DIFFERENTIAL GEOMETRY, PART III, EXAMPLES 1.

G.P. Paternain Michaelmas 2006

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the examples in this sheet are taken from Alexei Kovalev's example sheets. The questions are not equally difficult. Those marked with * are not always harder, but are less central to the lectured material and may be regarded as a supplement for the enthusiasts.

1. Do the charts $\phi_1(x) = x$ and $\phi_2(x) = x^3$ $(x \in \mathbb{R})$ belong to the same C^{∞} differentiable structure on \mathbb{R} ?

Let R_j , j=1,2, be the manifold defined by using the chart ϕ_j on the topological space \mathbb{R} . Are R_1 and R_2 diffeomorphic?

Show that the subset $X = \{(x,y) \in \mathbb{R}^2 : xy = 0\}$ of the coordinate plane, with the induced topology from \mathbb{R}^2 , does not admit any C^{∞} differentiable structure and thus cannot be made into a manifold.

- 2. Show that the following groups are Lie groups (in particular, smooth manifolds):
 - (1) special linear group $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) : \det A = 1\};$
 - (2) unitary group $U(n) = \{A \in GL(n,\mathbb{C}) : AA^* = I\}$, where A^* denotes the conjugate transpose of A and I is the $n \times n$ identity matrix;
 - (3) special unitary group $SU(n) = \{A \in U(n) : \det A = 1\}.$
 - (4) $Sp(m) = \{A \in U(2m) : AJA^t = J\}$, where A^t denotes the transpose of A (no conjugation!) and $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

Write down the Lie algebras and deduce a formula for the dimension of each of the above Lie groups.

- **3**. Show that
 - (1) SU(2) is diffeomorphic to S^3 ;
 - (2) TS^1 is diffeomorphic to $S^1 \times \mathbb{R}$;
 - (3) if G is a Lie group then TG is diffeomorphic to $G \times \mathbb{R}^d$, where $d = \dim G$;
 - (4) TS^3 is diffeomorphic to $S^3 \times \mathbb{R}^3$.

In (ii)-(iv) it is understood that the diffeomorphism should convert the tangent bundle projection into the first projection of the product.

- **4.** Construct an embedding of the *n*-dimensional torus T^n in \mathbb{R}^{n+1} .
- **5**. Determine whether the zero locus $f^{-1}(0)$ of a map $f: \mathbb{R}^n \to \mathbb{R}$ is a (n-1)-dimensional (embedded) submanifold of \mathbb{R}^n , for each of the following,

 - $\begin{array}{ll} (1) \ f(x,y,z) = x^2 + y^2 z^2 + 1, \ (x,y,z) \in \mathbb{R}^3; \\ (2) \ f(x,y,z) = x^2 + y^2 z^2, \ (x,y,z) \in \mathbb{R}^3. \\ (3) \ f(A) = AA^t I, \ \text{where A is a real 3×3 matrix.} \end{array}$
- **6**. Prove that the map

$$\rho(x:y:z) = \frac{1}{x^2 + y^2 + z^2}(x^2, y^2, z^2, xy, yz, zx)$$

gives a well-defined *embedding* of $\mathbb{R}P^2$ into \mathbb{R}^6 . Find on \mathbb{R}^6 a finite system of polynomials, of degree \leq 2, whose common zero locus is precisely the image of ρ . Notice that you needed more than $4 = \dim \mathbb{R}^6 - \dim \mathbb{R}P^2$ polynomials. (The map ρ is a variant of the 'Veronese embedding', important in Algebraic Geometry.)

Construct an embedding of $\mathbb{R}P^2$ in \mathbb{R}^4 . [Hint: compose ρ with a suitable map.]

