A note on trilinear forms for reducible
representations and Beilinson’s conjectures

M Harris and A J Scholl

Introduction

Let F' be a non-Archimedean local field, and m; (i = 1,2,3) irreducible ad-
missible representations of G = G Ly(F'), such that the product of their central
characters is trivial. In [8], Prasad shows that there exists, up to a scalar factor,
at most one G-invariant linear form on m ® 7 ® 73, and determines exactly
when such a form exists. These results have been used by Harris and Kudla
[6] in the study of the triple product L-function attached to three cuspidal
automorphic representations of GL, of a global field.

In this note we consider the case when 7; is permitted to be a reducible
principal series representation, whose unique irreducible subspace is infinite-
dimensional. It is relatively trivial to extend Prasad’s results to cover these
cases. The interest in so doing is global. In [1] Beilinson constructs certain
subspaces of the motivic cohomology of the product of two modular curves
using modular units. His construction can be interpreted as a certain invariant
trilinear form on 7®7’' @7” taking values in motivic cohomology: here 7, 7" are
weight 2 cuspidal (irreducible) representations of G Lo of the finite adeles of Q,
and 7" is the space of weight 2 holomorphic Eisenstein series (which is highly
reducible). The regulators of these elements of motivic cohomology can be
computed as special values of Rankin double product L-functions attached to
7 and 7', and Beilinson’s calculation of the regulator, together with his general
conjectures, predict that these subspaces are one-dimensional. The main aim
of the present note is to verify this prediction unconditionally (Theorem 3.1
below).
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1 Local trilinear forms

Throughout this section, F' denotes a non-Archimedean local field, o its valu-
ation ring, and w a uniformiser. We let |—|: F* — Q* be the normalised
absolute value, so that |w|™" = #(0/wo). We write G = GLy(F), and de-
note by B the standard Borel subgroup of upper triangular matrices, by A the
diagonal torus, and by K the maximal compact subgroup GLs(0). As usual
0: B — Q* denotes the character

bl * .
d <0 bg> N

(which is the inverse of the modular character of B). Fix an algebraically
closed field k of characteristic zero (in the applications we will take & = Q),
and a square root ,/p of the residue characteristic of F', which determines
a square root 8'/2 of the character §. We work in the category of smooth
representations of G over k. As is customary we do not distinguish between a
representation and the space on which it is realised.

We recall standard facts about induced representations of GG, as can be
found in [4, 7] or (in much greater generality) in [2, 3, 5]. Let g = (p1, po): A —
k* be a character of A, extended to B in the obvious way. Write pu* = (g, t1).
The normalised' induced representation is then

by
by

I dG( ) — f: G — k locally constant s.t.
N = F(bg) = n(b)S(b)2f(g) for all be B, g€ G |

This is an admissible representation of G' which is indecomposable. It is ir-
reducible if and only ppu;"' # |—|i1, in which case it is also isomorphic to
Ind§ p®. If it is reducible we may assume, twisting by a character of F* if ne-
cessary, that = 0%1/2 = (4~1)*, and there are then non-split exact sequences
of G-modules

(1.1) 0—k—Ind§(07?) - Sp—0
(1.2) 0 — Sp — Ind§(6/?) k=0

where Sp, the special or Steinberg representation, is the representation of G
acting on the space of locally constant functions on P'(F) = B\G modulo
constant functions. The space of K-invariants of each of the representations

Tt would be preferable to use unnormalised induction, but we refrain from doing so in
order to be able to quote from [8] without confusion.



Ind§ 6%%/2 is one-dimensional: for Ind§ 6='/2 it is the G-invariant subspace of
constant functions; for Ind§ §'/2 it is the subspace spanned by the function
¢: bk — §(b) (for b € B, k € K), and the linear form ¢ in (1.2) can be nor-
malised so that ¢(¢) = 1. Recall also that Sp is its own contragredient, and
that dim Sp°™®) = 1, where K;(w) denotes the Iwahori subgroup (elements
of K which are congruent mod w to an element of B). It follows that the
G-invariant form Sp ® Sp — k is symmetric, because it must be non-zero
on Spo(®) @ gphoe(=). (The same holds for any irreducible admissible repres-
entation of G with trivial central character by the theory of newvectors, an
observation of Prasad and Ramakrishnan).

