ENTROPY AND COLLAPSING OF COMPACT COMPLEX
SURFACES

GABRIEL P. PATERNAIN AND JIMMY PETEAN

ABSTRACT. We study the problem of existence of F-structures (in the sense of
Cheeger and Gromov, but not necessarily polarized) on compact complex surfaces.
We give a complete classification of compact complex surfaces of Kahler type admit-
ting F-structures. In the non-Kéahler case we give a complete classification modulo
the gap in the classification of surfaces of class VII. In all these examples a surface
admits an F-structure if and only if it admits a 7-structure.

We then use these results to study the minimal entropy problem for compact
complex surfaces: we prove that, modulo the gap in the classification of surfaces
of class VII, all compact complex surfaces of Kodaira dimension < 1 have minimal
entropy 0 and such a surface admits a smooth metric g with hio,(g) = 0 if and
only if it is CP?2, a ruled surface of genus 0 or 1, a Hopf surface, a complex torus, a
Kodaira surface, a hyperelliptic surface or a Kodaira surface modulo a finite group.
The key result we use to prove this, is a new topological obstruction to the existence
of metrics with vanishing topological entropy.

Finally we show that these results fit perfectly into Wall’s study of geometric
structures on compact complex surfaces. For instance, we show that the minimal
entropy problem can be solved for a minimal compact Kéhler surface S of Kodaira
dimension —oo, 0 or 1 if and only if S admits a geometric structure modelled on
CP?, 8% x §2, S2 x E? or E~.

1. INTRODUCTION

The concept of an F-structure was introduced by M. Gromov in [19] as a natural
generalization of a torus action on a manifold. Then J. Cheeger and Gromov ([19, 9,
10]) related the existence of F-structures with the possibility of collapsing a manifold
with bounds on certain geometric invariants (curvature, injectivity radius, diameter,
etc.). These results require the F-structures to be of a very restrictive type, namely,
polarized F-structures. An F-structure is a sheaf of tori acting on open subsets
of a manifold (with certain compatibility on the intersection of the open subsets);
polarized means (broadly speaking) that the dimension of the orbits of the actions
is locally constant. In [35] the authors proved that if a closed, smooth manifold M
admits a general F-structure, then one can collapse the volume of M with curvature
bounded from below and with bounded entropy. Namely, there exists a sequence g; of
Riemannian metrics on M such that there is a uniform upper bound on the entropy
of the geodesic flow of g; and a uniform lower bound for the sectional curvatures of g;,
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while the volume of (M, g;) converges to 0. This is our main motivation for looking
at the problem of existence of F-structures on a given manifold.

On the other hand, compact complex surfaces provide the most important family
of examples of smooth closed 4-manifolds and they are fundamental in the study of
differential topology in dimension 4. Therefore it seems worthwhile to investigate
which of them admit general F-structures. There is a well-known classification of
compact complex surfaces (the Enriques-Kodaira classification). The classification
first divides them according to the Kodaira dimension x, which could be —00,0, 1 or
2. We briefly recall its definition. Let S be a compact complex surface and let P,,(.5)
be the dimension of the space of holomorphic sections of the mth tensor power of the

canonical line bundle of S. If P,(S) = 0 for all m > 1, then kK = —o0, otherwise,
log P (S)

logm
Surfaces of Kodaira dimension 0 or 1 are all diffeomorphic to elliptic surfaces.

Surfaces of Kodaira dimension 2 are known as surfaces of general type since these are
the generic surfaces. It is for surfaces of Kodaira dimension —oo that the classification
is not complete (at least not known to be complete). Kéhler surfaces of Kodaira
dimension —oo are obtained by blowing up CP? or CP!-bundles over a Riemann
surface and are perfectly understood. The gap in the classification appears in the
non-Kahler case. Non-Kéahler surfaces of Kodaira dimension —oo are called surfaces
of class VII. There are quite a few examples. First, we have the Hopf surfaces,
characterized by the fact that their universal cover is C* — {0}. Then we have the
Inoue surfaces with vanishing second Betti number and some compact elliptic surfaces.
Finally we have the surfaces with global spherical shells, which have positive second
Betti number. These are all the known examples and it has been conjectured that
these are actually all the minimal surfaces of class VII. See Section 2 for more details.
The first aim of this article is to prove the following results:

Theorem A. Let M be a compact Kdahler surface. Then M admits an F-structure if
and only if the Kodaira dimension of M is different from 2. Actually, Kdhler surfaces
of Kodaira number —oo,0 or 1 admit T -structures.

k = limsup,, .,

Theorem B. All known examples of compact complex surfaces which are not of
Kdhler type admit T -structures.

Using the result of [35] mentioned above we obtain:

Corollary. Every compact complex surface which is not of general type has minimal
entropy 0 and collapses with sectional curvature bounded from below, except, perhaps,
some new examples of surfaces of class VII.

We will prove these results in Sections 2 and 3. Next, we turn our attention to the
study of the topological entropy of the geodesic flow of a metric g, hiop(g). Recall that
the minimal entropy of a closed manifold M, h(M), is the infimum of the topological
entropy of C* Riemannian metrics on M with volume one. A unit volume metric g
on a closed manifold M is called entropy minimizing if hi,,(g) = h(M). We say that
the minimal entropy problem for M can be solved if M admits an entropy minimizing
metric. The guiding principle is that manifolds for which the minimal entropy problem
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can be solved should be topologically simple and/or support geometric structures. See
[1, 35] for details and related results. In Section 5 we begin the study of the minimal
entropy problem for compact complex surfaces of Kodaira dimension different from
2. From the Corollary after Theorem B it follows that h(M) = 0 for all such surfaces,
modulo the gap in the classification of surfaces of class VII. Therefore the minimal
entropy problem can be solved for these surfaces only if they admit a metric with
vanishing topological entropy.

Finding topological obstructions to the existence of metrics with zero entropy is a
subtle problem. Up to now, the known results were of two kinds. Either the funda-
mental group was big in the sense that it had exponential growth, or the manifold
was simply connected and the exponential growth in the topology was located in the
loop space homology. An important ingredient in the second case is a theorem of
Gromov [15, 17] which asserts that on a closed simply connected manifold M, homol-
ogy classes of the pointed loop space QM can be represented by cycles formed with
paths of appropriately bounded length. In the appendix we will show that Gromov’s
theorem also works in the case that M is compact with non-empty boundary. This
will help us to deal with the case of manifolds with an infinite fundamental group of
subexponential growth. Essentially nothing was known in this case. Many compact
complex surfaces fall into this category (as well as many other manifolds!). More
precisely, we will prove the following result. As usual, given a space Y and points
x,y €Y, Q(Y,z,y) will denote the space of paths from x to y.

Theorem C. Let M be a closed manifold and let M be its universal covering. Let
X C M be a compact simply connected subm/avnz'fold, possibly with boundary. Suppose
that there exist points v,z € X and y € M and a path o from z to y such that
if we define a map v : QX,x,2) — QUM,x,y) by (1) = T % «, then v induces a
monomorphism in homology with coefficients in the prime field k,, p prime or zero.
Then, for any C* Riemannian metric g on M there exists a positive constant C(g)
such that
Ag)
htop(g) > T + C(.g) (_ 1Og RQXJ?)»
where Rox p 1s the radius of convergence of the Poincaré series

> bi(QX k)t

>0

The quantity A(g) is the volume entropy of the manifold and it is defined as the
exponential growth rate of the volume of balls in M. Manning’s inequality [30] asserts
that for any metric g, hyop(g) > A(g). It is well known that A(g) > 0 if and only if
71 (M) has exponential growth. Theorem C does not really say much if A\(g) > 0, but
it is most interesting when A(g) = 0 and Rox, < 1 for some p.

