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Linear Mathematics Lent Term 2002.

My purpose here is to provide a terse set of notes for the course,
including all the definitions, theorems, lemmata, etc.. I have focused on
the most important aspects of the material, especially in the techniques
and outlines of proofs (which require students to fill in the easier details
— the real way to learn the material). I trust that these notes will permit
me to be more intuitive and pictorial in lectures and give more examples;
I hope that they will allow you to spend less time copying and more time
understanding why the theorems are true, the patterns of proofs, and the
need for the extra hypotheses in the statements of results.

We will generalise the ideas from 3-space that you met in
the Algebra & Geometry course to cover arbitrary (but usu-
ally finite dimensional) real and complex vector spaces. This
requires abstraction but the advantages will be considerable.
Although matrices are very concrete, they can be very messy
in computations. To overcome this, we will introduce an equiva-
lent notion of linear transformations (the vector space analogue
of group homomorphisms) and often use that instead. Just as
many maps in 3-space are best understood by considering them
with repsect to another basis, the same is true in a more general
setting. The proofs (other than those which are simply symbol
manipulations to equivalent statements) are repeatedly by in-
duction (on the dimension) and take the following form: Find a
subspace on which the linear transformation acts “nicely”; find
a complementary subspace on which the linear transformation
acts, and apply the inductive hypothesis to this complementary
subspace of smaller dimension; put the two pieces together to
get the result for the entire space. One major tool which will
often help us achieve this is the “minimal polynomial”. If you
remember this outline throughout the course, you won’t lose
sight of the wood for the trees as the number of results grow.

Any errata in these notes are entirely due to my incompetence as a
proof reader. Please alert me to any that you find. Thank you.

A. M. W. Glass (amwg@dpmms.cam.ac.uk)
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Chapter 1

Vector Spaces and Linear
Maps

1.1 Definitions, etc.

Definition 1.1.1 Let G be a set with a binary operation + defined on
it. Then G is called an Abelian group if + is associative (a+ (b+ c) =
(a + b) + c for all a, b, c ∈ G) and commutative (a + b = b + a for all
a, b ∈ G), there is a zero in G (denoted 0) such that a + 0 = a for all
a ∈ G) and for each a ∈ G, there is a∗ ∈ G such that a + a∗ = 0. We
will write −a for a∗. If the operation on G is denoted by ·, we will write
1 for the “zero” and a−1 or 1/a for a∗.

Definition 1.1.2 Let F be a set with two operations defined on it de-
noted by + and ·. Suppose that (F,+) is an Abelian group with 0 as zero.
Then F is a field if (F\{0}, ·) is an Abelian group and a(b+ c) = ab+ac
for all a, b, c ∈ F .

Example 1.1.3 Z is not a field since only ±1 have multiplicative in-
verses.

Example 1.1.4 Q, R, C, Q[
√

2] are all fields. Z/pZ is a field if and only
if p is prime: if p is not prime, then no proper divisor of p has an inverse.

3
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[Aside:

Definition 1.1.5 A field F is said to be algebraically closed if every
polynomial with coefficients in F has a solution in F . Equivalently, every
polynomial with coefficients in F can be written as a product of linear
polynomials (polynomials of degree at most 1, the coefficients being in
F ).

Example 1.1.6 C is the smallest algebraically closed field containing R.
Gauss gave four proofs of this, the first of which was his Ph.D. in 1800.

FACT: Every field F is contained in an algebraically closed field K;
the intersection of all algebraically closed subfields of K containing F is
an algebraically closed field called the algebraic closure of F .]

Definition 1.1.7 Let V be a set and F be a field. A map from F × V
into V is called a scalar multiplication (with scalars in F ).

Definition 1.1.8 A vector space V over a field F is an Abelian group
under addition that has a scalar multiplication with scalars in F satisfy-
ing (for all λ, µ ∈ F and u,v ∈ V )

(i) λ(u + v) = λu + λv,
(ii) (λ+ µ)v = λv + µv,
(iii) (λ · µ)v = λ(µv) and
(iv) 1v = v.

Definition 1.1.9 The subsets of a vector space which are closed under
addition and scalar multiplication are precisely the subsets that are vector
spaces (under the induced operations). These are called vector subspaces.
We will often write subspace for vector subspace.

Example 1.1.10 (i) R3 is a vector space (over R) as is Rn for any positive
integer n.

(ii) The set of all m×n matrices with entries from a field F is a vector
space Mm×n(F ) over F .

(iii) The set of all diagonal n×n matrices over C is a subspace of the
vector space of all n × n matrices with complex entries; so are the set
of all n × n with trace 0 (

∑n
i=1 Ai,i = 0), the set of all n × n symmetric

matrices with complex entries (Ai,j = Aj,i), the set of all antisymmetric



1.1. DEFINITIONS, ETC. 5

complex n×n matrices (Ai,j = −Aj,i) and the set of all Hermitian n×n
matrices (Ai,j = Aj,i).

(iv) The set C(R,R) of all continuous functions from R into R is a real
vector space under functional addition and the usual scalar multiplica-
tion. The set of all real polynomials is a subspace thereof, as is the set
of all twice differentiable real functions.

(v) The set of all sequences of real numbers is a vector space over R
under sequence addition and the usual scalar multiplication.

Definition 1.1.11 Cf., groups, we seek maps that preserve the vector
space operations. A map τ from a vector space V to a vector space W
over the same field is called a linear map if τ(u + v) = τ(u) + τ(v) and
τ(λv) = λτ(v) for all scalars λ and u,v ∈ V . Note that the operations
on the right hand sides are in W . So linear maps are just vector space
homomorphisms.

Example 1.1.12 Let RN be the real vector space of all real sequences
under addition, and V be the subspace of all convergent real sequences.
Define τ : V → R by τ((xn)) = limn→∞ xn. Then τ is a linear map.(Verify
this.)

Example 1.1.13 Let τ and σ be linear maps from vector space V into
vector space W . If we define (λτ)(v) = λ(τ(v)) and (σ+ τ)(v) = σ(v) +
τ(v), then the set of all linear maps from V into W is itself a vector
space which we denote by L(V,W ).

If σ ∈ L(U, V ), then the map Θ : L(V,W ) → L(U,W ) given by
Θ : τ 7→ τσ is linear (why?) where we write τσ for τ ◦ σ.

The idea of a linear map is tied up very closely with matrices.

Proposition 1.1.14 Let F be a field and m,n be positive integers. There
is a linear bijection between L(Fm, F n) and Mn×m(F ).

Proof: Let e1, ..., em be the standard coordinate basis for Fm and
f1, ..., fn be the standard coordinate basis for F n. Given τ ∈ L(Fm, F n)
we have τ(ej) =

∑n
i=1 ti,jfi for some ti,j ∈ F (j = 1, ...,m). Let Φ(τ) be

the n ×m matrix whose (i, j) entry is ti,j. An easy computation shows
that Φ is linear. (Fill in this gap.) Let S be any n ×m matrix and let
σ(v) = Sv (v ∈ Fm); then σ is easily seen to be linear (do this) and so
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belongs to L(Fm, F n). Let Ψ(S) = σ. Then ΨΦ(τ) = τ and ΦΨ(S) = S.
Hence Φ is a bijection. //

Definition 1.1.15 A bijective map τ (for which both τ and τ−1 are
linear) is called an isomorphism. If τ : U → V is an isomorphism, then
we write U ∼= V .

If U ∼= V , then we can view U and V as the same (as vector spaces);
only the names are changed.

Proposition 1.1.16 Any bijective map in L(U, V ) is an isomorphism.

Proof: We need only show that τ−1 is linear. But τ(τ−1(v1 + v2)) =
v1 + v2 = τ(τ−1(v1)) + τ(τ−1(v2)) = τ(τ−1(v1) + τ−1(v2)). Since τ is
injective, we get τ−1(v1 + v2) = τ−1(v1) + τ−1(v2). Similarly, τ−1(λv) =
λτ−1(v). //

Proposition 1.1.17 If τ ∈ L(U, V ), then Im(τ) = {τ(u) : u ∈ U} is
a subspace of V and ker(τ) = {u ∈ U : τ(u) = 0} is a subspace of U .
Moreover, ker(τ) = {0} if and only if τ is injective.

We explore the connection between linear maps and matrices further.
Let σ ∈ L(F k, Fm) and τ ∈ L(Fm, F n) correspond to an m × k

matrix S and a n × m matrix T , respectively. If g1, ...,gk is the stan-
dard basis of F k, then τ(σ(g`)) = τ(

∑m
j=1 sj,`ej) =

∑m
j=1 sj,`τ(ej) =∑m

j=1

∑n
i=1 sj,`ti,jfi = (TS)(g`) for ` = 1, ..., k.

MORAL: Composition of linear maps corresponds to the
product of their corresponding matrices. So we can pass be-
tween linear maps on various F n’s and matrices without worry-
ing.

Since composition of functions is associative, we get that matrix mul-
tiplication is also associative; i.e., A(BC) = (AB)C for matrices (This
is the real reason why matrix multiplication is associative, without any
subscript nonsense.)



1.2. QUOTIENT SPACES 7

1.2 Quotient Spaces

Let τ ∈ L(V,W ). For any w ∈ W , let τ−1(w) = {v ∈ V : τ(v) = w}.
[Caution: τ−1 is not a function; this is merely notation for the set of all
vectors in V that are mapped by τ to w.] Then τ−1(w) is a subspace of
W if and only if w = 0. If K = ker(τ), then

τ(v1) = τ(v2)⇐⇒ v1 − v2 ∈ K ⇐⇒ K + v1 = K + v2.

So τ−1(w) is just the translation of K by any vector v for which τ(v) =
w; this is akin to a coset in groups.

To clarify this abstract idea, consider two concrete examples.

Example 1.2.1 Let τ : R2 → R be the projection onto the x-axis; i.e.,
τ(x, y) = x. Then the kernel of τ is just the y-axis ({(0, y) : y ∈ R})
and τ−1(5) = {(5, y) : y ∈ R} = ker(τ) + (5, 0) = ker(τ) + (5, π) = ...,
the vertical line through (5, 0). Indeed, τ−1(x) is just the vertical line
through (x, 0), and these vertical lines can be added in the natural way to
get another vertical line: the sum of the vertical lines through (x1, 0) and
(x2, 0) is the vertical line through (x1 + x2, 0). Similarly, multiplying the
vertical line through (x, 0) by λ is just the vertical line through (λx, 0).
Thus the set of vertical lines becomes a vector space in its own right and
is called the quotient space via τ .

Example 1.2.2 Let V be the vector space of all real-valued twice dif-
ferentiable real functions, and K be the subspace of all solutions of the
homogeneous differential equation f ′′+ t2f ′+f = 0. If f ′′0 + t2f ′0 +f0 = g,
then f0 + K is the set of all solutions to f ′′ + t2f ′ + f = g; i.e., the set
of all solutions of the inhomogeneous differential equation is just the set
obtained by adding a particular solution, f0, of the inhomogeneous differ-
ential equation to an arbitrary solution of the homogeneous differential
equation. Similarly, the solution of an inhomogeneous system of linear
equations is just a particular solution added to an arbitrary solution of
the associated homogeneous system.

More generally, let K be a subspace of a vector space V over F .
Define

v1 ∼ v2 iff v1 − v2 ∈ K.
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This defines an equivalence relation on V . Moreover, if v1 ∼ v2 and
w1 ∼ w2, then it is easily checked that v1+w1 ∼ v2+w2 and λv1 ∼ λv2.
So the set of equivalence classes forms a vector space over F . This is
called the quotient space V/K of V over K. The map ρK : V → V/K
given by ρK(v) = [v] is linear and is called the quotient map. It is easily
seen that ker(ρK) = K. (Establish all the claims in this paragraph.)

Theorem 1.A The First Isomorphism Theorem Let τ ∈ L(V,W ) and
K = ker(τ). Then the map φ : V/K → Im(τ) given by φ([v]) = τ(v) is a
well-defined isomorphism between V/K and Im(τ). Moreover, φ◦ρK = τ .

Proof:

u ∼ v⇐⇒ u− v ∈ K = ker(τ)⇐⇒ τ(u− v) = 0⇐⇒ τ(u) = τ(v).

By =⇒, φ is well-defined; and by ⇐= it is injective. If w ∈ Im(τ), say
w = τ(v), then φ(ρK(v)) = φ([v]) = τ(v) = w; hence φ is surjective.
An easy check shows that φ is linear, whence an isomorphism with the
desired property. //

1.3 Spanning and Linear Dependence

Notation: Let V be a vector space over F and S be a subset of V . Let
〈S〉 = {∑n

i=1 λisi : n ∈ N ∪ {0}, s1, ..., sn ∈ S λ1, ..., λn ∈ F}. Then 〈S〉
is a subspace of V containing S. If W is any subspace of V containing
S, then W contains 〈S〉 (why?); i.e., S generates or spans 〈S〉.

Definition 1.3.1 Let S be a subset of a vector space V . Then S spans
V if 〈S〉 = V .

Proposition 1.3.2 Let S be a subset of a vector space V and s0 ∈ S. If
s0 ∈ 〈S\{s0}〉, then 〈S〉 = 〈S\{s0}〉.

Proof: Let s0 =
∑n
i=1 µisi with s1, ..., sn ∈ S\{s0}. Let u ∈ 〈S〉, say

u = λ0s0 +
∑n
i=1 λisi. Then u =

∑n
i=1(λ0µi + λi)si ∈ 〈S\{s0}〉. //

Definition 1.3.3 A subset S is said to be linearly independent if s 6∈
〈S\{s}〉 for all s ∈ S; i.e., no proper subset of S spans 〈S〉.

We say that S is linearly dependent if S is not linearly independent.
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Proposition 1.3.4 S is linearly independent iff for all distinct s1, ..., sn ∈
S,
∑n
j=1 λjsj = 0 =⇒ λ1 = ... = λn = 0.

Proof: s0 ∈ 〈S\{s0}〉 iff there are distinct s1, .., sn ∈ S\{s0} with
s0 =

∑n
i=1 λisi iff

∑n
i=0 λisi = 0 where λ0 = −1 6= 0. //

Definition 1.3.5 A linearly independent spanning set of a vector space
is called a basis.

Note: Bases are not assumed to be finite unless this is explicitly
stated.

Corollary 1.3.6 If S is finite and spans a vector space V , then some
subset of S is a basis of V .

Proposition 1.3.7 B is a basis for vector space V iff every element of
V can be written uniquely as a linear combination of elements of B.

Proof: Suppose that B is a basis of V . If v can be written in two
distinct ways, then subtracting gives 0 =

∑m
j=1 λjbj with not all λj equal

to 0. This contradicts the linear independence of B.
Conversely, spanning is obvious, and as 0 =

∑n
j=1 0bj for all b1, ...,bn ∈

B, the uniqueness implies that B is linearly independent. //

Linear maps are completely determined by specifying their actions on
a basis:

Proposition 1.3.8 Let B be a basis for a vector space V .
(i) If τ1, τ2 ∈ L(V,W ) with τ1(b) = τ2(b) for all b ∈ B, then τ1 = τ2.
(ii) If τ : B → W is an arbitrary map, then there is a unique extension

of τ to a linear map from V into W .

Proof: If v ∈ V , then v =
∑m
j=1 λjbj uniquely. Any σ ∈ L(V,W )

satisfies σ(v) =
∑m
j=1 λjσ(bj). This gives (i) and (ii). //

Corollary 1.3.9 If V is a vector space with a finite basis B, then V ∼=
F n where n is the number of elements of B.
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Proof: If e1, ..., en is the standard basis for F n and B = {b1, ...,bn},
then τ(bj) = ej (j = 1, ..., n) extends uniquely to a linear map τ ∗ from V
into F n by (ii). Each element of F n has form

∑n
j=1 λjej = τ ∗(

∑n
j=1 λjbj),

whence τ ∗ is surjective. The same calculation shows that τ ∗ is injective.
//

This strongly suggests that any two bases have the same size. We
will obtain this result from the following important Lemma.

Lemma 1.3.10 The Steinitz Exchange Lemma If B = {b1, ...,bn} is
a basis of a vector space V and v =

∑n
j=1 λjbj with λ1 6= 0, then

{v,b2, ...,bn} is a basis of V .

