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Introduction

Let F be a non-Archimedean local field, and πi (i = 1, 2, 3) irreducible ad-
missible representations of G = GL2(F ), such that the product of their central
characters is trivial. In [8], Prasad shows that there exists, up to a scalar factor,
at most one G-invariant linear form on π1 ⊗ π2 ⊗ π3, and determines exactly
when such a form exists. These results have been used by Harris and Kudla
[6] in the study of the triple product L-function attached to three cuspidal
automorphic representations of GL2 of a global field.

In this note we consider the case when πi is permitted to be a reducible
principal series representation, whose unique irreducible subspace is infinite-
dimensional. It is relatively trivial to extend Prasad’s results to cover these
cases. The interest in so doing is global. In [1] Beilinson constructs certain
subspaces of the motivic cohomology of the product of two modular curves
using modular units. His construction can be interpreted as a certain invariant
trilinear form on π⊗π′⊗π′′ taking values in motivic cohomology: here π, π′ are
weight 2 cuspidal (irreducible) representations of GL2 of the finite adeles of Q,
and π′′ is the space of weight 2 holomorphic Eisenstein series (which is highly
reducible). The regulators of these elements of motivic cohomology can be
computed as special values of Rankin double product L-functions attached to
π and π′, and Beilinson’s calculation of the regulator, together with his general
conjectures, predict that these subspaces are one-dimensional. The main aim
of the present note is to verify this prediction unconditionally (Theorem 3.1
below).
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1 Local trilinear forms

Throughout this section, F denotes a non-Archimedean local field, o its valu-
ation ring, and ̟ a uniformiser. We let |−| : F ∗ → Q∗ be the normalised
absolute value, so that |̟|−1 = #(o/̟o). We write G = GL2(F ), and de-
note by B the standard Borel subgroup of upper triangular matrices, by A the
diagonal torus, and by K the maximal compact subgroup GL2(o). As usual
δ : B → Q∗ denotes the character

δ

(

b1 ∗
0 b2

)

=

∣

∣

∣

∣

b1
b2

∣

∣

∣

∣

(which is the inverse of the modular character of B). Fix an algebraically
closed field k of characteristic zero (in the applications we will take k = Q),
and a square root

√
p of the residue characteristic of F , which determines

a square root δ1/2 of the character δ. We work in the category of smooth
representations of G over k. As is customary we do not distinguish between a
representation and the space on which it is realised.

We recall standard facts about induced representations of G, as can be
found in [4, 7] or (in much greater generality) in [2, 3, 5]. Let µ = (µ1, µ2) : A→
k∗ be a character of A, extended to B in the obvious way. Write µw = (µ2, µ1).
The normalised1 induced representation is then

IndG
B(µ) =

{

f : G→ k locally constant s.t.
f(bg) = µ(b)δ(b)1/2f(g) for all b ∈ B, g ∈ G

}

.

This is an admissible representation of G which is indecomposable. It is ir-
reducible if and only µ1µ

−1
2 6= |−|±1, in which case it is also isomorphic to

IndG
B µ

w. If it is reducible we may assume, twisting by a character of F ∗ if ne-
cessary, that µ = δ±1/2 = (µ−1)w, and there are then non-split exact sequences
of G-modules

0→ k → IndG
B(δ−1/2)→ Sp→ 0(1.1)

0→ Sp→ IndG
B(δ1/2)

ℓ−→ k → 0(1.2)

where Sp, the special or Steinberg representation, is the representation of G
acting on the space of locally constant functions on P1(F ) = B\G modulo
constant functions. The space of K-invariants of each of the representations

1It would be preferable to use unnormalised induction, but we refrain from doing so in
order to be able to quote from [8] without confusion.
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IndG
B δ

±1/2 is one-dimensional: for IndG
B δ

−1/2 it is the G-invariant subspace of
constant functions; for IndG

B δ
1/2 it is the subspace spanned by the function

φ : bk 7→ δ(b) (for b ∈ B, k ∈ K), and the linear form ℓ in (1.2) can be nor-
malised so that ℓ(φ) = 1. Recall also that Sp is its own contragredient, and
that dim SpK0(̟) = 1, where K0(̟) denotes the Iwahori subgroup (elements
of K which are congruent mod ̟ to an element of B). It follows that the
G-invariant form Sp ⊗ Sp → k is symmetric, because it must be non-zero
on SpK0(̟) ⊗ SpK0(̟). (The same holds for any irreducible admissible repres-
entation of G with trivial central character by the theory of newvectors, an
observation of Prasad and Ramakrishnan).

