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ABSTRACT. In this paper we show that Atkin and Swinnerton-Dyer type of
congruences hold for weakly modular forms (modular forms that are permit-
ted to have poles at cusps). Unlike the case of original congruences for cusp
forms, these congruences are nontrivial even for congruence subgroups. On the
way we provide an explicit interpretation of the de Rham cohomology groups
associated to modular forms in terms of “differentials of the second kind”. As
an example, we consider the space of cusp forms of weight 3 on a certain genus
zero quotient of Fermat curve XV + YN = ZN_ We show that the Galois
representation associated to this space is given by a Grossencharacter of the
cyclotomic field Q({x). Moreover, for N = 5 the space does not admit a
“p-adic Hecke eigenbasis” for (non-ordinary) primes p = 2,3 (mod 5), which
provides a counterexample to Atkin and Swinnerton-Dyer’s original specula-
tion [2, 8, 9].

1. INTRODUCTION

In [2], Atkin and Swinnerton-Dyer described a remarkable family of congru-
ences they had discovered, involving the Fourier coefficients of modular forms on
noncongruence subgroups. Their data suggested (see [9] for a precise conjecture)
that the spaces of cusp forms of weight k for a noncongruence subgroup, for all but
finitely many primes p, should possess a p-adic Hecke eigenbasis in the sense that
Fourier coefficients a(n) of each basis element satisfy

a(pn) — Apa(n) + x(p)p" a(n/p) =0 (mod pt*~DUFord(m)),

where A, is an algebraic integer and x is a Dirichlet character (depending on the
basis element, but not on n). This congruence relation is reminiscent of the relation
between Fourier coefficients of Hecke eigenforms for congruence subgroups (which is
surprising since there is no useful Hecke theory for modular forms on noncongruence
subgroups).

Following work by Cartier [4], Ditters [6] and Katz [7], the second author proved
a substantial part of these congruences in [11]. There remain various questions
concerning the optimal shape of these congruences in the case when the dimension
of the space of cusp forms is greater than one, see [1, 9, 10].

In this paper we show that similar congruences (also initially discovered ex-
perimentally) hold for weakly modular forms (that is, modular forms which are
permitted to have poles at cusps). Unlike the case of Atkin—Swinnerton-Dyer’s
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original congruences for cusp forms, these congruences are nontrivial even for con-
gruence subgroups (because the Hecke theory of weakly modular forms is not so
good). The simplest case is the weakly modular form of level 1 and weight 12

Ei()0/A() — UGAE () = ¢ + 3 a(n)q”

= ¢! — 1422364 + 51123200¢° + 39826861650¢> + - - -

For every prime p > 11 and integer n with p®|n, its coefficients satisfy the congru-
ence

a(np) — 7(p)a(n) + p*'a(n/p) =0 (mod p'™*).
where 7(n) is Ramanujan’s function. (Note that the coefficients a(n) grow too
rapidly to satisfy any multiplicative identities.) These and other examples may be
found in §3 below.

In the second part of the paper we consider, for an odd integer N, the space of
weight 3 cusp forms on a certain genus zero quotient of Fermat curves X~ + YV =
ZN. These cusp forms are CM forms in the sense that the Galois representation
associated to them is given by a Grossencharacter of the cyclotomic field Q({y).
We show that for N = 5 the space of weight 3 cusp forms does not admit a p-
adic Hecke eigenbasis for (non-ordinary) primes p = 2,3 (mod 5). Moreover, for
the better understanding of the congruences arising from the action of Frobenius
endomorphism in this situation, we define certain weakly modular forms, and prove
some congruences for them. For more details see §11.

In [11] congruences were obtained by embedding the module of cusp forms of
weight &k (on a fixed subgroup I') into a de Rham cohomology group DR(X, k),
where X is the modular curve associated to I'. This cohomology group is the
de Rham realisation of the motive [12] associated to the relevant space of modular
forms. At a good prime p, crystalline theory endows DR(X, k)®Z,, with a Frobenius
endomorphism, whose action on g-expansions can be explicitly computed, and this
gives rise to the Atkin—Swinnerton-Dyer congruences. (See the introduction of
[11] for more explanation.) Here we observe that there is an simple description of
DR(X,k) in terms of “forms of the second kind”. Curiously, such a description
does not appear to be explicitly given anywhere in the literature (although it is
implicit in Coleman’s work on p-adic modular forms). The period isomorphism is
particularly transparent in this interpretation.

2. SUMMARY OF THEORETICAL RESULTS

Let ' C SLy(Z) be a subgroup of finite index. We choose a number field
K = Kr C C and a model Xg over K for the compactified modular curve T'\$*
such that:

e the j-function defines a morphism 7 : Xx — P} and
e the cusp oo € T'\H* is a rational point of Xf.

Let m be the width of the cusp co. Then the completed local ring Ox/\oo equals
K][t]] for some t with 0t™ = ¢, with 6 € K*.

