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Abstract. We show that any exact magnetic flow on a closed surface has peri-
odic orbits in all energy levels. Moreover, we give homological and homotopical
properties of these periodic orbits in terms of the Mañé’s critical values of the cor-
responding Lagrangian. We also prove that if M is not the 2-torus the energy level
k is of contact type if and only if k > c0, where c0 is Mañé’s strict critical value.
When M is the 2-torus we give examples for which the energy level c0 is of contact
type.

1. Introduction

Let M be a closed n-dimensional manifold endowed with a C∞ Riemannian metric
g, and let π : TM → M be the canonical projection. Let ω0 be the symplectic
form on TM obtained by pulling back the canonical symplectic form of T ∗M via the
Riemannian metric. Let Ω be a closed 2-form on M and consider the new symplectic
form ω1 defined as:

ω1
def
= ω0 + π∗Ω.

The 2-form ω1 is a symplectic form and defines what is called a twisted symplectic
structure.

Let E : TM → R be given by

E(x, v) =
1

2
gx(v, v).

The magnetic flow of the pair (g,Ω) is the Hamiltonian flow of E with respect to ω1.
The magnetic flow models the motion of a particle of unit mass and charge under
the effect of a magnetic field, whose Lorentz force Y : TM → TM is the bundle map
defined by:

Ωx(u, v) = gx(Yx(u), v),

for all x ∈M and all u and v in TxM . In other words, the curve

t 7→ (γ(t), γ̇(t)) ∈ TM
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is an orbit of the Hamiltonian flow if and only if

Dγ̇

dt
= Yγ(γ̇),(1)

where D stands for the covariant derivative of g. The magnetic flow of the pair (g, 0)
is the geodesic flow of the Riemannian metric g. A curve γ that satisfies (1) will be
called a magnetic geodesic.

1.1. Existence of periodic orbits. We will study the problem of existence of pe-
riodic orbits on prescribed energy levels for these flows. When Ω = −dθ is exact, the
magnetic flow can also be obtained as the Euler-Lagrange flow of the Lagrangian

L(x, v) =
1

2
gx(v, v) + θx(v).

Recall that the action of the Lagrangian L over an absolutely continuous curve γ :
[a, b]→M is defined by

AL(γ) =

∫ b

a

L(γ(t), γ̇(t)) dt.

A closed magnetic geodesic with energy k can be seen as a critical point of the
functional

γ 7→ AL+k(γ),

where γ is an absolutely continuous closed curve defined on any closed interval [a, b].
More precisely, let Λ(M) be the Hilbert manifold of absolutely continuous closed
curves in M (defined in the interval [0, 1]) and consider the functional AL+k : R+ ×
Λ(M)→ R given by

AL+k(b, x) :=

∫ 1

0

b L(x(t), ẋ(t)/b) dt+ k b.

Then the pair (b, x) is a critical point of AL+k if and only if γ(t) := x(t/b) is a solution
of the Euler-Lagrange equation of L with energy k (cf. [8]).

However, in the case of magnetic monopoles (i.e. when Ω is not exact), we cannot
define an action functional as above but the differential of AL+k is well defined for
any magnetic field Ω. Thus, the general problem of existence of periodic orbits of
magnetic flows is equivalent to the existence of singularities of an appropriate 1-form
on the space of absolutely continuous closed curves with arbitrary period.

For the case of the geodesic flow, that is, when the magnetic field vanishes, the
classical Morse theory ensures the existence of at least one closed geodesic for any
closed Riemannian manifold (see [20]). An important point here is that the associated
action functional, given by the total kinetic energy of the curve, is bounded from below
and satisfies the so called Palais-Smale condition.

However, for non-vanishing magnetic fields, the associated action functional (which
is multi-valued for magnetic monopoles) is no longer bounded from below and also
may not satisfy the Palais-Smale condition [8]. Hence, a priori, we cannot use the
classical methods of Morse theory as in the Riemannian case.
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This problem was first considered by S. Novikov [30, 31, 37, 38, 39] and V. Arnold
[1, 2] whose works begin with two essentially distinct approaches.

The first one introduces the so called Morse-Novikov theory, developed by Novikov
and I. Taimanov (see [31, 37, 38, 39]). In his work, Taimanov uses variational prin-
ciples for multi-valued functionals defined not in the space of closed curves, but in
the space of films (see [37, 38, 39]) on surfaces. In this space, the functional becomes
bounded from below and the Palais-Smale condition is replaced by the property that
the minimal point can be taken in a compact subset consisting of films whose bound-
aries are polygons with a sufficiently great number of segments (given by local solu-
tions of the Euler-Lagrange equation). At the basis of this property is the method
of throwing out cycles [39]. With these techniques, he shows the existence of simple
closed magnetic geodesics homologous to zero for sufficiently strong exact magnetic
fields on surfaces and for strong non-exact magnetic fields taking both positive and
negative values. In Appendix C, we present a new proof of Taimanov’s results using
Geometric Measure Theory.

In higher dimensions, some partial results have been obtained by Taimanov and A.
Bahri [3] using an approximation of the Lagrangian functional by auxiliary functionals
satisfying the Palais-Smale condition.

The other approach uses methods from symplectic geometry and is closely related
to the Weinstein conjecture which states that every contact hypersurface in a sym-
plectic manifold (with trivial first cohomology group) carries a closed characteristic.
However, the essential difference here is that the energy levels may fail to have contact
type turning the problem more delicate.

For the case of surfaces, V. Ginzburg [12, 13] proved the existence of periodic orbits
for sufficiently strong nondegenerate magnetic fields (corresponding to low energy
levels with fixed intensity). His proof is based on the fact that sufficiently strong
magnetic flows can be viewed (after a reparametrization) as a C1 perturbation of the
flow given by the vertical vector field on the unit sphere bundle of M . A survey of
these and other results can be found in [14, 15].

