≤ |ω(Fke1 − Tke1, Fke2)− ω(Tke1, Tke2 − Fke2)|
≤ ε ‖Fk‖+ ε ‖Tk‖
≤ 2 ε

[
2 ‖Tk‖+ 1

]
< 1

2 ,

in particular, λk is positive. Since
∣∣∣1− 1√

x

∣∣∣ ≤ 2 |x− 1| for 1
2 ≤ x ≤ 3

2 , we obtain

∣∣∣1− 1√
λk

∣∣∣ ≤ 4 ε
[
2 ‖Tk‖+ 1

]
.

Since
∏N
k=1 λk = detF = 1,

N∏

k=1

1√
λk

= 1.

Observe that Sp(1) = {A ∈ GL(R2) | detA = +1 }. Write

Ak := 1√
λk
Fk.

Then Ak ∈ Sp(1). Also

A = AN ◦ · · · ◦A1 =
(∏N

k=1
1√
λk

)
F = F

is not hyperbolic. Finally,

‖Ak − Tk‖ ≤ ‖Ak − Fk‖+ ‖Fk − Tk‖

≤
∣∣∣1− 1√

λk

∣∣∣ ‖Fk‖+ ε

≤ 4 ε [2 ‖Tk‖+ 1]2 + ε

≤ 4 ε [2 ‖Tk‖+ 2]2 .

Now suppose that F has an eigenvalue 1. The case of an eigenvalue −1 follows from this
case using −T1 and −F1 instead of T1 and F1.

Take a1 6= 0 such that F(a1) = a1. Define inductively

ak+1 := Fk(ak), uk :=
ak
|ak| .

We shall construct a symplectic map Ak ∈ Sp(1) such that ‖Ak − Tk‖ <
(
3 + ‖Tk‖

)
ε and

Ak(uk) = Fk(uk). This will imply that Ak(ak) = ak+1, A(a1) = a1 and thus that A is not
hyperbolic.

Let J(x, y) := (−y, x) and

λk :=
ω(TkJuk, Tkuk)
ω(FkJuk, Fkuk)

=
1

ω(FkJuk, Fkuk)
.
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Define Ak ∈ GL(R2) by Ak(uk) = Fk(uk) and Ak(Juk) = λk Fk(Juk). Then

ω(AkJuk, Akuk) = λk ω(FkJuk, Fkuk) = 1 = ω(Juk, uk),

so that Ak ∈ Sp(1).
Since ω(a, b) ≤ |a| |b|, we have that

| 1
λk
− 1| = ∣∣ω(FkJuk, Fkuk)− ω(TkJuk, Tkuk)

∣∣

=
∣∣ω(FkJuk, Fkuk − Tkuk) + ω(FkJuk − TkJuk, Tkuk)

∣∣
≤ ε (‖Fk‖+ ‖Tk‖)
≤ ε (2 ‖Tk‖+ 1).

Since |x− 1| ≤ 4
∣∣1− 1

x

∣∣ for 1
2 < x < 3

2 ,

|Ak(Juk)− Tk(Juk)| = |λk Fk(Juk)− Tk(Juk)|
≤ |λk − 1| |Fk(Juk)|+ |Fk(Juk)− Tk(Juk)|
≤ |λk − 1| ‖Fk‖+ ‖Fk − Tk‖
≤ 4ε

[
2 ‖Tk‖+ 1

]
(‖Tk‖+ 1) + ε

≤ 4ε
(
2 + 2 ‖Tk‖

)2
.

Also,

|Ak(uk)− Tk(uk)| = |Fk(uk)− Tk(uk)| ≤ ε.

Since the basis {uk, Juk} is orthonormal, we have that

‖Ak − Tk‖ ≤ 16 ε
(
1 + ‖Tk‖

)2 + ε.

¤

5.2. The hyperbolic splitting.

Let M be a closed 2-dimensional smooth manifold and let R1(M) be the set of Cr rie-
mannian metrics on M , r ≥ 4, all of whose closed geodesics are hyperbolic, endowed with
the C2 topology and let F1(M) = int

(R1(M)
)

be the interior of R1(M) in the C2 topology.
Given g ∈ Gr(M) let Per(g) be the union of the hyperbolic (prime) periodic orbits of g.

