1. Let K be an arbitrary set. Let A be an algebra of complex-valued functions on K with pointwise operations, and assume that $\|\cdot\|$ is a complete algebra norm on A. Prove that $A \subset \ell_{\infty}(K)$ and that $\sup _{K}|f| \leqslant\|f\|$ for all $f \in A$.
2. Let A be a unital Banach algebra and $x, y \in A$. Show that $\sigma_{A}(x y) \backslash\{0\}=\sigma_{A}(y x) \backslash\{0\}$. Can it happen that $\sigma_{A}(x y) \neq \sigma_{A}(y x)$? Show that the commutator $x y-y x$ of x and y cannot be a non-zero scalar multiple of the identity.
3. Verify that the only characters on the uniform algebra $\mathcal{R}(K)$, where K is a non-empty compact subset of \mathbb{C}, are the point evaluations δ_{w} with $w \in K$. Similarly, show that $\Phi_{A(\Delta)}=\left\{\delta_{w}: w \in \Delta\right\}$ and that $\Phi_{W}=\left\{\delta_{w}: w \in \mathbb{T}\right\}$, where $A(\Delta)$ is the disc algebra and W is the Wiener algebra.
4. Let $A=\left\{f \in C(\Delta): \exists g \in A(\Delta),\left.g\right|_{\mathbb{T}}=\left.f\right|_{\mathbb{T}}\right\}$, where $\Delta=\{z \in \mathbb{C}:|z| \leqslant 1\}, \mathbb{T}=\partial \Delta$ and $A(\Delta)$ is the disc algebra. Prove that A is a closed subalgebra of $C(\Delta)$ and determine Φ_{A}. To which well known topological space is Φ_{A} homeomorphic?
5. Give an example of 2×2 matrices x, y with $r(x y)>r(x) r(y)$ and $r(x+y)>r(x)+r(y)$.
6. Let K be a compact Hausdorff space, and let A be a subalgebra of $C(K)$ that contains the constant functions and separates the points of K. Assume that A is a Banach algebra in some norm $\|\cdot\|$. Prove that $\delta: K \rightarrow \Phi_{A}, k \mapsto \delta_{k}$, is a homeomorphism of K into Φ_{A}. Deduce that A is semisimple. What can you say about the Gelfand map if A is one of $C(K), A(\Delta), W$ or $\mathcal{R}(K)$?
7. Consider $V=L_{1}[0,1]$ with the L_{1}-norm and with multiplication given by the "chopped-off" convolution:

$$
f * g(x)=\int_{0}^{x} f(t) g(x-t) \mathrm{d} t
$$

Verify that V is a non-unital commutative Banach algebra. Let $A=V_{+}$be the unitization of V. What is the Gelfand map of A ?
8. Let A be a unital Banach algebra. For $x \in A$ define $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Show that $e^{x+y}=$ $e^{x} e^{y}$ whenever x, y are commuting elements. Show that $\sigma_{A}\left(e^{x}\right) \stackrel{n!}{=}\left\{e^{\lambda}: \lambda \in \sigma_{A}(x)\right\}$. Show further that the connected component G_{0} of the topological group $G=G(A)$ that contains 1 is the subgroup of G generated by $\left\{e^{x}: x \in A\right\}$.
9. Let A be a commutative, unital Banach algebra, $x \in A$, and U an open subset of \mathbb{C} with $U \supset \sigma_{A}(x)$. Recall that the holomorphic functional calculus is given by

$$
\Theta_{x}(f)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} f(z)(z 1-x)^{-1} \mathrm{~d} z
$$

where Γ is a cycle in U that encloses $\sigma_{A}(x)$ but does not enclose any point of $\mathbb{C} \backslash U$. Use Lemma 6.3 to show that if A is semisimple, then Θ_{x} is multiplicative. By considering a second cycle Γ^{\prime} in U that encloses $[\Gamma] \cup\{z \in \mathbb{C}: n(\Gamma, z) \neq 0\}$ but does not enclose any point of $\mathbb{C} \backslash U$, show directly that Θ_{x} is multiplicative in the general case.
10. Let A be a unital Banach algebra and let $x \in A$. Show that
(i) if $\sigma_{A}(x)$ is disconnected, then A contains a non-trivial idempotent (i.e., not 0 or 1);
(ii) if $\sigma_{A}(x) \cap(-\infty, 0]=\emptyset$ then $x=e^{y}$ for some $y \in A$.
11. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be C^{*}-norms on a $*$-algebra A. Prove that $\|\cdot\|=\|\cdot\|^{\prime}$. Deduce that a $*$-isomorphism between C^{*}-algebras is isometric.
12. A Banach *-algebra is a Banach algebra with an involution satisfying $\left\|x^{*}\right\|=\|x\|$ for every x. Let $\theta: A \rightarrow B$ be a $*$-homomorphism from a Banach $*$-algebra A to a C^{*}-algebra B. Show that $\|\theta(x)\| \leqslant\|x\|$ for all $x \in A$. [Hint: First consider the unital case and then use the result of Question 17 about unitization.]
13. Show that $T \in \mathcal{B}(H)$ is positive if and only if $\langle T x, x\rangle \geqslant 0$ for all $x \in H$.
14. (Continuous Functional Calculus) Let $T \in \mathcal{B}(H)$ be a normal operator and $K=\sigma(T)$. Prove that there is a unique unital $*$-homomorphism $f \mapsto f(T): C(K) \rightarrow \mathcal{B}(H)$ such that $z(T)=T$, where $z(\lambda)=\lambda$ for all $\lambda \in K$.