If 7 is an irreducible admissible representation of G, its central character
will be denoted w,.

Write G’ for the group of invertible elements of the unique quaternion di-
vision algebra over F. If 7 is a square-integrable (= discrete series) irreducible
admissible representation of G, let «’ be the irreducible representation of G’
associated to m by the Jacquet-Langlands correspondence [7, §12].

Prasad proves [8, Thms 1.1, 1.2, 1.3]

Theorem 1.1. Let m; (1 < i < 3) be irreducible admissible infinite-dimen-
sional representations of G with [[ wx, = 1.

(i) If at least one of m; is principal series, then

dim Homg(m ® m ® 73, k) = 1.

(i) If all of m; are discrete series, then

dim Homg (m ® my ® 73, k) + dim Home (7] @ 75 @ 75, k) = 1

(111) If all of m; are unramified, then the restriction of a non-zero G-invariant
form on m ® Ty ® w3 to 7TiK ® 7T2K &® 71'?{{ 1S non-zero.

As the Jacquet-Langlands correspondence takes the special representation
Sp of G to the trivial representation of G', one has:

Corollary 1.2. If w, my are discrete series then
dimHomg(m X T K Sp, k) =1l <= m ¢ To.

For convenience we quote two intermediate results from Prasad’s paper
which we shall need:



Proposition 1.3. [8, Cors. 5.7 & 5.8] For any admissible representation m of
G and any character x of B,

Ext(Ind§ x,7) = 0 <= Homg/(Ind§ x, 7) = 0
Extg(m, Ind§ x) = 0 <= Homg(m, Ind§ x) = 0

Proposition 1.4. [8, p.17] Let u, u' be characters of A. Then there is an
exact sequence of G-modules:

0 — ¢-IndG(puu'™) — Ind§ p @ Ind§ i/ — Ind§ (up/'6%) — 0

where for a character v: A — k*,

¢ | f:G — k compactly supported mod A and locally constant
c-Indj; v = .

s.t. flag) =v(a)f(g) forallae A, g€ G

We now consider the case when 7; are admissible representations which are
either irreducible or isomorphic to a twist of Ind§ §/2.

Proposition 1.5. Suppose that w, © are infinite-dimensional irreducible ad-
missible representations of G, with wyw, = 1. Then

dim Homg (7 @ 7' ® Ind§ 6/, k) = 1.

Moreover if m and 7' are unramified, then the restriction of a non-zero invari-
ant trilinear form to 7% @ 7% @ (Ind§ 6'/2)X is non-zero.

Proof. For the most part we simply adapt the proofs in [8] — note that the
hard case (three supercuspidals) doesn’t arise.

Case 1: m is supercuspidal.
The analogous case is treated in [8, middle of p.18]. As 7 is supercuspidal, we
have by the theory of the Kirillov model 7|p ~ ¢-Ind5 1wy, and therefore by
two applications of Frobenius reciprocity

Homg(m ® «’ @ Ind$§ 6%/2) = Homg (7 ® 7', Ind§ 6~/2)
= Homp(c-Ind5 y (Yw,) @ 7|5, k)

= Homyn (7| 25, ¢~ twrr)

and the last group is simply Homy (7/|y,%~!) which is 1-dimensional by the
existence and uniqueness of the Kirillov model.
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(It is worth noting that by [4, Theorem 1.6], 7 is projective in the category
of smooth G-modules with central character w;, so 7®@Ind§ §'/? = 7@ (r®@Sp)
and

Homg (7 @ 7' @ Ind§ 62, k) = Homg(r @ 7', k) @ Homg (7 @ 7’ @ Sp, k)

which gives a direct proof of 1.2 when at least one of the representations is
supercuspidal.)

Case 2: both m and 7' are special.
After twisting we can assume that 7 = 7’ = Sp. Then as Homg(Sp ® Sp ®
Sp, k) =0, we get from (1.2)

Home(Sp ® Sp ® Ind$ 62, k) = Homg(Sp @ Sp, k) ~ k.

Case 3: m principal series, @™ principal series or special.
Suppose m = Ind$ pu where jiy /iy # |—|=". If @’ % &, then by Proposition 1.3

Homg (7', %) = Extg (7', %) = 0

and by Theorem 1.1, dim Homg (7' ® Sp,7) = 1. Now by (1.1) we have a long
exact sequence

(1.3) 0 — Homg(n', 7) — Homg(n' ® Ind§ 62, 7)
— Homg(7' ® Sp, 7)) — Extg (7, 7).
and therefore Homg (7 @ 7/ @ Ind§ 6/2, k) = Homg (' ® Ind§ 6'/2, %) ~ k.

