1. Show that the Axiom of Separation is deducible from the Axiom of Replacement. Show also that the Pair-Set Axiom is deducible from the Axioms of Empty-Set, Power-Set and Replacement.
2. Is it true that if x is a transitive set then the relation \in on x is a transitive relation? Does the converse hold?
3. Show that $(\forall x)(\forall y)\left(x^{+}=y^{+} \Rightarrow x=y\right)$ holds in ZF.
4. Let F be a function-class that is an automorphism of (V, \in). Show that F must be the identity.
5. What is the rank of $\{2,3,6\}$? What is the rank of $\{\{2,3\},\{6\}\}$. Work out the ranks of \mathbb{Z}, \mathbb{Q} and \mathbb{R} using your favourite constructions of these objects from ω.
6. A set x is called hereditarily finite if each member of $\operatorname{TC}(\{x\})$ is finite. Prove that the class HF of hereditarily finite sets coincides with V_{ω}. Which of the axioms of ZF are satisfied in the structure HF, i.e., the set HF, with the relation $\epsilon_{H F}=\epsilon_{V} \cap(\mathrm{HF} \times \mathrm{HF})$?
7. Which of the axioms of ZF are satisfied in the structure $V_{\omega+\omega}$?
8. What is the cardinality of the set of all continuous functions from \mathbb{R} to \mathbb{R} ?
9. Is there an ordinal α such that $\omega_{\alpha}=\alpha$?
10. Explain why, for each $n \in \omega$, there is no surjection from \aleph_{n} to \aleph_{n+1}. Use this fact to show that there is no surjection from \aleph_{ω} to $\aleph_{\omega}^{\aleph_{0}}$, and deduce that $2^{\aleph_{0}} \neq \aleph_{\omega}$.
11. If ZF is consistent then, by Downward Löwenheim-Skolem, it has a countable model. Doesn't this contradict the fact that, for example, the power-set of ω is uncountable?
12. Prove (in ZF) that a countable union of countable sets cannot have cardinality \aleph_{2}.

The remaining questions are on the final, non-examinable chapter of the course.
13. A function between Polish spaces is Borel if the inverse image of every Borel set is Borel. Show that images and inverse images of analytic sets under a Borel function are analytic. Show further that if $f: X \rightarrow Y$ is a continuous function between Polish spaces and f is injective on a Borel set $B \subset X$, then $f(B)$ is Borel.
14. Prove that a set A (in some Polish space) is analytic if and only if there exist closed sets $A_{n_{1}, \ldots, n_{k}}$ (indexed by finite sequences of positive integers) such that

$$
A=\bigcup_{\mathbf{n} \in \mathcal{N}} \bigcap_{k=1}^{\infty} A_{n_{1}, \ldots, n_{k}}
$$

15. Show that the set of functions in the Polish space $C[0,1]$ that are differentiable everywhere is analytic.