Some more questions

15. Show that the direct sum $A \oplus B$ of C^{*}-algebras A and B is a C^{*}-algebra with coordinate-wise operations and with $\|(x, y)\|=\max \{\|x\|,\|y\|\}$.
16. A double centralizer for a C^{*}-algebra A is a pair (L, R) of bounded linear maps on A such that for all $a, b \in A$ we have

$$
L(a b)=L(a) b, \quad R(a b)=a R(b) \quad \text { and } \quad R(a) b=a L(b) .
$$

Let $M(A)$ be the set of all double centralizers for A. Show the following.
(i) For each $c \in A$, the pair $\left(L_{c}, R_{c}\right)$, where $L_{c}(a)=c a$ and $R_{c}(a)=a c$ for all $a \in A$, is a double centralizer for A.
(ii) If (L, R) is a double centralizer for A, then $\|L\|=\|R\|$.
(iii) $M(A)$ is a closed subspace of $\mathcal{B}(A) \oplus \mathcal{B}(A)$.
(iv) $M(A)$ is a C^{*}-algebra with multiplication and involution defined by

$$
\left(L_{1}, R_{1}\right)\left(L_{2}, R_{2}\right)=\left(L_{1} L_{2}, R_{2} R_{1}\right) \quad(L, R)^{*}=\left(R^{*}, L^{*}\right)
$$

where for a bounded linear map $T: A \rightarrow A$, we set $T^{*}(a)=\left(T\left(a^{*}\right)\right)^{*}, a \in A$.
17. Using the previous two questions, show that if A is a C^{*}-algebra, then there is a (necessarily unique) C^{*}-norm on its unitization A_{+}. [Hint: consider separately the cases whether A is unital or not.] Show that this norm extends the norm on A.
18. Let $D=\{z \in \mathbb{C}:|z|<1\}$, and let $f_{n}: D \rightarrow \mathbb{C}, n \in \mathbb{N}$, be a sequence of bounded analytic functions converging pointwise to $f: D \rightarrow \mathbb{C}$. Must f be analytic?
19. Show the following converse to Runge's theorem: if $\mathbb{C} \backslash K$ is not connected, then there is a rational function with poles outside K that cannot be uniformly approximated on K be polynomials.

Deduce that if A is a unital Banach Algebra generated by a single element x, and K is the spectrum of x in A, then $\mathbb{C} \backslash K$ is connected.
20. Let A be a unital Banach algebra. Let $x \in A$ and assume that $\sigma_{A}(x)$ contains no real number $t \leqslant 0$. Prove that there is a unique element $y \in A$ satisfying $y^{3}=x$ and $|\arg \lambda|<\pi / 3$ for all $\lambda \in \sigma_{A}(y)$.
21. Let $A=C(\mathbb{R})$, the algebra of complex-valued continuous functions on \mathbb{R}. Prove that $\Phi_{A}=\left\{\delta_{x}: x \in \mathbb{R}\right\}$. Assume that A has an (incomplete) algebra norm $\|\cdot\|$, and let $\Phi_{c}=\left\{\phi \in \Phi_{A}: \phi\right.$ is $\|\cdot\|$-continuous $\}$. Show that there exists a compact set $K \subset \mathbb{R}$ such that $\Phi_{c}=\left\{\delta_{x}: x \in K\right\}$. Deduce that $C(\mathbb{R})$ cannot be given any algebra norm.
22. (i) (A theorem of Kaplansky.) Let K be a compact, Hausdorff space, and let $A=$ $C(K)$ with the supremum norm $\|\cdot\|$. Let $\|\cdot\|_{1}$ be some (possibly incomplete) algebra-norm on A. Show that $\|f\| \leqslant\|f\|_{1}$ for all $f \in A$.
(ii) Let A and B be unital C^{*}-algebras and let $\theta: A \rightarrow B$ be an injective, unital $*$ homomorphism. Prove that θ is an isometry onto a C^{*}-subalgebra of B.