We describe a noteworthy application of Theorem C.

Theorem D. Let M be a closed manifold of dimension n > 3. Suppose that M can
be decomposed as X1# Xo, where the order of the fundamental group of X is at least
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3. If M admits a C* Riemannian metric with zero topological entropy, then Xs is a
homotopy sphere.

Theorems C and D will be proved in Section 4. Note that Theorem D is opti-
mal. B. Totaro proved in [39] that RP"#RP™ and CP"#RP?" are diffeomorphic to
biquotients and hence they have real analytic metrics with zero topological entropy.

We can now state the theorems that will give complete solutions for the minimal
entropy problem for compact complex surfaces of Kodaira dimension different from
2. We phrase the solution of the minimal entropy problem in terms of 4-dimensional
geometric structures. We say that M admits a geometric structure if M admits a
locally homogeneous metric. This means that if we endow M with the corresponding
covering metric, then M is a complete homogeneous space and we say that M admits
a geometric structure modelled on M. In dimension 4, the maximal geometric models
have been classified by R.O. Filipkiewicz [12]. C.T.C Wall [40] studied the relationship
between geometric structures and complex structures for compact complex surfaces.
Wall’s results will be quite useful for the proof of the two theorems below.

Theorem E. Let S be any known example of a compact complex surface not of Kdhler
type. We have: The minimal entropy of S is zero and the following are equivalent:

1. The minimal entropy problem can be solved for S;

2. S admits a smooth metric g with hy,,(g) = 0;

3. S admits a geometric structure modelled on S® x E! or Nil® x E!;

4. S has k = —00,0 and is diffeomorphic to one of the following: a Hopf surface,
a Kodaira surface, or a Kodaira surface modulo a finite group.

Recall that a Kodaira surface is a surface S with K¢ = Og and by = 3. Such a
surface is diffeomorphic to the product S'x N, where N is a 3-dimensional nilmanifold.
In the Kahler case we have:

Theorem F. Let S be a compact complex Kahler surface with Kodaira dimension
k < 1. We have: The munimal entropy of S is zero and the following are equivalent:

1. The munimal entropy problem can be solved for S;

2. S admits a smooth metric g with hyp(g) = 0;

3. S admits a geometric structure modelled on CP?, S? x S%, S?2 x E? or E* or S
is diffeomorphic to CP?#CP?;

4. S has Kk = —00,0 and is diffeomorphic to one of the following: CP?, a ruled
surface of genus 0 or 1, a complex torus or a hyperelliptic surface.

Note that CP?#CP? is the only non-minimal surface that admits a metric of zero
entropy. It is also the only surface that admits a metric with zero entropy and no
geometric structure.

Acknowledgements: We thank B. Totaro for useful discussions. We also thank C.
LeBrun for useful comments and a very helpful hint in the construction of retractions
in Section 4. The first author thanks the CIMAT, Guanajuato, México for hospitality
and support while part of this work was carried out.
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2. T-STRUCTURES AND COMPACT COMPLEX SURFACES

We will first review the definition of a 7 -structure and the results we will need about
them, and then study the problem of existence of such structures on compact complex
surfaces using the Enriques-Kodaira classification. We will prove here Theorems A
and B in the introduction modulo the construction of 7 -structures on surfaces of
Kodaira dimension —oo that we will carry out in the next section.

Definition 2.1. A 7 -structure on a smooth closed manifold M is a finite open cover
(Ui)iz1,.... of M and a non-trivial torus action on each U; such that the intersections
of the open subsets are invariant (through all the corresponding torus actions) and
the actions commute.

The 7 -structure is called polarized if the torus actions on each U; are locally free
and in the intersections the dimension of the orbits (of the corresponding torus action)
is constant. The structure is called pure if the dimension of the orbits is constant.

Remark 2.2. If two manifolds of dimension greater than 2 admit 7 -structures then
their connected sum also admits one (see [37, 19] for the case of polarized structures
on odd dimensional manifolds and [35] for the general case). We will use this result
mainly to reduce the problem of existence of a 7-structure on a compact complex
surface M to the case when M is minimal, since non-minimal surfaces are obtained

from minimal ones by taking connected sums with CP?
We will also use the following two results from [35]:

Theorem 2.3. If a closed smooth manifold M admits a T -structure then the minimal
entropy of M is 0 and M collapses with curvature bounded below.

(Actually, the conclusion of the theorem still holds if one only assumes the existence
of an F-structure.)

Theorem 2.4. FEvery elliptic compact complex surface admits a T -structure.

In the next section we will show that Hopf surfaces, Inoue surfaces with by=0
and ruled surfaces all admit 7 -structures. Using this, we are in a position to prove
Theorems A and B.

Minimal compact complex surfaces of Kéhler type are: CP?, ruled surfaces, surfaces
which are deformation equivalent to elliptic surfaces (with even first Betti number)
and surfaces of general type. From Theorem 2.3 we know that if a closed manifold
admits a 7 -structure then it collapses with curvature bounded below, and therefore its
Yamabe invariant is non-negative (see [35]). But it is known that surfaces of general
type have strictly negative Yamabe invariant (see [27], for instance). Therefore they
cannot admit 7 -structures. All the other cases are covered by the previous comments
and Theorem A is proved.

Minimal compact complex surfaces which are not of Kahler type are either elliptic
or surfaces of class VII. We therefore only need to consider surfaces of class VII. These
are the surfaces which have first Betti number equal to 1 and Kodaira dimension equal
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to —oo. They were first studied by Kodaira [25]. All the known examples are the
following:

i) Elliptic surfaces of class VII;

ii) Hopf surfaces;

iii) Inoue surfaces with by = 0;

iv) Surfaces with a global spherical shell.

Elliptic surfaces admit 7 -structures by Theorem 2.4. We will exhibit 7 -structures
on Hopf surfaces and Inoue surfaces with b, = 0 in the following section. Surfaces with
a global spherical shell have positive second Betti number and are all diffeomorphic

to a connected sum of S* x S% with by(M) copies of CP?. Therefore they also admit
T -structures by Remark 2.2.
Modulo the constructions in the following section, this finishes the proof of Theorem

B.

Remark 2.5. Kodaira proved that a surface of class VII with vanishing second Betti
number which contains at least a curve is either an elliptic surface or a Hopf surface.
Later on Inoue [21] constructed his examples of surfaces of class VII with by = 0
which contain no curves. He also proves that if a surface of class VII with by = 0 and
no curves admits a line bundle Fy such that dim H°(Q'(Fp)) > 0 then the surface
is one of his examples. Afterwards, F.A. Bogomolov [5, 6] proved that such a line
bundle always exists, but apparently his proof was difficult to understand. Later, J.
Li, S. T. Yau and F. Zheng [28, 29] gave a much simpler proof. This result concluded
the classification of surfaces of class VII with b, = 0. Surfaces with a global spherical
shell have positive second Betti number and it has been conjectured [32, page 220]
that every surface of class VII with positive second Betti number admits a global
spherical shell. If this conjecture were true, the classification would be complete and
Theorems B and E would cover all non-Kéhler surfaces.

3. CONSTRUCTION OF 7 -STRUCTURES

In this section we will carry out the construction of 7-structures on Hopf surfaces,
Inoue surfaces with vanishing second Betti number and ruled surfaces.