In the case 7’ = 7, the exact sequence (1.3) shows that there is at least
one nonzero trilinear form. To show it is the only one, we proceed as in §5
of [8]; using Proposition 1.4 for 7 ® Ind§ §'/2 and then applying the functor
Homg(—, 7) = Homg(—, ') we get a long exact sequence:

0 — Homg(Ind$ 16, ) — Homg(m ® Ind§ 62, 7)
— Homg (e-Ind§ pd=2, 7).
Since m = Ind§ p is irreducible, Homg(Ind§ pud, 7) can only be nonzero if
IndS ;o ~ Ind§ ud, which means ud = p®, forcing 1 /pe = |—|~" which is not
the case. Also
Homg(c-Ind§ 1672, 1) = Homg (¢-Ind§ pd=? @ 7, k)
= HomA(u5_1/2 X 77"14, ]{2)



by Frobenius reciprocity, and this last space is one-dimensional by [8, Lemma
5.6(a)]. Therefore dimg (7 ® Ind§ 6/2,7) < 1, and the dimension is therefore
exactly one.

For the final statement about unramified representations, we simply go
through word-for-word the proof of [8, Thm. 5.10], taking V5 (in the notation
of loc. cit.) to be m. The key point is that in the displayed formula in the
middle of page 20, the denominator is non-zero; it vanishes only when one of V7,
V, is isomorphic to Ind§ §71/2 (possibly twisted by a quadratic character). [

Proposition 1.6. Suppose that m is an infinite-dimensional irreducible ad-
missible representation of G, with w, = 1. Then

dim Homg (7 ® Ind$ 62 ® Ind§ 6Y/2 k) = 1.

If m is unramified then the restriction of any non-zero invariant trilinear form
to 7% ® (Ind§ 6'/2)% @ (Ind§ 6/2)X is non-zero.

Proof. We have again the exact sequence (1.3) with 7/ = Ind§ §'/2 | and
since 7 is irreducible and not I-dimensional, Homg(Ind§ /2, %) = 0. By
Proposition 1.3 we also have Extj(Ind§ /2, %) = 0, and by 1.5 we have
dim Homg(Ind§ 6'/2 ® Sp,#) = 1, giving the result. The proof of the final
part is the same as for Proposition 1.5. 0

For completeness we also show:

Proposition 1.7. Homg(Ind§ 6'/2@Ind§ 6'/2@Ind§ 6'/2, k) is 1-dimensional.
It is generated by the form { @ £ ® £, which is nonzero on (Ind§ 6'/2)K ®
(Ind§ 6'/2)K @ (Ind§ 6/2)%.

Proof. Recall (1.2) that ¢ denotes a nonzero invariant linear form on Ind§ §'/2,
and that there is a unique K-fixed vector ¢ € Ind§ /2 with ¢(¢) = 1. Fix a
non-zero invariant form (—, —): Sp ® Sp — k. Let 3: Ind§ §'/? @ Ind§ 6'/2? ®
Ind§ 6'/2 — k be a G-invariant form. Then (3 vanishes on Sp ® Sp ® Sp by
Corollary 1.2. Therefore there are constants a, b, ¢ € k such that if v, v’ € Sp
and w € Ind§ 6'/2, then

Blwevev) =allw)(v,v)
Bl @w®v)=bl(w)(v,v)
Blo v @w) = cl(w)(v,v)

Since Sp® = 0 we have

(1.4) Blo®d®¢)=0 forallve Sp.



Put uy = g¢ — ¢ € Sp. Then for any v € Sp,

0=0(gv®9o®e¢) =L gp® ge)
= v u; ® ) + Bv® ¢ B uy) = c(v,uy) + blug,v)

hence b = —c since (—, —) is symmetric. Likewise b = —a = ¢ hence a = b =
¢ = 0. The vectors {u, | ¢ € G} span Sp over k, since ¢ is a generator for
Ind§ §'/2. Therefore 3 vanishes on all products © ® v ® w where at least two
factors lie in Sp.