Proof: {v,b1,b2, ...,bn} ⊇ B and so spans V . Since b1 ∈ 〈v,b2, ...,bn〉,
we get {v,b2, ...,bn} spans V by Proposition 1.3.2. If µv +

∑n
j=2 µjbj =

0, then µλ1b1 +
∑n
j=2(µj + λjµ)bj = 0. Since B is a basis and λ1 6= 0

we deduce that µ = 0 and µj = 0 (j = 2, ..., n). Thus {v,b2, ...,bn} is
linearly independent (and we already know that it spans); hence it is a
basis of V . //

Corollary 1.3.11 If B = {b1, ...,bn} is a basis for a vector space V and
{u1, ...,um} is a linearly independent set, then n ≥ m and there is a basis
C ⊇ {u1, ...,um} with |B ∩ (C\{u1, ...,um})| = n−m.

Proof: By the Steinitz Exchange Lemma and relabelling, we have
that {u1,b1, ...,bn−1} is a basis of V . Since u2 6∈ 〈u1〉, we relabel and
obtain {u1,u2,b1, ...,bn−2} is a basis of V likewise. Since u3 6∈ 〈u1,u2〉,
we relabel and get {u1,u2,u3,b1, ...,bn−3} is also a basis of V ; etc.. //

Definition 1.3.12 A vector space V is said to be finite dimensional if
it has a finite spanning set.

By Corollary 1.3.11, we immediately obtain

Corollary 1.3.13 If V is a finite dimensional vector space and L ⊆ V
is linearly independent, then V has a basis containing L.

and
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Corollary 1.3.14 If V is a finite dimensional vector space and B is any
basis of V , then every basis of V has |B| elements.

This is what we sought.

Definition 1.3.15 If V is a finite dimensional vector space, then its
dimension is just the number of elements in any basis.

By Corollary 1.3.9 F 0, F 1, F 2, ... exhaust the list of all finite dimen-
sional vector spaces over F (to within isomorphism). So the spaces of
column vectors that you learnt about in Algebra & Geometry are all the
finite dimensional vector spaces!!

Corollary 1.3.16 Let V be a vector space over F with dim(V ) = n.
(a) If S ⊆ V is linearly independent and |S| = n, then S is a basis

for V .
(b) If S ⊆ V spans V and |S| = n, then S is a basis for V .

Corollary 1.3.17 If U is a subspace of a finite dimensional vector space
V , then U is finite dimensional and dim(U) ≤ dim(V ). Moreover, under
these hypotheses, U = V iff dim(U) = dim(V ).

Note that Corollary 1.3.17 fails if V is not finite dimensional: Con-
sider the vector space of all real sequences that are eventually 0. This
has basis {ej : j = 1, 2, ...} where e1 = (1, 0, 0, ...), e2 = (0, 1, 0, 0, ...),
etc.. Then any basis has countably infinite size (prove this) and U =
〈e2, e4, ..., e2n, ...〉 is a proper subspace of V , but any basis of U is also
countably infinite.

1.4 Direct Sums

Let U1 and U2 be subspaces of a vector space V . Let

U1 + U2 = {u1 + u2 : uj ∈ Uj, j = 1, 2}.

Then U1 + U2 is a subspace of V . Indeed U1 + U2 = 〈U1 ∪ U2〉.

Proposition 1.4.1 If U1 and U2 are finite dimensional, then

dim(U1 + U2) = dim(U1) + dim(U2)− dim(U1 ∩ U2).
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Proof: Since U1∩U2 ⊆ U1, it is finite dimensional by Corollary 1.3.17.
Let B = {b1, ...,bn} be a basis for U1 ∩ U2. By Corollary 1.3.13, we can
extend this to bases Bj of Uj (j = 1, 2). An easy exercise (that frequently
appears on the Tripos — so do it!) shows that B1 ∪ B2 spans U1 + U2

and is linearly independent (where b1, ...,bn are included only once). //

Definition 1.4.2 If U1 ∩ U2 = {0}, then we write U1 ⊕ U2 for U1 + U2.
A vector space V is said to be the direct sum of subspaces U1 and U2 if
V = U1 ⊕ U2.

Proposition 1.4.3 V is a direct sum of subspaces U1 and U2 iff every
v ∈ V can be written uniquely in the form u1 + u2 where uj ∈ Uj
(j = 1, 2).

Proof: If V = U1 ⊕ U2 and u1 + u2 = w1 + w2, then u1 − w1 =
u2 −w2 ∈ U1 ∩ U2 = {0}. Hence uj = wj (j = 1, 2).

Conversely, the condition clearly implies that V = U1 + U2 and that
U1 ∩ U2 = {0}. //

Definition 1.4.4 If U and W are subspaces of V and V = U ⊕W , then
we call W a complementary subspace of U .

Example 1.4.5 Let V = R
2 and U = {(x, 0) : x ∈ R}. Then U is a

subspace of V and W1 = {(0, y) : y ∈ R} and W2 = {(z, z) : z ∈ R}
are both complementary subspaces of U in V . Hence complementary
subspaces are not necessarily unique.

Proposition 1.4.6 Each subspace of a finite dimensional subspace has
a complementary subspace.

Proof: Let B be a basis of U . By Corollary 1.3.13, B is contained in
a basis C of V . Then 〈C\B〉 is a complementary subspace of U . //

Proposition 1.4.6 is also true for arbitrary vector spaces; one uses
Zorn’s Lemma in the infinite dimensional case.

Returning to quotient spaces: Let K be a subspace of V and W be a
complementary subspace ofK. Define φ : W → V/K by φ(w) = K+w =
ρK(w); i.e., φ = ρK |W , so φ is linear. Then w ∈ ker(φ) iff w = 0, whence
φ is injective. Moreover K + v = K + (k + w) = K + w = φ(w). Thus
φ is surjective. Consequently, via φ, W ∼= V/K:
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Corollary 1.4.7 W ∼= (U ⊕ W )/U for all subspaces U,W of V with
U ∩W = {0}.

Definition 1.4.8 V is a direct sum of subspaces U1, ..., Um if every ele-
ment of V can be written uniquely in the form u1 + ... + um where each
uj ∈ Uj.

We write V = ⊕mj=1Uj or U1 ⊕ ...⊕ Um in this case.

Now do Exercise 10.

1.5 Change of Bases

To recap: Let B = {b1, ...,bm} and C = {c1, ..., cn} be bases for a
vector spaces V and W over the same field F . Let τ ∈ L(V,W ). Since
τ(bj) ∈ W (j = 1, ...,m) there are elements ti,j ∈ F such that τ(bj) =∑n
i=1 ti,jci. Thus we obtained an n×m matrix T associated with τ and

we saw that composition of linear maps had the same action as matrix
multiplication when the vector spaces V and W were renamed Fm and
F n respectively. With our previous notation from Proposition 1.1.14 if
α : Fm ∼= V with α(ej) = bj (j = 1, ...,m) and β : F n ∼= W with
β(fi) = ci, then ρ = β−1τα : Fm → F n does indeed correspond to
the matrix T as is easily checked. In this sense, we will regard every
linear map between finite dimensional vector spaces as corresponding to
matrix multiplication and observe, as before, that composition of linear
maps corresponds to matrix multiplication.

Now let B′ = {b′1, ...,b′m} and C ′ = {c′1, ..., c′n} be new bases of V and
W respectively. Let P and Q represent the bases changes; i.e.,

b′j =
m∑
`=1

p`,jb` and c′i =
n∑
k=1

qk,ick.

Then τ(b′j) =
∑m
`=1 p`,jτ(b`) =

∑
`,k p`,jtk,`ck =

∑
`,k,r p`,jtk,`q̂r,kc

′
r, where

q̂r,k is the (r, k) entry of the matrix Q−1. Hence, for j = 1, ...,m,

τ(b′j) =
n∑
r=1

(Q−1TP )r,jc
′
r.

Consequently,
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Proposition 1.5.1 Let V and W be finite dimensional vector spaces
over a field F . Let B, B′ be bases of V with P (B) = B′, and C, C ′ be
bases of W with Q(C) = C ′. Let τ ∈ L(V,W ) be represented by matrix T
with respect to B and C. Then τ is represented by Q−1TP with respect
to B′ and C ′.

In the special case that V = W, C = B and C ′ = B′ we get that τ
is represented by P−1TP with respect to the primed basis (where P is
the change of basis and τ is represented by T with respect to the original
basis).

We now want to choose the bases to represent τ as simply as possible:

Proposition 1.5.2 Let τ ∈ L(V,W ) be linear, dim(V ) = m & dim(W ) =
n. Let k = dim(ker(τ)) and r = m − k. Then there are bases B =
{b1, ...,bm} for V and C = {c1, ..., cn} for W such that

τ(bi) =

{
ci if i ≤ r
0 otherwise.

So, with respect to these bases, τ is represented by the n×m matrix(
Ir 0
0 0

)

Proof: Let {br+1, ...,bm} be a basis for ker(τ) and extend it to a basis
B = {b1, ...,bm} for V . Let ci = τ(bi) for i = 1, ..., r. It is enough to
show that {c1, ..., cr} is linearly independent and spans Im(τ) (then we
can extend it to a basis C of W ; and τ has the desired form with respect
to B and C)

But
∑r
j=1 λjcj = 0 iff

∑r
j=1 λjbj ∈ ker(τ) iff

∑r
j=1 λjbj =

∑m
j=r+1 λjbj.

Since B is a basis, all λj are 0. Hence {c1, ..., cr} is linearly independent.
It is immediate that {τ(b1), ..., τ(br)} spans Im(τ): If w ∈ Im(τ), then
w = τ(

∑m
j=1 λjbj) for some λ1, ..., λm ∈ F . So w =

∑m
j=1 λjτ(bj) =∑r

j=1 λjτ(bj) (since τ(bj) = 0 if j = r + 1, ...,m). The proposition
follows. //

Definition 1.5.3 If τ ∈ L(V,W ), then the rank of τ , rk(τ) = dim(Im(τ)),
and the nullity of τ , n(τ) = dim(ker(τ)).
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The above proof showed that {τ(b1), ..., τ(br)} was linearly indepen-
dent. Hence:

Corollary 1.5.4 Let τ ∈ L(V,W ) and V be finite dimensional. Then

rk(τ) + n(τ) = dim(V ).

Corollary 1.5.5 If V is finite dimensional and τ ∈ L(V, V ), then τ is
injective iff it is surjective.

Corollary 1.5.6 Let σ ∈ L(U, V ) and τ ∈ L(V,W ) where U and V are
finite dimensional. Then

rk(σ) + rk(τ)− dim(V ) ≤ rk(τσ) ≤ rk(τ), rk(σ).

Proof: Clearly Im(τσ) ⊆ Im(τ). If ρ = τ |Im(σ), then by Corollary
1.5.4 we have rk(τσ) = rk(ρ) = dim(Im(σ)) − n(ρ); i.e., rk(τσ) =
rk(σ) − n(ρ). Since ker(τ) ⊇ ker(ρ) we use Corollary 1.5.4 again to
deduce that rk(τσ) ≥ rk(σ)− n(τ) = rk(σ) + rk(τ)− dim(V ). //

Definition 1.5.7 Let τ ∈ L(Fm, F n) be represented by a matrix T . So
the columns of T are τ(e1), ..., τ(em). Thus the image of τ is the subspace
of F n spanned by the columns of T . We call this the column space of T
and define the column rank of T to be the dimension of this column space.

We can analagously define the row rank of T to be the dimension of
the row space of T .

We will show that the row rank and column rank are equal, and define
the rank of T to be this number.

Note that the rank of τ will then be the same as the rank of the
associated matrix T (as we’d expect).

Proposition 1.5.8 row rank(T )=column rank(T).

Proof: Let T t be the transpose of T (so (T t)i,j = Tj,i.) Therefore row
rank(T )=column rank(T t). Let r be the column rank of T . Then by
Proposition 1.5.2, there are bases B of Fm and C of F n with respect to
which T (τ) is represented by the matrix

Dr =

(
Ir 0
0 0

)
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Clearly, Dt
r and Dr each have column rank r, whence the row and col-

umn ranks of Dr are equal. By Proposition 1.5.1, this change of basis
corresponds to T = Q−1DrP where P and Q are invertible m ×m and
n × n matrices. Since T t = P tDt

r(Q
−1)t, we have that T has column

(row) rank equal to the column (row) rank of Dr. //

Note that Ax = b iff
∑n
j=1 xjcj = b where c1, ..., cn are the columns

of A. Thus Ax = b has a solution iff b belongs to the column space of
A.

1.6 Column Reduction

Let Bi,j be the result of interchanging columns i and j of the identity
matrix In; so

Bi,jek =


ek if k 6= i, j
ej if k = i
ei if k = j

Thus Bi,jBi,j = In and B−1
i,j exists and is equal to Bi,j. It is easy to verify

that if A ∈ Mn×n(F ), then ABi,j is the matrix obtained as the result
of interchanging the ith and jth columns of A and leaving all the other
columns of A unchanged — see Exercise 25.

Let λ 6= 0 be a scalar and Bi(λ) be the matrix obtained by multiplying
column i of In by λ. It is similarly easy to verify that Bi(λ)Bi(1/λ) = In
and that ABi(λ) is the n×n matrix A with column i multiplied by λ —
again see Exercise 25.

Let µ be any scalar and Bi,j(µ) be the matrix obtained by taking In
and adding µ times the jth column to the ith column to form a new ith

column. Then Bi,j(µ)Bi,j(−µ) = In and that ABi,j(µ) is the n×n matrix
A with a new ith column obtained by adding µ times the jth column of
A to the ith column of A — again see Exercise 25.

Clearly the column space spanned by the columns of A is the same
as those spanned by the columns of ABi,j, ABi(λ) and ABi,j(µ) (λ, µ
scalars with λ 6= 0). Moreover, a tedious exercise in bookkeeping (see
Proposition 1.6.1 below) shows that there is a sequence of multiplications
on the right by these various “elementary” matrices (Bi,j, Bi(λ), Bi,j(µ))
to obtain a matrix in “column echelon form”:

(i) each non-zero column begins with a (leading) 1;



1.6. COLUMN REDUCTION 17

(ii) all other entries in the same row as a leading 1 are 0; and
(iii) all columns are 0 or the first column has a leading 1 occurring

earlier (higher) than all other leading 1’s; if more than one column is non-
zero, then the second column has a leading 1 higher than any leading 1’s
in subsequent columns; etc.

This is called column reduction.

Since each of the elementary matrices has an inverse the column rank
of A is the number of leading 1’s.

Proposition 1.6.1 Any matrix can be column reduced to one in column
echelon form.

Proof: If A 6= 0, let ai0,j0 6= 0 be such that ai,j = 0 for all i < i0. Then
ABj0(1/ai0,j0)B1,j0 has 1 in the (i0, 1) place and 0 in the (i, j)th entry for
all i < i0. Let C be the resulting matrix. Then CBj,1(−ci0,j) has 0 in
the (i0, j) place if j > 1. Doing this for j = 2, 3, ..., n successively gives
a matrix A(1) = D with 0 in the (i0, j) place for all j > 1. If there is
di1,j1 6= 0 for some j1 > 1, choose (i1, j1) so that i1 is least (for all such
j1 > 1). [Otherwise, stop.] Just as we got C from A, we now perform
A(1)Bj1(1/ai1,j1)B2,j1 to get C(1), say. Repeat the analagous algorithm
which gave A(1) from C (using C(1) instead of C and (i1, j) for j > 2
instead of (i0, j) for j > 1). Let A(2) be the resulting matrix. Then the
process A 7→ A(1) 7→ A(2) 7→ ... 7→ A(`) reduces A to column echelon
form. //

Multiplying on the left by an appropriate sequence elementary ma-
trices can be put in row echelon form. Since this row reduction does not
change the equations, row reduction can be used to solve Ax = b if b
belongs to the column space of A: each multiplication on the left by an
elementary matrix must be performed on b too

Example 1.6.2 Solve the system of equations:

3x+ 4y = 7

x+ y + z = 1

y − 2z = 3.
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This is the matrix equation Ax = b where

A =

 3 4 0
1 1 1
0 1 −2


xt = (x, y, z) and bt = (7, 1, 3). Now A(1) = AtB1,2 is the matrix 1 3 0

1 4 1
1 0 −2


and A(2) = A(1)B2,1(−3) is the matrix 1 0 0

1 1 1
1 −3 −2


Then A(3) = A(2)B1,2(−1)B3,2(−1) is the matrix 1 0 0

0 1 0
4 −3 1


The matrix A(4) = A(3)B1,3(−4)B2,3(3) = I3 which is in row echelon
form. Hence xt = btB1,2B2,1(−3)B1,2(−1)B3,2(−1)B1,3(−4)B2,3(3) =
(1, 1,−1)t.

