ON MODULAR UNITS

A. J. Scholl

Introduction. In [6], Kubert and Lang describe the group of integral modular units on I'(n) (“units over
Z” in their terminology), and in particular determine its rank. Their method is based on finding explicit
generators for the group of all modular units, and then by calculating their g-expansions to determine which
are integral. In §5 of , Beilinson suggests another approach, based on representation theory and the geometry
of the moduli schemes M,,. In this note I shall carry out this programme and give a representation-theoretic
description of the group of integral modular units tensored with Q. From this it will be a simple exercise to
calculate the rank for any reasonable congruence subgroup; we give an example at the end of §2. The proof
uses the adelic language, and exploits in an essential way the action of Hecke operators at primes dividing
the level. This approach reduces the problem to showing that the modular units A(gz)/A(z) (for a prime
g) are not integral; we give a proof of this fact by “pure thought” at the very end of the paper.

T am very grateful to several people for discussions on this topic, especially to R. Weissauer and N. Schap-
pacher. Indeed, the main part of this note was originally to have formed part of our joint paper [7] on
Beilinson’s conjecture for modular curves.

Notations. We denote by G the algebraic group GLg over Z. We use the following notations for subgroups

of G:
* ok 1 % x 0 * 0
=5 D)= 1):2=(5 1)i4= (6 9):

Write Z for the centre of G. If H is any one of A, B... write Hg for the group of R-valued points of H,
and Hy, H, for Ha,, Hq, respectively (A being the ring of finite adeles of Q). Set

HE = {h € Hq | det(h) > 0} .
1. Recall the standard description of the modular curves M,,. Write K, for the compact open subgroup
K, = ker{pn : GZ - G'Z/nZ}

of G¢. For any integer n > 3, there exists a moduli scheme M,, for elliptic curves E with level n structure
(Z/nZ)*> = E[n]. Tt is a smooth curve over Q, and its complex points can be described as

M, (C) = Go\H* x G;/K,,

where H* = C — R. The e,-pairing defines a morphism M, — Spec Q(u,,), whose geometric fibre is
connected.

More generally, for any compact open subgroup K of Gy, there is a modular curve My defined over Q
with
MK(C) = GQ\Hi X Gf/K
We have M,, = Mk, , and the curves M,, form a cofinal family in the inverse system (Mg) - We consider
the inverse limit
M =lim M,
ey
K
which is an affine scheme over Q(p,) and is regular. The second description shows that G acts on M. The
group of modular units is by definition O*(M); it contains Q (o)™
Write Q for the algebraic closure of Q in C. Write | - |f for the finite idele modulus. For an even Dirichlet

character x of Q, define S(x) to be the space of all locally constant functions ¢ : Gy — Q satisfying

p(hg) = x(d)E #(9),
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It is clear that any ¢ € S(x) is determined by its restriction to G'; letting 4 denote a non-zero invariant
measure on this subgroup, define S(x)° to be the subspace comprising all ¢ € S(x) for which

/GAgbd,u—O.

We have S(x)? = S(x) if x # 1, and S(1)Y is an invariant subspace of S(1) of codimension one.

for every h = < > € Gy. The group Gy acts on S()x) by right translation.

In §3 we will sketch a proof of the following fact (which should be well known).

Proposition 1. There is a G f-equivariant isomorphism

(0"(M)/Q(ks)") ©2 Q ~= P S(x) & 8(1)°,
x#1

the sum being taken over all nontrivial even Dirichlet characters x of Q.

To define the integral units we denote by M,, /7 the regular model of M,, constructed in [3], [5]. This
can be most simply described as the normalisation of the affine j-line in the function field of M,, (to avoid
problems of representability we should assume that n is the product of two coprime integers, each greater
than 2). Let Mz = lim M, /7. The group of integral modular units is then by definition O*(Mz). (This is

equivalent to the definition given in [6].) We have Z [u..]" C O*(Mz).

To describe O*(Mz) in representation-theoretic terms, we must recall that the representations S(x)
of Gy are restricted tensor products of admissable representations of Gp,. (For the elementary facts about
representations of G, we use here and later, see for example [1] or [4], §3.) More precisely, S(x) = Q' Sp(X),

P

where Sp(x) denotes the space of locally constant functions ¢ : G, — Q satisfying
a
¢(hg) = xp(d)‘a‘ o(9);
P

a b

for every h = <O d

> € G,. If we denote by S,(x)° the subspace comprising all ¢ € S,(x) such that

| edn=0
SL2(Zy)

then S,(x) is irreducible whenever x,, # 1. If x, = 1 then S,(x)° = S,(1)° is the unique nontrivial invariant
subspace of S,(x) = Sp(1); it has codimension one. We have

S(1)° = {¢ = Q' ¢, € S(1) | for at least one p, ¢, € Sp(l)o} .
P
Define accordingly
S(1)% = {(b =®' ¢p € S(1) | for at least two distinct p, ¢, € Sp(l)o} .
p

We can now state our main result.