We say that a closed φg -invariant subset Λ ⊂ SM is hyperbolic if there exists a (continuous)
splitting TΛ(SM) = Es ⊕ Ec ⊕Eu such that

• Ec = 〈Xg〉 is generated by the vector field of φg.
• There exist constants K > 0 and 0 < λ < 1 such that

|dθφgt (ξ)| ≤ K λt |ξ| , for all t ≥ 0, θ ∈ Λ, ξ ∈ Es(θ);
∣∣dθφg−t(ξ)

∣∣ ≤ K λt |ξ| , for all t ≥ 0, θ ∈ Λ, ξ ∈ Eu(θ).
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We shall show now

Theorem D.
If g ∈ F1(M), then the closure Per(g) is a hyperbolic set.

We state a local version which implies theorem D. Let U ⊆ SM be an open subset and
let R1(U) be the set of riemannian metrics g ∈ Gr(M) such that all the periodic orbits of
φg contained in U are hyperbolic. Let Per(g, U) be the union of the periodic orbits of φg

entirely contained in U . Let F1(U) = intC2

(R1(U)
)
.

5.5. Proposition. If g ∈ F1(U), then the closure Per(g, U) is hyperbolic.

Proof: Observe that on a C2 neighborhood U of g each periodic orbit in Per(g, U) can be
continued and its continuation (see section 2) is hyperbolic, because otherwise one could
produce a non-hyperbolic orbit.

Cut the closed orbits in Per(g, U) into segments of length in [14`,
1
2`] where ` is the

injectivity radius of g. Given a closed orbit γ in Per(g, U) construct normal local transversal
sections Σi to φg passing through the cutting points γ(ti) of γ. Given a nearby metric g,

cut the continuation γg of γ along the Σi’s: γg(t
g
i ) ∈ Σi. Then γg is cut in the same number

of segments as γ is, so that the families

F(g) = { d
γg(tgi )

φg
tgi+1−tgi

|N g(γg(tgi ))

∣∣ γ ∈ Per(g, U), 0 ≤ i ≤ n(γ) }

in Sp(N g(θ)) are periodically equivalent, where

N g(θ) = { ξ ∈ TθS(M, g) | 〈dπξ, θ〉g = 0 }
and n(γ) is the number of segments in which we cut γ.

5.6. Lemma. If g ∈ F(U) then the family F(g) is stably hyperbolic.

Proof: Since g ∈ F1(U), there exists a C2-neighborhood U of g in Gr(M) such that for all
g ∈ U , the family F(g) is hyperbolic. Let δ = δ(g,U) > 0 be given by corollary 4.2. For
γ ∈ Per(g, U), write

ξ
(γ)
i := dγ(ti)φ

g
ti+1−ti |Ni , ti := tgi , Ni := N g(γg(ti)).

Suppose that the family

F(g) =
{
ξ
(γ)
i

∣∣ γ ∈ Per(g, U), 1 ≤ i ≤ ni(γ)
}

is not stably hyperbolic. Then there exist a periodic orbit γ ∈ Per(g, U) for g and a

sequence of symplectic linear maps ηi : Ni → Ni+1 such that
∥∥ ηi − ξ(γ)i

∥∥ < δ and
∏n(γ)
i=1 ηi

is not hyperbolic. Observe that the perturbations of Franks’ lemma 4.1 do not change
the subspaces N (θ) along the selected segment of c(t). By corollary 4.2 there is another

riemannian metric g ∈ U such that γ is also a closed orbit for g, tgi = ti, N g(tgi ) = Ni and
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dγ(ti)φ
g
ti+1−ti |Ni = ηi. Let τ(γ) :=

∑n(γ)
i=1 ti be the period of γ. Since the linearized Poincaré

map for (γ, g) is

dγ(0)φ
g
τ(γ)

