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The purpose of this page is to spell out in detail the special case of Theorem 3.10
(Lindelöf–Picard) mentioned in the lectures that deals with nth-order ODEs.

Example. Let a < b and R > 0 be real numbers, let z = (z0, z1, . . . , zn−1) ∈ Rn and
let

ψ : [a, b]×BR(z)→ R
be a continuous function. Assume that for some K > 0 we have

|ψ(t, x)− ψ(t, y)| 6 K‖x− y‖ for all t ∈ [a, b] and all x, y ∈ BR(z) .

Then there exists ε > 0 such the for any t0 ∈ [a, b] the nth-order IVP (initial value
problem)

(1)
g(n)(t) = ψ(t, g(t), g(1)(t), g(2)(t), . . . , g(n−1)(t))

g(j)(t0) = zj for 0 6 j 6 n− 1

has a unique solution on [c, d] = [t0 − ε, t0 + ε] ∩ [a, b].

Note. This means that there is a unique n-times differentiable function

g : [c, d]→ R
that satisfies (1) for all t ∈ [c, d]. This implicitly includes the assumption that

(g(t), g(1)(t), g(2)(t), . . . , g(n−1)(t)) ∈ BR(z)

for all t ∈ [c, d].

Proof. Let us define ϕ : [a, b]×BR(z)→ Rn by setting

ϕ(t, x0, x1, . . . , xn−1) = (x1, . . . , xn−1, ψ(t, x0, x1, . . . , xn−1))

for t ∈ [a, b] and x = (x0, x1, . . . , xn−1) ∈ BR(z). Then ϕ is continuous and satisfies

‖ϕ(t, x)− ϕ(t, y)‖ 6 (K + 1)‖x− y‖ for all t ∈ [a, b] and all x, y ∈ BR(z) .

By Lindelöf–Picard (Theorem 3.10 in the lectures), there exists ε > 0 such that the
IVP

(2) f ′(t) = ϕ(t, f(t)) , f(t0) = z

has a unique solution on [c, d] = [t0 − ε, t0 + ε] ∩ [a, b]. Let f be this unique
solution. Thus, f : [c, d] → BR(z) is a differentiable function with f(t0) = z and
f ′(t) = ϕ(t, f(t)) for all t ∈ [c, d]. Let f0, f1, . . . , fn−1 be the components of f , i.e.,
functions fj : [c, d]→ R such that f(t) = (f0(t), f1(t), . . . , fn−1(t)) for all t ∈ [c, d].
Since f is a solution of (2), each fj is differentiable and

(3) (f ′0(t), f ′1(t), . . . , f ′n−1(t)) = f ′(t) = ϕ(t, f(t))

= (f1(t), f2(t), . . . , fn−1(t), ψ(t, f0(t), f1(t), . . . , fn−1(t)))

for all t ∈ [c, d]. Set g = f0. Comparing coordinates in (3) shows that g is an
n-times differentiable function [c, d] → R with g(j) = fj for 0 6 j < n (induction
on j), and moreover

g(n)(t) = f ′n−1(t) = ψ(t, f0(t), f1(t), . . . , fn−1(t))

= ψ(t, g(t), g(1)(t), . . . , g(n−1)(t))

for all t ∈ [c, d]. Finally, since f(t0) = z, we have g(j)(t0) = fj(t0) = zj for
0 6 j 6 n− 1. This completes the proof of existence.

To prove uniqueness, assume that g̃ is another solution to (1) on [c, d]. Define

f̃ : [c, d] → BR(z) by setting f̃(t) = (g̃(t), g̃(1)(t), . . . , g̃(n−1)(t)). It is straightfor-

ward to verify that f̃ is a solution to (2). It follows that f̃ = f and g̃ = g. �
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