It then follows easily from (1.4) that [ vanishes on all products where at
least one factor lies in Sp, which implies that 3 is a multiple of / @ / ® £. [

2 Global trilinear forms

In this section, F' will denote a global field. The symbols v, w will denote
finite places of F. Let A; be the ring of finite adeles of F' (the restricted
direct product of the completions F, over all finite places v), and F%, C F*
the subgroup of elements which are positive at every real place. For each v
write G, = GLy(k,). We use the same notations for objects associated to G,
as in the previous section, with a subscript v added.

Write G for the group GL2(Ay) (which is the restricted direct product of
the local groups G,), By for the upper triangular subgroup of Gy and §; =
IL,d.: Bf — Q"

We first consider the passage from local to global forms.

Proposition 2.1. Letm = Q'm,, 7’ = @), " = Q'wl! be factorisable admiss-

ible representations of Gy. Assume that each of m,, w,, m, is either irreducible
or a twist of Indgz 85>, Then

dim Homg, (7 @ ©’' @ 7", k) < 1
with equality if and only if for every v

dim Homg, (7, @ m, @ 7, k) = 1.
Proof. Recall first the definition of the restricted tensor product 7 = ®'x,,
which depends on a choice of spherical vector ¢, € X for all v outside some
finite set . It is defined to be the inductive limit of finite tensor products
Ts = ®uesTy, Where S runs over finite sets of places containing . If S C T



then the inclusion mapping 7g < mp is defined by = — 2 ® @ ,cr_g Po- In
particular, if

!/ !/ !/
e @ e @ T ®

{¢olvgs} {¢, v} {oplvgx}

then their tensor product is

/
TeT " = ® T, @ T QT
{Pv®¢, @y [vgE}

(Of course it need not be the case that (7, @7/ @x//)%» is 1-dimensional, or even
finite-dimensional). To give a non-zero invariant form on 7@’ @7" is therefore
equivalent to giving, for each v, a non-zero invariant form on m, ® 7, @7/, which
for almost all v takes the value 1 on ¢, ® ¢! ® ¢. Now use Prasad’s results
(Theorem 1.1) and Propositions 1.5, 1.6 and 1.7. (We have not excluded the
possibility that some of the local components of the original representations
are one-dimensional, but in that case the local theory is trivial.) O

The representations to which 2.1 applies can be highly reducible. We next
restrict to a particular class of such representations which (for F' = Q) arise
from weight 2 Eisenstein series. Let x: A}/FZ; — k™ be any character of finite
order (in other words, x is the restriction to A} of an idele class character of
finite order). Set

f: Gy — k locally constant s.t. f(bg) = x(b1)d¢(b)f(g)
bl *

0 by

I(x) =

forall g€ Gy and b = € By

Then Z(x) is an admissible Gy-module and is isomorphic to the restricted
tensor product ®!7Z,(x,), where

T, (xo) = Indg (o | =1, |=15%)

If x, = 1 then Z,(x,) = Z,(1) = Ind$ 5,/%, and we have the exact sequence

(1.2):
0 — Sp, — Z,(1) Lk —o.

We assume that when Z,(1) occurs in a restricted tensor product, the associ-
ated K ,-invariant vector ¢, is taken to be the unique one satisfying ¢,(¢,) = 1.
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If x = 1 then we have a local linear form /¢, for every v, hence their product
l; = ®'C, is a G p-invariant linear form ¢;: Z(1) — k; we write Z(1)? = ker ¢; C
Z(1). If we set

U, = Sp, @ X L.(1)
vFEW

then Z(1)° is the sum of the subspaces U,,.

For arbitrary yx, observe that by Chebotarev y, = 1 for infinitely many v,
so that the global representation Z(x) is an admissible G j-module of infinite
length.