∣∣
N1

=
∏n(γ)
i=1 ηi,

the closed orbit γ is not hyperbolic for the metric g ∈ U . This contradicts the choice of
U . ¤

Applying corollary 5.2 — and remark 5.3 if necessary (the time spacing between cut
points may vary) — we get that there exist λ < 1 and T > 0 such that

(39)
∥∥dθφT

∣∣Es(θ)∥∥ · ∥∥dφT θ φ−T
∣∣Eu(φT θ)

∥∥ < λ for all θ ∈ Per(g, U);

where φ = φg.
Write Λ(g) = Per(g, U). For θ ∈ Λ(g) let

S(θ) : = span
{
ξ ∈ N g(θ)

∣∣∣ ∃〈θn〉⊆Per(g,U), limn θn=θ;
∃ξn∈Es(θn), limn ξn=ξ.

}

U(θ) : = span
{
ξ ∈ N g(θ)

∣∣∣ ∃〈θn〉⊆Per(g,U), limn θn=θ;
∃ξn∈Eu(θn), limn ξn=ξ.

}

Then the domination condition (39) implies that

(40)
∥∥dθφT

∣∣
S(θ)

∥∥ · ∥∥dφT θ φ−T
∣∣
U(φT θ)

∥∥ ≤ λ, for all θ ∈ Λ(g).

We show now that the domination condition (40) implies that S ⊕ U is a continuous
splitting of N|Λ(g) = S ⊕ U . First observe that S(θ) ∩ U(θ) = {0} for all θ ∈ Λ(g); because
if ξ0 ∈ S(θ) ∩ U(θ), writing ξT := dθφT (ξ0), we would have that

|ξT | ≤
∥∥dθφT

∣∣
S(θ)

∥∥ · |ξ0| ≤
∥∥dθφT

∣∣
S(θ)

∥∥ · ∥∥dφT θ φ−T
∣∣
U(φT θ)

∥∥ · |ξT | ≤ λ |ξT |.

But the definitions of S and U imply that dimS(θ) ≥ dimEs(θn) and that
dimU(θ) ≥ dimEu(θn) if limn θn = θ and θn ∈ Per(g, U). Therefore N (θ) = S(θ) ⊕ U(θ)
and limn S(θn) = S(θ), limU(θn) = U(θ) in the appropriate Grassmann manifold.

The continuity of the bundles S and U and their definition imply that S(θ) = Es(θ) and
U(θ) = Eu(θ) when θ ∈ Per(g, U). Observe that if θ ∈ Per(g, U) then Es(θ) and Eu(θ) are7

lagrangian subspaces of N (θ) because

ωg(u, v) = lim
t→+∞ωg

(
dθφt(u), dθφt(v)

)
= 0,

where ωg is the symplectic form induced by g. The continuity of the bundles S and U and
the continuity of ωg imply that the subspaces S(θ) and U(θ) are lagrangian for all θ ∈ Λ(g).
Then the next proposition due to Ruggiero [48, proposition 2.1] (cf. also [14]) shows that

Per(g, U) is hyperbolic.

5.7. Proposition. Let S(θ)⊕U(θ) be a continuous, invariant lagrangian splitting defined on
a compact invariant set X ⊂ SM . The splitting is dominated if and only if it is hyperbolic.

¤
7This is trivial in our case of dimN (θ) = 2 and dim Es(θ) = dim Eu(θ) = 1.
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A hyperbolic set Λ is said to be locally maximal if there exists an open neighborhood U
of Λ, such that Λ is the maximal invariant subset of U , i.e.

Λ =
⋂

t∈R
dφgt (U).

A basic set is a locally maximal hyperbolic set with a dense orbit. It is non-trivial if it is
not a single closed orbit.

Given a continuous flow φt on a topological space X a point x ∈ X is said wandering if
there is an open neighborhood U of x and T > 0 such that φt(U) ∩ U = ∅ for all t > T .
Denote by Ω(φt|X) the set of non-wandering points for (X,φt). Recall

5.8. Smale’s spectral decomposition theorem for flows. [50, 27]
If Λ is a locally maximal hyperbolic set for a flow φt, then there exists a finite collection

of basic sets Λ1, . . .ΛN such that the non-wandering set of the restriction φt
∣∣
Λ

satisfies

Ω
(
φt

∣∣
Λ

)
=

N⋃
i=1

Λi.