3.1. Hopf surfaces. The topology of Hopf surfaces was studied by M. Kato [23,
Theorem 9]. There he proves that every Hopf surface is diffeomorphic either to
a product S' x (S?/H) or to an S*/H-bundle over S' with an involution as the
transition function (here H is some subgroup of GL(2,C)). In both cases the surface
has an obvious locally free (or free) S'-action.

Therefore we can write

Lemma 3.1. Every Hopf surface admits a locally free S*-action.

3.2. Inoue surfaces with b, = 0. There are three classes of Inoue surfaces with van-
ishing second Betti number; named Sy, Sj(]’p’ grt and Sy . They were discovered
by Inoue in [21].
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We first consider the surfaces Sy;. Here M denotes a 3 x 3 integral matrix with
determinant 1 and eigenvalues a, 3 and 3 with a« > 1 and 3 # (. M induces a
transformation fj; of the torus 7% = R?/Z3 (sending the class of z € R? to the class
of Mz € R?) and the surface Sy, is diffeomorphic to the T3-bundle over S! with fy,
as transition function. Then S); admits a pure polarized 7 -structure of rank 3, whose
orbits are the fibers of the fibration.

Here N = (n;;) € SL(2,Z) is a unimodular
1

Now consider the surfaces Sy . .-
integral 2 x 2 matrix with real eigenvalues o« and o=, with o > 1. Then pick any
integers p, ¢ and r with r # 0 and a complex number ¢t. These are the parameters for
the surfaces S]-l\;,p,q,r;t' Then one picks eigenvectors (aq,as) and (by, bg) (with eigen-
values o and a~ !, respectively) and considers the analytic automorphisms of H x C

given by

go(w, 2) = (qw, z + t);
gi(w,z) = (w+a;,z+bw+c¢), i=1,2;

g3(w, z) = (w, z + (brag — baay) /1) ,

where ¢; and ¢y are constants which are obtained from N and its eigenvectors (see
[21] for the formulas) and H = {w € C : Im(w) > 0}. The surface S3 ., is then
the quotient of H x C by the group of analytic automorphisms generated by go, g1, go
and g3.

Think of S* as obtained from the interval [0, (bjas — baay)/r| by identifying its
endpoints (of course, (1/7)(bjas — beay) can be assumed to be positive). Then it is
easy to check that the formula

(0,w,z) — (w,0 + 2)

defines a locally free S'-action on Sy ..

Finally, let us consider the surfaces Sy, .. Here N € GL(2,Z) is an integral 2 x 2
matrix with determinant equal to —1 having real eigenvalues o > 1 and —a~!. Choose
non-trivial eigenvectors (ay, as) and (by, by) corresponding to a and —a~! respectively.
Fix integers p, ¢ and r, with r # 0, and consider the analytic automorphisms of H x C
given by

go(w, 2) = (aw, —2);
gi(w,2) = (w+a;,z+bw+c¢), =12

g3(w, z) = (w, z + (byag — beay) /7).
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Here ¢; and ¢y are constants obtained from N, ay, as, by, be, p and ¢ (see [21] for the
formulas). Then SNpaqr 15 the quotient of H x C by the group of automorphisms
generated by the g;’s.

Consider the map H x C — R given by the projection onto the second coordinate
(the imaginary part of the first complex coordinate). It is easy to check that it induces
amap Sy, ... — S 1 where S! is the interval [1,a] with its endpoints identified.

Consider the group G, of analytic automorphisms generated by g1, g» and g3. The
projection is invariant under these automorphisms and the fibers of it are identified
with the quotient of R3 by the action of this group (with y = Im(w) fixed).

There is an S'-action on each fiber given by 6. (Re(w),z) = (Re(w),Re(z) +

6,Im(2)), where S is now thought of as the interval [0, (bjag — boay)/r| with its
endpoints identified.
Now Sy, .. — S gives Sy . a fiber bundle structure. On each fiber we have
the S'-action mentioned above. Call .; this action. Under the transition map this
action translate to a new action which we will call .5. If these two actions were to
coincide we would have a well defined S'-action, as for the surfaces S]J\;’p7q7r;t. But in
order to have a 7 -structure we only need these actions to commute. Now a direct
computation shows that

0.o(Re(w),Re(z),Im(2)) = (—0).1(Re(w), Re(2), Im(z)).

Therefore Sy, . admits a pure polarized T -structure of rank one.
Summarizing we can write:

Lemma 3.2. Every Inoue surface with vanishing second Betti number admits a pure
polarized T -structure of positive rank.

3.3. Ruled surfaces. Every minimal ruled surface M is diffeomorphic to the projec-
tivization of a decomposable vector bundle of rank 2 over a compact Riemann surface
S. Moreover we can assume that one of the line bundles in the decomposition is trivial
and so there exists a complex line bundle L over S such that M is diffeomorphic to
P(L @ C). The S*-action on C then induces an S'-action on M. Therefore we have:

Lemma 3.3. Every ruled surface admits a non-trivial S*-action.

4. OBSTRUCTIONS TO ZERO ENTROPY

In this section we prove Theorems C and D. We will need the following version of
a result due to M. Gromov [15] for manifolds with non-empty boundary. Gromov’s
original proof in [15] is very short. A more detailed proof is given in [16, p. 102]
but it seems unclear at certain points. There is a corrected proof in the revised an
updated edition [17]. Also I. Babenko sketches a proof in [3] using Adams’s cobar
construction. Finally there is also a proof in [33]. In all these references the manifold
is assumed to have empty boundary. The proofs in the cited references work also in
the case of compact manifolds with non-empty boundary with some modifications.
For completeness we will sketch how to modify the proof given in [33] in the appendix.
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Theorem 4.1. Given a metric g on a simply connected compact manifold X (possibly
with boundary), there exists a constant C > 0 such that given any pair of points x and
y in X and any positive integer i, any element in H;(QUX,z,y)) can be represented
by a cycle whose image lies in Q°(X, x,y).

Recall that QT(X, z,y) € Q(X, z,y) denotes the set of paths with energy less than
T%/2.

Let M be a complete Riemannian manifold. Given z and y in M and 7" > 0 let
nr(x,y) be the number of geodesic segments of length < T' connecting = to y. Let
B(z,T) be the closed ball with center at x and radius 7T". Clearly ny(x,y) > 1 if and
only if y € B(x,T'). Moreover it is easy to see that

/ ne (e, y) dy = / nr(a,y) dy / | det dy exp, | db.
M B(xyT) B(OvT)

Let (M, g) be a closed Riemannian manifold and let M be its universal covering

endowed with the induced metric. Given z € M , let V(z,7) be the volume of the
ball with center x and radius r. Set

1
Ag) = lim —logV .
(9) = lim —log V(z,7)
Manning [30] showed that the limit exists and it is independent of .
It is well known [31] that A(g) is positive if and only if (M) has exponential
growth. Manning’s inequality [30] asserts that for any metric g,

(1) heop(g9) > A(9).

In particular, it follows that if 71 (M) has exponential growth then h,,(g) is positive
for any metric g. This fact was first observed by E.I. Dinaburg in [1 1].