In the higher-dimensional setting, recent results were obtained by Ginzburg and E.
Kerman [16, 18] for magnetic fields given by a symplectic form satisfying a compati-
bility condition with the metric (e.g. Kähler forms). In this case, the non-degeneracy
of the magnetic field implies essentially that the limit (reparametrized) dynamics of
the magnetic flow defines a free S1-action.

On the other hand, for sufficiently high energies the magnetic flow can be regarded
as a small perturbation of the underlying geodesic flow and from this observation
various existence results follow, see [13]. For exact magnetic flows in any dimensions
a result of H. Hofer and C. Viterbo [17] implies the existence of periodic orbits for
every energy level greater than maxx∈M

1
2
|θx|2. This result is sharpened in [8, Theorem

27] with the introduction of the critical value of the universal covering (cf. Subsection
3.1 below).

Thus, the search for periodic orbits was divided into the three realms of high, low
and intermediate energy levels, where, in the last case, we do not have, in general,
information about the existence of such orbits. In fact, for magnetic monopoles we
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cannot expect to find periodic orbits in all energy levels as it is shown by the example
given by a hyperbolic surface of constant curvature −1 and the magnetic field given by
the area form. In this example, the magnetic geodesics are the curves with constant
geodesic curvature and consequently, the magnetic flow restricted to the unit sphere
bundle coincides with the horocycle flow and hence is minimal.

These results suggest that there exists an essential change in the dynamics of the
magnetic flow in the transition from the higher to the lower energy levels. This
change can be expressed for example in terms of periodic orbits by the appearance
of contractible (or homologous to zero) closed orbits with low energy. In fact, it was
proved by L. Macarini [21], extending previous results of L. Polterovich [35], that for
every nontrivial weakly exact magnetic field there exist non-trivial contractible closed
orbits of the magnetic flow in a sequence of arbitrarily small energy levels. Recall
that a closed 2-form Ω on M is weakly exact if Ω|π2(M) = 0. Recently, E. Kerman
[19] proved the same result for magnetic fields given by symplectic forms. This result
was sharpened by Macarini in [22] where it is shown the existence of contractible
periodic orbits in almost every energy level that is sufficiently small. Finally, in a
recent preprint [11], U. Frauenfelder and F. Schlenk prove existence of contractible
periodic orbits in a dense set of sufficiently small energy levels for arbitrary magnetic
fields.

1.2. Results. The present paper arises as an attempt to relate the results of I.
Taimanov [37, 38, 39] about existence of closed orbits of magnetic flows with Mañé’s
critical values [24] and Mather’s theory of minimizing measures [27, 28]. Mañé’s criti-
cal values single out those energies at which various decisive changes in the behaviour
of the flow take place.

Let M be a closed oriented surface and let L be the Lagrangian:

L(x, v) =
1

2
gx(v, v) + θx(v),

where g is a smooth Riemannian metric and θ is a smooth 1-form. The Euler-Lagrange
flow of L is an exact magnetic flow whose magnetic field is given by the 2-form −dθ.
Recall that the energy in this case is simply given by E(x, v) = 1

2
gx(v, v).

For a probability measure µ in TM , we define the action of the probability µ,
as the value A(µ) =

∫
Ldµ. For a homology class h ∈ H1(M,R), we let β(h) :=

infρ(µ)=hA(µ), where µ is assumed to be invariant under the magnetic flow and ρ(µ)
is the homology of µ (i.e. its “rotation number”) which is defined by the equation
〈[ω], ρ(µ)〉 =

∫
TM

ω dµ, where ω is a closed 1-form which we also regard as a function
ω : TM → R (cf. [27]).

Minimizing measures always exist and if h is an extremal point for β then there
exists an ergodic minimizing measure with homology h (β is convex and superlinear),
see [27].

Theorem A. Any exact magnetic flow on M possesses closed orbits in all energy
levels. Moreover if M is not the 2-torus, an energy level k is of contact type if and
only if k > −β(0).
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When M is the 2-torus we give an example (cf. Section 5) for which the energy
level −β(0) is of contact type.

The next result clarifies the relationship between Taimanov’s work and Mañé’s
critical value.

Recall that Mañé’s strict critical value is defined as [24, 34]:

c0(L) := −β(0) = inf{k : AL+k(γ) ≥ 0 for any absolutely continuous

closed curve γ homologous to zero}.
Define now:

cs0(L) := inf{k : AL+k(γ) ≥ 0 for any absolutely continuous

simple closed curve γ homologous to zero}.
Obviously cs0(L) ≤ c0(L).

Theorem B. c0(L) = cs0(L) if and only if there exists an ergodic minimizing measure
with zero homology .

Corollary. Suppose that the graph of Mather’s beta function β : H1(M,R) → R

exhibits an extremal point at h = 0. Then c0(L) = cs0(L) .

In Section 5 we give an example without ergodic minimizing measures with zero
homology. By Theorem B this example has cs0(L) < c0(L).

Acknowledgement: The second author thanks the UMALCA for financial support.
The second and third author are delighted to thank the Centro de Investigación
en Matemática, Guanajuato, México for hospitality and financial support while this
work was in progress. We thank the referee for various comments and suggestions for
improvement.

2. Preliminaries

We say that a homology h ∈ H1(M,R) is rational if there exists λ > 0 such
that λh ∈ i∗H1(M,Z), where i∗ : H1(M,Z) → H1(M,R) is the natural map. The
following proposition is attributed to A. Haefliger; a sketch of the proof can be found
in [26] and a detailed proof is given in Appendix A.

Proposition 2.1. Let µ be a minimizing measure such that ρ(µ) is rational. Then
the support of µ is a union of closed orbits of L.

The next theorem can be found in [23].