1.7 Exercises

Note that supervisors are expected to select those questions
they think most suitable for their students’ needs and abilities.
There are 5 sets of exercises for 4 supervisions. My own prefer-
ence would be to use some of the exercises from Chapter 1 for
the first supervision; from Chapter 2 for the second; Chapter 3
for the third; and Chapters 4 & 5 for the fourth. The first 11
questions below are really revision of material from the Algebra
& Geometry course, and are only included to help students get
started; they should be covered briefly or omitted altogether as
supervisors think suitable for their particular supervisees.



1.7. EXERCISES 19

-1. Let U be the subset of R3 consisting of all vectors x satisfying
the various conditions below. In which of these cases is U a vector space
over R? (a) x1 > 0. (b) either x1 = 0 or x2 = 0. (c) x1 + x2 = 0. (d)
x1 + x2 = 1. (e) x1 + x2 + x3 = 0 and x1 − x3 = 0.

-2. Let F (R,R) be the set of all functions f : R → R. Explain
how addition and scalar multiplication are defined for these functions
and show that these operations make F (R,R) into a vector space. Which
of the following sets of functions form a vector subspace of F (R,R)? (a)
The set C of continuous functions. (b) The set P of all polynomials (with
real coefficients). (c) The set {f ∈ C : |f(t)| ≤ 1 for all t ∈ [0, 1]}. (d)
The set {f ∈ C : f(t) → 0 as t → ∞}. (e) The set {f ∈ C : |f(t)| →
∞ as |t| → ∞}. (f) The set {f ∈ C : f(t) → 1 as t → ∞}. (g) The
set of solutions of the differential equation ẍ(t) + (t2 − 3)ẋ(t) + t4x(t) =
0. (h) The set of solutions of ẍ(t) + (t2 − 3)ẋ(t) + t4x(t) = sin t. (i)
The set of solutions of (ẋ(t))2 − x(t) = 0. (j) The set of solutions of
(ẍ(t))4 + (x(t))2 = 0.

-3. Show that the set of all real-valued sequences (xn) form a vector
space over R. Which of the following subsets are vector subspaces? (a)
xn is bounded. (b) xn is convergent. (c) xn → 1 as n→∞. (d) xn → 0
as n → ∞. (e) xn+2 = xn+1 + xn. (f) There exists m such that xn = 0
for all n > m. (g)

∑ |xn| is convergent. (h)
∑
x2
n is convergent.

4. Let T , U , W be subspaces of V . Prove or give counter-examples
to the following statements. (a) T + (U ∩W ) = (T +U)∩ (T +W ). (b)
(T +U)∩W = (T ∩W )+(U ∩W ). (c) (T +U)∩W = (T ∩W )+(U ∩W )
if T ⊂ W . (d) T ∩ (U + (T ∩W )) = (T ∩ U) + (T ∩W ).

-5. Which of the following are bases?
(a) For R3: (1, 1, 0)t, (0, 1, 1)t, (1, 0, 1)t.
(b) For R4: (1, 1, 0, 0)t, (0, 1, 1, 0)t, (0, 0, 1, 1)t, (0, 0, 0, 1)t.

6. Let U = {u1,u2, . . . ,uK} and V = {v1,v2, . . . ,vK} be two
subsets of the vector space V each containing exactly K elements. Sup-
pose that every vector ui is a linear combination of the vectors in V and
that every vj is a linear combination of the vectors in U . Show that
〈U〉 = 〈V〉 and that U is linearly independent if, and only if, V is linearly
independent.
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-7. Show that if U is a proper subspace of the finite dimensional
vector space V , then dim(U) < dim(V ).

8. Let {x1, x2, . . . ,xr} and {y1, y2, . . . ,ys} be linearly independent
subsets of a vector space V , and suppose r ≤ s. Show that it is possible
to choose distinct indices i1, i2, . . . , ir from {1, 2, . . . , s} such that, if we
delete each yij from Y and replace it by xj, the resulting set is still
linearly independent.

9. Let

U = {x ∈ R5 : x1 + x3 + x4 = 0, x1 + x2 +
1

2
x5 = 0},

W = {x ∈ R5 : x1 + x5 = 0, x2 = x3 = x4}.

Find bases for U andW containing a basis for U∩W as a subset. Describe
U +W and show that it is given by {x ∈ R5 : x1 + 2x2 + x5 = x3 + x4}.

10. If U1, . . . , Ur are subspaces of a vector space V , show that the

following conditions are equivalent. (i) dim
r∑
i=1

Ui =
r∑
i=1

dimUi; (ii) every

element of
∑r
i=1 Ui can be uniquely expressed as a sum

∑r
i=1 ui with

ui ∈ Ui ; (iii) For each j, Uj ∩
∑
i6=j Ui = {0}. Show that the conditions

(i) to (iii) are not equivalent to (iv) For each i 6= j, Ui ∩ Uj = {0}.

-11. Let P denote the space of all polynomial functions R → R.
Which of the following define linear maps P → P? (a) D(p)(t) = p′(t).
(b) S(p)(t) = p(t2 + 1). (c) T (p)(t) = p(t)2 + 1. (d) E(p)(t) = p(et).
(e) J(p)(t) =

∫ t
0 p(s) ds. (f) K(p)(t) = 1 +

∫ t
0 p(s) ds. (g) L(p)(t) =

p(0) +
∫ t

0 p(s) ds. (h) M(p)(t) = p(t2) − tp(t). (i) R(p) is the remainder
when the polynomial p is divided by the fixed polynomial t2 +1. (j) Q(p)
is the quotient when the polynomial p is divided by the fixed polynomial
t2 + 1.

12. For each part of the previous question where the answer is ‘yes’,
find the rank and nullity of the linear map P5 → P (where P5 denotes
the space of polynomials of degree at most 5) obtained by restricting the
given linear map to the vector subspace P5 of P .
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13. If α and β are linear maps from U to V , show that α+β is linear
and that Im(α+ β) ⊆ Im(α) + Im(β) & ker(α+ β) ⊇ ker(α)∩ ker(β).

Show by example that each inclusion may be strict.

14. For each of the following pairs of vector spaces (V,W ) over R,
either give an isomorphism V → W or show that no such isomorphism
can exist. (Here P , as before, denotes the space of polynomial functions
R → R, and C[a, b] denotes the space of continuous functions defined
on the closed interval [a, b] ⊂ R.) (a) V = R

4, W = {x ∈ R
5 : x1 +

x2 + x3 + x4 + x5 = 0}. (b) V = R
5, W = {p ∈ P : deg p ≤ 5}. (c)

V = C[0, 1], W = C[−1, 1]. (d) V = C[0, 1], W = {f ∈ C[0, 1] : f(0) =
0, f continuously differentiable }. (e) V = R

2, W = {solutions of ẍ(t) +
x(t) = 0}. (f) V = R

4, W = C[0, 1]. +(g) V = P, W = R
N, where N is

the natural numbers.

+15. Show that no finite dimensional vector space over R (or C)
can be written as the union of a finite set of proper subspaces.

What happens if the vector space is not finite dimensional?

+16. (a) The linear map α : Rn
2 → R

2n takes a real n × n matrix
A to (r1, . . . , rn, c1, . . . , cn) where ri is the sum of the entries in the ith

row of A and ci is the sum of the entries in the ithcolumn of A. Find the
rank of α.

(b) An n×n magic square is an n×n matrix of real numbers such that
the sum of the entries in each row, in each column, and along either of
the main diagonals yields the same answer. Express the set M of magic
squares as the kernel of a linear map R

n2 → R
2n+1, and deduce that it

is a vector space. What is its dimension? Find a basis for the space of
3× 3 magic squares.

-17. If V = U ⊕W , show that the map

π : V → V ; u + w 7→ u for u ∈ U, w ∈ W

is a linear map with π2 = π.
A linear map π : V → V is a projection if π2 = π. Show that for any

projection π the space V is the direct sum of ker(π) and Im(π).

18. Let X = {x1,x2, . . . ,xr} be a subset of a vector space V . Show
that X is linearly independent if and only if, for any vector space W and
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Y = {y1,y2, . . . ,yr} a subset of W , there is a linear map α : V → W
with α(xi) = yi for i = 1, 2, . . . , r.

Show that X is a basis if, and only if, there always exists a unique
such α.

19. Let α : V → W be a linear map between finite-dimensional
vector spaces. Show that α is surjective if, and only if, there exists a
linear map β : W → V such that αβ is the identity on W , and that α
is injective if, and only if, there exists β : W → V such that βα is the
identity on V .

If V = W , show that α is injective if, and only if, it is surjective.
Is this still true if V = W is infinite dimensional?

20. Let V ′ and W ′ be subspaces of vector spaces V and W respec-
tively. Show that T = {α ∈ L(V,W ) : α(x) ∈ W ′ for all x ∈ V ′} is a
subspace of L(V,W ). Calculate the dimension of T when V and W are
finite-dimensional.

21. Let V and W be vector spaces and α : V → W be linear. Let
N = ker(α) and B be a basis of N . If C ⊇ B is a basis for V , prove that
Im(α) is isomorphic to 〈C\B〉 (B and C not necessarily finite).

22. Let τ : R3 → R
3 be the linear map given by τ : x 7→ Ax where

A =

 2 1 0
0 2 1
0 0 2


Find the matrix representing τ relative to the basis (1, 1, 1)t, (1, 1, 0)t &
(1, 0, 0)t for both the domain and the range.

Find two different bases, one for the domain and the other for the
range, so that the matrix representing τ is I3.

23. Let α : U → V and β : V → W be maps between finite di-
mensional vector spaces, and suppose that ker(β) = Im(α). Show that
bases may be chosen for U , V and W with respect to which α and β have
matrices (

Ir 0
0 0

) (
0 0
0 In−r

)
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respectively, where dim(V ) = n, r = rk(α).

24. Let τ : U → V be a linear map between two finite dimensional
vector spaces and let W be a vector subspace of U . Show that the
restriction of τ to W is a linear map τ1 : W → V which satisfies

rk(τ) ≥ rk(τ1) ≥ rk(τ)− dim(U) + dim(W ).

Give examples to show that either of the two inequalities can be an
equality.

25. Let Bi,j be the result of interchanging the ith and jth columns
of the identity matrix In. Verify that B2

i,j = In and that ABi,j is the
n×n matrix A with columns i and j interchanged. Let λ 6= 0 be a scalar
and Bi(λ) be the matrix obtained by multiplying column i of In by λ.
Verify that Bi(λ)Bi(1/λ) = In and that ABi(λ) is the n × n matrix A
with column i multiplied by λ.

Let λ be any scalar and Bi,j(λ) be the matrix obtained by taking
In and adding λ times the jth column to the ith column to form a new
ith column. Verify that Bi,j(λ)Bi,j(−λ) = In and that ABi,j(λ) is the
n × n matrix A with a new ith column obtained by adding λ times the
jth column of A to the ith column of A.

26. Let V be the vector space of all complex sequences (zn) which
satisfy the difference equation

zn+2 = 3zn+1 − 2zn for n = 1, 2, . . . .

Find a basis for V and determine its dimension. Show that the “shift”
operator which sends a sequence (z1, z2, z3, . . .) to (z2, z3, z4, . . .) is a linear
map from V to itself. Find the matrix which represents this map relative
to your basis. Show that there is a basis for V relative to which the map
is represented by a diagonal matrix. What happens if we replace the
difference equation by zn+2 = 2zn+1 − zn?

27. Find the reduced column echelon form of the matrix:
1 0 1 1
0 1 −1 0
1 1 1 1
−1 1 −1 0
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and hence describe the space spanned by its columns.

28. Show that the rank of a diagonal square matrix is equal to the
number of non-zero entries on the main diagonal. Is the same true for
triangular matrices?

Tripos questions on the material in this chapter: 98114, 98206, 99105,
99206, 00206.

[Key: 98206 = Part IB Tripos 1998 paper 2 question 06.]



Chapter 2

Endomorphisms

We now restrict attention to linear maps from a vector space into itself.
We can obtain far deeper results about the form of such maps when
the vector space is finite dimensional so we will assume throughout this
chapter that all spaces are finite dimensional.

2.1 Eigenvalues and Eigenvectors

Definition 2.1.1 Let V be a vector space. Any element of L(V, V ) is
called an endomorphism of V .

To recap: Let V be finite dimesional with basis B and τ be an endo-
morphism of V . Then τ can be associated with a matrix T where τ(bj) =∑n
i=1 ti,jbi (j = 1, ..., n) where n = dim(V ). If we change bases to C with

ck =
∑n
i=1 pi,kbi, then Proposition 1.5.1 gives τ(ck) =

∑n
i=1(P−1TP )i,kci

(k = 1, ..., n).
So if τ is represented by matrix T with respect to one basis, then the

conjugates of T represent τ with respect to all other bases.

GOAL: Choose a basis to make τ transparent.
In Proposition 1.5.2 we saw that we could choose (possibly different)

bases B and C of V so that τ is represented by

Dr =

(
Ir 0
0 0

)

That is, Q−1TP = Dr, where r = rk(τ).

25
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Can we do this with Q = P?
If P−1TP = Dr, then

T =

(
P1IrP

−1
1 0

0 0

)
= Dr;

so only in very special cases when τ is the identity on a subspace of V
complementary to ker(τ).

A more realistic goal might be to find P so that P−1TP is diagonal,
for then τ would just be a sequence of dilations and reflections.

As you already know from Algebra & Geometry, this cannot always
be achieved in R2, but we wish to determine for which endomorphisms it
can be done (for an arbitrary vector space of dimension n).

Definition 2.1.2 Let V be a finite dimensional vector space and τ be an
endomorphism of V . λ ∈ F is said to be an eigenvalue of τ if τ(v0) = λv0

for some v0 6= 0. Such a vector v0 is called an eigenvector of τ (with
eigenvalue λ).

If λ is an eigenvalue of τ , then the set of all eigenvectors of τ (which
have eigenvalue λ) together with 0 forms a subspace of V (Verify this)
that is called an eigenspace of τ with eigenvalue λ. The subspace will be
denoted by Eτ (λ), or simply E(λ) if τ is clear from context.

If λ, µ are distinct eigenvalues of an endomorphism τ , then E(λ) ∩
E(µ) = {0} (for if v ∈ E(λ) ∩ E(µ), then λv = τ(v) = µv; since λ 6= µ,
we have v = 0).

If P−1TP is diagonal, say diag(λ1, ..., λn), with respect to basis B,
then each bj ∈ E(λj), j = 1, ..., n. So we have a basis of eigenvectors.
Moreover, if {λ1, ..., λn} = {µ1, ..., µ`} with µi 6= µk if i 6= k, then V =
E(µ1)⊕ ...⊕ E(µ`) (since clearly E(µi) ∩ E(µk) = {0} if i 6= k).

Conversely, let τ be represented by a matrix T with respect to a
basis e1, ..., en. If there is a basis B of V comprising eigenvectors of τ
(with eigenvalues λ1, ..., λn), then let P be such that P (ei) = bi. Now
P−1TP = diag(λ1, ..., λn) represents τ with respect to B. Thus

Proposition 2.1.3 T/τ is diagonalisable iff there is a basis B of V com-
prising eigenvectors of τ . The diagonal matrix is just the set of eigenval-
ues of τ (appearing dim(E(λ)) times) and is unique to within the order
on the diagonal.
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Corollary 2.1.4 Let µ1, ..., µ` be the distinct eigenvalues of an endomor-
phism τ of V . Let E = 〈⋃`i=1 E(µi)〉. Then E = E(µ1)⊕ ...⊕ E(µ`), and
τ is diagonalisable iff E = V .