Given a manifold M a subset X C M points z,z € X, y € M and a continuous
path a from z to y, there is an inclusion ¢ : Q(X, z, z) — Q(M,:z:,y) given by (1) =
mxa. Let [ : H (X, x,2),k,) — H, (UM, z,y), k,) be the map induced in homology
for some coefficient field k,. Picking a different path from z to y gives a new inclusion,
homotopic to the previous one. Therefore the map I induced in homology is the same.
Moreover, it is easy to see that the question of whether the map [ is injective or not
is independent of the choices of x, z,y, a. We now show:

Theorem C. Let M be a closed manifold and let M be its universal covering. Sup-
pose that there exists a compact simply connected submanifold X C M, possibly with
boundary, such that for some pointsx,z € X,y € M and a path from z to y the inclu-
sion v QX,x,z) — Q(]/\\/[/,:z:,y) induces a monomorphism I : H.(Q(X, z, 2),k,) —
H*(Q(]\AJ/,x,y),kp). Then, for any C* Riemannian metric g on M there ezists a
positive constant C(g) such that

Mg
9

~—

hiop(g) > + C(g) (—log Rax,p),
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where Rox , 1s the radius of convergence of the Poincaré series

> bi(QX k)t

>0

Proof. Tt is well known that for any x € M (cf. [34])
1
bio(9) = timsup - 1og | (e, y)dy.
T—o0 T M

Let p: M — M be the covering projection. One easily checks that given any = € M

we have
/ nr(p(x),y)dy = /~ nr(x,y) dy =/ nr(z,y)dy.
M M B(a,T)
Thus for any z € M we have
(2) hop(g) > limsup — log/ nr(z,y) dy.
Tooo 1 B(x.T)

We will use the following lemma whose proof will be given after completing the
proof of the theorem. The notation is the same as in the theorem and the comments
before it. In what follows we take x € X.

Lemma 4.2. There exists a constant C(g) > 0 such that for any T > Ci and any
y € B(x,T/2), every element in the image of the map I constructed using z = x and

o a minimizing geodesic from x to y can be represented by a cycle in QT(]\N/[,QJ, Y).

If x and y are not conjugate points, then the Morse inequalities imply:
nT(‘Tv y) Z Z bz<QT(M7 x, y)a kp)
i>0
Using the lemma and the hypothesis that I is a monomorphism, we obtain for any
positive integer k and any y € B(x, Ck/2) not conjugate to z,
nek(x,y) >ZbQCkMxy >Zb (X, 2z, x), k).
120 i<k

Let us now integrate this inequality with respect toy € B(x,Ck/2). Since b;(Q(X, z, x), k;)
is independent of x we obtain:

/ nex(z,y) dy > Ve, Ck/2) | Y bi(QX, k)
B(z,Ck/2)

i<k
and hence
. 1 Alg)
C'lim sup = log nr(x, y)dy>C—+hmsup loga (QX, ky).
Tooo 1 B(x,T) k—+o00 i<k
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Clearly

k
1
—log Rox, < limsup - log > QX k),
=0

k—+4o00

with equality if and only if the Poincaré series of 2X has infinitely many non-zero
coefficients. Thus

1 A 1
lim sup — log/ nr(z,y)dy > Al9) + —(—log Rax,p)
T—oo I 7 Jp@m) 2 C

which together with inequality (2) completes the proof of the theorem.
O

Proof of Lemma 4.2. Consider ¢ € H;(Q(X,z,x)). By Theorem 4.1 there exists a
constant C’(g) > 0 such that for any T > C"i there exists a cycle n in Q7 (X, z, )
such that 7 represents c.

Let a be a minimizing geodesic connecting = to y. As before, let

L QX z,x) — QM z,y)
be the map
T = T% Q.

Clearly the length £(c(7)) of «(7) is given by ¢(7) + d(y,x). Let C' = 2C" and T' >

Ci = 2C"i. If y € B(x,T/2) we have that : maps Q¢ (X, z, ) into QC"“*T/2(M, z, y).

It follows that t o7 is a cycle in QT (M, z,y). Let [¢] be the class represented by +on
in Q(M,x,y). Then, of course, [£] = I(c) and the lemma is proved.

]

We should add that 1. Babenko showed in [2] that if the rational homology of

the loop space of X grows exponentially, then R = Rqx o where R is the radius of
convergence of:

Y dim (m(X) @ Q).

i>2

Corollary 4.3. Let M be a closed manifold and M be its universal covering. Suppose
that there exists a simply connected compact submanifold with boundary X in M
such that the map I : H.(QUX, z,2), k,) — H*(Q(]T/[/,:c,y), ky) is injective (for some
r,z € X,y € M and a path from z to y) and the homology H;(Q2X,k,) grows

exponentially for some coefficient field k,. Then M does not admit a Riemannian
metric with vanishing topological entropy.

The most natural condition under which one knows that the map I is a monomor-
phism is when there exists a retraction from M to X. Therefore we have:

Corollary 4.4. Let M be a closed manifold and M be its universal covering. Suppose
that there exists a compact submanifold with boundary X in M such that X is a retract
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ofM and the homology H;(Q2X, k,) grows exponentially for some coefficient field k,.
Then M does not admit a Riemannian metric with vanishing topological entropy.

4.1. A consequence. We now want to apply the previous results to give explicit
topological obstructions to the existence of metrics with vanishing topological entropy.
The known results up to now deal with manifolds which have big fundamental groups
(groups with exponential growth) or manifolds with very small (finite) fundamental
group (if the loop space homology with coefficients in any field grows exponentially,
they do not admit such a metric). We will give an obstruction which can be applied to
a great variety of examples in the middle range (manifolds with infinite fundamental
groups with subexponential growth).

Theorem D. Let M be a closed manifold of dimension n > 3. Suppose that M can
be decomposed as X1#Xs, where the order of the fundamental group of Xy is greater
than 2. If M admits a C*° Riemannian metric with zero topological entropy, then Xo
1s a homotopy sphere.

Proof. First note that the fundamental group of M must have subexponential growth.
It is a fact from combinatorial group theory (which follows immediately from the
existence of normal forms for free products, for instance) that if A and B are two
finitely generated groups, then the free product A * B contains a free subgroup of
rank two unless A is trivial or B is trivial, or A and B are both of order two. Since
the fundamental group of a connected sum is the free product of the fundamental
groups of the summands, we conclude that X, must be simply connected, since the
order of the fundamental group of X; is at least 3. -

Let X7 be the universal covering of X;. The universal covering M of M = X;# X,
is identified with the connected sum of )?/1 with one copy of X5 for each element of
the fundamental group of X;. We now want to find a submanifold of M to play
the role of X in Corollary 4.3. If the fundamental group of X; is finite then we will
take X = M. Assume now that the fundamental group of X is infinite. Take any
small n-dimensional disc D in )/(vl Then X = D#3X, appears as a submanifold
of M. Moreover, we claim that in this case the map I constructed as before is a
monomorphism. To prove this assume that it is not the case. Then there exists a
cycle defining a non-trivial homology class in H;(Q(X, z, z)), which bounds an (i+1)-
chain in Q(M x,y). The image of this (7 4+ 1)-chain is contained in some compact
subset of M. We now turn from M to an even more complicated manifold, obtained
by taking the connected sum of M with 3 copies of Xy with the opposite orientation.
Performing these connected sums at points away from this compact subset, we see that
the (i+1)-chain can also be considered as a chain in Q(M #3X5,z,y). Then we would
have that the map H,(Q(X,x,z)) — H.(Q (]T/[/#Sz,x y)) is not a monomorphism.
But now we can construct a retraction 7 : Q(]\/[ #3X,, 2,y) — QX x, 2) as follows:
let D be an embedded disc in X1 containing D so that y € D. Of course, D — D is
an annulus and there is a radial retraction p : D—D sending the boundary of D
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to the center of D. We can also assume that p sends y to z and the points where
one performs the surgery with X, to the points in D where one performs surgery
with X5. The map p then gives a retraction p : ﬁ#BE#BXQ — D#3X, (note that
the original retraction p is orientation reversing outside D). The map p extends to a

retraction from M#3X, to X by sending everything else to the center of D. But this
implies that the map H,(Q(X,z,2)) — H.(Q(M#3X,,r,y)) is a monomorphism.
Up to now we have constructed in both cases (when the fundamental group of M

is finite or infinite) a submanifold X of M such that the corresponding map [ in
the homology of the path spaces is a monomorphism. To apply Corollary 4.3 it only
remains to show that if X5 is not a homotopy sphere, in both cases, the homology of
the path spaces grow exponentially for some coefficient field. In the second case X is
the connected sum of a disc with 3 copies of X5. Then the exponential growth follows
from the following lemma. In the first case X is the connected sum of the universal
covering of X; with k£ > 3 copies of X5; in this case the exponential growth follows
from the work of P. Lambrechts [26, Theorem 3].