Theorem 2.2 (Tonelli’s theorem for closed curves). Let L be a convex superlinear
Lagrangian on a closed manifold M . Take h ∈ H1(M,Z). For any a > 0, there exists
a closed orbit γ : [0, a]→M of L with homology h such that

AL(γ) ≤ AL(τ),

for any absolutely continuous closed curve τ : [0, a]→M with homology class h.
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Let C0
` be the set of continuous functions f : TM → R having linear growth, i.e.

sup
(x,v)∈TM

|f(x, v)|
|v|

< +∞.

Let M` be the set of Borel probabilities µ on TM such that∫
TM

|v| dµ < +∞,

endowed with the topology such that limn µn = µ if and only if

lim
n

∫
f dµn =

∫
f dµ

for all f ∈ C0
` .

If γ : [0, T ] → M is a closed absolutely continuous curve, let µγ ∈ M` be defined
by ∫

f dµγ =
1

T

∫ T

0

f
(
γ(t), γ̇(t)

)
dt

for all f ∈ C0
` . Observe that µγ ∈ M` because if γ is absolutely continuous then∫

|γ̇(t)| dt < +∞. Let C(M) be the set of such µγ’s and let C(M) be its closure in

M`. Observe that the set C(M) is convex (for a proof, see [25, Proposition 1.1].
Let M(L) be the set of all invariant probability measures in M`. Observe that

for µ ∈M(L), all its ergodic components are in M`. By Birkhoff’s theorem and the

convexity of C(M), we have that M(L) ⊂ C(M) (cf. [25, Proposition 1.1]).
The proof of the next theorem due to Mañé can be found in [6, 25].

Theorem 2.3. Let L be a convex superlinear Lagrangian on a closed manifold M .
We have:

c(L) = −min{AL(µ) : µ ∈ C(M)},

and any measure µ ∈ C(M) that achieves the minimum must belong to M(L).

We recall that [25]

c(L) := inf{k : AL+k(γ) ≥ 0 for any absolutely continuous closed curve γ}.

2.1. A criterion for contact type. Let N be a closed manifold and let X be a
non-vanishing vector field on N . The following proposition, although stated in a
different form, is proved by D. McDuff in [29] and is based on Sullivan’s structural
cycles [36]. For completeness, we include a proof in Appendix B.

Proposition 2.4. Suppose that X does not admit a global cross section and let Θ be
a smooth 1-form on N . The following are equivalent:

1.
∫

Θ(X) dµ 6= 0 for every invariant probability measure µ with zero homology.
2. There exists a smooth closed 1-form ϕ such that Θ(X) + ϕ(X) never vanishes.
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Let Θ be the pull back of the canonical 1-form of T ∗M under the Legendre trans-
form. Let X be the Euler-Lagrange vector field associated with the Euler-Lagrange
flow. A regular energy level E−1(k) is said to be of contact type if there exists a smooth
closed 1-form ϕ on E−1(k) such that for all (x, v) ∈ E−1(k), Θ(x,v)(X) + ϕ(x,v)(X)
is not zero. Equivalently, we could say that E−1(k) is of contact type if there exists
a smooth 1-form α on E−1(k) such that α(X) is never zero and dα = j∗ω1 where
j : E−1(k)→ TM is the inclusion map and ω1 is the twisted symplectic form defined
in the introduction. Proposition 2.4 therefore gives a criterion for contact type in
terms of invariant measures with zero homology. Note that the implication 2 =⇒ 1
is fairly straightforward and hence the interesting part of the criterion is 1 =⇒ 2.
(The proposition can be applied because X restricted to E−1(k) has no global cross
section since the symplectic form is exact.)

3. Proof of Theorem A

We now state Taimanov’s main result in [37, 38, 39] for exact magnetic flows in a
form that is particularly suited for our purposes (see Appendix C for a proof using
Geometric Measure Theory).

Theorem 3.1. Let τ : [0, T ]→M be a piecewise differentiable closed curve such that

1. τ is simple and homologous to zero;
2. τ has energy k;
3. AL+k(τ) < 0.

Then there exists a closed magnetic geodesic γ, perhaps with several connected com-
ponents, such that:

1. γ is simple and homologous to zero;
2. γ has energy k;
3. AL+k(γ) < 0.

We need a preliminary lemma.

Lemma 3.2. Let τ : [0, `] → M̃ be an absolutely continuous curve parametrized by

arc length. The reparametrization of τ that minimizes AL+k has constant speed
√

2k.

Proof. Suppose the reparametrization has speed v(t) at τ(t). Then the action of L+k
along the reparametrization is∫ `

0

v(t)2

2
+ k + θ(v(t)τ̇(t))

dt

v(t)
=

∫ `

0

v(t)

2
+

k

v(t)
dt+

∫
τ

θ.

Since the last integral is independent of the reparametrization and the function

v 7→ v

2
+
k

v

has a unique minimum at v =
√

2k, the action is minimized when v(t) ≡
√

2k.
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Given a cover M̂ 7→ M of M , let L̂ be the lift of L to M̂ . The next lemma allows
us to relate Taimanov’s results with the critical value c0.

Lemma 3.3. Let k < c0(L), then there exist a finite cover M̂ 7→M and a piecewise

differentiable closed curve τ : [0, T ]→ M̂ such that:

1. τ is simple and homologous to zero;
2. τ has energy k;
3. AL̂+k(τ) < 0.

Proof. Let M0 be the abelian cover of M and let L0 be the lift of L to M0. The group
of deck transformations can be identified with H1(M,Z) = Z

b1 where b1 is the first
Betti number of M . If k < c0(L), then we can find an absolutely continuous closed
curve α : [0, T ] → M0 such that AL0+k(α) < 0. By Tonelli’s theorem (cf. Theorem
2.2) we can assume that α is a closed magnetic geodesic (and therefore it has constant
energy) with a finite number of self intersections. From α we can “extract” a simple
closed curve β with negative (L0 + k)-action as we now explain. Let the operation
* denote concatenation of paths. Since α is an immersion we can decompose it as
α1 ∗ α2 ∗ · · · ∗ αn where each αi is an embedding. The curves αi are not necessarily
closed but some of them may be simple loops (see Figure 1).