If π is an irreducible admissible representation of G, its central character
will be denoted ωπ.

Write G′ for the group of invertible elements of the unique quaternion di-
vision algebra over F . If π is a square-integrable (= discrete series) irreducible
admissible representation of G, let π′ be the irreducible representation of G′

associated to π by the Jacquet-Langlands correspondence [7, §12].
Prasad proves [8, Thms 1.1, 1.2, 1.3]

Theorem 1.1. Let πi (1 ≤ i ≤ 3) be irreducible admissible infinite-dimen-
sional representations of G with

∏

ωπi
= 1.

(i) If at least one of πi is principal series, then

dim HomG(π1 ⊗ π2 ⊗ π3, k) = 1.

(ii) If all of πi are discrete series, then

dim HomG(π1 ⊗ π2 ⊗ π3, k) + dim HomG′(π′
1 ⊗ π′

2 ⊗ π′
3, k) = 1

(iii) If all of πi are unramified, then the restriction of a non-zero G-invariant
form on π1 ⊗ π2 ⊗ π3 to πK

1 ⊗ πK
2 ⊗ πK

3 is non-zero.

As the Jacquet-Langlands correspondence takes the special representation
Sp of G to the trivial representation of G′, one has:

Corollary 1.2. If π1, π2 are discrete series then

dim HomG(π1 ⊗ π2 ⊗ Sp, k) = 1 ⇐⇒ π1 6≃ π̃2.

For convenience we quote two intermediate results from Prasad’s paper
which we shall need:
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Proposition 1.3. [8, Cors. 5.7 & 5.8] For any admissible representation π of
G and any character χ of B,

Ext1
G(IndG

B χ, π) = 0 ⇐⇒ HomG(IndG
B χ, π) = 0

Ext1
G(π, IndG

B χ) = 0 ⇐⇒ HomG(π, IndG
B χ) = 0

Proposition 1.4. [8, p.17] Let µ, µ′ be characters of A. Then there is an
exact sequence of G-modules:

0→ c-IndG
A(µµ′w)→ IndG

B µ⊗ IndG
B µ

′ → IndG
B(µµ′δ1/2)→ 0

where for a character ν : A→ k∗,

c-IndG
A ν =

{

f : G→ k compactly supported mod A and locally constant
s.t. f(ag) = ν(a)f(g) for all a ∈ A, g ∈ G

}

.

We now consider the case when πi are admissible representations which are
either irreducible or isomorphic to a twist of IndG

B δ
1/2.

Proposition 1.5. Suppose that π, π′ are infinite-dimensional irreducible ad-
missible representations of G, with ωπωπ′ = 1. Then

dim HomG(π ⊗ π′ ⊗ IndG
B δ

1/2, k) = 1.

Moreover if π and π′ are unramified, then the restriction of a non-zero invari-
ant trilinear form to πK ⊗ π′K ⊗ (IndG

B δ
1/2)K is non-zero.

Proof. For the most part we simply adapt the proofs in [8] — note that the
hard case (three supercuspidals) doesn’t arise.

Case 1: π is supercuspidal.
The analogous case is treated in [8, middle of p.18]. As π is supercuspidal, we
have by the theory of the Kirillov model π|B ≃ c-IndB

ZN ψωπ, and therefore by
two applications of Frobenius reciprocity

HomG(π ⊗ π′ ⊗ IndG
B δ

1/2) = HomG(π ⊗ π′, IndG
B δ

−1/2)

= HomB(c-IndB
ZN(ψωπ)⊗ π′|B, k)

= HomZN(π′|ZN , ψ
−1ωπ′)

and the last group is simply HomN(π′|N , ψ−1) which is 1-dimensional by the
existence and uniqueness of the Kirillov model.
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(It is worth noting that by [4, Theorem 1.6], π is projective in the category
of smooth G-modules with central character ωπ, so π⊗IndG

B δ
1/2 = π⊕(π⊗Sp)

and

HomG(π ⊗ π′ ⊗ IndG
B δ

1/2, k) = HomG(π ⊗ π′, k)⊕HomG(π ⊗ π′ ⊗ Sp, k)

which gives a direct proof of 1.2 when at least one of the representations is
supercuspidal.)