]

Lemma 4.5. Let M™ be a closed simply connected manifold which is not a homotopy
sphere and let N™ be a simply connected compact manifold with non-empty boundary.
For a prime p let k, be the field of integers modulo p. Let X be the compact manifold
with boundary obtained by taking the connected sum of N with k > 3 copies of M.
Then there exists a prime p (or p = 0) such that the Betti numbers of the free loop
space A(X) with coefficients in k, grow exponentially. Therefore the Betti numbers
of QUX) also grow exponentially.

Proof. Let us first consider the free loop space A(X). Our proof will be based on the
work of Lambrechts in [26] and we will will make frequent use of this reference.

Given a differential graded algebra (DGA) (A, d) we will consider the Hochschild
homology, HH,(A,d), of (A,d). We will only be interested in the case when the
DGA is positively or negatively graded and connected (Ag = R, where R is the
ground field). In this case the Hochschild homology is also positively or negatively
graded. If K is a simply connected C'W-complex of finite type and C*(K, k,) denotes
the singular cochain complex of K with coefficients in k, then

H*(AK, k) = HH,.(C*(K, k,))

(see [22] or [20]). A quasi-isomorphism (or quism) between two DGAs is a DGA-
morphism which induces an isomorphism in homology. Two DGAs are said to be
weakly equivalent if there is a chain of quasi-isomorphisms connecting them. Since
a quasi-isomorphism induces an isomorphism between the corresponding Hochschild
homologies, two weakly equivalent DGAs have isomorphic Hochschild homologies. In
summary, to prove our lemma it is enough to obtain a DGA (A, d) which is weakly
equivalent to C*(X, k,) and such that HH,(A, d) grows exponentially (c.f. [26, Propo-
sition 8]).
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Since M"™ is not a homotopy sphere there exists a number g, 1 < iy < n, such
that m;, (M) is the first non-trivial homotopy group of M. Then m; (M) = H;,(M,Z).
Actually ig <n/2 and so ig < n—1. If Y is the connected sum of k copies of M then
H,,(Y,Z) = kH;,(M,Z) (with k > 3). Therefore there exists a prime p such that
H;,(Y,k,) is a ky-vector space of dimension > k. From now on we fix the integer i
and the prime p.

Pick any non-zero element in H; (M, k,). This element gives in a canonical way
three linearly independent elements in H, (Y, k,) for which the cup product between
any pair of them is 0. Let (A, d) be a (ig — 1)-connected DGA weakly equivalent to
the singular cochain complex of Y. We can moreover assume that d is decomposable
and that A™ = 0 for all m > n. We can also construct (A, d) in such a way that it has
three homogeneous cycles x,z’,y of degree iy (which correspond to the cohomology
classes mentioned above) such that the product of any pair of them is 0. See for
instance the argument in [26, Proposition 17]. By Poincaré duality there exists in
any DGA weakly equivalent to the cochain complex of Y with k, coefficients an
element of degree n which is a representative of the fundamental class of Y which
can be expressed as a product of homogeneous elements of positive degree. Let D
be a small open ball embedded in Y. It follows that one can construct as in [26,
Proposition 18] a DGA (/1, cZ) weakly equivalent to the singular cochain complex of
Y — D such that :

1) A= A@ k,x as vector spaces, where deg(x) =n — 1.

2) the differential and product of A extend those of A.

3) x. At = 0.

4) dx € A" is decomposable and represents the fundamental class of Y.

Now we will find a suitable DGA weakly isomorphic to C*(N — D, k,), where D
is some small open ball embedded in N. Pick a 1-connected DGA (B,d) weakly
isomorphic to C*(N, k,) such that B™ = 0 for all m > n. Then we consider the DGA
(B,cf) defined as follows: as graded vector spaces B =Ba® k,z where z is a new
element of degree n — 1. The product is defined by extending the product of B and
declaring z.z = 0 and z.B"™ = 0. It is easy to check that these choices give a well
define graded algebra. To define the differential we set d = d on B and cZ(z) = 0. The
whole idea is that z will represent the new (n — 1)-cohomology class represented by
oD.

Now we have to prove that (E, CZ) is weakly isomorphic to C*(N — D, k,).

Let ¢ : (TV,d) — C*(N,k,) be a minimal TV-model for C*(N,k,). Let V =
V @k, w® W be a graded vector space where w has degree n — 1 and the elements
of W are combinations of homogeneous elements of degree > n. On T' V we define a
differential d by d = d on TV, d(w) = 0 and W and d|yy are defined in a minimal
way to kill all cohomology in dimensions higher than n. Then we extend the map ¢
to a map
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$: TV — C*(N — D, k,)
by setting ¢ = i*p on TV, where i is the inclusion of N — D in N and p(w) is a
representative of the new (n — 1)-cohomology class represented by 0D. It is easy to
check that ¢ is uniquely determined by this data and it is a quasi-isomorphism.
Since (T'V,d) is weakly isomorphic to (B, d) there exists a quasi-isomorphism ¥ :
(TV,d) — (B,d). Now define

b (TV,d) — (B,d)
by ¥ =1 on TV, ¢ = 0 on W and ¢(w) = z. It is easy to check that ¢ is a quasi-
isomorphism. Therefore (B, d) is weakly-equivalent to C*(N — D, k,). Moreover, d is
decomposable.
Summarizing, up to now we have constructed a DGA (/1, ci) weakly equivalent to
C*(Y — D, k,) with d decomposable and a DGA (B, d) weakly equivalent to C*(N —
D, k,) with d decomposable. X is obtained by joining ¥ — D and N — D through

dD. A DGA (F, f) weakly equivalent to C*(X, k,) can then be obtained from (A, d)
and (B, d) as in [26, Proposition 17]:

F=k,® A" ®B" ®k,w

where f = d on A* and on BT and f(w) is the decomposable element in A™ repre-
senting the fundamental class of Y. Therefore f is decomposable and the elements
x, 2’y € A satisfy all the hypotheses of [26, Proposition 9]. Therefore the Hochschild
homology of (F, f) grows exponentially and so does H*(A(X), k), from the discussion
at the beginning of the proof. Finally exponential growth of the homology of A(X)
implies the exponential growth of the homology of (X)) for any finite CWW-complex
by an easy argument with the spectral sequence of the fibration

5. GEOMETRIC STRUCTURES AND ENTROPY

Let us begin by recalling the definition of geometric structures in general. A ge-
ometry is a complete simply connected Riemannian manifold X such that the group
of isometries acts transitively on X and contains a discrete subgroup with compact
quotient. We then say that a closed manifold M admits a geometric structure mod-
elled on X if there is a Riemannian metric on M such that the Riemannian universal
covering of M is X. Maximal geometric structures in dimension 4 have been classified
by Filipkiewicz in [12]. Wall studies the relationship between geometric structures
and complex structures on 4-manifolds in [40]. Given a compact complex surface we
are only interested on whether the underlying smooth manifold admits a geometric
structure, but not on the compatibility of the geometric structure with the complex
structure.
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In this section we will describe which maximal geometric structures admit models
with metrics with zero entropy. We refer to [40] for a description and details of the
4-dimensional geometries.

