COMPLEX ANALYSIS EXAMPLES 1

G.P. Paternain Lent 2018

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk.

- 1. Let $T: \mathbb{C} = \mathbb{R}^2 \to \mathbb{R}^2 = \mathbb{C}$ be a real linear map. Show that there exist unique complex numbers A, B such that for every $z \in \mathbb{C}$, $T(z) = Az + B\bar{z}$. Show that T is complex differentiable if and only if B=0.
- **2**. (i) Let $f:D\to\mathbb{C}$ be an holomorphic function defined on a domain D. Show that f is constant if any one of its real part, imaginary part, modulus or argument is constant.
- (ii) Find all holomorphic functions on \mathbb{C} of the form f(x+iy)=u(x)+iv(y) where u and v are both real valued.
 - (iii) Find all holomorphic functions on \mathbb{C} with real part $x^3 3xy^2$.
- **3**. Define $f: \mathbb{C} \to \mathbb{C}$ by f(0) = 0, and

$$f(z) = \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2}$$
 for $z = x + iy \neq 0$.

Show that f satisfies the Cauchy-Riemann equations at 0 but is not differentiable there.

4. (i) Define the differential operators $\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$. Prove that a C^1 function f is holomorphic iff $\partial f/\partial \bar{z} = 0$. Show that

$$\Delta = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} = 4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}$$

- where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is the usual Laplacian in \mathbb{R}^2 . (ii) Let $f: U \to V$ be holomorphic and let $g: V \to \mathbb{C}$ be harmonic. Show that the composition $g \circ f$ is harmonic.
- **5**. (i) Denote by Log the principal branch of the logarithm. If $z \in \mathbb{C}$, show that $n \operatorname{Log}(1+z/n)$ is defined if n is sufficiently large, and that it tends to z as n tends to ∞ . Deduce that for any $z \in \mathbb{C}$,

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^z.$$

- (ii) Defining $z^{\alpha} = \exp(\alpha \operatorname{Log} z)$, where Log is the principal branch of the logarithm and $z \notin \mathbb{R}_{\leq 0}$, show that $\frac{d}{dz}(z^{\alpha}) = \alpha z^{\alpha-1}$. Does $(zw)^{\alpha} = z^{\alpha}w^{\alpha}$ always hold?
- 6. Prove that each of the following series converges uniformly on compact (i.e. closed and bounded) subsets of the given domains in \mathbb{C} :

(a)
$$\sum_{n=1}^{\infty} \sqrt{n}e^{-nz}$$
 on $\{z: 0 < \text{Re}(z)\};$ (b) $\sum_{n=1}^{\infty} \frac{2^n}{z^n + z^{-n}}$ on $\{z: |z| < \frac{1}{2}\}$.

- 7. Find conformal equivalences between the following pairs of domains:
 - (i) the sector $\{z \in \mathbb{C} : -\pi/4 < \arg(z) < \pi/4\}$ and the open unit disc D(0,1);

- (ii) the lune $\{z \in \mathbb{C} : |z-1| < \sqrt{2} \text{ and } |z+1| < \sqrt{2} \}$ and D(0,1);
- (iii) the strip $S=\{z\in\mathbb{C}:\ 0<\mathrm{Im}(z)<1\}$ and the quadrant $Q=\{z\in\mathbb{C}:\ \mathrm{Re}(z)>0\ \mathrm{and}\ \mathrm{Im}(z)>0\}.$

By considering a suitable bounded solution of Laplace's equation $u_{xx} + u_{yy} = 0$ on S, find a non-constant harmonic function on Q which is constant on each of the two boundaries of the quadrant (it need not be continuous at the origin).

- 8. (i) Show that the most general Möbius transformation which maps the unit disk onto itself has the form $z \mapsto \lambda \frac{z-a}{\bar{a}z-1}$, with |a| < 1 and $|\lambda| = 1$. [Hint: first show that these maps form a group.]
- (ii) Find a Möbius transformation taking the region between the circles $\{|z|=1\}$ and $\{|z-1|=5/2\}$ to an annulus $\{1<|z|< R\}$. [Hint: a circle can be described by an equation of the shape $|z-a|/|z-b|=\ell$.]
- (iii) Find a conformal map from an infinite strip onto an annulus. Can such a map ever be a Möbius transformation?
- **9**. Let $f: U \to \mathbb{C}$ be a holomorphic function where U is an open set (you may assume f is also C^1). Let $z_0 \in U$ be a point such that $f'(z_0) \neq 0$. Use the inverse function theorem from Analysis II to show that f is a conformal equivalence locally around z_0 .
- **10**. Calculate $\int_{\gamma} z \sin z \, dz$ when γ is the straight line joining 0 to i.
- 11. Show that the following functions do not have antiderivatives (i.e. functions of which they are the derivatives) on the domains indicated:

$$(a) \quad \frac{1}{z} - \frac{1}{z-1} \quad (0 < |z| < 1) \, ; \qquad (b) \quad \frac{z}{1+z^2} \quad (1 < |z| < \infty).$$