DIFFERENTIAL GEOMETRY, PART III, EXAMPLES 1.

G.P. Paternain Michaelmas 2006

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the examples in this sheet are taken
from Alexei Kovalev’s example sheets. The questions are not equally difficult. Those marked with
* are not always harder, but are less central to the lectured material and may be regarded as a
supplement for the enthusiasts.

1. Do the charts ¢1(z) = z and ¢a(x) = 2° (z € R) belong to the same C* differentiable structure
on R?

Let R;, j = 1,2, be the manifold defined by using the chart ¢; on the topological space R. Are
R and R, diffeomorphic?

Show that the subset X = {(x,y) € R? : zy = 0} of the coordinate plane, with the induced
topology from R2, does not admit any C* differentiable structure and thus cannot be made into a
manifold.

2. Show that the following groups are Lie groups (in particular, smooth manifolds):

(1) special linear group SL(n,R) = {A € GL(n,R) : det A = 1};

(2) unitary group U(n) = {4 € GL(n,C) : AA* = I'}, where A* denotes the conjugate transpose
of A and [ is the n x n identity matrix;

(3) special unitary group SU(n) ={A € U(n) : det A = 1}.

(4) Sp(m) = {A € U(@2m) : AJA" = J}, where A' denotes the transpose of A

(no conjugation!) and J = ( % {).

Write down the Lie algebras and deduce a formula for the dimension of each of the above Lie groups.
3. Show that

(1) SU(2) is diffeomorphic to S3;

(2) TS! is diffeomorphic to S! x R;

(3) if G is a Lie group then TG is diffeomorphic to G x R?, where d = dim G;

(4) TS? is diffeomorphic to S3 x R3.
In (44)—(7v) it is understood that the diffeomorphism should convert the tangent bundle projection
into the first projection of the product.
4. Construct an embedding of the n-dimensional torus 7™ in R**+1,

5. Determine whether the zero locus f~1(0) of amap f : R® — Ris a (n—1)-dimensional (embedded)
submanifold of R", for each of the following,

(1) flz,y.2) =2 +y> =22 +1, (z,y,2) ER

(2) fz.y,2) =2 +y* =22, (2,y,2) €R®.

(3) f(A) = AA* — I, where A is a real 3 x 3 matrix.
6. Prove that the map
-
x? 4+ y? + 22
gives a well-defined embedding of RP? into RS. Find on RY a finite system of polynomials, of degree

< 2, whose common zero locus is precisely the image of p. Notice that you needed more than
1

plz:y:z) = (2,92, 2%, 2y, yz, 22)
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4 = dim R — dim RP? polynomials. (The map p is a variant of the ‘Veronese embedding’, important
in Algebraic Geometry.)
Construct an embedding of RP? in R*. [Hint: compose p with a suitable map.]

7* Show that SO(3) is diffeomorphic to RP3. [Hint: every rotation A € SO(3) may be written as
a composition of two reflections in the planes orthogonal to unit vectors, say a, then b. After a
is chosen, b is determined up to a +1 factor. Express the desired diffeomorphism using the map
(a,b)— (ax b, a-b) onto 53/ +1.]

Deduce that T(RP3) is diffeomorphic to RP? x R3.

8 (Whitney’s theorem) Rather than using a parameterization, one may want to define curves in
R? by an equation F(z,y) = 0, for a real function F. Show that, however, every closed subset of
R? can be obtained as F~1(0) for some F' € C°°(R?). [Suggestion: first show that F~*(0) can be
the complement of an open disk. The general case uses that R? is second countable and requires a
careful application of uniform convergence.]

What condition on F'(z,y) will eliminate ‘unwanted’ examples of the zero locus?

9 (Calabi-Rosenlicht) Let X = {(x,y,2) € R3 : 2z = 0} be the union of the (z,y)- and (y, 2)-
coordinate planes and define a family U,, a € R, of subsets of X by U, = {(z,y,2) € X : = #
0 or y = a} (you might find it helpful to make a sketch of U,). What is U, N U, for a # b?

Now let the map h, : U, — R? to the plane R? with the coordinates (uq,v,) be given by

Ug = T, Ua:{(y_a)/x, ifx#0

z ifx=0"

Show that h, is a bijection onto R?, find its inverse, and obtain the formula for hj o byt : he (U, N
Up) — hy(U, NUy), for any a,b € R. Deduce that the family of charts h,, a € R, defines a smooth
structure on X and that X (with the induced topology from this smooth structure) is Hausdorff,
connected, but not second countable.

10.

(1) Is a A a = 0 true for every differential form « of positive degree?

(2) Let « be a nowhere-zero 1-form. Prove that for a (p+ 1)-form 5 (p > 0), one has a A =0
if and only if § = o Ay for some p-form . [You might like to do it on R™ first. Partition of
unity is useful in the general case.]

11. Prove that RP™ is orientable if and only if n is odd.
[Hint: consider the 2 : 1 map S™ — RP"™ and a suitable choice of orientation n-form on S™.]

12. Prove the identity dw(X,Y) = Xw(Y) — Yw(X) — w([X,Y]), for a 1-form w and vector fields
X,Y.

13. Show that

—ydx + xdy
2 + y2

but w cannot be written as df for any smooth function f on R?\ {0}.

dw =0, where w =

)

[Hint: consider an appropriate embedding of S* in R? and integrate the pull-back of w over S1.]
Deduce that the de Rham cohomology of the circle is H!(S!) = R.

14.
(1) Show that every closed 1-form on S? is exact.

(2) Construct a linear isomorphism H™(S™) = H"~1(S"~1), for n > 1. Calculate the de Rham
cohomology H*(S™) for every k,n.

[Suggestion: apply the Poincaré Lemma on the coordinate neighbourhoods for the stere-
ographic projection charts on S™.]

15. Construct a nowhere-vanishing (smooth) vector field on S?"*1 for any n.