Proposition 5.1. If M admits a geometric structure modelled on one of S*, CP?,
S% x 8%, 52 x B2, B*, S x E', Nil® x E! or Nil*, then M admits a smooth metric g
with hiep(g) = 0.

Proof. 1. S* CP?, S? x §?, S5? x E?, E* and S3 x E!': All the Jacobi fields in these
geometries grow at most linearly (in the case of S* and CP? they are actually
bounded), and hence all the Liapunov exponents of every geodesic in M are zero.
It follows from Ruelle’s inequality [36] that all the measure entropies are zero.
Hence, by the variational principle, the topological entropy of the geodesic flow
of M must be zero.

2. Nil? x E! and Nil*: The geometry Nil® can be described as R? with the metric

ds® = dz* + dy* + (dz — xdy)*.

Here, not all the Jacobi fields grow linearly, but they certainly grow polynomially.
Again this implies that all the Liapunov exponents of every geodesic in M are
zero and hence the topological entropy of the geodesic flow of M must be zero.
For the case of Nil* we use a result of L. Butler [7, Theorem 1.3] which asserts that
for any lattice T' in Nil* and any left invariant metric, the topological entropy
of the geodesic flow of Nil*/I" is zero. In fact, Butler’s result applies to any
nilpotent Lie group that admits a normal abelian subgroup of codimension one.
For general nilpotent groups, the result is just not true; examples have been
given by Butler himself in [8].

]

We now show that if M admits a geometric structure modelled on one of the
remaining geometries, namely S? x H?, E? x H?, H? x E!, g\ig x E!, Solé, Solfnm or
Sol‘ll, then M cannot admit a metric of zero topological entropy. To do this, we use
the next lemma, together with the fact described in Section 4, that if m (M) grows
exponentially, then hio,(g) > 0 for any smooth metric g on M.

Lemma 5.2. Let M be a closed orientable 4-manifold, and suppose that M admits
a geometric structure modelled on one of S x H?, E? x H?, H® x B!, SLy x E!, Sol,
Solt or Soll. Then m (M) grows exponentially.

m,n

Certainly the same is true for the geometries H? x H?, H* and H?(C), but here
one has a better result: the simplicial volume of any M modelled on one of these
geometries will be non-zero [19].

Proof. Let (M, g) be a closed Riemannian manifold. Recall that m (M) grows expo-
nentially if and only if A(g) > 0.

If a closed manifold M admits a geometric structure modelled on (X, G), then M
is equipped with a locally homogeneous metric g. Let us consider the geometries
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S? x H?, E? x H?, H3 x E'. All of them have a hyperbolic space as a factor and using
this, it is pretty straightforward to check that A(g) > 0 for all of them.

The geometry SLy admits the unit sphere bundle of a closed surface of genus > 2
as a compact quotient. Since the fundamental group of the latter has exponential
growth, it follows that A(g) > 0 for this geometry. Thus A(g) > 0 as well for the
geometry SLy x E!.

To deal with the solvable geometries, it suffices to exhibit for each one of them a
cocompact lattice I' such that I' has exponential growth.

Let A € SL(3,7Z) and let A; € GL(3,R) be a 1-parameter subgroup with A; = A.
Let G be the semidirect product R3 x4, R. Let I'y C G be the cocompact lattice
given by Z? x 4 Z (the ascending HNN extension of Z* by A).

If we choose A such that it has characteristic polynomial —\3 4+mM% —n\+ 1, then
G will be isomorphic to Solfmn. We may choose for example:

1 1 0
m-n m-—2 1
m-n m-—3 1

We claim that I"4 has exponential growth. To see this it suffices to use a result of
J. Wolf [41], which asserts that a solvable (polycylic) group has exponential growth
unless it is virtually nilpotent. Wolf also gives a criterion to check whether this holds
[41, Proposition 4.4]. It amounts to whether A has an eigenvalue with absolute value
different from one, which is certainly the case for our choice of A.

To deal with Sol note that the lattice I'4 exists inside Solj if A has eigenvalues
a > 1, B and 3 with 3 # (3. In fact with such a choice of A, I'4 is exactly the
fundamental group of the Inoue surface S4. As before I'4 has exponential growth by
Wolt’s criterion.

Finally, in the case of Sol‘ll, it suffices to consider the cocompact lattice given by the
ascending HNN extension of the Heisenberg lattice H; by an automorphism given by a
hyperbolic matrix in SL(2,7Z). Again, by Wolf’s criterion, the lattice has exponential
growth.

(]

6. ELLIPTIC SURFACES

Our references for the background material in this section about elliptic surfaces
are [14, 40] and references therein.

S is called an elliptic surface if there is a holomorphic map 7 : S — C whose
general fibre is an elliptic curve (C' is a complex curve). We will (as usual) assume
that S is relatively minimal, i.e., no fibre contains an exceptional curve of the first
kind. In fact, except when S is rational this is equivalent to minimality in the usual
sense.

A classification of the possible fibres of m was given by Kodaira [24]: the cases are
labeled I, (k > 0), II, III, IV, I* (k > 0), IT*, TIT*, IV*. Case I, means that the fibre

is a smooth elliptic curve and all other types are called singular. Also important to



18 G. P. PATERNAIN AND J. PETEAN

us is the notion of multiplicity. Given p € C, 7~!(p) is a multiple fibre if there exists
an integer m > 1 such that as a divisor 7*(p) = mD. The largest such m is called
the multiplicity of the fibre. Multiple fibres can only be of type I, for some k.

We will often regard C' as an orbifold with a 27/m; cone point at each point
x; corresponding to a multiple fibre of multiplicity m;. Then the orbifold Euler
characteristic of C' is:

WP(C) = X(O) = Y1 m).
The structure of S at a smooth multiple fibre is homeomorphic to the product of a
circle with a multiple fibre in a Seifert fibration of a 3-manifold.
Let {t1,...,t,} be the set of multiple points of C' and suppose each t; has multi-

plicity m;. Given a base point t € C', define the orbifold fundamental group ﬂ?rb(C’, t)
as follows. Let Cy = C' — {t1,...,t,}. The group m(Cp,t) contains the image of the
free group F' on letters 7;, 1 < i < n, corresponding to loops 7; in Cy enclosing t;
which are null-homotopic in C. Now set 7P (C. ) to be the quotient of m1(Cy, t) by
the smallest normal subgroup which contains v;"*, 1 < i < n.

We say that an orbifold is good if it has an orbifold covering whose total space is an
orbifold with no multiple points. Otherwise, an orbifold is bad. The bad 2-dimensional
orbifolds are the 2-sphere with either one multiple point or with two multiple points
with unequal multiplicities.

Of central importance to us is the fact that x(.5), the Euler number of S, is always
> 0 and it vanishes if and only if there are no singular fibres.

6.1. The case of positive Euler number. We will need the following result [14,
Theorem 2.3].

Theorem 6.1. Let 7 : S — C be an elliptic surface. If the Euler number of S is
positive, then m induces an isomorphism m(S) — 79T (C).

Lemma 6.2. (a) Let S be an elliptic surface with finite fundamental group. Then,
the loop space homology of the universal covering of S with rational coefficients grows
exponentially.

(b) Let S be a simply connected elliptic surface and let f., denote a reqular fibre.
Then, the loop space homology of S— fs with rational coefficients grows exponentially.