Theorem 2. The isomorphism of Proposition 1 gives an identification

(0" (Mz)/Zlpo]*) ©2 Q = P S(x) & S(1)*.
x#1

2. In this section we describe the purely algebraic part of the proof of Theorem 2. In §4 below we shall
construct, for each prime ¢, a G'y-morphism

D, 0" (M)2Q — S,(1)° 2V,
with the following properties:
(a) V, is a direct sum of one-dimensional representations of H/p 24 Gpi
(b) ®, is nonzero;

(c) Nker @y = (0*(Mz) - Q(ke)") ® Q.

Since @, is trivial on Q(ps,)* (by property (c) above) we see that ®, factors:

O(M)»qQ T s ey,

| ot
(0" (M)/Qp)) 2Q  — B, SK) B S(1)°

If x # 1 then choose a prime p # ¢ for which x, # 1. The irreducibility of S,(x) for such a prime p
in conjunction with a) implies that ®,, = 0. Consider therefore the component ®, ;. The representation
S(1)% is the sum of the subspaces

U, = 5,(1)° Q) Si(1)
l#p

for all p (including p = q). If p # ¢ then the same argument as used in the case x # 1 shows that ®,1(U,) = 0.
So by property b) we have ®,1(U,) # 0. Let

N:S(1) —Q
denote the unique Gj-invariant linear form on S;(1) which takes the value 1 on the spherical vector. It is
then clear that for some non-zero invariant v € V, the mapping ®,; is given by
!
D1 = @l)’xl — H N(zp) 2y @0 €S (1) @V,
l#q

for any z € S(1)°. (Note that the formula makes sense since firstly, \;z; = 1 for all but finitely many I,
and secondly z; € S;(1)° for at least one I.) Therefore (ker ®,1 = S(1)%, and from property ¢) Theorem
q

2 follows.

To illustrate the result, let K C Gy be an open compact subgroup. We have an exact sequence
K K K
0— (3(1)00) . (5(1)) L(@Sqa)o) -0
q

where « is the sum of the maps ®,; in the previous paragraph. In particular, the corank of the image of

O*(Mz)® in (O*(M)/Q(poc)*)" is p
dimg (@squ)o) .

For example, let K = K,,, with n = ¢;*. The corank is then

> (#PU(Z/¢) — 1)
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in agreement with [6].



3. For the proof of proposition 1 we need to recall the standard compactification of the modular curves.
M is the complement in a smooth and proper curve M i over Q of a finite set of reduced points (cusps)
Mg?. Define M*° = lim M3, a profinite Q-scheme on which G acts.

K

The set of complex points M>°(C) can be identified with the separated quotient of P1(Q) x G by Gq;
fixing the standard cusp (oo, 1) € P1(Q) x G gives a G ¢-bijection

M>(C) =5 AGNf\Gy.

Let ¢ : Aut — Z* denote the cyclotomic character, giving the action of Aut on exp(2mi - Q). Then

t(a) 0> € D, and thus we get for the set |M°| of

«a € Aut acts on the cusps by left multiplication by < 0o 1

closed points of M
|M>| — ZqDsNj\Gy.

Denote by V*° the set of all nontrivial valuations v : Q(M)*/Q* — Q whose center belongs to M.
There is a canonical valuation v, centred at the standard cusp (oo,1), corresponding to the choice of
uniformiser ¢ = e?™** on the upper half-plane. By considering its stabiliser we see that

~

Ve = ZQDsz\Gf

and that if a € Q*, a > 0 and v € V*° then (g (1)> v is a” .

The natural Gs-equivariant projection 7 : V°° — |M°| has a section o, defined as follows. By the
Iwasawa decomposition Gy = B(JS_GZ any element of |[M°°| may be represented by some k € G5, and then

o ZQDfok — ZQDszk

is well-defined and G-equivariant (but not G'y-equivariant).

Now let K = K, for some n, and for z € M| let ord, x denote the normalised valuation of Q(Mf)
centred at the image of z in Mg (taking value 1 on a uniformiser). Since G acts transitively on |[Mz?|,
there exists a positive constant ¢, € Q such that for every x € |[M*°|,

o(x)|q(my) = cnordy, K. (1)

With these preliminaries we can prove Proposition 1. For u € O*(M) define the function

div(u) V> — Q

v = v(u).

