
ON MODULAR UNITS

A. J. Scholl

Introduction. In [6], Kubert and Lang describe the group of integral modular units on Γ(n) (“units over
Z” in their terminology), and in particular determine its rank. Their method is based on finding explicit
generators for the group of all modular units, and then by calculating their q-expansions to determine which
are integral. In §5 of , Beilinson suggests another approach, based on representation theory and the geometry
of the moduli schemes Mn. In this note I shall carry out this programme and give a representation-theoretic
description of the group of integral modular units tensored with Q. From this it will be a simple exercise to
calculate the rank for any reasonable congruence subgroup; we give an example at the end of §2. The proof
uses the adelic language, and exploits in an essential way the action of Hecke operators at primes dividing
the level. This approach reduces the problem to showing that the modular units ∆(qz)/∆(z) (for a prime
q) are not integral; we give a proof of this fact by “pure thought” at the very end of the paper.

I am very grateful to several people for discussions on this topic, especially to R. Weissauer and N. Schap-
pacher. Indeed, the main part of this note was originally to have formed part of our joint paper [7] on
Beilinson’s conjecture for modular curves.

Notations. We denote by G the algebraic group GL2 over Z. We use the following notations for subgroups
of G:

B =

(

∗ ∗
0 ∗

)

; N =

(

1 ∗
0 1

)

; D =

(

∗ 0
0 1

)

; A =

(

∗ 0
0 ∗

)

.

Write Z for the centre of G. If H is any one of A, B. . . write HR for the group of R-valued points of H ,
and Hf , Hp for HAf

, HQp
respectively (Af being the ring of finite adèles of Q). Set

H+
Q = {h ∈ HQ | det(h) > 0} .

1. Recall the standard description of the modular curves Mn. Write Kn for the compact open subgroup

Kn = ker{pn : G
Ẑ
→ GZ/nZ}

of Gf . For any integer n ≥ 3, there exists a moduli scheme Mn for elliptic curves E with level n structure

(Z/nZ)2 ∼−→ E[n]. It is a smooth curve over Q, and its complex points can be described as

Mn(C) = GQ\H
± ×Gf/Kn

where H± = C − R. The en-pairing defines a morphism Mn −→ Spec Q(µµµn), whose geometric fibre is
connected.

More generally, for any compact open subgroup K of Gf , there is a modular curve MK defined over Q

with
MK(C) = GQ\H

± ×Gf/K.

We have Mn = MKn
, and the curves Mn form a cofinal family in the inverse system (MK)K . We consider

the inverse limit
M = lim

←−
n

Mn

= lim
←−
K

MK

which is an affine scheme over Q(µµµ∞) and is regular. The second description shows that Gf acts on M . The
group of modular units is by definition O∗(M); it contains Q (µµµ∞)∗.

Write Q for the algebraic closure of Q in C. Write | · |f for the finite idèle modulus. For an even Dirichlet

character χ of Q, define S(χ) to be the space of all locally constant functions φ : Gf → Q satisfying

φ(hg) = χ(d)
∣

∣

∣

a

d

∣

∣

∣

f
φ(g),
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for every h =

(

a b
0 d

)

∈ Gf . The group Gf acts on S(χ) by right translation.

It is clear that any φ ∈ S(χ) is determined by its restriction to G
Ẑ
; letting µ denote a non-zero invariant

measure on this subgroup, define S(χ)0 to be the subspace comprising all φ ∈ S(χ) for which

∫

G
Ẑ

φdµ = 0.

We have S(χ)0 = S(χ) if χ 6= 1, and S(1)0 is an invariant subspace of S(1) of codimension one.

In §3 we will sketch a proof of the following fact (which should be well known).

Proposition 1. There is a Gf -equivariant isomorphism

(O∗(M)/Q(µµµ∞)∗)⊗Z Q
∼−→

⊕

χ6=1

S(χ) ⊕ S(1)0,

the sum being taken over all nontrivial even Dirichlet characters χ of Q.

To define the integral units we denote by Mn/Z the regular model of Mn constructed in [3], [5]. This
can be most simply described as the normalisation of the affine j-line in the function field of Mn (to avoid
problems of representability we should assume that n is the product of two coprime integers, each greater
than 2). Let MZ = lim

←−
n

Mn/Z. The group of integral modular units is then by definition O∗(MZ). (This is

equivalent to the definition given in [6].) We have Z [µµµ∞]
∗
⊂ O∗(MZ).