Thus τ is diagonalisable iff V = E(µ1)⊕ ...⊕ E(µ`) for some distinct
µ1, ..., µ`.

Definition 2.1.5 If µ is an eigenvalue of τ , then the geometric multiplicity
of µ is dim(E(µ)).

Note that each E(µj) is mapped by τ to itself and the restriction
of τ to this subspace is just dilation by µj (i.e., µjIdj , where dj is the
geometric multiplicity of µj). Moreover, τ is diagonalisable iff the sum
of the geometric multiplicities equals the dimension of V .

We now seek other equivalent conditions for a matrix/linear transfor-
mation to be diagonalisable.

2.2 The Minimal Polynomial

We now come to the main tool in the course.

Let σ, τ be endomorphisms of V . As before, we define στ to be
the composition σ ◦ τ , an endomorphism of V . We write iV for the
identity endomorphism of V .

Proposition 2.2.1 Let V be a vector space of dimension n. ThenMn×n(F )
has dimension n2. Thus L(V, V ) has dimension n2.

Proof: Let Ei,j be the matrix with (k,m) entry δikδjm. Then, as
is easily verified, {Eij : 1 ≤ i, j ≤ n} spans Mn×n(F ) and is linearly
independent. By Proposition 1.1.14, L(V, V ) ∼= Mn×n(F ), so the result
follows. //

If p(X) = a0 + a1X + ... + amX
m is a polynomial with coefficients

in F , we let p(τ) = a0iV + a1τ + ... + amτ
m ∈ L(V, V ) and p(T ) =

a0I + a1T + ...+ amT
m where T is an n× n matrix (n = dim(V )).

Since τ commutes with p(τ) under composition, any two polynomials
in τ commute under composition.
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Proposition 2.2.2 Let V be a vector space over F with dim(V ) = n
and τ be an endomorphism of V . Then p(τ) = 0 for some non-zero
polynomial p(X) ∈ F [X].

Proof: By Proposition 2.2.1, L(V, V ) has dimension n2; whence the
subset {iV , τ, τ 2, ..., τn

2} with n2+1 elements must be linearly dependent.

So there are a0, ..., an2 ∈ F , not all 0, with
∑n2

j=0 ajτ
j = 0. Hence p(τ) = 0

where p(X) =
∑n2

j=0 ajX
j ∈ F [X]. //

Among the non-zero polynomials p(X) ∈ F [X] which have τ as a
root, choose one with minimal degree. Divide by the coefficient of the
highest term and let mτ (X) be the resulting monic polynomial (leading
coefficient is 1). If p(τ) = 0, then by the Division Theorem for poly-
nomials over the field F , we get p(X) = mτ (X)q(X) + r(X) for some
q(X), r(X) ∈ F [X] with r(X) = 0 or deg(r(X)) < deg(mτ (X)). Since
p(τ) = mτ (τ) = 0, we have r(τ) = 0. By the minimality of the degree of
mτ , r(X) = 0; i.e., mτ (X)|p(X). Thus:

Proposition 2.2.3 p(τ) = 0 iff mτ (X)|p(X).

Definition 2.2.4 The unique monic polynomial mτ (X) is called the
minimal polynomial for τ .

Note that p(Q−1TQ) = Q−1p(T )Q; so the minimal polynomial of the
matrix representing an endomorphism is independent of the basis chosen.

Proposition 2.2.5 Let V be a finite dimensional vector space and τ be
an endomorphism of V . Then the eigenvalues of τ are precisely the roots
of the minimal polynomial for τ .

Proof: If λ is an eigenvalue of τ with eigenvector w, then we have
τ(w) = λw, (τ 2)(w) = τ(λw) = λ2w, and more generally, (τ k)(w) =
λkw for all positive integers k (by induction on k). Hence 0 = mτ (τ)(w) =
mτ (λ)w. Since w 6= 0, it follows that mτ (λ) = 0; i.e., λ is a root of mτ .

Conversely, by the Division Theorem, mτ (X) = (X − λ)p(X) + r
for some polynomial p(X) and r ∈ F . If mτ (λ) = 0, then r = 0; so
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mτ (X) = (X − λ)p(X). Now p(X) is a proper factor of mτ (X). By the
minimality of mτ (X), there must be v ∈ V such that w ≡ p(τ)(v) 6= 0.
Since (τ − λiV )w = (τ − λiV )p(τ)(v) = mτ (τ)(v) = 0, we get that λ is
an eigenvalue of τ (with w as corresponding eigenvector). //

Suppose that τ is diagonalisable. Then V = E(µ1) ⊕ ... ⊕ E(µ`)
with µ1, ..., µ` distinct. But (τ − µjiV )w = 0 for all w ∈ E(µj). If
v ∈ V , then v =

∑`
j=1 wj with wj ∈ E(µj) for j = 1, . . . , `. Therefore,∏`

j=1(τ − µjiV )v =
∏`
j=1(τ − µjiV )(

∑`
k=1 wk) =∑`

k=1

∏`
j=1(τ −µjiV )(wk) =

∑`
k=1[

∏
j 6=k(τ −µjiV )](τ −µkiV )(wk) = 0 for

all v ∈ V .
Hence mτ (X)|∏`

j=1(X−µj), and equality follows from Proposition 2.2.5.
Thus we have established

Proposition 2.2.6 Let V be a finite dimensional vector space and τ be
a diagonalisable endomorphism of V . If µ1, ..., µ` are the distinct eigen-
values of τ , then mτ (X) =

∏`
j=1(X − µj). In particular, the minimal

polynomial is a product of polynomials of degree 1 none of which are
repeated.

Example 2.2.7 Let

T =

(
1 1
0 1

)
Then (X − 1)2 is the minimal polynomial for T . By Proposition 2.2.6, T
is not diagonalisable (even over C).

Our next goal is to establish the converse of Proposition 2.2.6, that
diagonalisabilty of τ is completely equivalent to a factorisation
property of the minimal polynomial for τ .

Proposition 2.2.8 Let V be a finite dimensional vector space and τ be
an endomorphism of V . Then τ is diagonalisable iff mτ (X) is a product
of polynomials of degree 1 none of which are repeated.

To prove Proposition 2.2.8 we need a fact about polynomials:

Proposition 2.2.9 If F is a field and f(X), g(X) ∈ F [X] are not zero
and have no common divisors of positive degree, then there are
h(X), k(X) ∈ F [X] such that f(X)h(X) + g(X)k(X) = 1.
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Proof: By induction on min{deg(f), deg(g)}. Without loss of gener-
ality, deg(f) ≤ deg(g). If deg(f) = 0, let k(X) = 0 and h(X) = 1/f ;
so assume that deg(f) > 0. Then g(X) = f(X)q(X) + r(X) where
deg(r) < deg(f). Note that r 6= 0 since f(X) does not divide g(X) by
hypothesis. Now r(X) and f(X) share no common non-constant fac-
tor (otherwise it would also divide g(X)). By the inductive hypothesis,
1 = r(X)k1(X) + f(X)k2(X) for some k1(X), k2(X) ∈ F [X]. Substi-
tuting back for r(X) gives 1 = f(X)[k2(X)− q(X)k1(X)] + g(X)k1(X).
//

Note that if f(X) ∈ F [X], τ is an endomorphism of a finite dimen-
sional vector space V , and U = ker(f(τ)), then τ(U) ⊆ U : if u ∈ U ,
then f(τ)(τ(u)) = τ(f(τ)(u)) = τ(0) = 0.

Let V be a finite dimensional vector space, τ an endomorphism of
V and λ an eigenvalue of τ . Then mτ (X) = (X − λ)mp(X) for some
polynomial p(X) sharing no common factor with X − λ (i.e., p(λ) 6= 0).

Let U = ker((τ − λiV )m) ⊇ E(λ). So τ(U) ⊆ U . If W = ker(p(τ)),
then τ(W ) ⊆ W .

Proposition 2.2.10 With the above notation, V = U ⊕W .

Proof: By Proposition 2.2.9, there are h(X), k(X) ∈ F [X] such that
1 = h(X)p(X) + k(X)(X − λ)m. Let v ∈ U ∩W . Then p(τ)(v) = 0 =
(τ − λiV )m(v). Hence v = 1(v) = h(τ)p(τ)(v) + k(τ)(τ − λiV )m(v) = 0.
Thus U ∩W = {0}.

Since any v ∈ V satisfies 1(v) = h(τ)p(τ)(v) + k(τ)(τ − λiV )m(v),
and the first summand belongs to U (because p(X)(X − λ)m = mτ (X))
and the second to W (same reason), we obtain the desired result. //

Let V = U ⊕ W with τ(U) ⊆ U and τ(W ) ⊆ W . If α = τU and
β = τW , then α and β are linear and τ(u + w) = α(u) + β(w) for all
u ∈ U and w ∈ W . We will therefore write τ = α⊕ β. It is immediately
seen that τ 2 = α2⊕β2, etc., whence p(τ) = p(α)⊕p(β) for any polynomial
p. If α is represented by a matrix A (with respect to a basis of U) and
β is represented by a matrix B (with respect to a basis of W ), then τ is
represented by a matrix T (with respect to the resulting basis of U ⊕W )
where

T =

(
A 0
0 B

)
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In this case we call T the direct sum of the matrices A and B and write
T = A⊕B.

Proof of Proposition 2.2.8: By induction on the degree of mτ (X).
Assume that mτ (X) is a product of distinct linear terms. If mτ (X) =
X − µ, then τ = µiV which is diagonal with respect to every basis. If
mτ (X) =

∏`+1
j=1(X − µj), then by Proposition 2.2.10, V = U ⊕W where

U = ker(
∏`
j=1(τ − µjiV )) and W = ker(τ − µ`+1iV ). By induction,

α = τU is diagonalisable (A) and β = τW = µ`+1iW is too (B = µI).
Hence so is τ (T = A⊕B). //

Proposition 2.2.11 (Existence of Eigenvalues over C) Let V be a vector
space over C with dim(V ) = n ≥ 1. Any endomorphism τ of V has an
eigenvalue.

Proof: Since every non-constant polynomial over C is a product of
polynomials of degree 1, the result follows from Proposition 2.2.5. //

Corollary 2.2.12 Let τ be an endomorphism of a finite dimensional
vector space V over C with µ1, ..., µ` as its distinct eigenvalues. Then
mτ (X) =

∏`
j=1(X − µj)dj for some positive integers d1, ..., d` and V =

U1 ⊕ ... ⊕ U` where Uj = ker((τ − µjiV )dj) for j = 1, ..., `. Moreover
τ(Uj) ⊆ Uj and τ = α1 ⊕ ...⊕ α` where αj = τUj for j = 1, ..., ` and has
minimal polynomial (X − µj)dj .

Consider the orthogonal matrix(
cosθ −sinθ
sinθ cosθ

)

Viewed as a matrix over R, there are no eigenvalues if θ 6∈ πZ since each
vector v 6= 0 is rotated by θ and so does not belong to the subspace
generated by v. Hence the matrix is not diagonalisable over R. How-
ever, over C, there are two eigenvalues eiθ and e−iθ and the matrix is
diagonalisable (do this).

Note that the minimal polynomial over R is X2−2Xcosθ+1 and this
has no roots in R; over C, the minimal polynomial is the same and can
be written as (X − eiθ)(X − e−iθ).
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More generally, let V be a vector space over R and τ ∈ L(V, V ). Let
mτ (X) = a0 + a1X + ...+ an−1X

n−1 +Xn ∈ R[X] ⊆ C[X]. Then mτ (X)
factors into linear pieces in C[X] by Gauss’ result; say mτ (X) =

∏
j(X −

λj). Sincemτ (λj) = 0 for any j, we have a0+a1λj+...+an−1λ
n−1
j +λnj = 0.

Taking complex conjugates of both sides and using ak = ak for all k
(the ak are real), we get that mτ (λj) = 0. But (X − λj)(X − λj) =
X2 − 2Re(λj)X + |λj|2 ∈ R[X]. Thus

Proposition 2.2.13 Let V be a finite dimensional vector space over R
and τ be an endomorphism of V . Then mτ (X) =

∏
s(X − νs) ·

∏
m(X2−

2Re(λm)X + |λm|2) where νs are the real eigenvalues of τ and λm ∈ C\R
are the complex non-real eigenvalues of τ .

So the eigenvalues of τ (for V ) are precisely the νs’s, and λ ∈ C is a
root of mτ (X) iff λ is.

Definition 2.2.14 An n × n matrix T is said to be upper triangular if
every entry below the diagonal is 0; i.e., ti,j = 0 if i > j.

Although not every linear transformation is diagonalisable (even over
C) (please see Example 2.2.7), we do have:

Proposition 2.2.15 Let V be a finite dimensional vector space over C
and τ ∈ L(V, V ). Then τ can be represented by an upper triangular
matrix with respect to some basis of V .

Equivalently, if T is an n × n complex matrix, then there is an in-
vertible n× n complex matrix P such that P−1TP is upper triangular.

Proof: This proof is typical of many that are used in the course.
Induction on n = dim(V ). If n = 1, then τ = λiV and we’re done. So
assume that the result is true for any endomorphism of a vector space
W of dimension < n. By Proposition 2.2.11, τ has an eigenvalue λ1. Let
b1 ∈ E(λ1), and W be a complementary subspace to 〈b1〉 in V . Then
τ(w) = φ(w)b1 + ψ(w) for some φ : W → C and ψ : W → W . Since
τ is linear and V = 〈b1〉 ⊕W , both φ and ψ are linear. Hence ψ is an
endomorphism of W with dim(W ) < n. By induction, there is a basis
B = {b2, ...,bn} of W with ψ represented by an upper traiangluar matrix
M . Then, with respect to {b1} ∪ B = {b1, ...,bn}, τ is represented by
the upper triangular matrix

T =

(
λ1 φ(B)
0 M

)
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//

The complex numbers are special in that every non-zero polynomial
is a product of linear factors. We can generalise Proposition 2.2.15 to get
a condition for a representation as an upper triangular matrix in terms
of the minimal polynomial even when the field is not C. The condition is
quite similar to the condition for diagonalisability (please see Proposition
2.2.8).

Proposition 2.2.16 Let V be a finite dimensional vector space over a
field F and τ be an endomorphism of V . Then τ can be represented
by an upper triangular matrix iff mτ (X) is a product of (not necessarily
distinct) linear factors.

Hence an n× n matrix T is conjugate to an upper triangular matrix
iff mT (X) is a product of linear factors.

To prove Proposition 2.2.16, we need a lemma whose proof requires
a new idea.

Let V be a vector space of dimension n and τ be an endomorphism
of V . Let W be a proper subspace of V with τ(W ) ⊆ W . Let v ∈ V \W .
Since mτ (τ)(v) = 0 ∈ W , there is a monic polynomial mτ,v,W (X) of
minimal degree such that (mτ,v,W (τ))(v) ∈ W . As before, p(τ)(v) ∈ W
iff mτ,v,W (X)|p(X). Hence if W1 is a subspace of W and v ∈ V \W , then
mτ,v,W (X)|mτ,v,W1(X). In the special case that W1 = {0}, we get the
obvious fact that mτ,v,W (X)|mτ,v,{0}(X)|mτ (X).

Lemma 2.2.17 Let W be a proper subspace of V and τ ∈ L(V, V ) with
τ(W ) ⊆ W . If mτ (X) =

∏`
j=1(X − µj)

dj with µ1, ..., µ` distinct, then
there is v ∈ V \W and J ∈ {1, ..., `} such that (τ − µJ iV )v ∈ W .