5.9. Corollary. If the number of geometrically distinct periodic geodesics is infinite and
g ∈ F1(M), then Per(g) contains a non-trivial hyperbolic basic set.

Proof: Let Λ = Per(g). Since g ∈ F1(M), theorem D implies that Λ is a hyperbolic set.
By proposition 6.4.6 in [27], there exists an open neighborhood U of Λ such that the set

ΛU :=
⋂

t∈R φ
g
t (U)

is hyperbolic. Since Λ = Per(g), its non-wandering set is Ω(φt|Λ) = Λ. By definition of
ΛU , Λ ⊆ ΛU and hence Λ = Ω(φt|Λ) ⊆ Ω(φt|ΛU

). By corollary 6.4.20 in [27], the periodic
orbits are dense in the non-wandering set Ω(φt|ΛU

) of the locally maximal hyperbolic set

ΛU . Thus Λ ⊆ Ω(φt|ΛU
) ⊆ Per(g) = Λ. By theorem 5.8, the set Λ = Ω(φt|ΛU

) decomposes
into a finite collection of basic sets. Since the number of periodic orbits in Λ is infinite, at
least one of the basic sets Λi is not a single periodic orbit, i.e. it is non-trivial. ¤

N. Hingston proves in [24] that if M is a simply-connected manifold rational homotopy
equivalent to a compact rank-one symmetric space with a metric all of whose closed geodesics
are hyperbolic then

lim inf
`→∞

n(`)
log(`)
`

> 0,

where n(`) is the number of geometrically distinct closed geodesics of length ≤ `.
Rademacher proves

5.10. Theorem (Rademacher [44, cor. 2]).
For a C4-generic metric on a compact riemannian manifold with finite fundamental group

there are infinitely many geometrically distinct closed geodesics.
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Thus we have (As we mentioned in the introduction, we could have also used the stronger
results of Franks and Bangert [5, 19] which assert that any metric on S2 has infinitely many
geometrically distinct closed geodesics.),

1.1. Theorem.
If a C4 metric on a closed surface cannot be C2-approximated by one having an elliptic

closed geodesic, then it has a non-trivial hyperbolic basic set.

Theorem 1.1 together with proposition 3.3 completes the proof of theorem A.

Appendix A. Perturbation of lagrangian manifolds.

In this appendix we prove a perturbation lemma for invariant lagrangian submanifolds
of an autonomous hamiltonian suitable for use in the proof of the Kupka-Smale theorem
for geodesic flows.

Let V be a 2n-dimensional vector space. A symplectic form ω on V is an antisymmetric
bilinear map which is non-degenerate, i.e. for all v ∈ V \ {0} there exists w ∈ V such that
ω(v, w) 6= 0. We say that a subspace E ⊂ V is isotropic if ω|E ≡ 0 and that it is lagrangian
if E is isotropic and dimE = n = 1

2dimV . This is the maximal dimension that an isotropic
subspace can have.

A symplectic manifold (M, ω) is a 2n-dimensional smooth manifold together with a
symplectic form ω, i.e. a 2-form which is non-degenerate at each tangent space. A lagrangian
submanifold N ⊂ M is a submanifold such that each tangent space TxN is a lagrangian
subspace of TxM. In particular, dimN = n.

A.1. Lemma. Let (M, ω) be a symplectic manifold and H :M→ R be a smooth function.
If N is a lagrangian submanifold of (M, ω) such that N ⊂ H−1{k} for some k ∈ R then
the hamiltonian vector field X of H is tangent to N . In particular, N is a union of orbit
segments of the hamiltonian flow.