Let X9 C Xk be the complement of the points where the covering £ — X (C)
is ramified. On Xg we have the standard line bundle w¢, such that modular
forms of weight k are sections of ggk, and the canonical isomorphism ¢ : @?2 =
Qﬁ%, (log cusps), identifying forms of weight 2 with holomorphic 1-forms on X¢.
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The fibre at infinity has a canonical generator e¢ € we(o0). If —1 ¢ T' we also
assume that this structure comes from a triple (wy, Yk, ex € Wi (00)) on X§&.
We choose a finite set S of primes of K, and write R = o0 g, satisfying:

e 6m and ¢ are in R*;

e there exists a smooth projective curve X/R with Xx = X ®p K, and
Tk extends to a finite morphism 7: X — P}% which is étale away from
J € {00,0,1728};

o if —1¢7T, (wk,¥k,cx) extends to a triple (w,,e) on X°, with w(co) =
Re.

Any modular or weakly modular form on I" has a Fourier expansion at oo which
lies in C((g'/™)) = C((t)). For any subring R’ of C containing R, and any k > 2,
let Sk(T, R"), My(T, R') be the R'-modules of cusp (resp. modular) forms on T' of
weight k& whose Fourier expansions at oo lie in R'[[t]]. Standard theory shows that
Sk(T, R), My(T, R) are locally free R-modules and that, for any R’,

Sk(P,R/) = Sk(F,R) KRR R/, Mk(F,R/) :Mk(F,R) KRR R

For any integer s, denote by M»¥(T', R') the R'-module of weakly modular forms
(meromorphic at all cusps) of weight s whose Fourier expansions at oo lie in R'((¢)),
and let S¥%(T', R') be the submodule consisting of those f € MY*(T, R') whose
constant term at each cusp vanishes.

It is well known that if £ > 2 there is a linear map

OF 1 Myk (T, C) — S¥X(T, C)

which on Fourier expansions (at any cusp) is given by (¢d/dg)*~!. Consequently
k=1 maps My’ (T, R') into Sy'(T, R).

Definition. Suppose K C K’ C C. Define for k > 2

SyE(T, K)
DR(I',K' k) = k2
( ) OF=1(My’% (T, K'))

and

MWk(F K/)
DR*(T,K',k) = kS
OF—L( M3k, (T, K'))
It is clear that for every K', DR(I', K', k) = DR(T", K, k) ® x K', and similarly
for DR*.
If RC R c Cand f € M}(T, R'), the conditions on S imply that the Fourier

coefficients of f at any cusp are integral over R’. Write the Fourier expansion of f
at a cusp z of width m as

Fo= Y anlf 2™

nez

Definition. Let f € M,‘:’k(I‘, R’). We say that f is weakly exact if, at each cusp z of
T, and for each n < 0, n™'a,(f, 2) is integral over R'. We write M;"*~*(T', R') for
the R’-module of weakly exact modular forms and S} ~(T', R’) for the submodule
of weakly exact cusp forms.

It is clear that OF 1 (MyX, (T, R') C Sy (T, R).
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Definition. Define for £ > 2

ka—ex(r R/)
DR(T,R k) = k !
0B K) = 1 g (0. 1)
and

DR k) = (R
=1 (M3 (T, R))

If R’ > Q this obviously agrees with our earlier definition.
In §4, §5, and §6 we will prove that these groups enjoy the following properties.

e The R-modules DR(T, R, k) and DR*(T', R, k) are locally free, and for
every R D R we have
DR(T,R',k) = DR(T',R,k)®r R, DR*(T',R',k) = DR*(I', R, k) ®g R’
e There exists for each £ > 2 a commutative diagram with exact rows
0 —— Si(I''R) —— DR(I,R,k) —— Sk(T',R)Y —— 0

U U |
0 — My(I,R) —— DR*(T',R, k) —— Sp(T,R)Y — 0

in which all the inclusions are the natural ones.

e Suppose that p is prime, and that for some embedding Z,— C, we
have R C Z,. Then there are canonical compatible endomorphisms ¢,
of DR(T',Zy. k), DR*(T',Z,, k). The characteristic polynomial H,(T') of
¢p on DR(T',Z,,, k) has rational integer coefficients, and its roots are pF—i-
Weil numbers. Moreover

H,(T) = (constant)TQdkHp(l/pk_lT)

where dj, = dim Sy (T").
The characteristic polynomial of ¢, on DR*(T',Z,,, k)/DR(T', Z,, k) has
integer coefficients and its roots are of the form p*~! x (root of unity).
e Still assume that R C Z,. There is a unique v, € 1+ pZ, such that
At =61, Let ¢, be the endomorphism of Z,((t)) given by

q[;p: Z ant™ > pF1 Z an Y, t"".
Then the diagram

DR*(T, Zy, k) 01 (Zy((1)))
d’er l&p
) Zp((1))
DR (Fa ZP’ k) 8k_1 (Zp(<t)))

commutes.

e Write (k — 1) = inf{ord,(p’/4!) | j > k — 1}, and let
DR*(T,Zy, k)P = My, (T, Z,) + p* Y DR*(T", Z,,, k)

]\4zvk—ex(l-\7 R/)
p*=DOR=1(MG (T, RY))

C
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Then ¢, preserves DR*(T, Z,, k)®) and the diagram

Zyp((t))
PO (Zy((1)))

aspl l%

DR*(T,Z,, k)®

DR*(F7 va k)(P)

commutes.