Proof: Let u ∈ V \W . Then mu,W (X) =
∏`
j=1(X − µj)

kj for some
k1, ..., k`, since mu,W (X) divides mτ (X). Moreover, since u 6∈ W , some
kJ > 0. Let qJ(X) =

∏
j 6=J(X−µj)kj · (X−µJ)kJ−1, a polynomial. Then

v = qJ(τ)(u) 6∈ W (by the minimality of mu,W ) but (τ − µJ iV )(v) =
mu,W (τ)(u) ∈ W . //

Proof of Proposition 2.2.16: If τ can be represented by an upper
triangular matrix S (with respect to some basis), then

∏n
j=1(S − sj,jIn)

has 0 on the diagonal and below. Hence
∏n
j=1(S − sj,jIn)n = 0 (verify
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this), whence mτ (X)|∏n
j=1(X−sj,j)n. Thus mτ (X) is a product of linear

factors.
Conversely, if mτ (X) =

∏m
j=1(X − µj)dj , let W0 = {0}. By Lemma

2.2.17, there is b1 6= 0 such that (τ − µ`1iV )(b1) = 0 for some `1. Thus
τ(b1) = µ`1b1. Hence W1 = 〈b1〉 satisfies the hypotheses of Lemma
2.2.17. Applying the lemma gives b2 6∈ W1 with (τ − µ`2iV )(b2) ∈ W1.
That is, τ(b2) = s1,2b1+µ`2b2. Continue the process with W2 = 〈b1,b2〉,
etc. With respect to the constructed basis, τ is represented by the upper
triangluar matrix S where

Si,j =


µ`i if i = j
si,j if i < j
0 if i > j.

//

Caution: Example 2.2.7 can easily be extended to give an endomor-
phism τ of C3 that is not diagonalisable but whose restriction to a specific
one dimensional subspace is diagonalisable. Equally, it is possible to give
a diagonalisable endomorphism τ of C2 with C2 = Eτ (µ1)⊕ Eτ (µ2) and a
one dimensional subspace W of C2 such that W 6= (W ∩ Eτ (µ1))⊕ (W ∩
Eτ (µ2)): let τ(e1) = e1, τ(e2) = −e2 and W = {(x, x) : x ∈ C}.

However, if τ(W ) ⊆ W , the situation is more propitious.

Notation: If W is a subspace of a vector space V and τ ∈ L(V, U),
then τW is the restriction of τ to W . So if τ(W ) ⊆ W , then τW is an
endomorphism of W .

Proposition 2.2.18 Let V be a finite dimensional vector space and W
be a subspace of V . Let τ be an endomorphism of V such that τ(W ) ⊆ W .
Then τW is an endomorphism of W and mτW (X)|mτ (X). Hence τW is
diagonalisable/upper triangularisable if τ is. In particular, if τ(W ) ⊆ W
and V = Eτ (µ1) ⊕ ... ⊕ Eτ (µ`), then W = (W ∩ EτW (µ1)) ⊕ ... ⊕ (W ∩
EτW (µ`)).

Proof: A fortiori, mτ (τW )(w) = mτ (τ)(w) = 0 for all w ∈ W , whence
mτW (X)|mτ (X). The Proposition now follows using Propositions 2.2.8
and 2.2.16. //

Suppose that we are given a set of diagonalisable matrices. When can
we simultaneously diagonalise them?
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Note that P−1SP and P−1TP commute iff S and T commute. Since
diagonal matrices commute we have that if S and T are simultaneously
diagonalisable, then they must commute. We now prove the converse;
this requires a better understanding of how to divide a vector space into
subspaces that are respected by a given linear transformation.

Proposition 2.2.19 Let T be a commuting family of diagonalisable en-
domorphisms of a finite dimensional vector space V . Then there is a
basis of V with respect to which each τ ∈ T is represented by a diagonal
matrix. Equivalently, let M be a commuting family of n × n diagonal-
isable matrices. Then there is an invertible n × n matrix P such that
P−1MP is diagonal for all M ∈M.

To prove the Proposition we need a trivial but important lemma:

Lemma 2.2.20 Let V be a vector space and σ, τ ∈ L(V, V ) commute. If
µ is an eigenvalue of τ , then σ(Eτ (µ)) ⊆ Eτ (µ).

Proof: Let v ∈ Eτ (µ). Then τ(σ(v)) = σ(τ(v)) = σ(µv) = µσ(v) //

Proof of Proposition 2.2.19: SinceMn×n(F ) has dimension n2, there
is a finite subset M1, ...,Mk of M such that M ⊆ 〈M1, ...,Mk〉. If
M1, ...,Mk are simultaneously diagonalisable, then so is any linear com-
bination; i.e., so is M. It is therefore enough to show that {M1, ...,Mk}
can be simultaneously diagonalised. This we do by induction on k. The
result is trivially true if k = 1, so we proceed to the induction step assum-
ing the result for k. Let τ1, ..., τk+1 be the endomorphisms corresponding
to M1, ...,Mk+1 respectively. Now

V = Eτk+1
(λ1)⊕ ...⊕ Eτk+1

(λs)

for some λ1, ..., λs ∈ F (since τk+1 is diagonalisable). Let Wj = E(λj) =
Eτk+1

(λj) (j = 1, ..., s). Then τi,j = (τi)Wj
is an endomorphism of Wj

by Lemma 2.2.20 for all i, j. Furthermore, each τi,j is diagonalisable by
Proposition 2.2.18. Hence, by induction on k, we can find bases B1, ...Bs
of W1, ...,Ws respectively such that τi,j is diagonal on Wj (with respect
to Bj) for j = 1, ..., s and i = 1, ..., k. Since τk+1,j is λj times the identity,
it is diagonal on Wj with respect to any basis. Thus, for B = B1∪ ...∪Bs,
each of τ1, ..., τk+1 is represented by a diagonal matrix (and so the same
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is true of M1, ...,Mk+1 where P is the change of basis from the original
to B). //

One can analagously prove:

Proposition 2.2.21 Let T be a commuting family of upper triangular-
isable endomorphisms of a finite dimensional vector space V . Then there
is a basis of V with respect to which each τ ∈ T is represented by an
upper triangular matrix. Equivalently, let M be a commuting family of
n× n upper triangularisable matrices. Then there is an invertible n× n
matrix P such that P−1MP is upper triangular for all M ∈M.

Corollary 2.2.22 let M be a commuting family of complex n × n ma-
trices. Then there is an invertible n × n matrix P such that P−1MP is
upper triangular for all M ∈M.

To prove Proposition 2.2.21, the required lemma is

Lemma 2.2.23 Let V be a finite dimensional vector space and σ1, ..., σm
be linearly independent pairwise commuting upper triangularisable endo-
morphisms of V . Let W be a proper subspace of V with σj(W ) ⊆ W for
j = 1, ...,m. Then there is v ∈ V \W such that σj(v) ∈ 〈v,W 〉 for all
j = 1, ...,m.

The proof of Lemma 2.2.23 the subsequent deduction of Proposition
2.2.21 are left to the reader.

2.3 summary

An endomorphism τ of a finite dimensional vector space has a minimal
polynomial mτ (X).

(1) The roots of mτ (X) are precisely the eigenvalues of τ .

(2) τ is diagonalisable iff mτ (X) is a product of distinct linear factors.

(3) τ is upper triangularisable iff mτ (X) is a product of linear factors.
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2.4 Exercises

1. Find the eigenvalues of the following complex matrices: 1 1 0
−1 0 1
1 0 −1


 1 0 2

0 −1 1
0 1 0


In each case, give a basis for the eigenspaces. If the matrix is diago-
nalizable, find a conjugate diagonal matrix. If it is not diagonal, find a
conjugate upper-triangular matrix.

2. Show that mA(X) = mAt(X) for every n× n matrix A.

3. Let A be an n × n matrix in which the sum of each row is 1.
Show that 1 is an eigenvalue of A. Show that 1 is also an eigenvalue of
the transposed matrix At.

4. Let A be an n × n matrix all the entries of which are real.
Show that the minimal polynomial (over the complex numbers) has real
coefficients.

5. Prove that any two real matrices that are conjugate over C are
conjugate over R.

6. Let A and B be n× n matrices over C.
(i) If A and B have the same eigenvalues, are they conjugate?
(ii) IfA andB have the same minimal polynomial, are they conjugate?
(iii) If A and B are diagonalisable, then are A+B and AB? What if

A and B commute?
Give proofs or counterexamples.

7. Let A be an n× n complex diagonalisable matrix. If all eigen-
values of A are real, find a positive integer m such that A+mI is diag-
onalisable with all diagonal entries positive.

8 Although this question has been answered in the chapter, it is a
good idea to do it now to ensure the ideas have sunk in — especially as
it sometimes occurs as a Tripos question!

Let α and β be endomorphisms of the finite dimensional complex
vector space V which commute, so α ◦ β = β ◦ α.
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(a) Show β maps each eigenspace E(λ) = ker(α−λI) for α into itself.

(b) Suppose that α and β are both diagonalizable. Show that there is
a basis for V so that both α and β are represented by diagonal matrices.
(Consider β restricted to E(λ).)

9. Let p(X) = X3 − 5X2 + 6X. For each polynomial f , let R(f)
be the remainder when X.f(X) is divided by p. Show that R is a linear
map from the vector space of all polynomials into the vector subspace
P2 of polynomials with degree at most 2. Consider the endomorphism ρ
of P2 defined by ρ : f 7→ R(f). Find the eigenvalues and eigenvectors of
ρ. Find the matrix of ρ relative to some basis for P2. Find the minimal
polynomial for ρ.

Repeat the above exercise when p is the polynomial p(X) = X3 −
2X2 +X.

-10. Prove that, if τ is represented by an upper triangular n × n
matrix T , then each of the diagonal entries ti,i is an eigenvalue of τ and
every eigenvalue arises in this way.

11. Let T be an upper triangular n × n with ti,i 6= tj,j whenever
i 6= j. Prove that T is diagonalisable. What happens if ti,i = tj,j for some
i 6= j? Try to give a necessary and sufficient condition for a non-diagonal
upper-triangular matrix to be diagonalisable.

12. Show that the trace of the conjugate of a matrix is the same
as the trace of the original matrix. Hence define the trace of an endo-
morphism of a finite dimensional vector space.

Show that there are no endomorphisms α, β of a finite dimensional
vector space V with α ◦ β − β ◦ α = I.

Find endomorphisms of an infinite dimensional vector space V which
do satisfy α ◦ β − β ◦ α = I.

13. Let End(V ) denote the vector space of all endomorphisms of
the finite dimensional complex vector space V . Then End(V ) is finite
dimensional. Show that, for α ∈ End(V ), the map Φ : τ 7→ α ◦ τ is an
endomorphism of End(V ). If λ is an eigenvalue of α with geometric mul-
tiplicity k, show that λ is also an eigenvalue of Φ and find its geometric
multiplicity. Is every eigenvalue of Φ an eigenvalue of α?
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Tripos questions on the material in this chapter: 98105, 98307, 99114(a),
99215, 99317, 00105, 00114, 00416.
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Chapter 3

Jordan Normal Form

3.1 Nilpotent Matrices

Example 3.1.1 Let V be the vector space of all polynomials with com-
plex coefficients of degree less than n; so {1, X,X2, ..., Xn−1} is a ba-
sis for V . Let D ∈ L(V, V ) be differentiation; i.e., D(Xj) = jXj−1

(j = 0, 1, ..., n − 1). Since D(p(X)) has smaller degree than p(X) and
is 0 only if deg(p) < 1, it follows that D has no non-zero eigenvalues
and no non-constant eigenvectors. Since D(c) = 0 = 0c for any c ∈ C,
the only eigenvalue is 0 and ED(0) = 〈1〉. With respect to the above
basis, D is represented by the matrix whose (i, j) entry is iδi,j−1; i.e., an
upper-triangular matrix all of whose entries are 0 except right above the
diagonal where the entries are 1, 2, ..., n− 1:

D =



0 1 0 0 ... 0
0 0 2 0 ... 0
...

...
. . .

...
0 0 0 0 ... n− 1
0 0 0 0 ... 0


Note that Dn(p(X)) = 0 for all polynomials p of degree strictly less than
n. Thus the minimal polynomial for D divides Xn and so is Xk for some
k ≤ n. Since Dj(Xj) = j!, we get mD(X) = Xn.

If we use the basis {b1, ...,bn} where bj+1 = ((n − 1)!/j!)Xj (j =
0, 1, ..., n− 1), then D(bj+1) = bj (j = 1, ..., n− 1), D(b1) = 0 and D is

41



42 CHAPTER 3. JORDAN NORMAL FORM

represented by the n× n matrix

0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
. . .

...
0 0 0 0 ... 1
0 0 0 0 ... 0


This is the Jordan form for D.

More generally:

Definition 3.1.2 An n × n matrix N is said to be nilpotent if Nk = 0
for some positive integer k.

An endomorphism τ of a finite dimensional vector space V is said to
be nilpotent if τ k = 0 for some positive integer k.

Note that (P−1MP )k = P−1MkP ; so M is nilpotent iff its conju-
gates are nilpotent. Thus nilpotency of a representing matrix for a linear
transformation is independent of the basis chosen.

Now suppose that τ is a nilpotent endomorphism of an n-dimensional
vector space V and that m is minimal such that τm = 0. Then (∃bm ∈
V )(τm−1(bm) 6= 0). Let bm−j = τ j(bm) (j = 1, ...,m − 1). Then
τ(bj+1) = bj for j = 1, ...,m − 1. Let B = {b1, ...,bm} and W = 〈B〉.
Then τ(W ) ⊆ W and the minimal polynomial for τW is also Xm.

Further B is linearly independent: if
∑m
j=1 λjbj = 0, then applying

τm−1 to each side gives λmb1 = 0. Hence λm = 0. Now apply τm−2

to each side and get λm−1 = 0; etc.. Thus B is a basis of W and with
respect to this basis, τW is represented by the m×m matrix

0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
. . .

...
0 0 0 0 ... 1
0 0 0 0 ... 0


Definition 3.1.3 Assume the above notation. If W = V , then bm is
called a cyclic vector for τ .
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Note that a nilpotent endomorphism τ of an n-dimensional vector
space V has a cyclic vector iff mτ (X) = Xn.

The above shows that Example 3.1.1 generalises:

Proposition 3.1.4 Let V be an n-dimensional vector space and τ be a
nilpotent endomorphism of V with minimal polynomial Xn. Then there
is a basis for V with respect to which τ is represented by the n×n matrix

0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
. . .

...
0 0 0 0 ... 1
0 0 0 0 ... 0


Definition 3.1.5 Let τ be a nilpotent endomorphism. The least positive
integer m such that τm = 0 is called the order of τ .

Proposition 3.1.6 Let V be a vector space of dimension n and τ ∈
L(V, V ) be nilpotent of order m. Then there are subspaces W1, ...,Wm of
V such that

(i) V = W1 ⊕ ...⊕Wm,
(ii) τ(Wj) ⊆ Wj−1 for j = 2, ...,m,
(iii) τ(W1) = {0}, and
(iv) τWj

is injective for each j = 2, ...,m.

[In Example 3.1.1, take Wj = 〈bj〉.]

Proof: Let Uj be the subspace ker(τ j) of V (j = 0, 1, ...,m). So
{0} = U0 ⊆ U1 ⊆ ... ⊆ Um = V . Define Wj inductively so that

(a) Uj = Uj−1 ⊕Wj and
(b) τ(Wj+1) ⊆ Wj.
First let Wm be any complement of Um−1 in Um = V . Then (a)

& (b) hold. Assume that Wm, ...,Wk+1 have been chosen to satisfy (a)
and (b). Note that τ(Wk+1) ⊆ τ(Uk+1) = Uk and Uk−1 ⊆ Uk. If v ∈
Uk−1 ∩ τ(Wk+1), then v = τ(w) for some w ∈ Wk+1. Hence τ k(w) =
τ k−1(v) = 0, whence w ∈ Uk∩Wk+1 = {0} by (a) (induction hypothesis).
Thus τ(Wk+1)⊕Uk−1 = 〈τ(Wk+1), Uk−1〉 ⊆ Uk, and we can take Zk to be
a complementary subspace thereof in Uk. Let Wk = τ(Wk+1)⊕Zk. Then
(a) and (b) hold. Proceed by induction. Since Wk∩Uk−1 = {0} = U0 and



44 CHAPTER 3. JORDAN NORMAL FORM

Uk−1 = ker(τ k−1), we get τWk
is injective and V = Um = Um−1 ⊕Wm =

Um−2 ⊕Wm−1 ⊕Wm = ... = W1 ⊕ ...⊕Wm. //

Corollary 3.1.7 Let τ be a nilpotent endomorphism of order k of a finite
dimensional vector space V . Then τ can be represented by a matrix of
the form 

J (m1) 0 ... ... 0
0 J (m2) 0 ... 0
...