To describe O∗(MZ) in representation-theoretic terms, we must recall that the representations S(χ)
of Gf are restricted tensor products of admissable representations of Gp. (For the elementary facts about
representations of Gp we use here and later, see for example [1] or [4], §3.) More precisely, S(χ) =

⊗

p

′ Sp(χ),

where Sp(χ) denotes the space of locally constant functions φ : Gp → Q satisfying

φ(hg) = χp(d)
∣

∣

∣

a

d

∣

∣

∣

p
φ(g),

for every h =

(

a b
0 d

)

∈ Gp. If we denote by Sp(χ)0 the subspace comprising all φ ∈ Sp(χ) such that

∫

SL2(Zp)

φdµp = 0

then Sp(χ) is irreducible whenever χp 6= 1. If χp = 1 then Sp(χ)0 = Sp(1)0 is the unique nontrivial invariant
subspace of Sp(χ) = Sp(1); it has codimension one. We have

S(1)0 =

{

φ = ⊗
p

′ φp ∈ S(1) | for at least one p, φp ∈ Sp(1)0
}

.

Define accordingly

S(1)00 =

{

φ = ⊗
p

′ φp ∈ S(1) | for at least two distinct p, φp ∈ Sp(1)0
}

.

We can now state our main result.
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Theorem 2. The isomorphism of Proposition 1 gives an identification

(O∗(MZ)/Z[µµµ∞]∗)⊗Z Q =
⊕

χ6=1

S(χ)⊕ S(1)00.

2. In this section we describe the purely algebraic part of the proof of Theorem 2. In §4 below we shall
construct, for each prime q, a Gf -morphism

Φq : O∗(M)⊗Q −→ Sq(1)0 ⊗ Vq

with the following properties:

(a) Vq is a direct sum of one-dimensional representations of
∏′

p6=q Gp;

(b) Φq is nonzero;

(c)
⋂

q
kerΦq = (O∗(MZ) ·Q(µµµ∞)∗)⊗Q.

Since Φq is trivial on Q(µµµ∞)∗ (by property (c) above) we see that Φq factors:

O∗(M)⊗Q
Φq

−−−→ Sq(1)0 ⊗ Vq




y

x





⊕Φq,χ

(

O∗(M)/Q (µµµ∞)∗
)

⊗Q
∼−→

⊕

χ6=1 S(χ)⊕ S(1)0

If χ 6= 1 then choose a prime p 6= q for which χp 6= 1. The irreducibility of Sp(χ) for such a prime p
in conjunction with a) implies that Φq,χ = 0. Consider therefore the component Φq,1. The representation
S(1)0 is the sum of the subspaces

Up = Sp(1)0 ⊗
⊗′

l 6=p

Sl(1)

for all p (including p = q). If p 6= q then the same argument as used in the case χ 6= 1 shows that Φq,1(Up) = 0.
So by property b) we have Φq,1(Uq) 6= 0. Let

λl : Sl(1)→ Q

denote the unique Gl-invariant linear form on Sl(1) which takes the value 1 on the spherical vector. It is
then clear that for some non-zero invariant v ∈ Vq the mapping Φq,1 is given by

Φq,1 : x = ⊗′

l
xl 7→

∏′

l 6=q

λl(xl) · xq ⊗ v ∈ Sq(1)0 ⊗ Vq

for any x ∈ S(1)0. (Note that the formula makes sense since firstly, λlxl = 1 for all but finitely many l,
and secondly xl ∈ Sl(1)0 for at least one l.) Therefore

⋂

q
kerΦq,1 = S(1)00, and from property c) Theorem

2 follows.

To illustrate the result, let K ⊂ Gf be an open compact subgroup. We have an exact sequence

0→
(

S(1)00
)K

→
(

S(1)
)K α
−→

(

⊕

q

Sq(1)0
)K

→ 0

where α is the sum of the maps Φq,1 in the previous paragraph. In particular, the corank of the image of

O∗(MZ)K in (O∗(M)/Q(µµµ∞)∗)K is

dim
Q

(

⊕

q

Sq(1)0
)K

.