Case 2: both π and π′ are special.
After twisting we can assume that π = π′ = Sp. Then as HomG(Sp ⊗ Sp ⊗
Sp, k) = 0, we get from (1.2)

HomG(Sp⊗ Sp⊗ IndG
B δ

1/2, k) = HomG(Sp⊗ Sp, k) ≃ k.

Case 3: π principal series, π′ principal series or special.
Suppose π = IndG

B µ where µ1/µ2 6= |−|±1. If π′ 6≃ π̃, then by Proposition 1.3

HomG(π′, π̃) = Ext1
G(π′, π̃) = 0

and by Theorem 1.1, dim HomG(π′ ⊗ Sp, π̃) = 1. Now by (1.1) we have a long
exact sequence

(1.3) 0→ HomG(π′, π̃)→ HomG(π′ ⊗ IndG
B δ

1/2, π̃)

→ HomG(π′ ⊗ Sp, π̃)→ Ext1
G(π′, π̃).

and therefore HomG(π ⊗ π′ ⊗ IndG
B δ

1/2, k) = HomG(π′ ⊗ IndG
B δ

1/2, π̃) ≃ k.
In the case π′ = π̃, the exact sequence (1.3) shows that there is at least

one nonzero trilinear form. To show it is the only one, we proceed as in §5
of [8]; using Proposition 1.4 for π ⊗ IndG

B δ
1/2 and then applying the functor

HomG(−, π) = HomG(−, π̃′) we get a long exact sequence:

0→ HomG(IndG
B µδ, π)→HomG(π ⊗ IndG

B δ
1/2, π)

→ HomG(c-IndG
A µδ

−1/2, π).

Since π = IndG
B µ is irreducible, HomG(IndG

B µδ, π) can only be nonzero if
IndG

B µ ≃ IndG
B µδ, which means µδ = µw, forcing µ1/µ2 = |−|−1 which is not

the case. Also

HomG(c-IndG
A µδ

−1/2, π) = HomG(c-IndG
A µδ

−1/2 ⊗ π̃, k)
= HomA(µδ−1/2 ⊗ π̃|A, k)
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by Frobenius reciprocity, and this last space is one-dimensional by [8, Lemma
5.6(a)]. Therefore dimG(π ⊗ IndG

B δ
1/2, π) ≤ 1, and the dimension is therefore

exactly one.
For the final statement about unramified representations, we simply go

through word-for-word the proof of [8, Thm. 5.10], taking V3 (in the notation
of loc. cit.) to be π. The key point is that in the displayed formula in the
middle of page 20, the denominator is non-zero; it vanishes only when one of V1,
V2 is isomorphic to IndG

B δ
−1/2 (possibly twisted by a quadratic character).

Proposition 1.6. Suppose that π is an infinite-dimensional irreducible ad-
missible representation of G, with ωπ = 1. Then

dim HomG(π ⊗ IndG
B δ

1/2 ⊗ IndG
B δ

1/2, k) = 1.

If π is unramified then the restriction of any non-zero invariant trilinear form
to πK ⊗ (IndG

B δ
1/2)K ⊗ (IndG

B δ
1/2)K is non-zero.

Proof. We have again the exact sequence (1.3) with π′ = IndG
B δ

1/2 , and
since π is irreducible and not 1-dimensional, HomG(IndG

B δ
1/2, π̃) = 0. By

Proposition 1.3 we also have Ext1
G(IndG

B δ
1/2, π̃) = 0, and by 1.5 we have

dim HomG(IndG
B δ

1/2 ⊗ Sp, π̃) = 1, giving the result. The proof of the final
part is the same as for Proposition 1.5.

For completeness we also show:

Proposition 1.7. HomG(IndG
B δ

1/2⊗IndG
B δ

1/2⊗IndG
B δ

1/2, k) is 1-dimensional.
It is generated by the form ℓ ⊗ ℓ ⊗ ℓ, which is nonzero on (IndG

B δ
1/2)K ⊗

(IndG
B δ

1/2)K ⊗ (IndG
B δ

1/2)K.

