Differential Geometry (M24)
G. P. Paternain

This course aims to provide an introduction to Differential Geometry.

Contents

We will try to cover the following topics (not necessarily in this order):

1

. Differentiable Manifolds. Definition and examples. Tangent vectors, tangent and cotan-
gent bundles. Smooth maps and the inverse function theorem. Differential forms, Stokes’
theorem and de Rham cohomology.

Vector bundles. Structure group, principal bundles. Connections and curvature.

. Riemannian geometry. Riemannian metrics, Levi-Civita connection. Geodesics, exponen-
tial map and Gauss’ lemma. The Riemann curvature tensor, sectional curvature, Ricci
curvature and scalar curvature. The Hodge star operator and the Laplace-Beltrami oper-
ator.

Desirable Previous Knowledge

Familiarity with the classical theory of curves and surfaces will be useful.
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