
Mich 2015 LINEAR ANALYSIS – ADDITIONAL EXAMPLES AZ

1. Let X,Y be isomorphic normed spaces. Show that if X is complete then so is Y .

2. Give an example of two non-equivalent norms ‖·‖ and ‖·‖′ on a vector space X
such that (X, ‖·‖) and (X, ‖·‖′) are isometrically isomorphic.

3. Let C be a convex set in a normed space X such that C◦ 6= ∅. Show that C◦ = C
and (C)◦ = C◦.

4. Show that there exists a vector space with two non-equivalent complete norms.

5. Construct continuum many dense subspaces of `1 with pairwise trivial intersec-
tions.

6. Assume that the vector space X is the algebraic direct sum of subspaces Y and Z.
If two norms ‖·‖ and |||·||| on X are equivalent on Y and Z, must they be equivalent
on X?

7. Let Y be a closed subspace of a normed space X. Show that ‖x + Y ‖ = d(x, Y )
defines a norm on the quotient space X/Y . Show further that the quotient map
q : X → X/Y is a continuous, open linear map.

8. Let Y be a closed subspace of a normed space X. Show that if X is complete,
then so is X/Y . Show that if Y and X/Y are complete, then so is X.

9. Let X be one of the spaces `p, 1 6 p < ∞ or c0. Denote by (en) the unit vector

basis of X. For N ∈ N and x =
∑
xnen ∈ X set PN (x) =

∑N
n=1 xnen. Prove the

following characterization of relative compact sets in X (cf. Arzelà-Ascoli theorem).
For K ⊂ X TFAE.

(i) K is relatively compact.

(ii) K is bounded, i.e., there exists C > 0 such that ‖x‖ 6 C for all x ∈ K, and for
all ε > 0 there exists N ∈ N such that ‖x− PNx‖ < ε for all x ∈ K.

10. Let (xn) be a sequence in `1 such that f(xn) → 0 for all f ∈ `∗1. Show that
xn → 0 in norm.

11. Show that no two of the spaces `p, 1 6 p 6∞, and c0 are isomorphic.

12. Let X be one of the spaces `p, 1 6 p < ∞ or c0. Let Y be a closed, infinite-
dimensional subspace of X. Show that there is a subspace Z of Y such that Z ∼ X
and Z is complemented in X, i.e., there is a bounded projection P : X → X with
P (X) = Z.

13. Prove that C[0, 1] is isomorphic to the closed, one-codimensional subspace X =
{f ∈ C[0, 1] : f(1) = 0}.



14. Let F be a Hamel basis of an infinite-dimensional Banach space X. For x ∈ F
let εx be the corresponding coordinate functional: εx(

∑
y∈F λyy) = λx. Show that all

but finitely many of εx are discontinuous.

15. Fix 0 < p < 1. Let `p be the set of sequences x = (xn) such that ‖x‖p =(∑
|xn|p

)1/p
< ∞. Show that `p is a vector space. Show that ‖·‖p is not a norm on

`p but that d(x, y) = ‖x− y‖p is a metric. Identify the dual space `∗p of all continuous
(with respect to d) linear functionals.

16. Are `n1 and `n∞ isometrically isomorphic?

17. Let X be an n-dimensional normed space, and 0 < ε < 1. Show that if S ⊂ BX
is an ε-net for BX then |S| > ε−n. On the other hand, show that |S| 6 3 · ε−n is
possible.

18. Let X be an infinite-dimensional normed space. Show that there is no translation-
invariant Borel measure µ on X such that µ(U) > 0 for every non-empty open set
U , and µ(U) <∞ for some non-empty open set U .

19. Let Y be a closed subspace of a normed space X and let F be a finite-dimensional
subspace of X. Show that Y + F is closed.

20. Let Y and Z be closed subspaces of X of the same finite codimension. Show that
there is an isomorphism T : X → X with T (Y ) = Z.

21. Let X be a normed space. Show that if X∗ is separable, then so is X.

22. Show that every separable Banach space embeds isometrically into `∞.

23. Let X be a separable Banach space. Show that there is a bounded linear map
from `1 onto X. Show that there is a closed subspace Y of `1 such that X ∼= `1/Y .

24. Let Y be a proper closed subspace of a normed space X. Given x ∈ X, must
there be a y ∈ Y such that d(x, Y ) = ‖x − y‖? Also, must there exist x ∈ BX such
that d(x, Y ) = 1?

25. Let Mn be the set of all normed spaces (Rn, ‖·‖). Let d denote the Banach-Mazur
distance. Show that log d is a metric on Mn after identifying isometric normed spaces.
Show that Mn is compact in this metric.

26. Let X be a finite-dimensional normed space. Show that X embeds into c0 almost
isometrically : for all ε > 0 there is a subspace Y of c0 and a linear bijection T : X → Y
with ‖T‖ · ‖T−1‖ < 1 + ε.

27. Construct a separable reflexive Banach space X that contains every finite-
dimensional space almost isometrically: for all F with dimF < ∞ and for all ε > 0
there is an isomorphism T of F into X with ‖T‖ · ‖T−1‖ < 1 + ε.

28. Give a direct, elementary proof of the Principle of Uniform Boundedness (i.e.,
one that does not use the Baire Category Theorem).



29. Deduce the Baire Category Theorem from the fact that a non-empty complete
metric space is of second category in itself. (This is more subtle than it looks!)