Proof: The hamiltonian vector field X is defined by iXω = −dH. In particular, on the
level set Σ = H−1{k} we have that iXω|Σ = dH|Σ ≡ 0. Then iXω|N ≡ 0. Then for all
x ∈ N the subspace Ex := TxN ⊕ 〈X(x)〉 is isotropic. If X(x) /∈ TxN then dimEx = n+ 1
which is impossible. Thus X(x) ∈ TxN . ¤

We shall use a special coordinate system associated to a lagrangian submanifold that we
shall call Darboux coordinates for the lagrangian manifold.

A.2. Lemma. Let N be a lagrangian submanifold contained in an energy level H−1{k} of
a hamiltonian H :M→ R on a symplectic manifold (M, ω). Let θ ∈ N and suppose that
θ is not a singularity of the hamiltonian vector field of H. Then there exist a neighborhood
U in M and a coordinate system (x, p) : U → Rn × Rn such that

(a) ω =
∑

i dpi ∧ dxi.
(b) N ∩ U = [p ≡ 0].
(c) The hamiltonian vector field of H on N is given by XH |N = ∂

∂x0
.
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Proof: By Weinstein’s theorem [53], [2, th. 5.3.18], [36, th. 3.32] there is a neighborhood
W1 of N which is symplectomorphic to a neighborhood of the zero section of T ∗N with its
canonical symplectic form, sending N to the zero section N × 0.

By lemma A.1, N is invariant under the hamiltonian flow φt of H. Let V be a flow box
for the restriction φt|N containing θ ∈ V and choose a local chart x : V → Rn for N such
that x(θ) = 0 ∈ Rn and X|V = ∂

∂x0
, where X|V is the restriction of the hamiltonian vector

field to N ∩ V .
The canonical symplectic coordinates associated to the chart (V, x) are given by (x, p) :

V ×Rn → T ∗VN , pi = dxi. The pull-back of the canonical symplectic form for T ∗N in these
coordinates is

∑
i dpi ∧ dxi. The zero section V × 0 ⊂ N × 0 ⊂ T ∗N is given by [p ≡ 0].

Now compose this chart (x, p) with the symplectomorphism to obtain the required chart.
¤

This is our perturbation lemma for invariant lagrangian submanifolds.

A.3. Lemma. Let N and K be two lagrangian submanifolds inside an energy level H−1{k}
of a hamiltonian H : M → R of a symplectic manifold (M, ω). Let θ ∈ N be a non-
singular point for the hamiltonian vector field. Let (t, x; p), t ≡ x0, be Darboux coordinates
coordinates for N , 0 ≤ t ≤ 1, |x| < ε as in lemma A.2. Choose 0 < ε2 < ε1 < ε. Then
there exist a sequence Nn of lagrangian submanifolds of (M, ω) such that

(a) Nn → N in the C∞ topology.
(b) Nn ∩A = N ∩A, where A :=

{
(t, x; p)

∣∣ maxi |xi| ≥ ε1 or 0 ≤ t ≤ 1
4

}
.

(c) H(Nn ∩B) = {k}, where B = A ∪ {
(t, x; p)

∣∣ 1
2 ≤ t ≤ 1

}
.

(d) Nn ∩D is transversal to K, where D = { (t, x; p) | t = 1, and maxi |xi| < ε2 }.
Proof: Let ϕ : [−ε, ε]n−1 → [0, 1] be a C∞ function such that ϕ(x) = 0 if maxi |xi| > ε1

and ϕ(x) = 1 if x ∈ [−ε2, ε2]n−1. Given s = (s1, . . . , sn−1) ∈ Rn−1 with |s| small, let

hs : [−ε, ε]n−1 → R be the function hs(x) := 1 + ϕ(x)
∑n−1

i=1 si xi. Then

dxhs = (s1, . . . , sn−1), if x ∈ [−ε2, ε2]n−1;

dxhs = 0, if max
i
|xi| > ε1.

Let ps : {1} × [−ε, ε]n−1 → Rn be defined by ps(1, x) := (ps0(x), dxhs), where ps0(x) :
[−ε, ε]n−1 → R is defined by the equation

(41) H
(
(1, x); ps0(x)

)
= k.

Since the curves t 7→ (t, x, p = 0) are solutions of the hamiltonian equations,

Hp0

(
(1, x), 0

) ≡ 1 6= 0.