Proof. Recall (1.2) that ℓ denotes a nonzero invariant linear form on IndG
B δ

1/2,
and that there is a unique K-fixed vector φ ∈ IndG

B δ
1/2 with ℓ(φ) = 1. Fix a

non-zero invariant form (−,−) : Sp⊗ Sp→ k. Let β : IndG
B δ

1/2 ⊗ IndG
B δ

1/2 ⊗
IndG

B δ
1/2 → k be a G-invariant form. Then β vanishes on Sp ⊗ Sp ⊗ Sp by

Corollary 1.2. Therefore there are constants a, b, c ∈ k such that if v, v′ ∈ Sp
and w ∈ IndG

B δ
1/2, then

β(w ⊗ v ⊗ v′) = a ℓ(w)(v, v′)

β(v′ ⊗ w ⊗ v) = b ℓ(w)(v, v′)

β(v ⊗ v′ ⊗ w) = c ℓ(w)(v, v′)

Since SpK = 0 we have

β(v ⊗ φ⊗ φ) = 0 for all v ∈ Sp.(1.4)

6



Put ug = gφ− φ ∈ Sp. Then for any v ∈ Sp,

0 = β(g−1v ⊗ φ⊗ φ) = β(v ⊗ gφ⊗ gφ)

= β(v ⊗ ug ⊗ φ) + β(v ⊗ φ⊗ ug) = c(v, ug) + b(ug, v)

hence b = −c since (−,−) is symmetric. Likewise b = −a = c hence a = b =
c = 0. The vectors {ug | g ∈ G} span Sp over k, since φ is a generator for
IndG

B δ
1/2. Therefore β vanishes on all products u ⊗ v ⊗ w where at least two

factors lie in Sp.
It then follows easily from (1.4) that β vanishes on all products where at

least one factor lies in Sp, which implies that β is a multiple of ℓ⊗ ℓ⊗ ℓ.

2 Global trilinear forms

In this section, F will denote a global field. The symbols v, w will denote
finite places of F . Let Af be the ring of finite adeles of F (the restricted
direct product of the completions Fv over all finite places v), and F ∗

>0 ⊂ F ∗

the subgroup of elements which are positive at every real place. For each v
write Gv = GL2(kv). We use the same notations for objects associated to Gv

as in the previous section, with a subscript v added.
Write Gf for the group GL2(Af) (which is the restricted direct product of

the local groups Gv), Bf for the upper triangular subgroup of Gf and δf =
∏

v δv : Bf → Q∗.
We first consider the passage from local to global forms.

Proposition 2.1. Let π = ⊗′πv, π
′ = ⊗′π′

v, π
′′ = ⊗′π′′

v be factorisable admiss-
ible representations of Gf . Assume that each of πv, π

′
v, π

′′
v is either irreducible

or a twist of IndGv

Bv
δ
1/2
v . Then

dim HomGf
(π ⊗ π′ ⊗ π′′, k) ≤ 1

with equality if and only if for every v

dim HomGv
(πv ⊗ π′

v ⊗ π′′
v , k) = 1.

Proof. Recall first the definition of the restricted tensor product π = ⊗′πv,
which depends on a choice of spherical vector φv ∈ πKv

v for all v outside some
finite set Σ. It is defined to be the inductive limit of finite tensor products
πS = ⊗v∈Sπv, where S runs over finite sets of places containing Σ. If S ⊂ T
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then the inclusion mapping πS →֒ πT is defined by x 7→ x ⊗
⊗

v∈T−S φv. In
particular, if

π =
⊗′

{φv |v/∈Σ}

πv, π′ =
⊗′

{φ′

v |v/∈Σ}

π′
v, π′′ =

⊗′

{φ′′

v |v/∈Σ}

π′′
v ,

then their tensor product is

π ⊗ π′ ⊗ π′′ =
⊗′

{φv⊗φ′

v⊗φ′′

v |v/∈Σ}

πv ⊗ π′
v ⊗ π′′

v .

