
8 Borel functional calculus and spectral theory

Throughout H is a (non-zero) complex Hilbert space, B(H) is the C∗-algebra
of all bounded, linear operators on H, K is a compact Hausdorff space and B
is the Borel σ-field on K.

Operator-valued measures. A resolution of the identity of H over K is a
map P : B → B(H) such that

(i) P (∅) = 0, P (K) = I;

(ii) P (E) is an orthogonal projection for every E ∈ B;

(iii) P (E ∩ F ) = P (E)P (F ) for all E,F ∈ B;

(iv) if E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F );

(v) for every x, y ∈ H, the function Px,y : B → C defined by

Px,y(E) =
〈
P (E)x, y

〉
is a regular complex Borel measure on K.

Example. H = L2[0, 1], K = [0, 1] and P (E)f = 1E · f .

Simple properties.

(i) Any two projections P (E) and P (F ) commute.

(ii) if E ∩ F = ∅, then P (E)H ⊥ P (F )H.

(iii) if x ∈ H, then Px,x is a positive measure of total mass Px,x(K) = ‖x‖2.

(iv) P is finitely additive but, in general, not countably additive. However,
for each x ∈ H, the map E 7→ P (E)x is a countably additive H-valued
function on B.

(v) Although P need not be countably additive, we do have P
(⋃

nEn
)

= 0
whenever P (En) = 0 for all n ∈ N.

Motivation. Having defined a notion of measure, our next step is to define a
notion of integral. To motivate this, consider a compact hermitian operator T .
We know (see the notes Resumé on Hilbert spaces and Spectral Theory) that
σ(T ) is countable and every non-zero λ ∈ σ(T ) is an eigenvalue of T . For λ ∈
σ(T ) let Pλ be the orthogonal projection onto the eigenspace Eλ = ker(λI −T )
(which may be zero if λ = 0 and σ(T ) is infinite). Then the series

∑
λ∈σ(T ) λPλ

converges in norm to T .
For E ⊂ σ(T ) define P (E) to be the orthogonal projection onto the orthog-

onal direct sum
⊕

λ∈E Eλ (so that P (E)(x) =
∑
λ∈E Pλ(x) for all x ∈ H). It is

straightforward to check that P is a resolution of the identity of H over σ(T ).
Now the only sensible notion of integral on the countable set σ(T ) is given by
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summation. So in particular,
∫
σ(T )

λ dP =
∑
λ∈σ(T ) λPλ = T . The spectral the-

orem for normal operators (Theorem 4 below) is a far-reaching generalization
of this.

P -essentially bounded functions. Let P be a resolution of the identity of
H over K. A Borel function f : K → C is P -essentially bounded if there exists
E ∈ B with P (E) = 0 such that f is bounded on K \ E. We then set

‖f‖∞ = inf
{
‖f‖K\E : E ∈ B, P (E) = 0

}
,

where ‖f‖K\E = supz∈K\E |f(z)|. As in the case of scalar measures, the infimum
is attained: there is a Borel set E with P (E) = 0 such that ‖f‖∞ = ‖f‖K\E .
The set L∞(P ) of all P -essentially bounded Borel functions on K is a commuta-
tive, unital C∗-algebra with pointwise operations and norm ‖·‖∞. (Technically,
‖·‖∞ is not a norm as ‖f‖∞ = 0 need not imply that f = 0. As usual in measure
theory, we identify functions f and g if there is a Borel set E with P (E) = 0
such that f and g agree on K \ E, i.e., when f = g P -almost everywhere.)

Lemma 1. (Definition of
∫
K
f dP .) Let P be a resolution of the identity of H

over K. Then there is an isometric, unital ∗-isomorphism Φ of L∞(P ) onto a
commutative, unital C∗-subalgebra of B(H) such that

(i)
〈
Φ(f)x, y

〉
=
∫
K
f dPx,y for every f ∈ L∞(P ), x, y ∈ H;

(ii) ‖Φ(f)x‖2 =
∫
K
|f |2 dPx,x for every f ∈ L∞(P ), x ∈ H;

(iii) S ∈ B(H) commutes with every Φ(f) if and only if it commutes with every
P (E).

Proof. Let s be a simple function, i.e., s =
∑m
i=1 αi1Ei

for some measurable
partition E1, . . . , Em of K and some α1, . . . , αm ∈ C. Define

(1) Φ(s) =

m∑
i=1

αiP (Ei) .