30. A topological space K is locally compact if every point of K has a compact
neighbourhood. Show that if K is Hausdorff or regular, then every point has a local
base consisting of closed, compact sets, i.e., for every neighbourhood U of a point x
there is a closed compact neighbourhood V of x such that V ⊂ U . Show further that
the one-point compactification of a Hausdorff space K is Hausdorff if and only if K
is locally compact.

31. Prove the Baire Category Theorem for a locally compact Hausdorff space: let X
be such a space and let (Un) be a sequence of dense open sets in X. Then

⋂
Un is

dense in X.

32. Let y1, y2, . . . be a linearly independent sequence in a Banach space X, and let
Y denote its linear span. Assume that Z is a subspace of X such that Z + Y = X.
Show that Z is finite-codimensional in X.

33. Is there a continuous surjective map f : R→ `2?

34. Write [0, 1] as A ∪B where A is a null set and B is meagre in [0, 1].

35. Given two non-equivalent norms on a vector space X, show that there is linear
functional on X which is continuous with respect to one of the norms and discontin-
uous with respect to the other.

36. Assume that X is a closed subspace of L2[0, 1] such that every element of X is
also in L∞[0, 1]. Show that X is finite-dimensional.

37. Let X = R with the half-open interval topology. Show that X is normal but
X ×X is not.

38. Let K be a compact Hausdorff space. Show that C(K) is finite-dimensional if
and only if K is finite.

39. Let K be a compact Hausdorff space and consider the real space C(K). Show
that every element of the dual space C(K)∗ is the difference of two positive linear
functionals.

40. For a scalar-valued continuous function f on the topological space K we say f has
compact support if the closure of {x ∈ K : f(x) 6= 0} is compact. The collection of
such functions is denoted by CC(K). We say f vanishes at infinity if for all ε > 0 the
set {x ∈ K : |f(x)| > ε} is compact. The collection of all such functions is denoted
by C0(K). Show that C0(K) is a closed subspace of `∞(K) in the uniform norm, and
hence it is a Banach space. Show further that if K is Hausdorff, then CC(K) is a
dense subspace of C0(K).

41. Prove the Stone-Weierstrass theorem for locally compact spaces: if K is a locally
compact Hausdorff space, A is a subalgebra of C0(K) strongly separating the points
of K (and closed under complex conjugation in the complex case), then A is dense
in C0(K).



42. Suppose that the family C of clopen subsets of K is a base for the topology. Show
that the indicator functions of members of C have dense linear span in C(K). [A set
is clopen if it is both open and closed.]

43. Show that `4 is not isomorphic to a subspace of `2.

44. Let Y be a closed subspace of a Hilbert space H. Using bases, show that if Y is
separable, then H = Y ⊕ Y ⊥.

45. Let (en) be an orthonormal sequence in an inner product space. Assume that for
every x there is equality in Bessel’s inequality, i.e.,

∑
|〈x, en〉|2 = ‖x‖2. Deduce that

(en) is an orthonormal basis.

46. Let
(
x(n)

)
be an orthonormal sequence in `2, where x(n) =

(
x
(n)
i

)∞
i=1

. Show that

x
(n)
i → 0 as n→∞ for each i ∈ N.

47. Let T ∈ F(X,Y ) with rkT = n. Show that there exist f1, . . . , fn ∈ X∗ and
y1, . . . , yn ∈ Y such that T =

∑n
i=1 yi ⊗ fi.

48. Let T be a bounded linear operator on a Hilbert space. Show that one of the
maps T, T ∗, TT ∗, T ∗T is compact, then they all are.

49. Let T ∈ B(X,Y ) be a non-compact operator. Prove that there exist a bounded
sequence (xn) in X and an ε > 0 such that ‖Txm − Txn‖ > ε for all m 6= n.

50. Show that every operator `q → `p and c0 → `p is compact, where 1 6 p < q <∞.

51. Let K ⊂ C be non-empty, compact. Show that K is the spectrum of some
operator on `2.

52. Let T be a compact operator on a Banach space X. Show that there exist closed
subspaces Y, Z,E, F of X such that X = Y ⊕ E = Z ⊕ F , dimE = dimF <∞ and
I − T restricted to Y is an isomorphism from Y onto Z.

53. Using the previous question, show that the spectrum of T is either finite, or
consists of zero and a sequence converging to zero. Moreover, if λ ∈ σ(T ) and λ 6= 0,
then λ is an eigenvalue of T with finite-dimensional eigenspace.

54. Construct a linear map T on a (non-zero, complex) vector space V such that
λI − T is invertible for every λ ∈ C.

55. Let T ∈ B(H) with σ(T ) ⊂ R. Must T be hermitian?

56. Let X be a Banach space. Let (xn) and (fn) be bounded sequences in X and
X∗, respectively, such that fi(xj) = δij for all i, j. Let (yn) be another sequence in
X with ε =

∑
‖xn − yn‖ < ∞. Prove that if ε is sufficiently small then there is an

invertible operator T : X → X such that Txn = yn for all n ∈ N.

57+. Let S be the set of all (xn) ∈ `∞ such that {xn : n ∈ N} is finite. Show that if
F ⊂ `∗∞ is pointwise bounded on S, then it is uniformly bounded.



58. Let X,Y be Banach spaces and S, T ∈ B(X,Y ). Assume that T is invertible and
for some δ < 1 we have ‖Sx−Tx‖ 6 δ‖Tx‖ for all x ∈ X. Prove that S is invertible.

59. Let K be a compact Hausdorff space. Show that the open Fσ subsets of K form
a base of the topology. (Recall that a set is Fσ if it is a countable union of closed
sets.) Show further that for every open set U ⊂ K there is an open Fσ set V ⊂ U
such that V = U .