(Of course it need not be the case that (πv⊗π′
v⊗π′′

v )Kv is 1-dimensional, or even
finite-dimensional). To give a non-zero invariant form on π⊗π′⊗π′′ is therefore
equivalent to giving, for each v, a non-zero invariant form on πv⊗π′

v⊗π′′
v , which

for almost all v takes the value 1 on φv ⊗ φ′
v ⊗ φ′′

v. Now use Prasad’s results
(Theorem 1.1) and Propositions 1.5, 1.6 and 1.7. (We have not excluded the
possibility that some of the local components of the original representations
are one-dimensional, but in that case the local theory is trivial.)

The representations to which 2.1 applies can be highly reducible. We next
restrict to a particular class of such representations which (for F = Q) arise
from weight 2 Eisenstein series. Let χ : A∗

f/F
∗
>0 → k∗ be any character of finite

order (in other words, χ is the restriction to A∗
f of an idele class character of

finite order). Set

I(χ) =







f : Gf → k locally constant s.t. f(bg) = χ(b1)δf(b)f(g)

for all g ∈ Gf and b =

(

b1 ∗
0 b2

)

∈ Bf







.

Then I(χ) is an admissible Gf -module and is isomorphic to the restricted
tensor product ⊗′

vIv(χv), where

Iv(χv) = IndGv

Bv
(χv |−|1/2

v , |−|−1/2
v )

If χv = 1 then Iv(χv) = Iv(1) = IndGv

Bv
δ
1/2
v , and we have the exact sequence

(1.2):

0→ Spv → Iv(1)
ℓv−→ k → 0.

We assume that when Iv(1) occurs in a restricted tensor product, the associ-
ated Kv-invariant vector φv is taken to be the unique one satisfying ℓv(φv) = 1.
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If χ = 1 then we have a local linear form ℓv for every v, hence their product
ℓf = ⊗′ℓv is a Gf -invariant linear form ℓf : I(1)→ k; we write I(1)0 = ker ℓf ⊂
I(1). If we set

Uw = Spw ⊗
⊗′

v 6=w

Iv(1)

then I(1)0 is the sum of the subspaces Uw.
For arbitrary χ, observe that by Chebotarev χv = 1 for infinitely many v,

so that the global representation I(χ) is an admissible Gf -module of infinite
length.

Proposition 2.2. Let π = ⊗′πv, π
′ = ⊗′π′

v be irreducible admissible repres-
entations of Gf , all of whose local components are infinite-dimensional.

(i) If χ : A∗
f/F

∗
>0 → k∗ is any character of finite order and ωπωπ′χ = 1 then

dim HomGf
(π ⊗ π′ ⊗ I(χ), k) = 1.

(ii) If π′ 6≃ π̃ and ωπωπ′ = 1 then

dim HomGf
(π ⊗ π′ ⊗ I(1)0, k) = 1.

(iii) If π′ ≃ π̃ then

dim HomGf
(π ⊗ π′ ⊗ I(1)0, k) =∞

Proof. (i) This follows immediately from 2.1, 1.1 and 1.5.
(ii) Pick w with π′

w 6≃ π̃w. Observe that on the quotient

I(1)/Uw =
⊗′

v 6=w

Iv(1)

the subgroup Gw ⊂ Gf acts trivially (hence also on I(1)0/Uw). Therefore
HomGf

(π ⊗ π′ ⊗ I(1)0/Uw, k) = HomGf
(π ⊗ π′ ⊗ I(1)/Uw, k) = 0, and thus

the homomorphisms of restriction

(2.1) HomGf
(π ⊗ π′ ⊗ I(1), k)→ HomGf

(π ⊗ π′ ⊗ I(1)0, k)

→ HomGf
(π ⊗ π′ ⊗ Uw, k),

are injective. But the proof of (i) shows that

dim HomGf
(π ⊗ π′ ⊗ I(1), k) = 1 = dim HomGf

(π ⊗ π′ ⊗ Uw, k),
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so we are done.
(iii) For each w /∈ S there is a Gf -equivariant surjective homomorphism

λw : I(1)→ Iw(1)

⊗′xv 7→ xw

∏

v 6=w

ℓv(xv)

where Gf acts on Iw via the projection Gf → Gw, and whose kernel is

ker λw =
∑

w′ 6=w

Uw′.