Let t =
∑n
j=1 βj1Fj

be another simple function. To check that Φ is well defined,
assume that s = t a.e. Then for all i, j, since s = αi and t = βj on Ei ∩ Fj ,
either P (Ei ∩ Fj) = 0 or αi = βj . It follows that∑

i

αiP (Ei) =
∑
i,j

αiP (Ei ∩ Fj) =
∑
i,j

βjP (Ei ∩ Fj) =
∑
j

βjP (Fj) ,

where we used finite additivity of P . This shows that Φ is well defined.
Since orthogonal projections are hermitian, we have Φ(s) = Φ(s)∗. Next, we

have

Φ(s)Φ(t) =
∑
i,j

αiβjP (Ei)P (Fj) =
∑
i,j

αiβjP (Ei ∩ Fj) = Φ(st) .
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Similarly, s+ t =
∑
i,j(αi + βj)1Ei∩Fj

, and hence

Φ(s+ t) =
∑
i,j

(αi + βj)P (Ei ∩ Fj)

=
∑
i,j

αiP (Ei ∩ Fj) +
∑
i,j

βjP (Ei ∩ Fj)

=
∑
i

αiP (Ei) +
∑
j

βjP (Fj) = Φ(s) + Φ(t) ,

where we again used finite additivity of P . Note that Φ(1K) = P (K) = I. Thus
Φ is a unital ∗-homomorphism on the unital ∗-subalgebra of simple functions.

If x, y ∈ H, then from (1) we get

〈
Φ(s)x, y

〉
=

m∑
i=1

αi
〈
P (Ei)x, y

〉
=

m∑
i=1

αiPx,y(Ei) =

∫
K

sdPx,y .

Hence, we obtain∥∥Φ(s)x
∥∥2

=
〈
Φ(s)x,Φ(s)x

〉
=
〈
Φ(s)∗Φ(s)x, x

〉
=
〈
Φ(|s|2)x, x

〉
=

∫
K

|s|2 dPx,x .

It follows that ∥∥Φ(s)x
∥∥2

6 ‖s‖2∞ · Px,x(K) = ‖s‖2∞ · ‖x‖2 ,

and thus
∥∥Φ(s)

∥∥ 6 ‖s‖∞. Conversely, if s 6= 0, then there exists j such that
|αj | = ‖s‖∞ and P (Ej) 6= 0. Then we can pick a unit vector x ∈ P (Ej)(H) and,
since the projections P (Ei) are pairwise orthogonal, we have Φ(s)(x) = αjx.
This shows that ‖Φ(s)‖ > |αj | = ‖s‖∞, and hence

(2)
∥∥Φ(s)

∥∥ = ‖s‖∞ .

Now let f ∈ L∞(P ). Then there is a sequence (sn) of simple functions with
‖f − sn‖∞ → 0. By (2), the sequence

(
Φ(sn)

)
is Cauchy in B(H), and hence

converges to some operator Φ(f) ∈ B(H). This does not depend on the choice
of (sn): if (tn) is another sequence of simple functions converging to f , then
again by (2), we have

∥∥Φ(sn)− Φ(tn)
∥∥ = ‖sn − tn‖∞ → 0. The fact that Φ so

defined is an isometric, unital ∗-homomorphism of L∞(P ) to B(H) satisfying (i)
and (ii) follows easily by what has already been proved for simple functions.

Finally, if S ∈ B(H) commutes with every P (E), E ∈ B, then it commutes
with Φ(s) for every simple function s, and hence by continuity it commutes with
every Φ(f), f ∈ L∞(P ). The converse assertion is trivial since P (E) = Φ(1E)
for every E ∈ B.

Note. The identity
〈
Φ(f)x, y

〉
=
∫
K
f dPx,y uniquely defines Φ(f). We shall

denote Φ(f) by
∫
K
f dP . So (i) in the lemma becomes〈(∫

K

f dP

)
x, y

〉
=

∫
K

f dPx,y .
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Bounded Borel functions. We let L∞(K) denote the set of all bounded
Borel functions f : K → C. This is a commutative, unital C∗-algebra equipped
with the ‘sup norm’ ‖f‖K . Note that if P is a resolution of the identity of H
over K, then L∞(K) ⊂ L∞(P ) and the inclusion is a norm-decreasing unital
∗-homomorphism.

Theorem 2. (Spectral theorem for commutative C∗-algebras.) Let A
be a commutative, unital C∗-subalgebra of B(H) and let K = ΦA. Then there
is a unique resolution of the identity P of H over K such that

T =

∫
K

T̂ dP for every T ∈ A ,

where T̂ is the Gelfand transform of T . Moreover,

(i) P (U) 6= 0 for every non-empty open subset U of K; and for S ∈ B(H),

(ii) S commutes with every T ∈ A if and only if it commutes with every P (E)
(E ∈ B).