Then:
(i) div(u) is locally constant, and vanishes if and only if u is constant;

(i) (divu) - (g (1)) =a 'divuforala€eQ,a>0;

(iii) If p is a G4-invariant measure on |M |,
/ (divu)(o(x)) du(x) = 0.
[Moe]

Indeed, by (1) above (iii) is simply the assertion that the divisor of a function on M, has degree zero.
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The Manin-Drinfeld theorem states that any divisor of degree zero on M, supported at the cusps is the
divisor of some element of O*(M,,). This, in conjunction with the above, implies that u +— divu defines an
isomorphism of G y-modules

(O0"(M)/Q(Hso)*) ©2 Q = S°
where S is the space of all locally constant functions ¢ : Gy — Q such that

¢((8 Z>9> = ’%‘f¢(g)

for every a € A% be Ay, deQF, and
/ ¢dy = 0.
G5

z
Now decomposing S° ® Q under the action of Z t gives proposition 1.

Remark. An alternative route to the proposition is to identify S(x)" with the space of holomorphic weight
2 Eisenstein series with central character y; the isomorphism is then given by the map u +— dlogu.

4. To construct the maps ®, we first must recall ([3] V.4, [5] §13.7) the structure of the reduction of Mz
modulo a prime g. Suppose that r > 1, (n,q) = 1, and n, ¢" > 3. Then by [5] Theorem 13.7.6 the
irreducible components of M,z ®z F, are indexed by P'(Z/q"Z) x |Spec Z[p,] ® Fy|. The action of
Gz/ngrz = Gz/nz X Gz/qrz is given as follows:-
e the first factor acts on P'(Z/q"Z) by linear fractional transformations, and acts trivially on |Spec Z[p,,] ® Fy;
e the second factor acts trivially on P*(Z/q"Z), and has Galois action on |Spec Z[p,,] ® F,| given by
det

Gz/nz——(Z/nZ)" — Gal(Q(p,)/Q).
Write &, for the set of irreducible components of Mz ® F,, and ), for the set of primes of Z[u.,] over
q. Tt then follows by passage to the limit that X, — P1(Q,) x V.
Claim. The action of Gy on &} is the product of:
e the action of G4 on P'(Q,) by linear fractional transformations;

e the Galois action of H'p £q G, on Y, by determinant followed by the Artin map.

Indeed, we know that the action of G¢ on M induces the Galois action on Q(fto) = O(M) given by
determinant followed by the Artin map. By the above G acts as claimed, so by the Iwasawa decomposition
is suffices to consider the action of B(‘s. One way to do this is to consider the point of M which is the

Galois orbit of the standard cusp (oo, 1); let T, denote its closure in Mz. Then from the description in
[5] of the irreducible components it is easy to see that T, meets precisely those components with labels
(00,y) € P1(Qq) x V,. Since Tw, is fixed by B(S the claim then follows.

There is an exact sequence

0— 0" (Mg) ©Q — 0" (M) © Q=2 ] H(%,, Q)
q

where H°(X,, Q) is the space of locally constant functions from X, to Q, and ¥, is defined as follows: for
each z € X, let v, denote the corresponding Q-valuation of the function field Q(M), normalised so that
vz(p) = 1. Then ¥y (u) is the function z — v, (u). Clearly ¥, is Gy-equivariant, and

\Ijq (Q(p'oo)* ®G) = Ho(ytbﬁ) C HO(XIDG)'
The quotient H°(X,, Q)/H°(Y,, Q) is of the form S,(1)° ® V,, since in fact S;(1)° = H°(P*(Q,),Q)/Q;
we then define ®, to be the composite

O"(M)2Q % HUX, Q) —— H(X,Q)/H'Y,,Q)

[z

e S, (1)’ eV,



It remains only to construct a unit u, € O*(M) such that ®,(u,) # 0. To do this recall ([2], §1) that
the discriminant A(E/S) of an elliptic curve f : E — S is a nowhere-vanishing section of wg /S®12 =
(R f.Qp,5)®"?, whose formation is compatible with base-change. Set

Ko(q)—{<i Z) €Gyle=0 (modq)}.

Then Mz/Ko(q) is the modular curve Yy(q) classifying triples (E/S, E'/S, ) where E, E’ are elliptic curves
over S and a: E — E' is an S-isogeny of degree ¢ ([3] V.1.6, [5] Theorem 6.6.2).

Associate to (E/S, E'/S, a) the section
a*A(E'/S)/A(E/S) € T'(S, Og).

This defines an element u, € O(Yy(q)) C O(Mz). Now o* : wgr/g — wp/s is an isomorphism if a is étale.
Thus over Z[1/q], uq is nonvanishing, and so in particular u, € O*(Yo(q)q) C O*(M).

Now the fibre Yy(q) ® F, has two irreducible components (see [3], Theorem V.1.16); one of these
classifies triples (E, E’, o) for which « is the relative Frobenius, and the other classifies triples for which «
is the Verschiebung. When « is the Frobenius, the mapping a* is zero. Therefore u, vanishes identically on
the one component, but not on the other. Now the irreducible components of Mz ® F; map surjectively to
the components of Y(¢) ® F,. Therefore ®,(u,) # 0 as required.
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