Observe that λw(I(1)0) = Spw ⊂ Iw(1), and that for any x ∈ I(1)0, λw(x) = 0
for all but finitely many w. Therefore the sum of these homomorphisms is a
Gf -equivariant surjection

λ = (λw) : I(1)0 →
⊕

w

Spw

whose kernel is the subspace
∑

w 6=w′ Uw ∩ Uw′ . Therefore we have a Gf -
equivariant surjection

π ⊗ π′ ⊗ I(1)0 →
⊕

w

π ⊗ π′ ⊗ Spw(2.2)

Now for all but finitely many w the local components πw, π′
w are unramified,

hence principal series, so there will exist a nonzero trilinear form on πw⊗π′
w⊗

Spw. For all v 6= w we have a pairing πv ⊗ π′
v → k by hypothesis. Therefore

the right-hand side of (2.2) has an infinite-dimensional quotient on which Gf

acts trivially.

We also have an analogous result when two of the representations are of
the form I(χ) or I(1)0:

Proposition 2.3. Let π = ⊗′πv be an irreducible admissible representations
of Gf whose local components are all infinite-dimensional. Suppose that π′

and π′′ are representations of the form I(χ) or I(1)0, and that ωπωπ′ωπ′′ = 1.
Then

dim HomGf
(π ⊗ π′ ⊗ π′′, k) = 1.

10



Proof. If both of π′, π′′ are of the form I(χ), then this follows from 2.1.
If π′ = I(χ) and π′′ = I(1)0, then we can choose w such that HomGw

(πw⊗
Iw(χw), k) = 0 (it is enough to take w such that χw = 1 and πw is unramified).
Then the same argument as in 2.2(ii) applies, using 1.6 in place of 1.5.

Finally suppose that π′ = π′′ = I(1)0. Then consider the inclusions

Uw ⊗ I(1)0 ⊂ I(1)0 ⊗ I(1)0 ⊂ I(1)⊗ I(1)0

whose successive quotients are (I(1)0/Uw)⊗I(1)0 and I(1)0. We have HomGf
(π⊗

I(1)0, k) = 0. In fact, as I(1)0 =
∑

Uw it is enough to show that HomGf
(π ⊗

Uw, k) = 0 for every w, which is clear locally. We claim that for w such that
πw is unramified, HomGf

(π ⊗ (I(1)0/Uw)⊗ I(1)0, k) = 0. Again it is enough
to show that for every w′, HomGf

(π ⊗ (I(1)0/Uw) ⊗ Uw′, k) = 0, and this is
true locally at w, since I(1)0/Uw is trivial at w.

For such w the restriction homomorphisms

HomGf
(π ⊗ I(1)⊗ I(1)0, k)→ HomGf

(π ⊗ I(1)0 ⊗ I(1)0, k)

→ HomGf
(π ⊗ Uw ⊗ I(1)0, k)

are then injective, and Proposition 2.1 and the appropriate local results show
that the two outer groups have dimension one.

3 Beilinson’s subspaces

We briefly review here Beilinson’s results [1] concerning the L-function of a
product of two modular curves at s = 1. We use the notation and formulation
of [10, §2] where details can be found. For a positive integer n, Mn denotes the
modular curve over Q parameterising elliptic curves with full level n structure,
andMn denotes its smooth compactification. WriteM = lim←−Mn, M = lim←−Mn

for the modular curves at infinite level. These are schemes over the maximal
abelian extension Qab of Q.

In the notation of the previous section we take F = Q. Then Gf acts on
M and M . (We assume that our level structures are defined in such a way
that this is a right action). If

Kn = ker
(

GL2(Ẑ)→ GL2(Z/nZ)
)

is the standard level n open compact subgroup of Gf then Mn is the quotient
M/Kn and Mn = M/Kn.
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Next recall the decomposition of the motive of a modular curve under the
Hecke algebra. We work in the category MQ ⊗ Q of Chow motives over Q

with coefficients in Q. One has a Chow-Künneth decomposition

h(Mn) = h0(Mn)⊕ h1(Mn)⊕ h2(Mn).

The space Ω1(M)⊗Q of holomorphic weight 2 cusp forms with coefficients in
Q decomposes as a direct sum of irreducible admissible representations π of
Gf with multiplicity one. To each such π there is associated a rank 2 motive
Vπ in MQ ⊗ Q, which is a direct factor of h1(Mn) if πKn 6= 0. The motives
Vπ are simple of rank 2, and Vπ, Vπ′ are isomorphic if and only if π ≃ π′. One
then has

h1(M) = lim−→h1(Mn) =
⊕

π

Vπ ⊗ [π].