Figure 1. Extracting a simple loop with negative action: α1, α3 and
α2 ∗ α4 are simple loops. One of them should have negative action.
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If for some i, αi is a simple loop and has negative (L0 + k)-action then we set
β := αi. If all the α′is which are loops have non-negative (L0 + k)-action then we
simply remove them and we are left with a new closed curve, let us say, α1 which has
negative (L0 + k)-action since clearly

AL0+k(α
1) ≤

∑
i

AL0+k(αi) = AL0+k(α) < 0.

We now repeat the process with the curve α1 and remove simple loops with non-
negative (L0 + k)-action. Since α was an immersion this process will stop after a
finite number of steps and we will be left with a simple piecewise smooth closed curve
β with negative (L0 + k)-action as desired.

Since β is a closed curve in M0 its projection to M is a curve homologous to zero.
The only problem is that the projection may not be simple, however this is easily
fixed by passing to a suitable finite cover of M such that β lies in the interior of a
fundamental domain. It can be constructed as follows. Let f1, . . . , fb1 be generators
of Zb1 . Given positive integers n1, . . . , nb1 , let H(n1, . . . , nb1) be the subgroup of
Z
b1 generated by fn1

1 , . . . , f
nb1
b1

. Let Mn1,...,nb1
be the finite covering of M whose

fundamental group is given by the kernel of

π1(M) 7→ Z
b1 7→ Z

b1/H(n1, . . . , nb1).

Then Mn1,...,nb1
is the quotient of the abelian cover M0 by the subgroup of deck trans-

formations H(n1, . . . , nb1) ⊂ H1(M,Z). It is clear now that we can find sufficiently
large positive integers n1, . . . , nb1 such that the projection of β to Mn1,...,nb1

is a sim-
ple curve τ . If necessary we reparametrize τ so that it has energy k. On account of
Lemma 3.2 this reparametrization can only decrease the L + k-action and hence τ
has all the desired properties.

We now split the proof of Theorem A into three cases:

• k > c0(L). It was proved in [7] that in this case the magnetic flow in the energy
level k can be seen as a reparametrization of the geodesic flow of a suitable
Finsler metric. But it is well known that the geodesic flow of a Finsler metric
on a closed manifold always has a closed orbit. Also this shows that the energy
levels are of contact type.
• k = c0(L). In this case there exists a minimizing measure with zero homology in

the energy level k (recall that c0(L) = −β(0)). By Proposition 2.1 the support
of such a minimizing measure is foliated by closed orbits.
• k < c0(L). In this case Theorem 3.1 and Lemma 3.3 show that there exists

a closed magnetic geodesic (perhaps with several connected components) with
energy k, homologous to zero and negative L+ k-action.

Finally we show that for k ≤ c0(L) the energy level cannot be of contact type. This
will conclude the proof of the theorem. Without loss of generality we can assume that
k > 0.

We will use the following:
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Lemma 3.4. Let Θ be the pull back of the canonical 1-form of T ∗M under the Le-
gendre transform. Let X be the Euler-Lagrange vector field associated with the Euler-
Lagrange flow. We have:

Θ(X)|E−1(k) = L+ k.

Proof. Let L be the Legendre transform. Since the projection of X(x, v) to M is v,
we see that

Θcan(dL(X(x, v))) = L(x, v)(dπT ∗M(dL(X(x, v))))

=
∂L

∂v
(x, v)v

= L(x, v) + E(x, v)

= L(x, v) + k

on E−1(k).

Our previous discussion shows that for any k ≤ c0(L) there exists an invariant
probability measure µ with energy k and zero homology in M for which∫

(L+ k) dµ ≤ 0.

We recall that given an invariant measure µ supported on a regular energy level
E−1(k) one can consider two homology classes associated with µ. Recall from the
introduction that the homology ρ(µ) ∈ H1(M,R) (which is the one that we have
been considering so far) is defined by

〈ρ(µ), [ω]〉 =

∫
ω dµ,

for any [ω] ∈ H1(M,R), where we regard the closed 1-form ω also as a function
ω : TM → R. We can also consider the homology S(µ) given by

〈S(µ), [ϕ]〉 =

∫
ϕ(X) dµ,

for any [ϕ] ∈ H1(E−1(k),R), where X is the Euler-Lagrange field restricted to E−1(k).
Let π : E−1(k) 7→ M be the canonical projection. Since dπ(X(x, v)) = v it follows
that the two homology classes are related by π∗(S(µ)) = ρ(µ), where

π∗ : H1(E−1(k),R)→ H1(M,R).

It follows from the Gysin exact sequence of the circle bundle π : E−1(k) 7→ M that
π∗ is an isomorphism, provided that M is not diffeomorphic to a 2-torus (see for
example [33, Lemma 1.45]). Hence any invariant measure with zero homology ρ in
M will also have zero homology S in E−1(k). Using Lemma 3.4 we conclude that
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for any k ≤ c0(L) there exists an invariant probability measure µ with S(µ) = 0 for
which ∫

Θ(X) dµ ≤ 0.

Let µ` be the Liouville measure in E−1(k). Note that µ` has S(µ`) = 0 and is
invariant under the flip v 7→ −v since it coincides with the Liouville measure of the
geodesic flow [32]. Therefore ∫

θ dµ` = 0,

which yields ∫
Θ(X) dµ` = 2k > 0

since L(x, v) + k = 2k + θx(v) for (x, v) ∈ E−1(k). Therefore we can always find an
appropriate convex combination ν of µ and µ` such that S(ν) = 0 and∫

Θ(X) dν = 0.

By Proposition 2.4 the energy level E−1(k) cannot be of contact type.