. . .
...

0 ... ... 0 J (m`)


where J (mi) is an mi ×mi matrix of the form

0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
. . .

...
0 0 0 0 ... 1
0 0 0 0 ... 0


Proof: For visual reasons, write W (j) for Wj in the previous propo-

sition. Choose a basis e
(k)
1 , ..., e

(k)
N(k) for W (k). Since τ maps W (k) injec-

tively into W (k−1), the vectors τ(e
(k)
1 ), ..., τ(e

(k)
N(k)) are linearly indepen-

dent in W (k−1); label these images e
(k−1)
1 , ..., e

(k−1)
N(k) , and extend to a basis

..., e
(k−1)
N(k−1) of W (k−1). Continuing gives

e
(k)
1 , ...., e

(k)
N(k) W (k)

e
(k−1)
1 , ..., e

(k−1)
N(k) , ...e

(k−1)
N(k−1) W (k−1)

...

e
(1)
1 , ..., e

(1)
N(k), ..., e

(1)
N(k−1), ...e

(1)
N(1) W (1)

0
with τ mapping each line to the next.

The vectors so described form a basis for V . With respect to e
(1)
1 , ..., e

(k)
1 ,

e
(1)
2 , ..., e

(k)
2 , ... going up each column (as far as possible, in turn), we have

τ represented by J (k) copied N(k) times, then J (k−1) copied N(k − 1)−
N(k) times, ..., J (1) copied N(1)−N(2) times. //
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3.2 Jordan Canonical Form

Definition 3.2.1 A Jordan block is either J (1)(λ) = (λ) or J (k)(λ) =
λIk + J (k)(0) where

J (k)(0) = J (k) =



0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
. . .

...
0 0 0 0 ... 1
0 0 0 0 ... 0


a k × k matrix.

A matrix M is in Jordan canonical form if it has the form J(λ1)⊕...⊕
J(λm) for some λ1, ..., λm where each J(λi) = J (ki,1)(λi)⊕ ...⊕J (ki,ti )(λi)
and ki,1 ≥ ... ≥ ki,ti.

Theorem 3.A (JORDAN CANONICAL FORM) Let V be a fi-
nite dimensional vector space over C and τ an endomorphism of V . Let
mτ (X) =

∏`
j=1(X − µj)

dj , with µ1, . . . , µ` all distinct. Let V (µj) =
ker(τ −µjiV )dj (j = 1, ..., `). Then V = V (µ1)⊕ . . .⊕ V (µ`) and a basis
of V can be chosen so that τj, the restriction of τ to V (µj), is represented

by J(µj) = J (kj,1)(µj)⊕...⊕J (kj,tj )(µj) and kj,1 ≥ ... ≥ kj,tj .(j = 1, . . . , `).
Moreover, tj is the geometric multiplicity of µj. The resulting direct sum
of all these J(µ1)⊕ . . . J(µ`) gives the Jordan canonical form for τ . So,
given any n× n matrix T over C, there is an invertible matrix P (whose
columns are the basis elements) such that P−1TP is in Jordan canonical
form.

Proof: By Corollary 2.2.12, τ = τ1 ⊕ ... ⊕ τ` and each τj has a sin-
gle eigenvalue µj (µ1, ..., µ` distinct). Then τj corresponds to µjI + Nj

where Nj is nilpotent. By Corollary 3.1.7, Nj has form the direct sum
of J (kj,i)(0), whence each µj has the prescribed form. The geometric
multiplicity result is in the exercises. //

The Jordan Form is a powerful tool in the complex case: prove any
result about Jordan blocks, then Jordan forms, and then apply it to the
original linear transformation (with respect to the appropriate basis), or
conjugate to get the corresponding result for the original matrix. Once
one has established the result in this way, it is usually worthwhile to try
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the problem again without employing such heavy equipment; one usually
learns a lot more!

Of course, the Jordan method does not apply in the real case.

3.3 Differential Equations

Example 3.3.1 Let Cn(R) denote the vector space over R of all n times
continuously differentiable functions from R into C. Then D : Cn(R) →
Cn−1(R) where D(f) = f ′.

Consider the differential equation

f (n)(t) + an−1f
(n−1)(t) + ...+ a1f

′(t) + a0f(t) = 0 (∗)

where a0, ..., an−1 ∈ C.
Then eλt is a solution where λ is a root of p(X) =

∑n
j=0 ajX

j (where

an = 1). Now p(D) : Cn(R)→ C(R) and p(D)(f) =
∑n
j=0 ajf

(j)(t). So if
V = ker(p(D)) = {f ∈ Cn(R) : f satisfies (∗)}, then V is a subspace
of Cn(R) and τ = DV is an endomorphism of V .

For all y = (y0, ..., yn−1) ∈ Cn, there is a unique f ∈ V with f (j)(0) =
yj (j = 0, ..., n − 1). Let this solution be σ(y). Then σ : Cn → V
is an injective linear map. Its inverse is f 7→ (f(0), ..., f (n−1)(0)). So
C
n ∼= V and dim(V ) = n. If {e0, ...en−1} is the standard basis for

C
n and gk = σ(ek) ∈ V (k = 0, ..., n − 1), then g

(j)
k (0) = δj,k (the

Krönecker delta). By (∗), g(n)
k (0) = −∑n−1

j=0 ajg
(j)
k (0) = −ak, whence

D(gk) = gk−1−akgn−1 and D(g0) = −a0gn−1. With respect to this basis,
τ is represented by the matrix

0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
. . .

...
0 0 0 0 ... 1
−a0 −a1 . . ... −an−1


This is known as the rational canonical form for τ . It is the matrix

for σ−1τσ ∈ L(Cn,Cn).
We next show that p(X) is the minimal polynomial for τ . Since f ∈ V

implies p(D)(f) = 0, we have mτ (X)|p(X). If q(X) 6= 0 and q(τ) = 0
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with deg(q) = m < n, then f (m)(0)+qm−1f
(m−1)(0)+ ...q0f(0) = 0 for all

f ∈ V . This is obviously false (putting f = gm gives 1+0+0+...+0 = 0).
Hence mτ (X) = p(X).

Now 0 = (D − λiV )f = f ′ − λf if f ∈ V is an eigenvector of τ
with eigenvalue λ. Thus f(t) = ceλt for some c ∈ C. So fλ(t) = eλt

is a basis for Eτ (λ), and λ has geometric multiplicity 1. If p(X) had a
repeated root λ, then fλ,1 = teλt ∈ V and (τ − λiV )fλ,1 = fλ. Indeed,
{fλ,1, fλ} spans the subspace of all functions h(t) ∈ V satisfying (D −
λiV )2h = 0. More generally, if λ is a root of mτ (X) of multiplicity k,
then {tmeλt : m = 0, ..., k − 1} spans the vector subspace of V of all h
such that (D − λiV )kh = 0. By the Jordan Normal Form Theorem 3.A,
we have that V = V (µ1) ⊕ ... ⊕ V (µ`) where µ1, ..., µ` are all distinct,
p(X) = (X−µ1)d1 ...(X−µ`)d` and V (µj) = ker(τ−µjiV )dj (j = 1, ..., `).
But eµjt ∈ V (µj) and if q(t)eµjt ∈ V (µj), then eµjtq(dj)(t) = 0 since
(D − µjiV )q(t)eµjt = [q′(t) + q(t)µj − µjq(t)]eµjt = q′(t)eµjt. Hence q(t)

is a polynomial of degree strictly less than dj. If fk,j : t 7→ tk

k!
eµjt (k =

0, ..., dj − 1) then {fk,j : k = 0, ..., dj − 1} is a basis of V (µj) with f0,j an
eigenvector. Since τ(V (µj)) ⊆ V (µj), the matrix for τVj with respect to
this basis is

J (dj)(µj) =



µj 1 0 0 ... 0
0 µj 1 0 ... 0
...

...
. . .

...
0 0 0 ... µj 1
0 0 0 0 ... µj


Then J (d1)(µ1)⊕ ...⊕ J (d`)(µ`) is the Jordan form for τ = DV .

3.4 Exercises

-1. Show that none of the following matrices are conjugate:

 1 1 0
0 1 1
0 0 1


 1 1 0

0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1
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Is the matrix

A =

 1 1 1
0 1 1
0 0 1


conjugate to any of them? If so, which? [No computations are necessary.]

2. Show that any n× n matrix over C with all its eigenvalues real
is conjugate to an n× n matrix over R.

3. Let V be a complex vector space with dimension n and let τ be
an endomorphism of V with τn−1 6= 0 but τn = 0. Show that there is a
vector x ∈ V for which

x, τ(x), τ 2(x), . . . , τn−1(x)

is a basis for V . What is the matrix of τ relative to this basis?
Show that if another endomorphism α of V commutes with τ then

α = p(τ) for some polynomial p. (Consider α(x).)

4. Show that the dimension of the eigenspace for λ is the number of
Jordan blocks of the form λI + J in a matrix of Jordan canonical form.

5. Show that two endomorphisms σ, τ of of a finite dimensional
complex vector space V are conjugate if, and only if, they are represented
by the same Jordan canonical forms.

6. Let τ ∈ L(V, V ) be an endomorphism of a finite dimensional
complex vector space V . Show that, if λ is an eigenvalue of τ then λ2 is
an eigenvalue of τ 2. Show further that every eigenvalue of τ 2 arises in this
way. Give an example to show that the dimensions of the eigenspaces
ker(τ − λI) and ker(τ 2 − λ2I) may differ.

7. Let T be a K ×K Jordan block matrix with eigenvalue λ. (So
T = λI + J (K).) Find the Jordan canonical form representing T 2.

8. Consider the linear difference equation

xk+N +aN−1xk+N−1 + . . .+a1xk+1 +a0xk = 0 for k = 1, 2, 3, . . . (∗)
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(a) Show that the set V of all solutions to (∗) form a vector subspace
of the space S of all complex sequences x = (xk)

∞
k=1. Show further that

the map
V → C

N ; x 7→ (x1, x2, . . . , xN)

is an isomorphism.
(b) Show that, if x = (x1, x2, x3, . . .) is in V , then the shifted sequence

σ(x) = (x2, x3, x4, . . .) is also in V and the map σ is an endomorphism of
V . Prove that the minimal polynomial for σ is p(X) = XN+aN−1X

N−1+
. . .+ a1X + a0.

(c) Suppose that p(X) = (X − λ)m. Show that the sequences y(r)
with

y(r)k =

(
k
r

)
λk−r

for r = 0, 1, . . . ,m− 1 form a basis for V . Find the matrix of σ relative
to this basis.

(d) Suppose that p(X) = (X − λ)mq(X) with q(λ) 6= 0. Show that

V (λ) = {x ∈ S : (σ − λI)mx = 0} and W = {x ∈ S : q(σ)x = 0}

are vector subspaces of V with dimensions m and N − m respectively.
Show that V = V (λ)⊕W .

Deduce that V is the direct sum of the subspaces V (λ) for λ a zero
of p and that σ maps each of these subspaces into itself.

Tripos questions: 98215, 98307, 98317, 99114, 99307, 00105, 00114,
00415.
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Chapter 4

Determinants

4.1 The Desired Properties

In the Algebra & Geometry course we met the definition of the determi-
nant of a small square matrix. We wish to extend the definition so that
the function det :Mn×n(F )→ F satisfies:

(1) det(P−1MP ) = det(M);

(2) det(M) 6= 0 ⇐⇒M−1 exists ⇐⇒ (Mx = 0→ x = 0);

(3) det

(
A B
0 C

)
= det(A)det(C);

(4) det(In) = 1;

(5) If N is the result of multiplication of any row or column of M by
µ, then det(N) = µ det(M);

(6) det(XIn −M) is a monic polynomial in X of degree n;

(7) If F1 is a field containing F , then the F -determinant function is
the restriction of the F1-determinant function.

We will obtain all our results from these key 7 properties and then
show that there is a function that satisfies them all. Although this is all
that is necessary, we will explicitly construct such a function and shew
that it is unique.

51
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4.2 The Characteristic Polynomial

For any endomorphism τ of a finite dimensional vector space, we may
define det(τ) = det(T ) where T is a matrix representation of τ with
respect to some basis. By (1), det(τ) is independent of the basis chosen.

Definition 4.2.1 Let τ be an endomorphism of a vector space V with
dim(V ) = n. The characteristic polynomial of τ is det(XiV − τ) =
det(XIn − T ) where T represents τ .

We write χτ (X) for the characteristic polynomial for τ .

Proposition 4.2.2 Let V be a finite dimensional vector space and τ be
an endomorphism of V . The roots of the characteristic polynomial for τ
are just the eigenvalues of τ .

Proof: By (2)

det(λiV−τ) = 0 ⇐⇒ (∃v 6= 0)(λiV−τ)v = 0 ⇐⇒ (∃v 6= 0)(λv = τ(v)) ⇐⇒

λ is an eigenvalue of τ . //

Definition 4.2.3 The multiplicity of λ as a root of the characteristic
polynomial for τ is called the algebraic multiplicity of the eigenvalue λ of
τ .

So the algebraic multiplicity of λ is k iff χτ (X) = (X−λ)kp(X) where
p(λ) 6= 0.

Proposition 4.2.4 Let V be a finite dimensional vector space and τ be
an endomorphism of V . Then for any eigenvalue λ of τ ,

geom.mult.(λ) ≤ alg.mult.(λ).

Proof: If d is the geometric multiplicity of λ, then dim(Eτ (λ)) = d.
Let B = {b1, ...,bd} be a basis of E(λ) and extend it to a basis {b1, ...,bn}
of V . Let τ be represented by the matrix T with respect to this basis; so

T =

(
Id B
0 C

)
By (3), (4) and (5) we have det(XiV − τ) =
det((X−λ)Id)det(XIn−d−C) = (X−λ)ddet(XIn−d−C). Hence χτ (X) =
(X − λ)dq(X) for some polynomial q(X) of degree n− d (which may or
may not have λ as a root). //
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Corollary 4.2.5 An endomorphism τ of a finite dimensional vector space
is diagonalisable iff for each eigenvalue the algebraic multiplicity and ge-
ometric multiplicity are equal.

Proof: Since the sum of the algebraic multiplicities of eigenvalues is at
most n = dim(V ) = deg(χτ (X)) and τ is diagonalisable iff the sum of the
geometric multiplicities is n, the result follows at once from Proposition
4.2.4. //

As is standard, the trace of an n × n matrix A is defined as the
sum of the diagonal entries: tr(A) =

∑n
i=1 ai,i. Then tr(P−1AP ) =∑

i,j,k p̂i,jaj,kpk,i =
∑
j,k aj,k

∑
i pk,ip̂i,j =

∑
j,k aj,kδk,j =

∑
j aj,j = tr(A),

where p̂i,j is the (i, j) entry of the matrix P−1. Thus we can define

Definition 4.2.6 The trace of an endomorphism τ of an n-dimensional
vector space is the trace of some/any matrix T representing τ with respect
to some basis.

Over C, every polynomial is a product of linear factors whence every
linear transformation of a finite dimensional vector space over C has an
upper triangular representation by Proposition 2.2.16. Moreover, by (3),
(4) and (5), if T is upper triangular, then

det(T ) = det

(
t1,1 B
0 T1,1

)
= t1,1det(T1,1) = ... =

n∏
i=1

ti,i

since T1,1, ... are upper triangular. Now T is upper triangular iff XIn−T
is upper triangular. Thus for any endomorphism τ of an n-dimensional
vector space over C, χτ (X) =

∏n
i=1(X − ti,i) where t1,1, ..., tn,n are the

eigenvalues of τ . Note that
(a) the algebraic multiplicity of λ is just |{j ∈ {1, ..., n} : tj,j = λ}|,
(b) tr(τ) is the sum of the eigenvalues in C of τ (counted to algebraic

multiplicity), and
(c) χτ (X) = Xn − tr(τ)Xn−1 + ....