Here Vπ ⊗ [π] means simply the direct sum of an infinite number of copies of
Vπ, indexed by a basis for π. It is an ind-object of MQ ⊗ Q which carries an
action of Gf .

In [1] Beilinson constructs a certain subspace of the motivic cohomology
H3

M(M2,Q(2)) using modular units supported on Hecke correspondences. One
has a decomposition

h(M 2) ⊃ h1(M)⊗2 =
⊕

π,π′

Vπ ⊗Q Vπ′ ⊗ [π × π′]

where [π×π′] is the space of the exterior tensor product of π and π′. Applying
this one can rewrite Beilinson’s construction as giving, for each pair (π, π′), a
homomorphism [10, §2.3.3]

B(π × π′) :
(

O∗(M)⊗Z π̃ ⊗Q π̃
′
)

Gf
→ H3

M(Vπ ⊗ Vπ′,Q(2))

whose source is the maximal quotient of O∗(M)⊗Z π̃ ⊗Q π̃
′ on which Gf acts

trivially.
The Gf -module O∗(M)⊗Z Q can be described almost completely [9]. There

is an exact sequence

0→ Qab∗ ⊗Z Q→ O∗(M)⊗Z Q→ I(1)0 ⊕
⊕

χ

I(χ)→ 0

where the direct sum is over all even non-trivial characters χ : A∗
f/Q

∗ → Q
∗

of

finite order. The action of Gf on the trivial modular units Qab∗ ⊗Z Q is the
composite of the determinant and the reciprocity law of class field theory.
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We now assume that π′ is not isomorphic to a twist of π; this implies in
particular [10, Lemma 2.5.2] that B(π×π′) is trivial on Qab∗ and [10, Theorem
2.3.4] that its image lies in the integral part of the motivic cohomology, hence
factors as

B(π × π′) :
(

I(χ)0 ⊗ π̃ ⊗ π̃′
)

Gf
→ H3

M/Z(Vπ ⊗ Vπ′ ,Q(2)).

Here χ = ωπωπ′, and if χ 6= 1, I(χ)0 def
= I(χ). As we shall recall in a moment,

one of Beilinson’s main results [1, Thm. 6.1.1] shows that B(π×π′) is non-zero.
We can then apply Proposition 2.2 to the source of the homomorphism to give:

Theorem 3.1. Assume that π′ is not isomorphic to a twist of π. Then the
image of B(π × π′) has dimension one.

There is a regulator homomorphism from motivic cohomology to real De-
ligne cohomology:

rH : H3
M/Z(Vπ ⊗ Vπ′,Q(2))→ H3

H(Vπ ⊗ Vπ′,R(2))

whose target is in this case a free R⊗Q-module of rank one. In [1, §6] Beilinson
explains how to compute the composite rH ◦ B(π × π′) as a Rankin-Selberg
integral; its image is a 1-dimension Q-subspace in H3

H(Vπ ⊗ Vπ′ ,R(2)), which
can be described in terms of the special value L(Vπ⊗Vπ′ , 2). In particular B(π×
π′) 6= 0, and dimQ H

3
M/Z

(Vπ ⊗ Vπ′,Q(2)) ≥ 1. Beilinson’s general conjectures
predict that the dimension is one, but at present even finite-dimensionality is
unknown.

It would be nice if the same argument worked for Beilinson’s construction of
elements ofH2

M(Vπ,Q(2)). However in this case the generating homomorphism
is a Gf -invariant linear map

B(π) : O∗(M)⊗O∗(M)⊗ π̃ → H2
M/Z(Vπ,Q(2))

When constant units are factored out, its source becomes a direct sum of tensor
products

⊕

χ even

I(χ)(0) ⊗ I(χ−1ωπ)(0) ⊗ π̃

(where I(χ)(0) denotes I(1)0 for χ trivial, and I(χ) otherwise). The space of
Gf -coinvariants of each summand is one-dimensional by Proposition 2.3, but
this alone does not suffice to bound the image of B(π).
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