Remark. The Gelfand map T 7→ T̂ is an isometric, unital ∗-isomorphism from
A onto C(K) (Gelfand-Naimark theorem). The inverse Gelfand map T̂ 7→ T
is an isometric, unital ∗-isomorphism C(K) → A ⊂ B(H). The theorem states
that the inverse Gelfand map can be represented as an intergral with respect
to an operator-valued measure. So we can think of this theorem as an operator
version of the RRT (Riesz Representation Theorem). We will indeed deduce it
from the usual scalar RRT.

Proof of Theorem 2. Given x, y ∈ H, consider the map T̂ 7→ 〈Tx, y〉 defined on
C(K). This is a bounded linear functional on C(K) of norm at most ‖x‖‖y‖.
By the RRT, there is a unique regular complex Borel measure µx,y on K such
that

(3) 〈Tx, y〉 =

∫
K

T̂ dµx,y for every T ∈ A ,

and moreover ‖µx,y‖1 (the total variaton norm of µx,y) is at most ‖x‖‖y‖. Note

that if T̂ is a real function, then T is hermitian, and so∫
K

T̂ dµy,x = 〈Ty, x〉 = 〈Tx, y〉 =

∫
K

T̂ dµx,y .

Thus, by the uniqueness in the RRT, we have µy,x = µx,y. We also have∫
K

T̂ dµλx+y,z = 〈T (λx+y), z〉 = λ〈Tx, z〉+〈Ty, z〉 = λ

∫
K

T̂ dµx,z+

∫
K

T̂ dµy,z

for all x, y, z ∈ H and λ ∈ C. So again, by the uniqueness in the RRT, we
obtain µλx+y,z = λµx,z + µy,z for all x, y, z ∈ H and λ ∈ C. It follows that for
fixed f ∈ L∞(K), the map (x, y) 7→

∫
K
f dµx,y is a bounded sesquilinear form

on H of norm at most ‖f‖K , and moreover this is a hermitian form when f is
real. Hence there is a unique operator Ψ(f) ∈ B(H) of norm at most ‖f‖K such
that 〈

Ψ(f)x, y
〉

=

∫
K

f dµx,y for every x, y ∈ H .
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By (3), we have

〈Ψ(T̂ )x, y〉 =

∫
K

T̂ dµx,y = 〈Tx, y〉

for all x, y ∈ H, and hence Ψ(T̂ ) = T . This shows that Ψ is an extension to
L∞(K) of the inverse Gelfand transform. Ψ is easily seen to be linear and, when
f is real, Ψ(f) is hermitian, and so Ψ(f) = Ψ(f)∗ for every f ∈ L∞(K).

We next show that Ψ(fg) = Ψ(f)Ψ(g) for f, g ∈ L∞(K) completing the
proof that Ψ is a norm-decreasing, unital ∗-homomorphism from L∞(K) to

B(H). Firstly, for S, T ∈ A, we have ŜT = ŜT̂ , and so∫
K

ŜT̂ dµx,y = 〈STx, y〉 =

∫
K

Ŝ dµTx,y (x, y ∈ H) .

Since this holds for all S ∈ A, by the uniqueness in the RRT, T̂ dµx,y = dµTx,y
as measures. Hence for all f ∈ L∞(K), we have∫
K

fT̂ dµx,y =

∫
K

f dµTx,y =
〈
Ψ(f)Tx, y

〉
=
〈
Tx,Ψ(f)∗y

〉
=

∫
K

T̂ dµx,Ψ(f)∗y .

As this holds for every T ∈ A, we get f dµx,y = dµx,Ψ(f)∗y as measures (again
by the uniqueness in the RRT). Hence for every g ∈ L∞(K),

〈
Ψ(f)Ψ(g)x, y

〉
=
〈
Ψ(g)x,Ψ(f)∗y

〉
=

∫
K

g dµx,Ψ(f)∗y =

∫
K

gf dµx,y

=
〈
Ψ(fg)x, y

〉
.