Theorem 4.A (The Cayley-Hamilton Theorem). Let τ be an en-
domorphism of a finite dimensional vector space over a subfield F of C.
Then χτ (τ) = 0.
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Proof: We first consider the special case that the vector space is over
the field C.

Choose a basis B = {b1, ...,bn} with respect to which τ is represented
by an upper triangular matrix T (use Proposition 2.2.15). Let Uj =
〈b1, ...,bj〉 (j = 1, ..., n). Then τ(Uj) ⊆ Uj and τ(bj)− tj,jbj ∈ Uj−1 for
j = 1, ..., n. Thus (τ − tj,jiV )(Uj) ⊆ Uj−1 for j = 1, ..., n. Now

χτ (τ)(V ) = χτ (τ)(Un) = (
n−1∏
j=1

(τ − tj,jiV ))(τ − tn,niV )(Un) ⊆

n−1∏
j=1

(τ − tj,jiV )(Un−1) = (
n−2∏
j=1

(τ − tj,jiV ))(τ − t(n−1),(n−1)iV )(Un−1) ⊆

... ⊆ (τ − t1,1iV )(U1) ⊆ U0 = {0}.

Hence χτ (τ)(v) = 0 for all v ∈ V .

For the general case, let B be a basis of V and τ be represented by the
matrix T with respect to this basis. Note that the entries of T belong to
F ⊆ C. Write TC for the same matrix T viewed as a matrix over C. We
have χTC(T ) = χTC(TC) = 0 by the first part. By (7), χT (X) = χTC(X).
Hence χτ (τ) = χT (T ) = χTC(T ) = 0. //

The same theorem holds for arbitrary fields F ; we use the same proof
with F , the algebraic closure of F , in place of C.

Corollary 4.2.7 For any endomorphism τ of a finite dimensional vector
space, mτ (X)|χτ (X). Moreover, mτ (X) and χτ (X) have the same roots
(though possibly occurring to different multiplicities).

Proof: Since χτ (τ) = 0, χτ (X) is divisible by the minimal polynomial.
The roots of the minimal polynomial are precisely the eigenvalues of τ
(Proposition 2.2.11) so the result follws from Proposition 4.2.2. //

4.3 Volumes

Let x1, ...,xn ∈ R
n. We wish to define V(x1, ...,xn), the volume of an

n-dimensional parallelepiped P (x1, ...,xn) = {∑n
j=1 λjxj : 0 ≤ λj ≤ 1}.

Fix x2, ...,xn and let x1 vary; say V1(v) = V(v,x2, ...,xn). Let B be
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the base of the parallelepiped P (v,x2, ...,xn) and u be a unit vector
perpendicular to B. Then we should have that V1(v) should equal the
product of V(x2, ...,xn) and the component of v in the direction u. Note
that this gives a negative value if v is in the opposite direction to u.

Similarly, each of the maps i = 1, ..., n

v 7→ Vi(v) = V(x1, ...,xi−1,v,xi+1, ...,xn) (†)

should be linear.

Definition 4.3.1 We say that V is n-linear if each of the n maps v 7→
V(x1, ...,xi−1,v,xi+1, ...,xn) is linear (i = 1, ..., n).

If {x1, ...,xn} is linearly dependent, then the set lies in an (n − 1)-
dimensional subspace of Rn; so we will want V(x1, ...,xn) = 0. In particu-
lar, if xi = xj for some distinct i, j we want V(x1, ...,xn) = 0. Hence 0 =
V(x1 +x2,x1 +x2,x3, ...,xn) = V(x1, ...,xn) + 0 + 0 +V(x2,x1,x3, ...,xn)
by n-linearity, whence V(x2,x1,x3, ...,xn) = −V(x1,x2,x3, ...,xn). Thus
interchanging the first two variables multiplies the volume by −1. Simi-
larly any transposition of two variables introduces a factor of −1.

Now for any σ ∈ Sym(n), σ is a product of transpositions. Moreover,
it is a product of an even number of transpositions iff every expression
for σ as a product of transpositions involves an even number of such. We
define sg(σ) = 1 if σ can be written as a product of an even number of
transpositions and sg(σ) = −1 otherwise. Note that sg(σ−1) = sg(σ)
and sg(ρ−1σρ) = sg(σ).

By the above we have

V(xσ(1),xσ(2), ...,xσ(n)) = sg(σ)V(x1,x2, ...,xn) (††).

Definition 4.3.2 We say that V : Rn → R is alternating if

V(xσ(1),xσ(2), ...,xσ(n)) = sg(σ)V(x1,x2, ...,xn) for all σ ∈ Sym(n).

We will show that apart from a scalar factor, (†) and (††) completely
determine the volume.

We first extend the previous two definitions.
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Definition 4.3.3 Let U be an n-dimensional vector space over a field
F and let f : Un → F . We say that f is n-linear if each of the maps
(i = 1, ..., n) v 7→ f(x1, ...,xi−1,v,xi+1, ...,xn) is linear; and alternating
if f(xσ(1),xσ(2), ...,xσ(n)) = sg(σ)f(x1,x2, ...,xn) for all σ ∈ Sym(n). If
f is both n-linear and alternating then we will call it a volume form.

Recall that εi,j,k = 1 if i, j, k is a cyclic permutation of 1, 2, 3 (i.e.,
(ijk) = (123) as cycles) and εi,j,k = −1 if i, j, k is a cyclic permutation of
1, 3, 2; εi,j,k = 0 otherwise. The standard definition of a 3×3 determinant
from Algebra & Geometry is det(A) =

∑
i,j,k εi,j,kai,1aj,2ak,3. For example

the term ε2,1,3a2,1a1,2a3,3 is just ε2,1,3aσ(1),1aσ(2),2aσ(3),3 where σ(1) = 2,
σ(2) = 1 and σ(3) = 3. So σ is the single transposition (12) and hence
sg(σ) = −1. Hence ε2,1,3a2,1a1,2a3,3 = sg(σ)aσ(1),1aσ(2),2aσ(3),3 for this σ.
Therefore det(A) =

∑
σ∈Sym(3) sg(σ)aσ(1),1aσ(2),2aσ(3),3.

This leads to the following generalisation:

Proposition 4.3.4 Let {b1, ...,bn} be a basis for a vector space U over
F . For each xj ∈ U , let xj =

∑n
i=1 xi,jbi. Let ∆ : Un → F be defined by

∆(x1,x2, ...,xn) =
∑
σ∈Sym(n) sg(σ)xσ(1),1...xσ(n),n. Then ∆ is a volume

form with ∆(b1,b2, ...,bn) = 1.

Proof: Clearly ∆ is n-linear. Fix ρ ∈ Sym(n). Then xσ(1),ρ(1), ..., xσ(n),ρ(n)

is just a rearrangement of xθ(1),1, ..., xθ(n),n where θ = σρ−1. As σ runs
through Sym(n) so does θ. Hence ∆(xρ(1),xρ(2), ...,xρ(n)) =∑
σ∈Sym(n) sg(σ)aσ(1),ρ(1)...aσ(n),ρ(n) =

∑
θ∈Sym(n) sg(θρ)aθ(1),1...aθ(n),n =

sg(ρ)∆(x1,x2, ...,xn). Thus ∆ is an alternating form whence a volume
form. By definition, ∆(b1,b2, ...,bn) = sg(id)1 · · · 1 = 1. //

Proposition 4.3.5 If f is a volume form on V , then f = λ∆ for some
λ ∈ F . That is, ∆ is unique to within a scalar (the volume of a given
parallelepiped).

Proof: f(x1, ...,xn) =
∑
s xs(1),1...xs(n),nf(bs(1), ...,bs(n)) where s in

the sum ranges over all functions from {1, ..., n} into itself. Since f is al-
ternating f(x1,x2,x3, ...,xn) = −f(x2,x1,x3, ...,xn). Hence f(x1, ...,xn) =
0 if x1 = x2. Similarly, if xi = xj for some i 6= j. Hence we may restrict
the range of s in the sum to the set of injective maps from {1, ..., n} into it-
self; i.e., the set of permutations of {1, ..., n}. Further f(bs(1), ...,bs(n)) =
sg(s)f(b1, ...,bn) so the result follows with λ = f(b1, ...,bn). //
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Proposition 4.3.6 Let f 6≡ 0 be a volume form for an n-dimensional
vector space U . Then f(c1, ..., cn) 6= 0 iff {c1, ..., cn} is a basis of U .

Proof: If {c1, ..., cn} is a basis of U , then by Proposition 4.3.4 there is
a volume form ∆ with ∆(c1, ..., cn) = 1. By Proposition 4.3.5, f = λ∆
for some non-zero scalar λ. Hence f(c1, ..., cn) = λ 6= 0.

Conversely, suppose that f(c1, ..., cn) 6= 0. As before, the function
f takes the value 0 if two coordinates are the same. Consequently,
if
∑n
j=1 µjcj = 0, then 0 = f(0, c2, ..., cn) = f(

∑
j µjcj, c2, ..., cn) =∑n

j=1 µjf(cj, c2, ..., cn) = µ1f(c1, ..., cn). Thus µ1 = 0. Similarly we get
µ2, ..., µn = 0; so {c1, ..., cn} is linearly independent, whence a basis. //

Proposition 4.3.7 Let U be an n-dimensional vector space over a field
F and τ be an endomorphism of U . Then there is a constant δ ∈ F such
that f(τ(x1), ..., τ(xn)) = δf(x1, ...,xn) for all volume forms f on U and
all x1, ...,xn ∈ U .

Proof: By Proposition 4.3.4, there is a volume form ∆ 6≡ 0 on U .
Define g : (x1, ...,xn) 7→ ∆(τ(x1), ..., τ(xn)). Then g is n-linear and
alternating. (Verify this.) By Proposition 4.3.5 there is δ ∈ F with
g = δ∆. Let f be a volume form on U ; so f = λ∆ by Proposition
4.3.5. Then f(τ(x1), ..., τ(xn)) = λ∆(τ(x1), ..., τ(xn)) = λg(x1, ...,xn) =
λδ∆(x1, ...,xn) = δf(x1, ...,xn). //

Definition 4.3.8 Let {b1, ...,bn} be a basis for a vector space U over a
field F . Let ∆ be a volume form on U with ∆(b1, ...,bn) = 1. Define
det(τ)= ∆(τ(b1), ..., τ(bn)) = δ. By Proposition 4.3.7, this definition is
independent of the basis chosen for U . We call ∆ the determinant.

4.4 Properties of the Determinant

First observe that det(iU) = 1 by the definition so the linear transforma-
tion version of Property (4) is immediate.

Proposition 4.4.1 Let U be a finite dimensional vector space and α & β
be endomorphisms of U . Then det(αβ) = det(α)det(β).

If α−1 exists, then det(α) 6= 0 and det(α−1) = 1/det(α).
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Proof: Let f 6≡ 0 be a volume form on U . Let x1, ...,xn ∈ U such that
f(x1, ...,xn) 6= 0. Then det(αβ)f(x1, ...,xn) = f(αβ(x1), ..., αβ(xn)) =
det(α)f(β(x1), ..., β(xn)) = det(α)det(β)f(x1, ...,xn). Hence det(αβ) =
det(α)det(β).

If α−1 exists, then as det(α−1α) = det(iU) = 1, the first part shews
that det(α−1)det(α) = 1. //

Property (1) for linear transformations follows at once from the propo-
sition.

We now give the converse to the last part.

Proposition 4.4.2 If τ is an endomorphism of a finite dimensional vec-
tor space, the τ is invertible if det(τ) 6= 0.

Proof: Let {b1, ...,bn} be a basis for a vector space U over F . By
Proposition 4.3.4 there is a volume form ∆ with ∆(b1,b2, ...,bn) = 1.
Then ∆(τ(b1), ..., τ(bn)) = det(τ)∆(b1,b2, ...,bn) = det(τ) 6= 0. Hence
{τ(b1), ..., τ(bn)} is a basis of U by Proposition 4.3.6. Thus τ is surjective
and injective.//

Let T be an n× n matrix over F and define τ : F n → F n by τ(x) =
Tx. Then ∆(τ(e1), ..., τ(en)) = det(τ). Now τ(ej) = Tej =

∑
i ti,jei, so

Definition 4.4.3 det(τ) =
∑
σ∈Sym(n) sg(σ)tσ(1),1...tσ(n),n which we de-

fine to be det(T ).

Since τ1 ◦ τ2 is represented by the matrix product T1T2 we can use
Proposition 4.4.1 to get det(AB) = det(A)det(B), det(In) = 1 and T−1

exists iff det(T ) 6= 0. Thus Properties (1) and (4) hold for matrices, too,
and Property (5) is immediate from the definition.

If T is an upper triangular matrix (so ti,j = 0 for i > j), then
tσ(1),1...tσ(n),n = 0 if σ(j) > j for some j. Hence det(T ) =∑
σ∈Sym(n) sg(σ)tσ(1),1...tσ(n),n = t1,1...tn,n, the product of the diagonal

elements of T .

More generally, if T is a matrix with ti,j = 0 for all i > r and j ≤ r,
then tσ(1),1...tσ(n),n = 0 if σ(j) > r for some j ≤ r. Hence
det(T ) =

∑
σ∈Sym(n) sg(σ)tσ(1),1...tσ(n),n =∑

σ∈Sym(r),ρ∈Sym(n−r) sg(σ)sg(ρ)tσ(1),1...tσ(r),rtr+ρ(1),r+1...tr+ρ(n−r),n =
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det(A)det(C) where

T =

(
A B
0 C

)
.

This gives Property (3).
Since det(TC) = det(T ) by definition, we have established that the

determinant function defined satisfies all the required properties. We
now show that its value for any endomorphism agrees with that of any
matrix that represents it (with respect to any basis).

Proposition 4.4.4 Let V be an n-dimensional vector space and τ be an
endomorphism of V . If the matrix T represents τ with respect to some
basis B for V , then det(τ) = det(T ).

Proof: Let α : F n ∼= V and α(x) =
∑
j xjbj. Then α(Tx) = τ(α(x)).

For y1, ...,yn ∈ V , define f(y1, ...,yn) = ∆(α−1(y1), ..., α−1(yn)). Then
f is a volume form and for x1, ...,xn ∈ F n, det(τ)∆(x1, ...,xn) =
det(τ)f(α(x1), ..., α(xn)) = f(τα(x1), ..., τα(xn)) = f(α(Tx1), ..., α(Txn)) =
∆(Tx1, ..., Txn) = det(T )∆(x1, ...,xn). Hence det(τ) = det(T ). //

Definition 4.4.5 If T is a matrix, let T t be the matrix whose (i, j) entry
is tj,i. Then T t is called the transpose matrix of T .

Proposition 4.4.6 If T is any n× n matrix, then det(T t) = det(T ).

Proof: If ρ = σ−1, then sg(ρ) = sg(σ), and tσ(1),1...tσ(n),n & t1,ρ(1)...tn,ρ(n)

are the same products (with factors written in a possibly different order).
Thus det(T ) =

∑
σ∈Sym(n) sg(σ)tσ(1),1...tσ(n),n =

∑
ρ∈Sym(n) t1,ρ(1)...tn,ρ(n)

= det(T t). //

4.5 Cofactors and the Adjugate Matrix

Let T be an n × n matrix. Let cj be the jth column of T ; so cj =
(t1,j, ..., tn,j)

t and det(T ) = ∆(c1, ..., cn). Let e1, ..., en be the standard
basis for F n, and aji = ∆(c1, ..., cj−1, ei, cj+1, ..., cn).

Since we can subtract any multiple of ei from any of the other columns
without changing the value of the determinant, we have that aj,i is the
determinant of the matrix obtained by putting all the ith row and jth

column of T equal to 0 except the (i, j) entry which is set at 1.
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Definition 4.5.1 ai,j is called the (j, i)-cofactor of T. The matrix with
(i, j) entry the (j, i) cofactor (ai,j) is called the adjugate of T and is
denoted by adj(T ).

Proposition 4.5.2 Let T be an n×n matrix. Then adj(T )T = det(T )In =
Tadj(T ). Hence T−1 = adj(T )/det(T ) if det(T ) 6= 0.