For example, let K = Kn, with n =
∑

qei

i . The corank is then
∑

i

(

#P1(Z/qei

i )− 1
)

in agreement with [6].
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3. For the proof of proposition 1 we need to recall the standard compactification of the modular curves.
MK is the complement in a smooth and proper curve MK over Q of a finite set of reduced points (cusps)
M∞

K . Define M∞ = lim
←−
K

M∞
K , a profinite Q-scheme on which Gf acts.

The set of complex points M∞(C) can be identified with the separated quotient of P1(Q)×Gf by GQ;
fixing the standard cusp (∞, 1) ∈ P1(Q)×Gf gives a Gf -bijection

M∞(C) ∼−→ A+
QNf\Gf .

Let t : Aut −→ Ẑ∗ denote the cyclotomic character, giving the action of Aut on exp(2πi · Q). Then

α ∈ Aut acts on the cusps by left multiplication by

(

t(α) 0
0 1

)

∈ D
Ẑ
, and thus we get for the set |M∞| of

closed points of M∞

|M∞| ∼−→ ZQDfNf\Gf .

Denote by V ∞ the set of all nontrivial valuations v : Q(M)∗/Q∗ −→ Q whose center belongs to M∞.
There is a canonical valuation v∞, centred at the standard cusp (∞, 1), corresponding to the choice of
uniformiser q = e2πiz on the upper half-plane. By considering its stabiliser we see that

V ∞ ∼−→ ZQD
Ẑ
Nf\Gf

and that if a ∈ Q∗, a > 0 and v ∈ V ∞ then

(

a 0
0 1

)

· v is a−1v.

The natural Gf -equivariant projection π : V ∞ −→ |M∞| has a section σ, defined as follows. By the
Iwasawa decomposition Gf = B+

QG
Ẑ

any element of |M∞| may be represented by some k ∈ G
Ẑ
, and then

σ : ZQDfNfk 7→ ZQD
Ẑ
Nfk

is well-defined and G
Ẑ
-equivariant (but not Gf -equivariant).

Now let K = Kn for some n, and for x ∈ |M∞| let ordx,K denote the normalised valuation of Q(MK)
centred at the image of x in MK (taking value 1 on a uniformiser). Since G

Ẑ
acts transitively on |M∞

K |,
there exists a positive constant cn ∈ Q such that for every x ∈ |M∞|,

σ(x)|Q(MK ) = cnordx,K . (1)

With these preliminaries we can prove Proposition 1. For u ∈ O∗(M) define the function

div(u) :V ∞ −→ Q

v 7→ v(u).

Then:

(i) div(u) is locally constant, and vanishes if and only if u is constant;

(ii) (div u) ·

(

a 0
0 1

)

= a−1 div u for all a ∈ Q, a > 0;

(iii) If µ is a G
Ẑ
-invariant measure on |M∞|,

∫

|M∞|

(div u)(σ(x)) dµ(x) = 0.

Indeed, by (1) above (iii) is simply the assertion that the divisor of a function on Mn has degree zero.
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The Manin-Drinfeld theorem states that any divisor of degree zero on Mn supported at the cusps is the
divisor of some element of O∗(Mn). This, in conjunction with the above, implies that u 7→ div u defines an
isomorphism of Gf -modules

(O∗(M)/Q(µµµ∞)∗)⊗Z Q
∼−→ S0

where S0 is the space of all locally constant functions φ : Gf → Q such that

φ

((

a b
0 d

)

g

)

=
∣

∣

∣

a

d

∣

∣

∣

f
φ(g)

for every a ∈ A∗
f , b ∈ Af , d ∈ Q∗, and

∫

G
Ẑ

φdµ = 0.

Now decomposing S0 ⊗Q under the action of Zf gives proposition 1.

Remark. An alternative route to the proposition is to identify S(χ)0 with the space of holomorphic weight
2 Eisenstein series with central character χ; the isomorphism is then given by the map u 7→ d log u.

4. To construct the maps Φq we first must recall ([3] V.4, [5] §13.7) the structure of the reduction of MZ

modulo a prime q. Suppose that r ≥ 1, (n, q) = 1, and n, qr ≥ 3. Then by [5] Theorem 13.7.6 the
irreducible components of Mnqr/Z ⊗Z Fq are indexed by P1(Z/qrZ) × |SpecZ[µµµn]⊗ Fq|. The action of
GZ/nqrZ = GZ/nZ ×GZ/qrZ is given as follows:-

• the first factor acts on P1(Z/qrZ) by linear fractional transformations, and acts trivially on |SpecZ[µµµn]⊗ Fq|;

• the second factor acts trivially on P1(Z/qrZ), and has Galois action on |SpecZ[µµµn]⊗ Fq| given by

GZ/nZ
det
−→(Z/nZ)∗ ∼−→ Gal(Q(µµµn)/Q).