3.1. Remarks. We can also introduce the critical value of the universal covering as:

cu(L) := inf{k : AL+k(γ) ≥ 0 for any absolutely continuous

closed curve γ homotopic to zero}.
Obviously cu(L) ≤ c0(L) but the inequality can be strict (see below). Theorem 27 in
[8] says that for any k > cu(L) there are closed magnetic geodesics in any non-trivial
homotopy class.

We remark that we cannot expect, in general, the periodic orbits with energies
k < cs0(L) to be contractible. In fact, there exists an example of a magnetic Lagrangian
given by G.P. Paternain & M. Paternain [34] with an energy level k < cs0(L) restricted
to which the magnetic flow is Anosov and hence without contractible closed orbits.
For this example, cu(L) < cs0(L) ≤ c0(L). As we mentioned in the introduction we
know that there exists a sequence of contractible periodic orbits of arbitrarily small
energy. This naturally raises the following:

Question: Given k < cu(L) is there a contractible periodic orbit with energy k?

4. Proof of Theorem B

Suppose first that cs0 = c0. By the definition of cs0 there exists a sequence of
absolutely continuous simple closed curves γn : [0, Tn]→ M homologous to zero and
such that

lim
n→∞

1

Tn
AL+c0(γn) = 0.
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Let νn ∈ C(M) be the measure defined by∫
f dνn =

1

Tn

∫ Tn

0

f(γn(t), γ̇n(t)) dt.

Thus

AL+c0(νn)→ 0.

It follows from Theorem 2.3, that a subsequence of νn (which we still denote in
the sequel by νn) converges to a minimizing measure µ with ρ(µ) = 0. Since µ is
minimizing then its support is contained in the energy level c0 (cf. [9]). It follows
that ∫

θ dµ = −2c0.(2)

Since the curves γn are simple and homologous to zero, there exists an embedded
surface Dn such that ∂Dn = γn. By Stokes theorem∫

γn

θ =

∫
Dn

dθ.

Since the surfaces are embedded it follows that there exists a positive number K so
that ∣∣∣∣∫

γn

θ

∣∣∣∣ ≤ K,

for all n. Suppose that supn Tn = ∞. It follows from the last inequality and (2)
that c0 = 0. In this case it can be easily checked (cf. [34]) that dθ = 0 (there is no
effective magnetic field) and the minimizing measures with zero homology are just
Dirac measures supported on points on the zero section of TM . Obviously these
Dirac measures are ergodic and have zero homology. Henceforth we will restrict our
attention to the case when a := supn Tn <∞.

Let δn : [0, a]→M be the curve given by:

δn(t) :=

{
γn(t), t ∈ [0, Tn],

γn(Tn), t ∈ [Tn, a].

Observe that AL(γn) = AL(δn).
By Theorem 2.2 there exists a closed orbit γ : [0, a]→M with zero homology such

that

AL(γ) ≤ AL(δn) = AL(γn)

for all n. Since Tn ≤ a for all n and

lim
n→∞

1

Tn
AL+c0(γn) = 0,

it follows that

AL+c0(γ) ≤ 0;
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which implies that the measure µ supported on γ is a minimizing measure with zero
homology. Since it is supported on a single closed orbit, it is ergodic.

Suppose now that there exists an ergodic minimizing measure µ with zero homology.
By Proposition 2.1 the support of µ is a union of closed orbits of L. Since µ is ergodic
it must be supported in a single closed orbit γ. But since µ is minimizing:

AL+c0(γ) = 0,

and therefore for any k < c0

AL+k(γ) < 0,

which implies that cs0 = c0 because γ is a simple closed curve homologous to zero:
recall that by the Graph Theorem [23], the support of µ is a Lipschitz graph.

5. Examples

5.1. Example of a magnetic Lagrangian on T2 for which the energy level c0

is of contact type. Let us consider the 2-torus T2 and let 〈·, ·〉 be the flat metric.
Consider a smooth vector field Z on T2 such that Z has a simple closed orbit γ
homotopic to zero and with speed one with respect to the flat metric.

Take a C∞ function ψ : T2 → R such that ψ(x) ≥ 0 and ψ(x) = 0 iff x ∈ γ. Set
θx(v) := 〈Z(x), v〉 and ϕ(x) := |Z(x)|2 + 2ψ(x). Our Lagrangian will be:

L(x, v) =
1

2
ϕ(x)|v|2 − θx(v).

An easy computation shows that

L(x, v) +
1

2
=

1

2
ϕ(x)

∣∣∣∣v − Z(x)

ϕ(x)

∣∣∣∣2 +
ψ(x)

ϕ(x)
.

It follows that L(x, v) + 1/2 ≥ 0 with equality iff x ∈ γ and v = Z(x) and therefore
γ is a closed magnetic geodesic and the probability measure associated with γ is a
minimizing measure with zero homology. In particular, it follows that c0(L) = 1/2.

We claim that the energy level 1/2 is of contact type. On account of Lemma 3.4
and Proposition 2.4 it suffices to show that for any invariant probability measure µ
supported in E−1(1/2) and with homology S(µ) = 0 in E−1(1/2) we have∫

(L+ 1/2) dµ > 0.

Suppose there exists such a µ for which∫
(L+ 1/2) dµ = 0.

It follows that µ has to be supported on the closed magnetic geodesic γ. But the
curve t 7→ (γ(t), γ̇(t)) in E−1(1/2) is not homologous to zero, in fact it is homotopic
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to the fibre of the bundle E−1(1/2) 7→ T
2. Therefore there is no µ with S(µ) = 0 for

which ∫
(L+ 1/2) dµ = 0

and thus the energy level E−1(1/2) is of contact type.
Note that since being of contact type is an open condition we also obtain energy

levels of contact type for k < c0 close to c0.

