1. Let X be a normed space. Show that for $f \in S_{X^*}$ we have $|f(x)| = \operatorname{dist}(x, \ker f)$ for all $x \in X$. Show further that for a closed subspace Y of X and $x_0 \notin Y$ there is $f \in S_{X^*}$ with $Y \subset \ker f$ and $f(x_0) = d(x_0, Y)$.

2. Prove Riesz's lemma: if Y is a proper, closed subspace of a normed space X, then for all $\varepsilon > 0$ there exists $x \in S_X$ with $\operatorname{dist}(x, Y) = \inf\{||x - y|| : y \in Y\} > 1 - \varepsilon$.

3. Let Y be a closed subspace of a normed space X. Show that the topology on X/Y induced by the quotient norm is the quotient topology induced by the quotient map $q: X \to X/Y$. Show further that Y and X/Y are complete if and only if X is complete.

4. Show that every separable Banach space X is the quotient of ℓ_1 , *i.e.*, that there is a closed subspace Y of ℓ_1 with $X \cong \ell_1/Y$.

5. Let $T: X \to Y$ be a bounded linear map between Banach spaces. Show that

(i) T is an into isomorphism if and only if T^* is onto;

(ii) T^* is an into isomorphism if T is onto; ("only if" also true: see later)

(iii) T^* is injective if and only if T(X) is dense in Y;

(iv) T(X) is closed if and only if $T^*(Y^*)$ is closed.

6. For a subset A of a normed space X, we define the annihilator of A as the subset $A^{\perp} = \{f \in X^* : f(x) = 0 \text{ for all } x \in A\}$ of X^* . Similarly, for $B \subset X^*$, we define the preannihilator of B as the subset $B_{\perp} = \{x \in X : f(x) = 0 \text{ for all } f \in B\}$ of X. Show that $\overline{\text{span}}A = (A^{\perp})_{\perp}$. Is it true that $\overline{\text{span}}B = (B_{\perp})^{\perp}$?

7. Let Y be a closed subspace of a normed space X. Show that $Y^* \cong X^*/Y^{\perp}$ and that $(X/Y)^* \cong Y^{\perp}$.

8. Let X be a Banach space. Show that X is reflexive if and only if X^* is reflexive. Show also that if Y is a closed subspace of X, then X is reflexive if and only if Y and X/Y are reflexive.

9. Show that none of the spaces c_0 , ℓ_1 , ℓ_∞ , $L_1[0,1]$ and $L_\infty[0,1]$ is reflexive.

10. Let Ω be a set and \mathcal{F} be a σ -field on Ω . Prove carefully that the set $L_{\infty}(\Omega, \mathcal{F})$ of all bounded, measurable, scalar-valued functions on Ω is a Banach space in the supremum norm: $||f||_{\infty} = \sup_{\omega \in \Omega} |f(\omega)|$. The aim of this question is to identify $L_{\infty}(\Omega, \mathcal{F})^*$.

A finitely additive measure on \mathcal{F} is a (real or complex) function ν on \mathcal{F} such that $\nu(\emptyset) = 0$ and $\nu(A \cup B) = \nu(A) + \nu(B)$ whenever $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$. The total variation measure $|\nu|$ of ν is defined as follows.

$$|\nu|(A) = \sup\left\{\sum_{k=1}^{n} |\nu(A_k)| : A = \bigcup_{k=1}^{n} A_k \text{ is a measurable partition of } A\right\}.$$

The total variation of ν is $\|\nu\|_1 = |\nu|(\Omega)$. We say ν is bounded if $\|\nu\|_1 < \infty$. Show that the space ba (Ω, \mathcal{F}) of all bounded, finitely additive measures on \mathcal{F} is a Banach space in the total variation norm and that it is isometrically isomorphic to $L_{\infty}(\Omega, \mathcal{F})^*$.

11. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that $L_{\infty}(\mu)$ is a quotient of $L_{\infty}(\Omega, \mathcal{F})$. Deduce that $L_{\infty}(\mu)^*$ is a subspace of $\operatorname{ba}(\Omega, \mathcal{F})$ and identify that subspace.

Some more questions

12. Let Y and Z be closed subspaces of a normed space X of the same finite codimension. Show that there is an isomorphism $T: X \to X$ such that T(Y) = Z. 13. Let $1 \leq p \leq \infty$. The ℓ_p -direct sum of a sequence (X_n) of Banach spaces is the space

$$\left(\bigoplus_{n=1}^{\infty} X_n\right)_{\ell_p} = \left\{ (x_n) : x_n \in X_n \text{ for all } n \in \mathbb{N}, \ \sum_n ||x_n||^p < \infty \right\}$$

with norm $||(x_n)|| = \left(\sum_n ||x_n||^p\right)^{\frac{1}{p}}$ when $p < \infty$, and the space

$$\left(\bigoplus_{n=1}^{\infty} X_n\right)_{\ell_{\infty}} = \left\{ (x_n) : x_n \in X_n \text{ for all } n \in \mathbb{N}, \sup_n \|x_n\| < \infty \right\}$$