Write Xq for the set of irreducible components of MZ ⊗ Fq, and Yq for the set of primes of Z[µµµ∞] over

q. It then follows by passage to the limit that Xq
∼−→ P1(Qq)× Yq.

Claim. The action of Gf on Xq is the product of:

• the action of Gq on P1(Qq) by linear fractional transformations;

• the Galois action of
∏′

p6=q Gp on Yq by determinant followed by the Artin map.

Indeed, we know that the action of Gf on M induces the Galois action on Q(µµµ∞) = O(M) given by
determinant followed by the Artin map. By the above G

Ẑ
acts as claimed, so by the Iwasawa decomposition

is suffices to consider the action of B+
Q. One way to do this is to consider the point of M∞ which is the

Galois orbit of the standard cusp (∞, 1); let T∞ denote its closure in MZ. Then from the description in
[5] of the irreducible components it is easy to see that T∞ meets precisely those components with labels
(∞, y) ∈ P1(Qq)× Yq. Since T∞ is fixed by B+

Q the claim then follows.

There is an exact sequence

0→ O∗(MZ)⊗Q→ O∗(M)⊗Q
(Ψq)q

−→
∐

q

H0(Xq,Q)

where H0(Xq,Q) is the space of locally constant functions from Xq to Q, and Ψq is defined as follows: for
each x ∈ Xq let vx denote the corresponding Q-valuation of the function field Q(M), normalised so that
vx(p) = 1. Then Ψq(u) is the function x 7→ vx(u). Clearly Ψq is Gf -equivariant, and

Ψq

(

Q(µµµ∞)∗ ⊗Q
)

= H0(Yq,Q) ⊂ H0(Xq,Q).

The quotient H0(Xq,Q)/H0(Yq ,Q) is of the form Sq(1)0 ⊗ Vq, since in fact Sq(1)0 ∼−→ H0(P1(Qq),Q)/Q;
we then define Φq to be the composite

O∗(M)⊗Q
Ψq

−→ H0(Xq,Q) −−−−→→ H0(Xq,Q)/H0(Yq ,Q)








y

≀

Φq Sq(1)0 ⊗ Vq
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It remains only to construct a unit uq ∈ O
∗(M) such that Φq(uq) 6= 0. To do this recall ([2], §1) that

the discriminant ∆(E/S) of an elliptic curve f : E −→ S is a nowhere-vanishing section of ωωωE/S
⊗12 =

(R1f∗Ω
1
E/S)⊗12, whose formation is compatible with base-change. Set

K0(q) =

{(

a b
c d

)

∈ G
Ẑ
| c ≡ 0 (mod q)

}

.

Then MZ/K0(q) is the modular curve Y0(q) classifying triples (E/S, E′/S, α) where E, E′ are elliptic curves
over S and α : E −→ E′ is an S-isogeny of degree q ([3] V.1.6, [5] Theorem 6.6.2).

Associate to (E/S, E′/S, α) the section

α∗∆(E′/S)/∆(E/S) ∈ Γ(S,OS).

This defines an element uq ∈ O(Y0(q)) ⊂ O(MZ). Now α∗ : ωωωE′/S −→ ωωωE/S is an isomorphism if α is étale.
Thus over Z[1/q], uq is nonvanishing, and so in particular uq ∈ O

∗(Y0(q)Q) ⊂ O∗(M).

Now the fibre Y0(q) ⊗ Fq has two irreducible components (see [3], Theorem V.1.16); one of these
classifies triples (E, E′, α) for which α is the relative Frobenius, and the other classifies triples for which α
is the Verschiebung. When α is the Frobenius, the mapping α∗ is zero. Therefore uq vanishes identically on
the one component, but not on the other. Now the irreducible components of MZ ⊗ Fq map surjectively to
the components of Y0(q)⊗ Fq. Therefore Φq(uq) 6= 0 as required.
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