Proof: LetA = adj(T ). Then ∆(c1, ..., cj−1,y, cj+1, ..., cn) =
∑n
i=1 aj,iyi.

So if y = ck, we get
∑n
i=1 aj,iti,k = ∆(c1, ..., cj−1, ck, cj+1, ..., cn) =

(det(T ))δj,k. Thus AT = det(T )In. Hence adj(T t)T t = det(T t)In. By
Proposition 4.4.6 this gives adj(T )tT t = det(T )In. The proof is com-
pleted by taking transposes of each side and recalling that T−1 exists iff
det(T ) 6= 0. //

4.6 Exercises

1. Is it true that square matrices with the same size, rank, determinant
and trace are conjugate? Is it true for 2× 2 matrices?

2. Let A and B be n× n matrices over the field F . Show that the
(2n× 2n) matrix

C =

(
I B
−A 0

)
can be transformed into D =

(
I B
0 AB

)

by elementary row operations. By considering the determinants of C and
D, obtain another proof that det(AB) = det(A)det(B).

3. Find the characteristic and minimal polynomials and the eigen-
values of the matrix 

1 0 3 0
1 3 −1 2
0 0 −1 0
−1 −2 1 −1


Also find the algebraic and geometric multiplicities of these eigenvalues.
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4. Suppose that α ∈ L(V, V ) is invertible. Describe the charac-
teristic and minimal polynomials and the eigenvalues of α−1 in terms of
those of α. Hence find the characteristic and minimal polynomials and
eigenvalues of A−1 in terms of those of an n× n invertible matrix A.

5. Let f(x) = a0 + a1x+ . . .+ anx
n, with ai ∈ C, and let C be the

circulant matrix 

a0 a1 a2 . . . an
an a0 a1 . . . an−1

an−1 an a0 . . . an−2
...

. . .
...

a1 a2 a3 . . . a0


Show that

detC =
n∏
j=0

f(ζj)

where ζ = exp(2πi/(n+ 1)).

6. Let A, B be n × n matrices, where n ≥ 2. Show that, if A
and B are non-singular, then adj(AB) = adj(B)adj(A) and det(adjA) =
(detA)n−1 and adj(adjA) = (detA)n−2A.

What happens if A is singular?
Show that the rank of the matrix adjA is

rk(adj(A)) =


n if rk(A) = n
1 if rk(A) = n− 1
0 if rk(A) ≤ n− 2

7. Let A be the n× n complex matrix with

aij =


λ if i = j
1 if i+ 1 = j
0 otherwise

Find all of the eigenvalues of A and their geometric multiplicities. Find
the characteristic polynomial of A and hence the algebraic multiplicity
of each eigenvalue. Find the minimal polynomial for A.

Suppose that λk (k = 1, 2, . . . , K) are K distinct complex numbers
and ak, gk are natural numbers with 1 ≤ gk ≤ ak for each k. Construct a
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matrix A whose eigenvalues are precisely λk for k = 1, 2, . . . , K and for
which λk has geometric multiplicity gk and algebraic multiplicity ak.

8. Let

A =

 1 0 2
0 −1 1
0 1 0


Verify directly that the Cayley - Hamilton theorem holds for A. Hence
compute A7 − 2A5 + 2A4 − 2A2 + 2A+ I and A−1.

Tripos questions: 98307, 98415, 99415, 00317.



Chapter 5

The Dual Space

5.1 The Dual and Double Dual

Definition 5.1.1 Let V be a vector space over a field F . The dual space
of V is the space L(V, F ) and is denoted by V ∗. The double dual of V is
the space V ∗∗ = L(V ∗, F ) = L(L(V, F ), F ).

If V is finite dimensional, then dim(V ∗) = dim(V )dim(F ) = dim(V );
thus V ∼= V ∗ ∼= V ∗∗ in this case.

We wish to examine this isomorphism more closely. Recall that F n

is the vector space of all column vectors and write (F n)t for the space
of all row vectors. If a ∈ (F n)t, then φa : x 7→ ax is a linear map from
F n into F . If φ ∈ L(F n, F ), let a = (φ(e1), ..., φ(en)) ∈ (F n)t, then
ax =

∑n
j=1 φ(ej)xj = φ(

∑n
j=1 xjej) = φ(x). Thus φ = φa. Consequently,

the map a 7→ φa is a surjective map of (F n)t onto (F n)∗. It is linear and
has kernel {0} so (F n)t ∼= (F n)∗. From now on we will therefore identify
the dual space of F n with the space of all row vectors.

Example 5.1.2 Let P be the vector space R[X] of all real polynomials
and φ ∈ L(P ,R). For each non-negative integer j let aj = φ(Xj). This
gives a real sequence a ∈ F N. Since φ is linear, φ(p0 +p1X+ ...+pnX

n) =∑n
j=0 ajpj. Note that the isomorphism (between P and the subspace of

all sequences that are eventually zero) induces an isomorphism between
P∗ and the space of all real sequences. Now dim(P) = ℵ0 but P∗ has no
countable basis (see Exercise 1.15). Hence P 6∼= P∗. If we restrict to Pn,

63
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the subspace of all polynomials of degree at most n, then the sequences
a with aj = φ(Xj) (j = 0, ..., n) give the dual space.

Alternatively, we can think of the dual P∗n slightly differently. Let p ∈
Pn. For any sequence (an), the map p 7→ a0p(0) +a1p

′(0) + ...+anp
(n)(0)

is linear and maps p0+p1X+...+pnX
n to p0a0+p1a1+2p2a2+...+n!pnan,

and every linear map from Pn to R arises in this way.

Let B = {b1, ...,bn} be a basis for a vector space V and βj ∈ V ∗

be given by βj(bi) = δi,j (1 ≤ i, j ≤ n). So if v =
∑n
i=1 vibi, then

βj(v) =
∑n
i=1 viβj(bi) =

∑n
i=1 viδi,j = vj; i.e., v =

∑n
i=1 βi(v)bi.

Proposition 5.1.3 Let B = {b1, ...,bn} be a basis for a vector space V
and βj ∈ V ∗ be given by βj(bi) = δij. Then {β1, ..., βn} is a basis for V ∗.

Proof: If
∑
j λjβj = 0, then λi =

∑
j λjδi,j =

∑
j λjβj(bi) = 0 for all i.

Hence {β1, ..., βn} is linearly independent. Since dim(V ∗) = n, the result
follows. Alternatively, if φ ∈ V ∗, then φ −∑n

j=1 φ(bj)βj is 0 on B and
hence is the 0 map; i.e., φ =

∑n
j=1 φ(bj)βj. //

Definition 5.1.4 If B = {b1, ...,bn} is a basis for a vector space V and
βj ∈ V ∗ is given by βj(bi) = δi,j, then {β1, ..., βn} is called the dual basis
for V ∗ and is denoted by B∗.

Unfortunately, the linear map between V and V ∗ given by
∑
j xjbj 7→∑

j xjβj is dependent on the basis B chosen for V . A different basis leads
to a different map. In this sense, the isomorphism is not intrinsic but
basis dependent.

In contrast, consider V ∗∗ = (V ∗)∗.

Proposition 5.1.5 Let V be a finite dimensional vector space and v ∈
V . Define εv : V ∗ → F by εv(φ) = φ(v) (φ ∈ V ∗). Then the map
ε : v 7→ εv is an isomorphism between V and V ∗∗.

Proof: Since φ is linear, εu+v(φ) = φ(u + v) = φ(u) +φ(v) = εu(φ) +
εv(φ) = (εu+εv)(φ). Similarly, ελv(φ) = λεv(φ). Thus εu+v = εu+εv and
ελu = λεu; so ε is linear. If v 6= 0, then there is a basis of V containing
v and a dual basis for V ∗. If ψ is the dual to v, then εv(ψ) = ψ(v) = 1,
so εv 6= 0. Hence ε is injective and so surjective.//
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Notice that ε is not dependent on the choice of basis for V . In this
sense we speak of the isomorphism between V and V ∗∗ as being “natural”
(in contrast to the “unnaturalness” of the isomorphism given between V
and V ∗).

Also observe that apart from the surjectivity, the above proof gives
a natural injective linear map between V and V ∗∗; i.e., if V is infinite
dimensional, then ε defined above is an isomorphism between V and a
subspace of V ∗∗ (which may be proper).

Proposition 5.1.6 Let U and V be finite dimensional vector spaces and
τ ∈ L(U, V ). Then the map τ ∗ : φ 7→ φ ◦ τ belongs to L(V ∗, U∗) and
induces an isomorphism ∗ : L(U, V ) ∼= L(V ∗, U∗).

Proof: Easy verification.//

Definition 5.1.7 With the above notation, τ ∗ is called the dual of τ .

Note that if σ ∈ L(V,W ), then (σ ◦ τ)∗(ψ) = ψ ◦ (σ ◦ τ) = τ ∗(ψ ◦σ) =
τ ∗(σ∗(ψ)) for all ψ ∈ W ∗. That is, (στ)∗ = τ ∗σ∗.

Proposition 5.1.8 Let U and V be finite dimensional vector spaces with
bases A and B and let τ ∈ L(U, V ). If τ is represented by T with respect
to these bases, then τ ∗ is represented by T t with respect to the dual bases.

Proof: Let A = {a1, ..., am} and B = {b1, ...,bn}. Then τ(aj) =∑
k tk,jbk. If τ ∗(βi) =

∑
k sk,iαk, then βi(τ(aj)) = βi(

∑
k tk,jbk) =

∑
k tk,jβi(bk) =∑

k tk,jδi,k = ti,j. Since βi(τ(aj)) = (τ ∗(βi))(aj) =
∑
k sk,iαk(aj) =∑

k sk,iδk,j = sj,i, we get ti,j = sj,i; i.e., S = T t. //

Thus the matrix equivalent of (στ)∗ = τ ∗σ∗ is the old chestnut
(ST )t = T tSt.

If we choose bases for U and V so that τ is represented by(
Ir 0
0 0

)
,

then τ ∗ is represented by the transpose of this.

If τ ∈ L(U, V ), then τ ∗∗ ∈ L(U∗∗, V ∗∗) and τ ∗∗(εu(φ)) = εu(τ ∗(φ)) =
εu(φ ◦ τ) = φ(τ(u)) = ετ(u)(φ); i.e., τ ∗∗ ◦ ε = ε ◦ τ . So if we use ε to
identify U with U∗∗ and V with V ∗∗, then we can/should identify τ ∗∗

with τ .
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Proposition 5.1.9 Let V be a finite dimensional vector space and τ be
an endomorphism of V . Then tr(τ ∗) = tr(τ), det(τ ∗) = det(τ) and the
eigenvaues of τ ∗ are those of τ with same multiplicities.

Proof: Since the transpose operation preserves trace and determinant,
the first two parts are immediate. Also (λiV − τ)∗ = λi∗V − τ ∗ which
corresponds to (λI − T )t = λI t − T t. Hence τ ∗ and τ have the same
characteristic polynomial and hence the same eigenvalues with the same
algebraic multiplicity. Since the row rank of a matrix equals its column
rank, the geometric multiplicity of any eigenvalue in τ ∗ is the same as in
τ . //

Definition 5.1.10 Let W be a subspace of V . Then W ◦ = {φ ∈ V ∗ :
(∀w ∈ W )(φ(w) = 0)} is called the annihilator of W .

Let Y be a subspace of V ∗. Then Y◦ = {v ∈ V : (∀φ ∈ Y )(φ(v) = 0)}
is called the annihilator of Y .

Proposition 5.1.11 Let V be a finite dimensional vector space and W
and Y be subspaces of V and V ∗ respectively. Then W ◦ is a subspace
of V ∗ and Y◦ is a subspace of V . Moreover, dim(W ) + dim(W ◦) =
dim(V ) = dim(Y ) + dim(Y◦).

Proof: That W ◦ and Y◦ are subspaces are routine verifications. Let
{b1, ...,bk} be a basis of W which we extend to a basis of V . Let
{β1, ..., βn} be the dual basis. Then {βk+1, ..., βn} ⊆ W ◦ and

∑n
j=1 λjβj ∈

W ◦ ⇐⇒ ∑n
j=1 λjβj(bi) = 0 for i = 1, ..., k ⇐⇒ λi = 0 for i = 1, ..., k.

Hence {βk+1, ..., βn} spans W ◦ and is linearly independent. Thus we get
dim(W ) + dim(W ◦) = dim(V ).

Note that v ∈ Y◦ ⇐⇒ φ(v) = 0 all φ ∈ Y ⇐⇒ εv(φ) = 0 all φ ∈ Y
⇐⇒ εv ∈ Y ◦ ⊆ V ∗∗. So dim(Y◦) = dim(Y ◦) = dim(V ∗) − dim(Y ) =
dim(V )− dim(Y ) by the first part. //

Corollary 5.1.12 For V a finite dimensional vector space and W and
Y subspaces of V and V ∗ respectively, (W ◦)◦ = W and (Y◦)

◦ = Y .

Proof: For w ∈ W , φ ∈ W ◦ implies φ(w) = 0, whence w ∈ (W ◦)◦. So
W is a subspace of (W ◦)◦. But by Proposition 5.1.11, W and (W ◦)◦ have
the same dimension. Hence they are equal. The other equality follows
similarly.//
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Proposition 5.1.13 Let U and V be finite dimensional vector spaces
and τ ∈ L(U, V ). Then ker(τ ∗) = (Im(τ))◦ and Im(τ ∗) = (ker(τ))◦.

Proof: φ ∈ ker(τ ∗)⇐⇒ 0 = τ ∗(φ) = φ ◦ τ ⇐⇒
φ(τ(u)) = 0 (∀u ∈ U)⇐⇒ φ ∈ (Im(τ))◦.

Similarly, v ∈ ker(τ)⇐⇒ v ∈ (Im(τ ∗))◦.
Thus ker(τ)◦ = ((Im(τ ∗))◦)

◦ = Im(τ ∗). //

Corollary 5.1.14 If U and V are finite dimensional vector spaces and
τ ∈ L(U, V ), then rank(τ) = rank(τ ∗).

Proof: Since rank(τ) + dim(ker(τ)) = dim(U) , the result follows at
once from Propositions 5.1.11 and 5.1.13.//

5.2 Exercises

1. If A and B are n × m and m × n matrices over the field F , let
τA(B) = tr(AB). Show that, for each A, τA is a linear mapMm×n(F )→
F . Show further that the mapping A 7→ τA is a linear mapMm×n(F )→
Mm×n(F )∗, and that it is an isomorphism.

2. Let x be a non-zero vector in the finite dimensional vector space
V . Show that there is a linear functional f ∈ V ∗ such that f(x) 6= 0.
Deduce that if x 6= y are vectors in V , then there is a linear functional
f ∈ V ∗ such that f(x) 6= f(y).

3. Show that the dual of the space P of real polynomials is isomorphic
to the space RN of all sequences of real numbers, via the mapping which
sends a linear form ξ : P → R to the sequence (ξ(1), ξ(t), ξ(t2), . . .).
In terms of this identification, describe the effect on a sequence (a0, a1, a2, . . .)
of the linear maps dual to each of the following linear maps P → P : (a)
The map D defined by D(p)(t) = p′(t). (b) The map S defined by
S(p)(t) = p(t2). (c) The map E defined by E(p)(t) = p(t − 1). (d) The
composite DS. (e) The composite SD. Verify that (DS)∗ = S∗D∗ and

(SD)∗ = D∗S∗.
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4. Let τ : V → V be an endomorphism of a finite dimensional complex
vector space and let τ ∗ : V ∗ → V ∗ be its dual.

Show that a complex number λ is an eigenvalue for τ if, and only if,
it is an eigenvalue for τ ∗. How are the algebraic and geometric multiplic-
ities of λ for τ and τ ∗ related? How are the minimal and characteristic
polynomials for τ and τ ∗ related?

5. Let F be a subset of the dual V ∗ of a finite dimensional vector
space V . Show that F spans V ∗ if, and only if,

f(v) = 0 for all f ∈ F ⇐⇒ v = 0 .

Tripos questions: 98406, 99406, 00215.