with norm $||(x_n)|| = \sup_n ||x_n||$ when $p = \infty$. We also define the c_0 -direct sum to be the subspace $\left(\bigoplus_{n=1}^{\infty} X_n\right)_{c_0}$ of $\left(\bigoplus_{n=1}^{\infty} X_n\right)_{\ell_{\infty}}$ consisting of sequences (x_n) with $||x_n|| \to 0$. Show that $\left(\bigoplus_{n=1}^{\infty} X_n\right)_{\ell_p}^* \cong \left(\bigoplus_{n=1}^{\infty} X_n^*\right)_{\ell_q}$ where $1 \leq p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, and that $\left(\bigoplus_{n=1}^{\infty} X_n\right)_{c_0}^* \cong \left(\bigoplus_{n=1}^{\infty} X_n^*\right)_{\ell_1}$.

14. Let $(X, \|\cdot\|)$ be a normed space. Let Y be a subspace of X, and $\|\cdot\|$ be a norm on Y that is equivalent to $\|\cdot\|$ on Y. Show that $\|\cdot\|$ extends to an equivalent norm on X.

15. Let X be a Banach space. Show that TFAE:

(i) If Y and Z are Banach spaces and $X \sim Y \subset Z$ then Y is complemented in Z.

(ii) Given Banach spaces $Y \subset Z$ and given $T \in \mathcal{B}(Y, X)$, there exists $T \in \mathcal{B}(Z, X)$ such that $\widetilde{T} \upharpoonright_Y = T$.

Such a space X is called *injective*. Show that $\ell_{\infty}(\Gamma)$, the space of bounded scalar functions on the set Γ with the supremum norm, is injective.

(X is called λ -injective if in (i) the subspace Y is λ -complemented in Z whenever $X \cong Y \subset Z$, or equivalently, in (ii) we have $\|\widetilde{T}\| \leq \lambda \|T\|$. Note that $\ell_{\infty}(\Gamma)$ is 1-injective.)

16. In lectures we proved that ℓ_{∞} is isometrically universal for the class of separable Banach spaces. Show that c_0 is almost isometrically universal for the class of finitedimensional normed spaces: for every finite-dimensional space E and for every $\varepsilon > 0$, there is a linear map $T: E \to T(E) \subset c_0$ with $||T|| \cdot ||T^{-1}|| \leq 1 + \varepsilon$. Is there a separable, reflexive space with the same property?

17. Let (X, \mathcal{P}) be a locally convex space. Prove that X is metrizable if and only if there is a countable family \mathcal{Q} of seminorms on X equivalent to \mathcal{P} .

18. A subset A of a locally convex space is *bounded* if for every neighbourhood V of 0 there a scalar λ with $A \subset \lambda V$. Consider the locally convex space $\mathcal{O}(U)$ of analytic functions on a non-empty open subset U of \mathbb{C} with the topology of local uniform convergence. Show that $\mathcal{O}(U)$ is a Fréchet space. Show that a subset A of $\mathcal{O}(U)$ is bounded if and only if for every compact $K \subset U$ the set $\{f \upharpoonright_K : f \in A\}$ is bounded in $(C(K), \|\cdot\|_{\infty})$. Prove Montel's theorem: every bounded sequence in $\mathcal{O}(U)$ has a convergent subsequence. Deduce that $\mathcal{O}(U)$ is not normable.

19. Let $d \in \mathbb{N}$ and let Ω be a non-empty open subset of \mathbb{R}^d . Prove that the locally convex space $C^{\infty}(\Omega)$ is a Fréchet space and that it is not normable.

20. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f \in L_1(\mu)$. Consider the complex measure $\nu(A) = \int_A f \, d\mu, A \in \mathcal{F}$, that satisfies $\nu \ll \mu$. Show that $|\nu|(A) = \int_A |f| \, d\mu$ for $A \in \mathcal{F}$.

Show also that a measurable function g on Ω is ν -integrable if and only if gf is μ -integrable, in which case $\int g \, d\nu = \int gf \, d\mu$.

21. Let Ω be a set, \mathcal{F} a σ -field on Ω , and ν a complex measure on \mathcal{F} . Show that $\nu \ll |\nu|$ and that $\left|\frac{\mathrm{d}\nu}{\mathrm{d}|\nu|}\right| = 1$ $|\nu|$ -almost everywhere. Show also that there is a measurable function $g: \Omega \to \mathbb{C}$ such that |g| = 1 $|\nu|$ -a.e. and $|\nu|(A) = \int_A g \,\mathrm{d}\nu$ for all $A \in \mathcal{F}$.

22. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $\nu: \mathcal{F} \to \mathbb{C}$ be a complex measure. Show that there exist unique complex measures ν_1 and ν_2 on \mathcal{F} such that $\nu = \nu_1 + \nu_2, \nu_1 \ll \mu$ $(\nu_1 \text{ absolutely continuous with respect to } \mu)$ and $\nu_2 \perp \mu$ (ν_2 orthogonal to μ). [Recall that μ and ν_2 are said to be *orthogonal* if there is a measurable partition $\Omega = A \cup B$ such that $\mu(B) = |\nu_2|(A) = 0.]$