5.2. Example for which c0 > cs0. Let us consider the 2-torus T2 equipped with the
flat metric. Consider on T2 a vector field X with norm one and such that its orbits
form a Reeb foliation. By this we mean that X has only two closed orbits γ1 and
γ2 in opposite homology classes and any other orbit approaches asymptotically γ1 in
forward time and γ2 in backward time.

The vector field X gives rise to a magnetic field

θx(v) = 〈X(x), v〉.

Since X has unit norm we have:

L(x, v) +
1

2
=

1

2
|v −X(x)|2,

from which it easily follows that c0 = 1/2 and that the only minimizing measure with
zero homology is the one supported on γ1 and γ2. It follows that there is no ergodic
minimizing measure with zero homology and thus by Theorem B, c0 > cs0.

In this example, the energy levels E−1(k) for k ∈ (cs0, c0) contain closed orbits
homologous to zero and negative (L + k)-action, but none of them will be simple
curves.

6. Appendix A: proof of Proposition 2.1

Proof. Assume first that the surface M is orientable. By Mather’s Lipschitz graph
theorem, L = π(supp(µ)) is a Lipschitz lamination on M , the Lagrangian flow ϕt
on supp(µ) projects to a flow φt on L and µ projects into a invariant measure ν =
π∗(µ) for φt. Let z ∈ L suppose that z is not in the projection of a closed orbit in
supp(µ). Let Iε be an open segment centered at z such that Iε is transverse to L
and diam(Iε) = ε > 0. Since z ∈ supp(ν) = L then ν(φ[0,1](Iε)) > 0. By Poincaré
recurrence, the open segment Iε returns to itself. We consider its first return:

S(ε) := inf{ t > 0 |φt(Iε) ∩ Iε 6= ∅ }.

Since z is not in a periodic orbit, then limε→0 S(ε) = +∞. Let λ > 0 be such that
λ ρ(µ) ∈ i∗H1(M,Z). Assume that ε > 0 is small enough so that

S(ε) > 1 and S(ε) > λ.

There is a closed differentiable curve γε which is transverse to L which intersects
Iε only once. Let X = d

dt
φt be the vector field of the projected flow φt. Then X is
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Figure 2. Proof of Proposition 2.1

smooth in the flow direction and transversally Lipschitz. Let Y be a smooth vector
field defined on a small neighbourhood of γε such that

‖Y ‖ ≡ 1, 〈Y,X〉 > 0 and Y is transversal to γε.(3)

Denote by ψs the flow of Y . Let 0 < δ � ε and U := ψ]−δ,δ[(γε). Let f :]δ, δ[→ [0,+∞[

be a C∞ function such that f(s) = 0 if |s| ≥ δ
2

and
∫
f(s) ds = 1. Define a 1-form

ηεx by ηε(ψs(x), v) = f(s) 〈Y, v〉, where x ∈ γε. In local coordinates given by a flow
box for ψs around γε, the form ηε can be written as ηε = f(s) ds. Hence ηε is closed
form. Moreover, since Y is transversal to γε, for any closed curve ζ, the integral

∮
ζ
ηε

is the oriented intersection number of ζ with γε up to a constant sign. Choose the
orientation of γε such that that sign is always positive. Then the cohomology class
of ηε is the Poincaré dual of the homology class of γε, in particular, it is an integer
class:

[ηε] ∈ H1(M,Z).

We see ηε as a function in TM and consider its Birkhoff limits:

η̃ε(x, v) : = lim sup
T→+∞

1

T

∫ T

0

ηε(ϕt(x, v)) dt

= lim sup
T→+∞

1

T

∫ T

0

ηε
(
d
dt
φt(x)

)
dt.(4)

For x ∈ Iε, let 0 < τ(x) ≤ +∞ be its first return time to Iε. Let Jε,U :=
φ[− 1

2
,− 1

4
](U) ∩ Iε. If x ∈ Jε,U , then the segment φ[0,τ(x)](x) intersects exactly once

the curve γε. Moreover, its endpoints are not in U . Let ρ : [0, τ(x)] → M be a
smooth curve, homotopic with fixed endpoints to [0, τ(x)] 3 t 7→ φt(x), and such that
d
dt
ρ(t) = Y (ρ(t)) at the points ρ(t) ∈ U . Since ηε is closed, we have that∫ τ(x)

0

ηε
(
d
dt
φt(x)

)
dt =

∫
ρ

ηε =

∫ δ

−δ
f(s) ‖Y (ρ)‖2 ds = 1.(5)
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Moreover, by the definition of S(ε), τ(x) ≥ S(ε). For x ∈ L let N(x, T ) be the
number of returns of x to Iε in the orbit segment φ[0,T ](x). Then

T ≥ S(ε) [N(x, T )− 2](6)

Decomposing the integral in (4) into return times, since ηε ≡ 0 outside U , we have
that ∫ T

0

ηε
(
d
dt
φt(x)

)
dt ≤ N(x, T ).

Let χε be the characteristic function for φ[0,1](Jε,U). Each time an orbit segment
reaches Jε,U , it crosses U in the following time interval of length 1. Then∫ T

0

χε(φt(x)) dt ≤M(x, T ) + 2,

where M(x, T ) is the number of times at which the orbit segment φ[0,T ](x) crosses U .

Since 〈Y,X〉 > 0 then ηε
(
d
dt
φt(x)

)
≥ 0. From (5), we get that

−2 +

∫ T

0

χε(φt(x)) dt ≤
∫ T

0

ηε
(
d
dt
φt(x)

)
dt ≤ N(x, T ).

Hence, using (6),

− 2

T
+

1

T

∫ T

0

χe(φt(x)) dt ≤ 1

T

∫ T

0

ηε
(
d
dt
φt(x)

)
dt ≤ 1

S(ε)

[
1 +

2

N(x, T )− 2

]
.