By the implicit function theorem, for s small we can solve equation (41) for (s, x) 7→ ps0(x)
and this is a C∞ function on s and x.

The graph of ps:

Graph(ps) :=
{ (

(1, x); ps(x)
) ∣∣x ∈ [−ε, ε]n−1

} ⊂ H−1{k}



36 G. CONTRERAS AND G. P. PATERNAIN

is an isotropic submanifold of H−1{1
2}. Indeed, its tangent vectors are generated by ξi =

(
(0, ei); ∂p

s

∂xi

)
and

dp ∧ dx (ξi, ξj) =
n−1∑

k=0

∂psk
∂xi

dxk(ej)− ∂psk
∂xj

dxk(ei)

=
∂psj
∂xi
− ∂psi
∂xj

=
∂2h

∂xi∂xj
− ∂2h

∂xj∂xi
= 0.

When s is near zero, the submanifold Graph(ps) is C∞ near

Graph(p0) :=
({1} × [−ε, ε]n−1

)× {e0} ⊂ N .
The tangent subspace to Graph(p0) is generated by the vectors ξ0i =

(
(0, ei); 0

)
. Condi-

tion (c) in lemma A.2 implies that, the hamiltonian vector field on N is X =
(
(1, 0); 0

)
.

Then X is transversal to Graph(p0). Then for s small, the hamiltonian vector field X is
also transversal to Graph(ps).

Let
Ns =

[
1
2 ≤ t ≤ 1

]⋂ [|x| < ε
]⋂

φ[−2 ε,0]

(
Graph(ps)

)
,

We are adding the flow direction to the isotropic submanifold Graph(ps) of the energy level
[H ≡ k]. Then Ns is also isotropic. Since dimNs = n, Ns is a lagrangian submanifold.
Since the projection π|N is a diffeomorphism and when s→ 0, Ns converges to N in the C∞

topology, it follows that π|Ns is also a diffeomorphism for s small. Then Ns is the graph of
a 1-form η(t, x) ∈ T ∗B defined on [12 , 1]× [−ε, ε]n−1. Since Ns is a lagrangian submanifold,
the 1-form ηs is closed. Since its domain is contractible, ηs is exact: ηs = d(t,x)us. Adding

a constant if necessary we can assume that us = hs on {1}× [−ε, ε]n−1. Extend us to a C∞

function on B such that
us(t, x) = t, if max

i
|xi| > ε1 or t < 1

4 .

lim
s→0

us(t, x) = t, in the C∞ topology.

This can be done using the Whitney extension theorem [55].
By construction H(dus) ≡ k ≡ H(K) on t ∈ [12 , 1]. Since Graph(dus) and K are

lagrangian submanifolds, they are invariant under the hamiltonian vector field. Hence
Graph(dus) and K are transversal over (t, x) ∈ [12 , 1]× [−ε2, ε2]n−1 if and only if their inter-

sections with [t = 1],
(
x, ∂xus(1, x)

)
and K ∩ [t = 1] are transversal over x ∈ [−ε2, ε2]n−1.

By construction of us we have that

∂xus(1, x) = s ∈ Rn−1 for x ∈ [−ε2, ε2]n−1.

Observe that the submanifolds Graph(dus) on (t, x) ∈ [12 , 1]× [−ε2, ε2], parametrized by s

are a foliation of (t, x; p) ∈ [12 , 1] × [−ε2, ε2]n−1 × [−δ, δ]n−1. The projection of K ∩ [t = 1]

into the transverse direction to the foliation is given by [−ε2, ε2]n−1 3 x 7→ dxv where the
function v : [−ε, ε]n−1 → R is defined by K ∩ [t = 1] = Graph(dv). Therefore Graph(dus)
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is transversal to K if and only if s is a regular value for x 7→ dxv. By Sard’s theorem the
set of regular values of dv has total measure, in particular there is a sequence sn → 0 of
regular values. The sets Nn := Graph(dusn) are the required lagrangian manifolds. ¤
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