Proof. We will use the following fact proved by J.B. Friedlander and S. Halperin [13,
Corollary 1.3]. Let S be a 1-connected finite CW-complex. If the loop space homology
of S with rational coefficients grows subexponentially, then

Z 2k dim (m9x(S) ® Q) < m,
k>1

where n is the largest integer for which H™(S,Q) # 0.
To prove (a) observe that the Euler characteristic of S is given by 12d, where d

is a positive integer [14, Proposition 3.21]. Hence by(S) = 12d — 2 > 2 and by the



ENTROPY AND COLLAPSING OF COMPLEX SURFACES 19

Hurewicz theorem dim (m3(S) ® Q) > 2. Using the result mentioned above it follows
that S has the desired property.

Let us prove item (b). Observe first that S — f. is simply connected. Since
H,(S) = H3(S) = Hi(S — f) = 0, the Mayer-Vietoris sequence gives:

0 — Z> — Ho(S — foo) DZ — Ho(S) — Z° — Z* — 0.

It follows that Hy(S — fx) is a free abelian group of rank b(S) + 1. One can deduce

as above that S — f., has the desired property.
(]

We now prove:

Theorem 6.3. Let w : S — C be an elliptic surface. If the Euler number of S is
positive, then any C*° Riemannian metric on S has positive topological entropy.

Proof. We split the proof into several cases.

1. 79TP(C) is finite. By Theorem 6.1, m1(S) is finite. By Lemma 6.2 and Theorem
C the topological entropy of any C'*° metric on S is positive.

2. 790 () is infinite, i.c., Xorb(c) < 0. If x°'P(C) < 0, then C' is hyperbolic and
W?rb(C) contains a free subgroup of rank two. It follows from Theorem 6.1 that
m(S) grows exponentially and hence any metric on S has positive topological

entropy. If Xorb(C') = 0, then C has a finite orbifold covering Cj, which has no
multiple points and is a 2-torus. The finite cover Cj induces a finite covering
of the elliptic surface that we denote by S;. By Theorem 2.16 in [14], Sy is
diffeomorphic to the fibre connected sum of T? x T? with a simply connected
elliptic surface 51 with no multiple fibres.

We can picture Sy, the universal covering of Sy, as T? x R? fibre connected
sum with infinitely many copies of S; as follows. Consider T? (as is customary)
given by the square with vertices (0,0), (1,0), (1,1) and (0,1) with the sides
identified. At each fibre T? x {(1/2 +m,1/2+ n)} consider the fibre connected
sum with S for all integers m and n. The result is Sp. Let X be 51 minus
an open neighborhood of a regular fibre. Let us see that X lives inside S; as a
retract. Consider a diffeomorphism of R? that maps the points (1/2+m, 1/2+n)
onto the points (0,m). This induces a diffeomorphism of So. Now retract R

L 1] x R in the obvious way. This induces a retraction of So.

over the set [—3, 3
Now we can “fold” the strip onto the square [—3, 1] x [—3, 3] in such a way that

22
the points (0,m) all go to the origin preserving orientation. This describes a
retraction of R? over the square [—1,1] x [—1 1] which induces a retraction of
Sp onto X.

By Lemma 6.2 and Corollary 4.4 the topological entropy of any C'° metric
on Sy (and thus of any metric on S) is positive.

O
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6.2. The case of zero Euler number. We will need the following result [14, Lemma
7.3, Proposition 7.4, Proposition 7.5].

Proposition 6.4. Let 7 : .S — C be an elliptic fibration with Euler number zero. If
the base orbifold is flat or hyperbolic (i.e. W?rb(C') is infinite), then there is an exact

sequence
0 — Z&Z5m(9) =P (o) — {1},

where 1 is the inclusion of a general fibre of ™ into S. In case the base orbifold C' is
spherical and good, then there is an exact sequence

Z—-ZLZB7L— m(S)— W?rb(C) — {1}.

In case the base orbifold C' is bad, then S 1is either a ruled surface over an elliptic
base (m1(S) = ZBZ) or S is a Hopf surface with m,(S) = Z&7Z/nZ for some integer
n > 1.

Let k be the Kodaira dimension.
Theorem 6.5. Let w: S — C be an elliptic fibration with Euler number zero. Sup-

pose that C' is a good orbifold. The following are equivalent:

1. S admits a smooth Riemannian metric g with hi,,(g) = 0;
2. S admits a geometric structure modelled on S? x E?* (k = —oo, by even) , E*
(k =0, by even), S* x E' (k = —o0, by odd) or Nil> x B! (k =0, by odd).

Proof. The proof is based on the following result due to C.T.C Wall.

Theorem 6.6 (Theorem 7.4 in [40]). An elliptic surface S without singular fibres
has a geometric structure compatible with the complex structure of S if and only
if its base C' is a good orbifold. The type of the structure is determined as follows:

K —00 0 1

by even S? x E? E* E? x H?

by odd S®xE!' Nil® xE! SL, x E!

Since we are assuming that S has zero Euler number and that C'is a good orbifold,
Wall’s theorem says that S admits a geometric structure as above. Lemma 5.2 ensures
that if S admits the geometries E? x H? and SL, x E', then 7(S) has exponential
growth and the theorem readily follows from Proposition 5.1.

]

We conclude this section by noting that elliptic surfaces with Kodaira dimension
—oo and 0 can be completely classified [14, Proposition 3.23] and they are usually
refer to as “not honestly” elliptic surfaces. Hence we can easily determine the surfaces
appearing in Theorem 6.5:
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1. If S admits a geometric structure modelled on S% x E? (k = —oo, by even), then
S is a ruled surface of genus 1.

2. If S admits a geometric structure modelled on E* (k = 0, b; even), then S is
torus or a hyperelliptic surface.

3. If S admits a geometric structure modelled on S® x E! (k = —oo, b; odd), then
S is a Hopf surface.

4. If S admits a geometric structure modelled on Nil* x E! (k = 0, b; odd), then
S is a Kodaira surface, or a Kodaira surface modulo a finite group.

7. SURFACES OF KODAIRA DIMENSION —00
7.1. Surfaces with a global spherical shell.

Proposition 7.1. A compact surface with a global spherical shell admits no metric
with zero topological entropy.

Proof. A compact surface S with a global spherical shell is diffeomorphic to a con-
nected sum of % x St with by(S) copies of TP (b2(S) > 0).

We can regard S , the universal covering of S, as S® x R connected sum with
infinitely many copies of CP? as follows. Consider S' as [0,1] with the endpoints
identified and fix a point € S3. At each point (z,1/2 +n) € 5% x R consider the
connected sum with CP? for all integers n. Let X}, be the connected sum of k copies
of CP? with a small open ball around a point removed. For any k, X, lives inside S
as a retract. If £ > 3, the loop space homology of X}, with rational coefficients grows
exponentially and thus, by Corollary 4.4, the topological entropy of any C°° metric
on S is positive.

O
7.2. Hopf surfaces.

Proposition 7.2. Any compact Hopf surface admits a smooth metric with zero topo-
logical entropy.

Proof. Let H be a finite subgroup of U(2) that acts freely on S® C C%. According to
M. Kato [23] any compact Hopf surface S is diffeomorphic to one of the following:
1. St x (S3/H);
2. (S3/H)-bundle over S whose transition function S*/H — S®/H is an involu-
tion. In fact, the bundles are diffeomorphic to S* x (S3/H) divided by an action
of Zy generated by

(121, la]) = ([t +1/2]; [u(g)])

where u is certain unitary matrix which normalizes H and hence [u(q)] is well
defined.