By Poincaré recurrence we have that limT→+∞N(x, T ) = +∞ for ν-almost every x ∈
L. Taking the lim sup, integrating with respect to ν, and using Birkhoff’s theorem,
we get that

0 < κ := ν
(
φ[0,1](Jε,U)

)
≤
∫
ηε dµ ≤ 1

S(ε)
.

Recall that λ > 0 is such that λ ρ(µ) ∈ i∗H1(M,Z) and that S(ε) > λ. Then

Z 3 〈[ηε], λ ρ(µ)〉 = λ

∫
ηε dµ ∈

(
κλ, λ

S(ε)

)
⊂ (0, 1).

This is a contradiction. Hence z is in the projection of a periodic orbit in supp(µ).
Now, if M is non-orientable, we can lift the lamination L and the flow φt to the

double cover M̂ of M . The asymptotic cycle of the lift ν̂ of ν is still rational. Then
supp(ν̂) is a union of closed curves, and hence supp(µ) is a union of periodic orbits.

7. Appendix B: Proof of Proposition 2.4

Our main reference here is [36]. Let N be a closed n-dimensional manifold and
let Ωp be the real vector space of smooth p-forms on N . This vector space has a
natural topology which makes it into a locally convex linear space. A continuous
linear functional c : Ωp → R is called a p-current. Let Dp be the real vector space
of all p-currents which is the dual space to Ωp. With a natural topology, Dp also
becomes a locally convex linear space.
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The boundary of a p-current can be easily defined using duality and exterior dif-
ferentiation. Given a p-current c, we define ∂c(ω) := c(dω). Clearly ∂c is a (p − 1)-
current. Currents with zero boundary are called cycles.

Suppose now that X is a non-vanishing vector field on N . Among the set of all 1-
currents, Sullivan considers a distinguished subset that he named foliation currents.
This subset is defined as follows. Given x ∈ N , let δx : Ω1 → R be the Dirac 1-
current defined by δx(ω) = ωx(X(x)). Let C be the subset of D1 given by the closed
convex cone generated by all the Dirac currents. The elements of C are called foliation
currents and a foliation cycle is simply a foliation current whose boundary is zero.
The convex cone of foliation currents has the property of being compact. By this we
mean that there exists a continuous functional L : D1 → R such that L(c) > 0 for all
0 6= c ∈ C and L−1(1) ∩ C is a compact set.

The vector field X defines a map from measures to 1-currents, µ 7→ (X,µ) given
by

(X,µ)(ω) =

∫
ω(X) dµ.

Sullivan shows that µ 7→ (X,µ) defines continuous bijections between:

1. non-negative measures on M and foliation currents,
2. measures invariant under the flow of X and foliation cycles.

As poined out by Sullivan in [36], the combination of the Hahn-Banach theorem and
Schwartz’s theorem (which asserts that Ωp is also the dual space of Dp) is a powerful
tool to construct smooth forms satisfying positivity conditions. We will also use this
blend of the Hahn-Banach theorem and Schwartz’s theorem to prove Proposition 2.4.

Proof of Proposition 2.4. If ϕ is a closed 1-form and µ is an invariant probability
measure with zero homology then ∫

ϕ(X) dµ = 0,

and thus it is clear that (2) implies (1).
Suppose now that (1) holds. We will construct a smooth closed 1-form ϕ such that

Θ(X) + ϕ(X) > 0.
Let LΘ be the continuous functional on the space of 1-currents determined by Θ,

i.e., LΘ(c) = c(Θ) for every 1-current c.
Note that the closed 1-currents (cycles) Z form a closed subspace (∂ is continuous).

Also note that the boundaries B form a closed subspace of the space of cycles Z.
Observe now that using the bijection between measures and foliation currents the

hypothesis (1) translates into:

LΘ(c) > 0, for all c ∈ B ∩ C,
and hence the closed subspace Ker(LΘ) ∩ B meets the cone C of foliation currents
only at zero. By the Hahn-Banach theorem, there exists a continuous functional F
such that:

• Ker(F ) ⊇ Ker(LΘ) ∩ B;
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• F (c) > 0 for all 0 6= c ∈ C.
Let us consider the restriction of F and LΘ to B. Recall that two functionals

coincide up to a nonzero constant if and only if they have the same kernel. The
property Ker(F ) ⊇ Ker(LΘ) ∩ B thus imply that F and LΘ restricted to B coincide
up to a nonzero constant unless F vanishes on B.

Claim: F does not vanish on B.

Assume the claim for the moment. It follows that there exists a nonzero number
α such that:

F |B = αLΘ|B.
Let us consider the functional F−αLΘ. By Schwartz’s theorem it defines a smooth 1-
form ϕ which must be closed since the functional vanishes on the space of boundaries
B. The property F (c) > 0 for all 0 6= c ∈ C implies that αΘ(X) + ϕ(X) > 0. By the
hypothesis (1) it follows right away that α must be positive and (2) follows by taking
ϕ/α.

We now prove the claim. Suppose that F vanishes on B. Again by Schwartz’s
theorem, F defines a closed smooth 1-form ϕ which is positive on the vector field. This
implies that X admits a global cross section, or equivalently, that there is no invariant
probability measure with zero homology. By hypothesis this does not happen.

8. Appendix C: A new proof of Taimanov’s theorem 3.1 using

Geometric Measure Theory

Our main references for this appendix are [4, 10]. We will use their notation and
terminology.

Let M be a closed oriented surface with a Riemannian metric and let θ be a smooth
1-form. Let I2(M) be the space of integral 2-currents on M .

Let Σ be the space given by those T ∈ I2(M) of the form T = MxA for some
rectifiable Borel subset A of M ; in other words, T = Mxf where f only takes the
values 0 and 1.

We consider the functional A : I2(M)→ R given by

A(T ) := M(∂T ) + ∂T (θ),

where M(∂T ) is the mass of ∂T .

Lemma 8.1. The functional A restricted to Σ is bounded from below.