Proposition 2.2. Let 7 = ®&'m,, 7' = Q'w. be irreducible admissible repres-
entations of Gy, all of whose local components are infinite-dimensional.
(i) If x: A}/ FZy — k* is any character of finite order and wywrx =1 then

dim Homg, (7 ® 7' ® Z(x), k) = 1.
(i) If 7" #£ 7 and wyw, =1 then

dim Homg, (7 @ @' ® Z(1)°, k) = 1.
(111) If 7’ ~ 7 then

dim Homg, (7 @ 7' @ Z(1)°, k) = oo

Proof. (i) This follows immediately from 2.1, 1.1 and 1.5.
(ii) Pick w with 7/, % 7. Observe that on the quotient

I(1)/Us = @) (1)

vFW

the subgroup G,, C G, acts trivially (hence also on Z(1)°/U,). Therefore
Homg, (7 ® 7’ ® Z(1)° /Uy, k) = Homg, (1 @ 7’ @ Z(1)/Uy, k) = 0, and thus
the homomorphisms of restriction

(2.1) Homg,(r @ 7 ® Z(1),k) — Homg, (r @ 7' ® Z(1)°, k)
— Homg, (1 @ 7' ® Uy, k),

are injective. But the proof of (i) shows that

dim Homg, (7 ® 7’ ® Z(1), k) = 1 = dim Homg, (7 ® 7' ® Uy, k),
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so we are done.
(iii) For each w ¢ S there is a G f-equivariant surjective homomorphism
Aot Z(1) = Z,(1)

@y >z | [ o)
vFEwW

where Gy acts on Z,, via the projection Gy — G, and whose kernel is
ker Ay = Y Uy
w!Fw

Observe that A, (Z(1)°) = Sp,, C Z,(1), and that for any x € Z(1)°, A, () =0
for all but finitely many w. Therefore the sum of these homomorphisms is a
G s-equivariant surjection

A= (M) Z(1)" — D Sp,,

whose kernel is the subspace Zw;éw, Uy N Uy. Therefore we have a G-
equivariant surjection

(2.2) 7T®7T/®I(1)0—>@7T®7T/®Spw

Now for all but finitely many w the local components ,,, 7/, are unramified,
hence principal series, so there will exist a nonzero trilinear form on 7, ® 7/, ®
Sp,,- For all v # w we have a pairing 7, ® 7, — k by hypothesis. Therefore
the right-hand side of (2.2) has an infinite-dimensional quotient on which Gy
acts trivially. O

We also have an analogous result when two of the representations are of
the form Z(x) or Z(1)%:

Proposition 2.3. Let 7 = ®'m, be an irreducible admissible representations
of Gy whose local components are all infinite-dimensional. Suppose that 7'
and 7" are representations of the form Z(x) or Z(1)°, and that wywrwem = 1.
Then

dim Homg, (7 @ ©’ @ 7", k) = 1.
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Proof. 1f both of 7/, 7" are of the form Z(x), then this follows from 2.1.

If " = Z(x) and " = Z(1), then we can choose w such that Homg,, (7, ®
Zw(Xw), k) = 0 (it is enough to take w such that x,, = 1 and 7, is unramified).
Then the same argument as in 2.2(ii) applies, using 1.6 in place of 1.5.

Finally suppose that 7/ = 7" = Z(1)°. Then consider the inclusions

Uy ®Z(1)° cZ(1)°®Z(1)° cZ(1) ® Z(1)°

whose successive quotients are (Z(1)°/U,,)®Z(1)° and Z(1)°. We have Homg, (7®
Z(1)% k) = 0. In fact, as Z(1) = 3" U, it is enough to show that Homg, (7 ®
Uw, k) = 0 for every w, which is clear locally. We claim that for w such that
Ty is unramified, Homg, (7 ® (Z(1)°/Uy) ® Z(1)°, k) = 0. Again it is enough
to show that for every w’, Homg, (m ® (Z(1)°/U,) ® Uy, k) = 0, and this is
true locally at w, since Z(1)°/U,, is trivial at w.

For such w the restriction homomorphisms

Homg, (7 ® Z(1) ®Z(1)° k) — Homg, (7 RZ(1)°®I(1)%E)
— Homg, (7 ®@ U, ®Z(1)° k)

are then injective, and Proposition 2.1 and the appropriate local results show
that the two outer groups have dimension one. O

3 Beilinson’s subspaces

We briefly review here Beilinson’s results [1] concerning the L-function of a
product of two modular curves at s = 1. We use the notation and formulation
of [10, §2] where details can be found. For a positive integer n, M, denotes the
modular curve over Q parameterising elliptic curves with full level n structure,
and M, denotes its smooth compactification. Write M = @ M,, M = @Mn
for the modular curves at infinite level. These are schemes over the maximal
abelian extension Q® of Q.