Since this holds for every x, y ∈ H, we obtain Ψ(fg) = Ψ(f)Ψ(g), as required.
We are now ready to define an operator-valued measure by setting P (E) =

Ψ(1E) for E ∈ B. It is routine to verify that P is a resolution of the identity of
H over K. Note that

Px,y(E) = 〈Ψ(1E)x, y〉 =

∫
K

1E dµx,y = µx,y(E)

for all E ∈ B, and thus Px,y = µx,y. It follows that for f ∈ L∞(K),∫
K

f dPx,y =
〈
Ψ(f)x, y

〉
for every x, y ∈ H ,

and hence
∫
K
f dP = Ψ(f). In particular,∫

K

T̂ dP = T

holds for every T ∈ A, as required.
For the uniqueness of P , note that by the RRT, the requirement

〈Tx, y〉 =

∫
K

T̂ dPx,y for all T ∈ A

uniquely determines the measure Px,y for every x, y ∈ H. Since 〈P (E)x, y〉 =
Px,y(E), the projections P (E) are also uniquely determined.
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Now for the ‘moreover’ parts. If U is a non-empty open subset of K, then
by Urysohn’s lemma we can find a non-zero continuous function f : K → [0, 1]

whose support is contained in U . By the Gelfand-Naimark Theorem, f = T̂ 2

for some positive operator T ∈ A. Then T 6= 0, and so we can then choose
x ∈ H with Tx 6= 0. Observe that

0 < ‖Tx‖2 = 〈T 2x, x〉 =

∫
K

f dPx,x 6 Px,x(U) .

This establishes (i). To see (ii), let S ∈ B(H) and note that

〈STx, y〉 = 〈Tx, S∗y〉 =

∫
K

T̂ dPx,S∗y and 〈TSx, y〉 =

∫
K

T̂ dPSx,y .

Thus, by the uniqueness in the RRT, S commutes with every T ∈ A if and
only if the measures Px,S∗y and PSx,y are the same for all x, y ∈ H. Since
Px,S∗y(E) = 〈P (E)x, S∗y〉 = 〈SP (E)x, y〉 and PSx,y(E) = 〈P (E)Sx, y〉 for
every E ∈ B, these measures are the same if and only if S commutes with every
P (E).

Exponentials in Banach algebras. Let A be a unital Banach algebra. Then
for x ∈ A we define ex =

∑∞
n=0

xn

n! . The sum converges absolutely, and hence it
converges in A. It is easy to check that if x, y ∈ A commute then ex+y = exey

(see Examples Sheet 4, question 8).

Lemma 3. (Fuglede-Putnam-Rosenblum) Let A be a unital C∗-algebra
and x, y, z ∈ A. Assume that x and y are normal and xz = zy. Then x∗z = zy∗.
In particular, if z commutes with x, then it commutes with x∗.

Proof. We have xnz = zyn for all n > 0, and hence eλxz = zeλy (i.e., z =

e−λxzeλy) for λ ∈ C. Since x and y are normal, by the comment about the
exponential function above, we have

f(λ) = eλx
∗
ze−λy

∗
= eλx

∗−λxzeλy−λy
∗

for all λ ∈ C .

Since involution is continuous, the elements eλx
∗−λx and eλy−λy

∗
are unitary,

and so of norm 1. It follows that f is a bounded analytic function on C. By
the vector-valued version of Liouville’s theorem, we have f(λ) = f(0) = z for
all λ, i.e., eλx

∗
z = zeλy

∗
for all λ ∈ C. Equating coefficients yields x∗z = zy∗,

as required.

Theorem 4. (Spectral theorem for normal operators.) Let T ∈ B(H)
be a normal operator. Then there is a unique resolution P of the identity of H
over σ(T ) such that

T =

∫
σ(T )

λ dP .

Moreover, S ∈ B(H) commutes with every projection P (E) (E ∈ B) if and only
if ST = TS.

This integral representation of T is called the spectral decomposition of T .
The orthogonal projections P (E), E ∈ B, are called spectral projections.
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Proof. Let A be the closed subalgebra of B(H) generated by I, T, T ∗. Since T
is normal, A is a commutative, unital C∗-subalgebra of B(H), and moreover,
σA(T ) = σ(T ) by Corollary 7.3. By Lemma 7.2, a character ϕ ∈ ΦA is uniquely
determined by its value ϕ(T ) at T . It follows that the map ϕ 7→ ϕ(T ) is a
homeomorphism from ΦA onto σ(T ), which allows us to identify ΦA with σ(T ).

Note that under this identification, the functions T̂ and T̂ ∗ on ΦA correspond
to the functions λ 7→ λ and λ 7→ λ on σ(T ), respectively. The existence of P
now follows from Theorem 2.