7.* Show that SO(3) is diffeomorphic to $\mathbb{R}P^3$. [Hint: every rotation $A \in SO(3)$ may be written as a composition of two reflections in the planes orthogonal to unit vectors, say a, then b. After a is chosen, **b** is determined up to a ± 1 factor. Express the desired diffeomorphism using the map $(\mathbf{a}, \mathbf{b}) \mapsto (\mathbf{a} \times \mathbf{b}, \mathbf{a} \cdot \mathbf{b}) \text{ onto } S^3 / \pm 1.$

Deduce that $T(\mathbb{R}P^3)$ is diffeomorphic to $\mathbb{R}P^3 \times \mathbb{R}^3$.

 $\mathbf{8}$.* (Whitney's theorem) Rather than using a parameterization, one may want to define curves in \mathbb{R}^2 by an equation F(x,y)=0, for a real function F. Show that, however, every closed subset of \mathbb{R}^2 can be obtained as $F^{-1}(0)$ for some $F \in C^{\infty}(\mathbb{R}^2)$. [Suggestion: first show that $F^{-1}(0)$ can be the complement of an open disk. The general case uses that \mathbb{R}^2 is second countable and requires a careful application of uniform convergence.

What condition on F(x,y) will eliminate 'unwanted' examples of the zero locus?

9* (Calabi–Rosenlicht) Let $X = \{(x,y,z) \in \mathbb{R}^3 : xz = 0\}$ be the union of the (x,y)- and (y,z)coordinate planes and define a family U_a , $a \in \mathbb{R}$, of subsets of X by $U_a = \{(x,y,z) \in X : x \neq a\}$ 0 or y=a (you might find it helpful to make a sketch of U_a). What is $U_a \cap U_b$ for $a \neq b$? Now let the map $h_a: U_a \to \mathbb{R}^2$ to the plane \mathbb{R}^2 with the coordinates (u_a, v_a) be given by

$$u_a = x,$$
 $v_a = \begin{cases} (y-a)/x, & \text{if } x \neq 0 \\ z & \text{if } x = 0 \end{cases}.$

Show that h_a is a bijection onto \mathbb{R}^2 , find its inverse, and obtain the formula for $h_b \circ h_a^{-1} : h_a(U_a \cap$ U_b) $\to h_b(U_a \cap U_b)$, for any $a, b \in \mathbb{R}$. Deduce that the family of charts $h_a, a \in \mathbb{R}$, defines a smooth structure on X and that X (with the induced topology from this smooth structure) is Hausdorff, connected, but not second countable.

10.

- (1) Is $\alpha \wedge \alpha = 0$ true for every differential form α of positive degree?
- (2) Let α be a nowhere-zero 1-form. Prove that for a (p+1)-form β $(p \ge 0)$, one has $\alpha \land \beta = 0$ if and only if $\beta = \alpha \wedge \gamma$ for some p-form γ . [You might like to do it on \mathbb{R}^n first. Partition of unity is useful in the general case.]
- 11. Prove that $\mathbb{R}P^n$ is orientable if and only if n is odd.

[Hint: consider the 2:1 map $S^n \to \mathbb{R}P^n$ and a suitable choice of orientation n-form on S^n .]

- 12. Prove the identity $d\omega(X,Y) = X\omega(Y) Y\omega(X) \omega([X,Y])$, for a 1-form ω and vector fields X, Y.
- **13**. Show that

$$d\omega = 0,$$
 where $\omega = \frac{-ydx + xdy}{x^2 + y^2},$

but ω cannot be written as df for any smooth function f on $\mathbb{R}^2 \setminus \{0\}$.

[Hint: consider an appropriate embedding of S^1 in \mathbb{R}^2 and integrate the pull-back of ω over S^1 .] Deduce that the de Rham cohomology of the circle is $H^1(S^1) = \mathbb{R}$.

14.

- (1) Show that every closed 1-form on S^2 is exact.
- (2) Construct a linear isomorphism $H^n(S^n) \cong H^{n-1}(S^{n-1})$, for n > 1. Calculate the de Rham cohomology $H^k(S^n)$ for every k, n.

[Suggestion: apply the Poincaré Lemma on the coordinate neighbourhoods for the stereographic projection charts on S^n .

15. Construct a nowhere-vanishing (smooth) vector field on S^{2n+1} for any n.