Hence if we endow S* x 83 with the canonical product metric we obtain a metric
with zero entropy on S x (S®/H) and since Z, acts by isometries we also obtain a

metric with zero entropy on any Hopf surface. In fact, S admits a geometric structure
modelled on S? x E.
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7.3. Ruled surfaces.

Proposition 7.3. A ruled surface S over a Riemann surface C' of genus g admits a
smooth metric with zero topological entropy if and only if g =0, 1.

Proof. 1t follows from the homotopy exact sequence of the fibration that if the funda-
mental group of C' grows exponentially, then the fundamental group of S also grows
exponentially. Hence if S admits a smooth metric with zero topological entropy, then
the genus of C' must be < 1.

From the differentiable viewpoint, there are only two S2-bundles over S?: the
trivial one S? x S? and the non-trivial one which is diffeomorphic to CP?#CP2.
We explained in [35] how to construct smooth metrics with zero entropy on these
manifolds.

Similarly, from the differentiable viewpoint, there are only two S2-bundles over T?
[38]: a trivial bundle Fy = T? x S? and a non-trivial bundle E;. Clearly Fj has a
smooth metric with zero entropy.

The bundle E; can be described as follows (cf. [38, p. 310]). Let I' be the group
isomorphic to Zy @ Zo generated by the two diffeomorphisms of S? x T? given by:

(p, [u]) = (r2(p), [u+1/2]),

(, [u]) = (r=(p), [u+1i/2]),

where r, is rotation by 180 degrees around the z-axis and r, is rotation by 180
degrees around the z-axis. Endow S? x T? with the product metric. Since I' acts by
isometries we see that F£; admits a smooth metric with zero topological entropy. In
fact E; admits a geometric structure modelled on S? x 2.

O

7.4. Inoue surfaces with by, = 0. They all have fundamental group with expo-
nential growth and hence any metric has positive topological entropy. This can be
checked directly from the explicit presentation of the fundamental groups given in
[21]. Alternatively, on account of Proposition 9.1 in [40] the Inoue surfaces admit
geometric structures modelled on solvable groups and hence we can use Lemma 5.2.

8. ENTROPY OF COMPLEX SURFACES

We are now ready to complete the discussion of the minimal entropy problem for
compact complex surfaces. The next proposition takes care of non-minimal surfaces.

Proposition 8.1. Let S be a compact complex surface. If S admits a C'°° metric
with zero topological entropy, then S must be minimal unless S is diffeomorphic to
CP?*#CP=.

Proof. If S is not minimal, it is diffeomorphic to S’#CP?. Theorem D implies that
the fundamental group of S’ is either trivial or Zy. Moreover, the universal covering of
S” must be homeomorphic to S* or CP?, otherwise the rational loop space homology
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of the universal covering of S has exponential growth (cf. proof of part (a) Lemma
6.2 or [35]). Since S is a complex surface, the result follows.
Ll

We can now directly combine Proposition 8.1 and Theorem B with the results of
Sections 6 and 7 to obtain:

Theorem E. Let S be a compact complex surface not of Kahler type. Modulo the gap
in the classification of class VII surfaces we have: The minimal entropy of S is zero
and the following are equivalent:

1. The minimal entropy problem can be solved for S;

2. S admits a smooth metric g with hy,(g) = 0;

3. S admits a geometric structure modelled on S® x E! or Nil® x E!;

4. S has k = —00,0 and is diffeomorphic to one of the following: a Hopf surface,
a Kodaira surface, or a Kodaira surface modulo a finite group.

Similarly we can combine Proposition 8.1, Theorem A and the results of Sections
6 and 7 to obtain:

Theorem F. Let S be a compact complex Kahler surface with Kodaira dimension
k < 1. We have: The minimal entropy of S is zero and the following are equivalent:

1. The minimal entropy problem can be solved for S;

2. S admits a smooth metric g with he,,(g) = 0;

3. S admits a geometric structure modelled on CP?%, S? x S?, S? x E? or E* or S
is diffeomorphic to CP2#CP?2;

4. S has k = —00,0 and is diffeomorphic to one of the following: CP?, a ruled
surface of genus 0 or 1, a complex torus or a hyperelliptic surface.

Note that CP?#CP? is the only non-minimal surface that admits a metric of zero
entropy. It is also the only surface that admits a metric with zero entropy and no
geometric structure.

9. APPENDIX: PROOF OF THEOREM 4.1 WHEN 0X IS NON-EMPTY

Proof. Assume that the boundary of X is non-empty. We have a collar of the
boundary diffeomorphic to 90X x [0,2). Let Y be the manifold obtained by delet-
ing 0X x [0,1) from X. Of course, Y is diffeomorphic to X. Now find a finite number
of convex subsets of X which cover Y. Call them V., 1 < a < ky. Let T be a
triangulation of Y. For a point p € Y, let F'(p) be the closed cell of lowest dimension
containing p and let O(p) be the union of all closed cells intersecting F'(p). Note that
O(p) is a compact subset of Y. Similarly, for any subset K C Y one can define F'(K)
as the union of F(p) for p € K and O(K) as the union of O(p) for p € K. There is
a positive number § (depending on the covering {V,,} and g) such that, after taking
some barycentric subdivisions, we can take T so that for every subset K of diameter
bounded by ¢, O(K) is contained in one of the V,’s.

Now for z,y € Y we define the open subset €} of Q(UV,,z,y) as the set of all
paths w in UV, with w(0) = z,w(1) = y so that for all j between 1 and 2%,
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O({w(i —1/25),w(5/2%)}) U wlj —1/2%,j/2"
is contained in one of the V,’s. It is easy to see that Q(Y,x,y) is contained in the
union of the €’s.

Let By be the set of sequences po, ..., pox of points in Y such that py = z, pox =y
and for each j between 1 and 2% O({p;_1,p,}) is contained in one of the V,’s. Let
QF C Q4 be the set of paths in €, for which all intermediate 2% — 1 points are in
Y. Then By, is naturally identified with a subset of QY (an element of By uniquely
determines a broken geodesic which sends j/2* to p;) and it is actually a deformation
retract of Q).

Given a cycle representing a homology class in Q(X, z,y) it can be represented by
a cycle in Q(Y, x,y) which is therefore contained in Q) for some k. Therefore we can
retract it to By. But By is easily identified with a subset of Y21, Moreover, under
this identification if a point (py, ..., pox_1) € By, then the whole F'(p1) X ... X F(pgr_1)
is contained in Bj. This implies that T induces a cell decomposition in B;. Hence
the -homology class can be represented by a combination of cells of dimension 7. A
cell in By, is a product of cells in each coordinate. The dimension of such a cell is the
sum of the dimensions of the corresponding cells, of course. If the total dimension is
17 then there can be at most i cells of positive dimension. Since X is simply connected
there exists a smooth map f : X — X which is smoothly homotopic to the identity
and which sends the union of the images of all the geodesic segments joining vertices
in the triangulation to a point. We can moreover assume that x and y are fixed by
f. The norm of the differential of f is bounded since X is compact and f induces
amap [ : Q(X,z,y) — QX,z,y) which is homotopic to the identity. Now paths
belonging to an i-cell of By are formed by pieces joining vertices of the triangulation
and at most 2i pieces in which one of the points is not a vertex. Under the map f
the former are sent to a point and the latter to a path of length bounded in terms of
the norm of the differential of f and the diameter of the V,’s. Therefore, there exists
a constant C, such that the image of the i-skeleton of By is sent by f to the subset
of paths with energy bounded by C, ¢. The theorem follows.

]
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