In the notation of the previous section we take F' = Q. Then G acts on
M and M. (We assume that our level structures are defined in such a way
that this is a right action). If

K, = ker (GLQ(Z) = GLQ(Z/nZ)>

is the standard level n open compact subgroup of G then M, is the quotient
M/K, and M,, = M/K,.
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Next recall the decomposition of the motive of f a modular curve under the
Hecke algebra. We work in the category Mg ® Q of Chow motives over Q
with coefficients in Q. One has a Chow-Kiinneth decomposition

h(M,) = h°(M,) & h*(M,) & h*(M,,).

The space Q' (M) ® Q of holomorphic weight 2 cusp forms with coefficients in
Q decomposes as a direct sum of irreducible admissible representations 7 of
Gy with multiplicity one. To each such 7 there is associated a rank 2 motive
Vy in Mg ® Q, which is a direct factor of h*(M,,) if 7% 5 0. The motives
V. are simple of rank 2, and V., V. are isomorphic if and only if 7 ~ #’. One
then has

W' (M) = lim h' (M,,) = P V» ® [x].
Here V; ® [r] means simply the direct sum of an infinite number of copies of
V., indexed by a basis for 7. It is an ind-object of Mg ® Q which carries an
action of GY.

In [1] Beilinson constructs a certain subspace of the motivic cohomology
HY,(M?,Q(2)) using modular units supported on Hecke correspondences. One
has a decomposition

h(M?) > ' (M)®* = P Vs @g Ve @ [ x 7]

where [7 x 7'] is the space of the exterior tensor product of m and 7. Applying
this one can rewrite Beilinson’s construction as giving, for each pair (m, 7’), a
homomorphism [10, §2.3.3]

B(m x @'): (O"(M) @2 7 @5 7) g, — Hiu(Ve @ Ve, Q(2))

whose source is the maximal quotient of O*(M) ®z T ®g 7’ on which G acts
trivially.

The G -module O*(M)®zQ can be described almost completely [9]. There
is an exact sequence

0— Q™ @,Q— 0"(M)®,Q—I(1)° e PI(x)—0

where the direct sum is over all even non-trivial characters y: A’Ji /Q* — @* of

finite order. The action of G on the trivial modular units Q** ®4 Q is the
composite of the determinant and the reciprocity law of class field theory.
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We now assume that 7’ is not isomorphic to a twist of ; this implies in
particular [10, Lemma 2.5.2] that B(7 x ) is trivial on Q** and [10, Theorem
2.3.4] that its image lies in the integral part of the motivic cohomology, hence
factors as

B(r xn'): (Z(x)" @7 @7); — Hiyyz(Va @ Var, Q(2)).

Here x = wywy, and if x # 1, Z(x)° o Z(x). As we shall recall in a moment,
one of Beilinson’s main results [1, Thm. 6.1.1] shows that B (7 x 7’) is non-zero.
We can then apply Proposition 2.2 to the source of the homomorphism to give:

Theorem 3.1. Assume that 7' is not isomorphic to a twist of w. Then the
image of B(w x ') has dimension one. O

There is a regulator homomorphism from motivic cohomology to real De-
ligne cohomology:

ry: Hyy (Ve © Vi, Q(2)) — Hyy (Ve @ Vi, R(2))

whose target is in this case a free R Q-module of rank one. In [1, §6] Beilinson
explains how to compute the composite 73y o B(m x 7’) as a Rankin-Selberg
integral; its image is a 1-dimension Q-subspace in H3(V; ® V., R(2)), which
can be described in terms of the special value L(V,®V,, 2). In particular 5 (7 x
') # 0, and dimg Hj’{/t/Z(V7T ® Vo, Q(2)) > 1. Beilinson’s general conjectures
predict that the dimension is one, but at present even finite-dimensionality is
unknown.

It would be nice if the same argument worked for Beilinson’s construction of
elements of H3,(V, Q(2)). However in this case the generating homomorphism
is a Gp-invariant linear map

B(m): O (M) O*(M) @ 7 — HfWZ(Vﬂ, Q(2))

When constant units are factored out, its source becomes a direct sum of tensor
products

P 0V 0I(x ) 7

X even

(where Z(x)© denotes Z(1)° for y trivial, and Z() otherwise). The space of
G g-coinvariants of each summand is one-dimensional by Proposition 2.3, but
this alone does not suffice to bound the image of ().
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