Proof. Clearly M(∂T ) ≥ 0. Let c := maxx∈M ||dθ(x)||. Since T is of the form MxA
we have

∂T (θ) = T (dθ) =

∫
A

dθ ≥ −cM(M).

Lemma 8.2. There exists T ∈ Σ such that A(T ) = infT ′∈ΣA(T ′) ≥ −cM(M).
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Proof. Let Ti be a minimizing sequence and let α := infT ′∈ΣA(T ′). Then A(Ti)→ α.
Note that since Ti ∈ Σ, M(Ti) ≤ M(M). Now A(Ti) ≥ M(∂Ti) − cM(M), thus
M(∂Ti) is bounded. By the fundamental compactness theorem for integral currents
[10, 4.2.17], there is a subsequence of Ti (that we still denote by Ti) which is flat
convergent to a current T . Since M is two-dimensional, this implies convergence also
in the mass norm.

Observe that M(TxB(a, r)) ≤ lim inf M(TixB(a, r)) ≤ M(MxB(a, r)) because
Ti ∈ Σ. It follows that Θ∗(||T ||, a) ≤ Θ(M,a) = 1 everywhere. Since Θ(||T ||, a)
exists and is a positive integer ||T || a.e. we conclude that Θ(||T ||, a) = 1, ||T || a.e.
(here Θ∗(||T ||, a) denotes the upper density of the measure ||T || at a and Θ(||T ||, a)
its density).

Thus we can write T = Mxf where f takes only the values −1, 0, 1. Let Ω be the
area form of M . For any C∞ function g, Ti(gΩ)→ T (gΩ). Since Ti ∈ Σ, Ti(gΩ) ≥ 0
whenever g ≥ 0. It follows that T (gΩ) ≥ 0 whenever g ≥ 0. But

T (gΩ) =

∫
M

f gΩ,

which implies that f ≥ 0 a.e., i.e., T ∈ Σ.
Finally note that ∂Ti → ∂T in the flat topology and thus by the lower semi-

continuity of mass we have:

M(∂T ) ≤ lim M(∂Ti).

Since ∂Ti(θ) = Ti(dθ)→ T (dθ) we conclude:

A(T ) ≤ lim M(∂Ti) + ∂Ti(θ) = α,

and hence T is the desired minimizer.

Lemma 8.3. Given X ∈ I2(M), there exists X ′ ∈ I2(M) such that:

1. spt(X ′) ⊂ spt(X);
2. M(X ′) ≤M(X);
3. M(∂(T +X ′)) ≤M(∂(T +X));
4. T +X ′ ∈ Σ.

Proof. The proof is exactly the same as Step 1 in the proof of Lemma 3 in [4].

We will say that a current T ∈ Σ is almost minimal in the sense of Almgren if there
exists a constant c > 0 such that for any X ∈ I2(M) we have:

M(∂T ) ≤M(∂T + ∂X) + cM(X).

The point is that Geometric Measure Theory provides strong regularity results for
almost minimal currents in the sense of Almgren. Our main and simple observation
is that minimizers of A are almost minimal:

Lemma 8.4. Let T ∈ Σ be a minimizer of A : Σ → R. Then T is almost minimal
in the sense of Almgren.
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Proof. Given X consider X ′ given by Lemma 8.3. Since T + X ′ ∈ Σ and T is
minimizing we have

M(∂T ) + ∂T (θ) = A(T ) ≤ A(T +X ′) = M(∂T + ∂X ′) + ∂T (θ) + ∂X ′(θ).

Therefore:

M(∂T ) ≤M(∂T + ∂X ′) + ∂X ′(θ).

But ∂X ′(θ) = X ′(dθ) ≤M(X ′) maxx∈M ||dθ(x)||, so just let as above

c := max
x∈M
||dθ(x)||.

By Lemma 8.3, M(X ′) ≤M(X) and M(∂(T +X ′)) ≤M(∂(T +X)) and the lemma
follows.

The regularity theory alluded above shows that spt(∂T ) is a smooth 1-manifold,
see proof of Theorem 3 in [4].

Thus we have obtained:

Theorem 8.5. If there exists T0 ∈ Σ for which A(T0) < 0, then there is a minimum
for A in Σ which is given by a finite number of C1 simple closed curves which form
a cycle homologous to zero.

The hypothesis that A takes negative values on Σ ensures that the minimizer T
has a nontrivial boundary.

Now that we know that the minimizer is a C1 manifold, a simple variational argu-
ment shows that each curve must in fact be a unit speed solution of the Euler-Lagrange
equation of the Lagrangian

L(x, v) =
1

2
〈v, v〉+ θx(v).

Let us see how this implies right away Theorem 3.1. Let τ be the curve in the
hypothesis of the theorem. Since AL+k(τ) < 0 we have

`(τ) +
1√
2k

∫
τ

θ < 0,

where `(τ) is the length of τ . By changing the orientation of M if necessary, the curve
τ gives rise to an integral 2-current T0 ∈ Σ for which

M(T0) + ∂T0(θ/
√

2k) < 0.

Hence, by Theorem 8.5 there exists a cycle homologous to cero formed by unit speed
simple closed curves which are solutions of the Lagrangian

L′(x, v) =
1

2
〈v, v〉+

1√
2k
θx(v)

and such that the (L′+ 1/2)-action of this cycle is negative. If we now reparametrize
the cycle to have energy k, we obtain the desired cycle γ.
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Remark 8.6. The proof given above works equally well if we consider a non-exact
magnetic field Ω and the functional

A(T ) = M(∂T ) + T (Ω).

To ensure that the minimizer has non-trivial boundary one must assume that A takes
both positive and negative values on Σ since A(M) is now different from zero. This is
exactly the hypothesis that Taimanov assumes in his theorem for the non-exact case.
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[24] R. Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, International Congress
on Dynamical Systems in Montevideo (a tribute to Ricardo Mañé), F. Ledrappier, J. Lewowicz,
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