
DIFFERENTIAL GEOMETRY, PART III, EXAMPLES 1.

G.P. Paternain Michaelmas 2006

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. Most of the examples in this sheet are taken
from Alexei Kovalev’s example sheets. The questions are not equally difficult. Those marked with
∗ are not always harder, but are less central to the lectured material and may be regarded as a
supplement for the enthusiasts.

1. Do the charts φ1(x) = x and φ2(x) = x3 (x ∈ R) belong to the same C∞ differentiable structure
on R?

Let Rj , j = 1, 2, be the manifold defined by using the chart φj on the topological space R. Are
R1 and R2 diffeomorphic?

Show that the subset X = {(x, y) ∈ R2 : xy = 0} of the coordinate plane, with the induced
topology from R2, does not admit any C∞ differentiable structure and thus cannot be made into a
manifold.

2. Show that the following groups are Lie groups (in particular, smooth manifolds):

(1) special linear group SL(n, R) = {A ∈ GL(n, R) : det A = 1};
(2) unitary group U(n) = {A ∈ GL(n, C) : AA∗ = I}, where A∗ denotes the conjugate transpose

of A and I is the n× n identity matrix;
(3) special unitary group SU(n) = {A ∈ U(n) : det A = 1}.
(4) Sp(m) = {A ∈ U(2m) : AJAt = J}, where At denotes the transpose of A

(no conjugation!) and J =
(

0 I
−I 0

)
.

Write down the Lie algebras and deduce a formula for the dimension of each of the above Lie groups.

3. Show that

(1) SU(2) is diffeomorphic to S3;
(2) TS1 is diffeomorphic to S1 × R;
(3) if G is a Lie group then TG is diffeomorphic to G× Rd, where d = dim G;
(4) TS3 is diffeomorphic to S3 × R3.

In (ii)–(iv) it is understood that the diffeomorphism should convert the tangent bundle projection
into the first projection of the product.

4. Construct an embedding of the n-dimensional torus Tn in Rn+1.

5. Determine whether the zero locus f−1(0) of a map f : Rn → R is a (n−1)-dimensional (embedded)
submanifold of Rn, for each of the following,

(1) f(x, y, z) = x2 + y2 − z2 + 1, (x, y, z) ∈ R3;
(2) f(x, y, z) = x2 + y2 − z2, (x, y, z) ∈ R3.
(3) f(A) = AAt − I, where A is a real 3× 3 matrix.

6. Prove that the map

ρ(x : y : z) =
1

x2 + y2 + z2
(x2, y2, z2, xy, yz, zx)

gives a well-defined embedding of RP 2 into R6. Find on R6 a finite system of polynomials, of degree
≤ 2, whose common zero locus is precisely the image of ρ. Notice that you needed more than
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4 = dim R6−dim RP 2 polynomials. (The map ρ is a variant of the ‘Veronese embedding’, important
in Algebraic Geometry.)
Construct an embedding of RP 2 in R4. [Hint: compose ρ with a suitable map.]

7.∗ Show that SO(3) is diffeomorphic to RP 3. [Hint: every rotation A ∈ SO(3) may be written as
a composition of two reflections in the planes orthogonal to unit vectors, say a, then b. After a
is chosen, b is determined up to a ±1 factor. Express the desired diffeomorphism using the map
(a,b) 7→ (a× b , a · b) onto S3/± 1.]
Deduce that T (RP 3) is diffeomorphic to RP 3 × R3.

8.∗ (Whitney’s theorem) Rather than using a parameterization, one may want to define curves in
R2 by an equation F (x, y) = 0, for a real function F . Show that, however, every closed subset of
R2 can be obtained as F−1(0) for some F ∈ C∞(R2). [Suggestion: first show that F−1(0) can be
the complement of an open disk. The general case uses that R2 is second countable and requires a
careful application of uniform convergence.]
What condition on F (x, y) will eliminate ‘unwanted’ examples of the zero locus?

9.∗ (Calabi–Rosenlicht) Let X = {(x, y, z) ∈ R3 : xz = 0} be the union of the (x, y)- and (y, z)-
coordinate planes and define a family Ua, a ∈ R, of subsets of X by Ua = {(x, y, z) ∈ X : x 6=
0 or y = a} (you might find it helpful to make a sketch of Ua). What is Ua ∩ Ub for a 6= b?

Now let the map ha : Ua → R2 to the plane R2 with the coordinates (ua, va) be given by

ua = x, va =

{
(y − a)/x, if x 6= 0
z if x = 0

.

Show that ha is a bijection onto R2, find its inverse, and obtain the formula for hb ◦ h−1
a : ha(Ua ∩

Ub) → hb(Ua ∩ Ub), for any a, b ∈ R. Deduce that the family of charts ha, a ∈ R, defines a smooth
structure on X and that X (with the induced topology from this smooth structure) is Hausdorff,
connected, but not second countable.

10.
(1) Is α ∧ α = 0 true for every differential form α of positive degree?
(2) Let α be a nowhere-zero 1-form. Prove that for a (p + 1)-form β (p ≥ 0), one has α ∧ β = 0

if and only if β = α∧ γ for some p-form γ. [You might like to do it on Rn first. Partition of
unity is useful in the general case.]

11. Prove that RPn is orientable if and only if n is odd.
[Hint: consider the 2 : 1 map Sn → RPn and a suitable choice of orientation n-form on Sn.]

12. Prove the identity dω(X, Y ) = Xω(Y ) − Y ω(X) − ω([X, Y ]), for a 1-form ω and vector fields
X, Y .

13. Show that
dω = 0, where ω =

−ydx + xdy

x2 + y2
,

but ω cannot be written as df for any smooth function f on R2 \ {0}.
[Hint: consider an appropriate embedding of S1 in R2 and integrate the pull-back of ω over S1.]
Deduce that the de Rham cohomology of the circle is H1(S1) = R.

14.
(1) Show that every closed 1-form on S2 is exact.
(2) Construct a linear isomorphism Hn(Sn) ∼= Hn−1(Sn−1), for n > 1. Calculate the de Rham

cohomology Hk(Sn) for every k, n.
[Suggestion: apply the Poincaré Lemma on the coordinate neighbourhoods for the stere-

ographic projection charts on Sn.]

15. Construct a nowhere-vanishing (smooth) vector field on S2n+1 for any n.