To see uniqueness, if P is a resolution of the identity of H over σ(T ) such
that T =

∫
σ(T )

λ dP , then by Lemma 1 we have

(4) p(T, T ∗) =

∫
σ(T )

p(λ, λ) dP

for every complex polynomial p in two variables. By the Stone–Weierstrass
theorem, these polynomials are dense in C(σ(T )), so by the uniqueness in the
RRT, the measures Px,y are uniquely determined by (4) for every x, y ∈ H.
This in turn uniquely determines P .

Finally, if ST = TS, then ST ∗ = T ∗S by Lemma 3. So ST = TS if and
only if S commutes with every element of A, which in turn is equivalent to S
commuting with every projection P (E) (E ∈ B) by Theorem 2.

Theorem 5. (Borel functional calculus for a normal operator) Let
T ∈ B(H) be a normal operator and let K = σ(T ). For f ∈ L∞(K) define

f(T ) =

∫
K

f dP ,

where P is the resolution of the identity over K = σ(T ) given by Theorem 4.
The map f 7→ f(T ) has the following properties:

(i) it is a unital ∗-homomorphism from L∞(K) to B(H) with z(T ) = T (where
z(λ) = λ, λ ∈ K);

(ii) ‖f(T )‖ 6 ‖f‖K for all f ∈ L∞(K) with equality for f ∈ C(K);

(iii) if S ∈ B(H) and ST = TS, then Sf(T ) = f(T )S for all f ∈ L∞(K).

(iv) σ(f(T )) ⊂ f(K) for all f ∈ L∞(K).

Proof. Note that the map f 7→ f(T ) : L∞(K)→ B(H) is the composite of the in-
clusion L∞(K) ⊂ L∞(P ) (which is a norm-decreasing unital ∗-homomorphism)
and the map Φ of Lemma 1 (which is an isometric, unital ∗-isomorphism into
B(H)). The restriction of this map to C(K) is the inverse Gelfand map for the
unital C∗-subalgebra A of B(H) generated by T (having identified ΦA with K
as in Theorem 4). Properties (i) and (ii) now follow directly from Lemma 1 and
Theorems 2 and 4. Next, (iii) follows from Theorem 4 and Lemma 1. Finally,
(iv) follows from the fact that a unital ∗-homomorphism maps invertibles to
invertibles, and that the spectrum of f in L∞(K) is f(K).
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Polar decomposition of normal operators. Let T ∈ B(H) be a normal
operator. Then T = RU , where R is positive, U is unitary, and R,U, T pairwise
commute.

Proof. Define functions r and u on σ(T ) by

r(λ) = |λ| and u(λ) =

{
λ
|λ| if λ 6= 0 ,

1 if λ = 0 .

We then apply Borel functional calculus to obtain operators R = r(T ) and
U = u(T ). Since r is positive and u is unitary in L∞(σ(T )), it follows that R is
positive and U is unitary in B(H).

Since λ = r(λ)u(λ) for all λ ∈ σ(T ), it follows that T = RU . Finally, R,U, T
pairwise commute since L∞(σ(T )) is commutative.

Representation of unitary operators. Let U ∈ B(H) be a unitary operator.
Then U = eiQ for some hermitian operator Q.

Proof. Since U is unitary, σ(U) ⊂ T. Next, there is a bounded, Borel function
f : T → R such that eif(t) = t for all t ∈ T (a Borel branch of logarithm).
Apply Borel functional calculus to obtain a hermitian operator Q = f(U). Let

fn(t) =
∑n
k=0

(if(t))k

k! (t ∈ T). Then fn converges uniformly to the function
t 7→ t on T, and so in particular on σ(U). It follows that

eiQ = lim
n→∞

n∑
k=0

(iQ)k

k!
= lim
n→∞

fn(U) = U .

Connectedness of G(B(H)). The group of all invertible operators in B(H) is
connected. Moreover, every invertible operator is the product of two exponen-
tials.

Proof. Let T ∈ G(B(H)). An application of the Gelfand-Naimark theorem gave
polar decomposition T = RU , where R = (TT ∗)1/2 is an invertible positive op-
erator, and U = R−1T is a unitary operator. Since R is positive and invertible,
σ(R) ⊂ (0,∞), and so λ 7→ log λ is a continuous function on σ(R). Hence, by
Gelfand-Naimark, R = eS for a hermitian operator S. By the previous appli-
cation U = eiQ for some other hermitian operator Q. Thus T = eSeiQ is a
product of two exponentials. (Note that S and Q need not commute.)

Finally, the map t 7→ etSeitQ (t ∈ [0, 1]) is a continuous path in G(B(H))
from I to T . So G(B(H)) is connected.

8