Congruences

We continue to assume that R C Z,. Let 0o = op for a finite extension F'//Q,.
Extend ¢, to a o-linear endomorphism of DR*(T', 0, k). Let f € M" (T, 0), with
Fourier expansion at infinity

F= 3 ™ = S b, ) eo.
nez nez
Let H = 77_, AjT7 € o[T] such that the image of f in DR*(T, 0, k) is annihilated
H{(eyp).

Theorem 2.1. (i) The coefficients a(n) satisfy the congruences: if n € Z and p*|n
then

> p* Vi Aja(n/p’) =0 (mod p* o).
5=0
(ii) If moreover f € My(L,0) then these congruences hold mod pF—1s+F=1),

Here the left hand side is interpreted as

§rIm ™ ph=1)i g =D/ =Vjp( i) € 5™
§=0

which is the product of a unit an an element of 0, and we adopt the usual convention
that a(n) = b(n) = 0is n ¢ Z (cf. [11, Thm. 5.4]). Part (ii) is one of the main
results of [11].

Proof. The properties above show that
D et =H($)(f) € 9" (o((1)))

or equivalently that for every n € Z, ¢,, € n*~1o. Applying H (QE) to f term-by-term,
one obtains the congruences (i). If f € M (T, 0) then H(¢)(f) € p*~1 Im(0*1),
giving the stronger congruences (ii). O

3. FIRST EXAMPLES

Under the hypotheses of Theorem 6.4, suppose that dim Sg(X ® Q) = 1 and
that f € S,V:k_ex(X). Then the characteristic polynomial of ¢, on DR(X ® Zy, k)
is of the form

H,(T)=T*—-A,T+p", A, cZ
The congruences (6.3) then take the form

(3.1) a(np) = Apa(n) — p*La(n/p) mod p*=Y* if p*ln



6 MATIJA KAZALICKI AND ANTHONY J. SCHOLL

Consider the weak cusp form of level one and weight 12
f=FE4(2)°/A(2) — 1464E4(2)*.

We cannot directly apply the theorem to f, since the modular curve of level 1 does
belong to the class of X considered in §4. We can get round this in the usual way
(cf. part (b) proof of [11, 5.2]): take X = X’ = X (3) for some auxiliary integer
N > 3, and define DR(X (1) ® Z[1/6],k) = DR(X(3), k)¢ (2%/32) " which is then
a free Z[1/6]-module of rank 2. For each p > 3, DR(X (1) ® Z,, 12) is annihilated
by Hy(¢) = ¢? — 7(p)¢ + p'!, and one recovers, for p > 11, the congruences of the
introduction. (With more care we could get congruences for small primes as well.)
We also note that for this example, and others on congruence subgroups, one could
replace the operator H,(¢) with T, — 7(p) where T, is the Hecke operator acting on
DR(X(1) ® Z,,12) (defined using correspondences in the usual way) and thereby
avoid recourse to crystalline theory.

As a further example, consider the following (weakly) modular forms of weight
3 for noncongrence subgroup ®y(3) (defined in §7 below):

fi(r) = n(r/2)8n(r) " 2p(2r) ¥

n 20 200 s 4720
=Y caln)g? =% — Tt + gt — maF 4o € SEN(®(3)).

(Although f5 is holomorphic at co, there is another cusp at which it has a pole.)
From Corollary 11.3 it follows that for a prime p = 2 mod 3, there exist «, 8, € Z,
such that if p*|n then

c1(pn) = apea(n) mod p2(s+1),

ca(pn) = Bye1(n) mod p?G+Y),
Moreover a3, = p?, and ord,(a,) = 2.
If p =1 mod 3, then for some «, € Z,, (ord,(a,) = 2)
p?
c1(pn) = —¢;(n) mod p?C+),
@p

ca(pn) = apea(n) mod p?G+h.

For any p > 3 we have
ca(pn) — Apea(n) + xa(p)p®ca(n/p) = 0 mod p**  if p®|n,
where A, is the p-th Fourier coefficient of a certain CM newform in S3(I'1(12)),
and ys is Dirichlet character of conductor 3 (and H,(T) = T% — A, T + x3(p)p?).
4. REVIEW OF [11]

Let R be a field or Dedekind domain of characteristic zero. In this section
we will work with modular curves over R. Let X be a smooth projective curve
over R, whose fibres need not be geometrically connected, equipped with a finite
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morphism ¢g: X — X', whose target X’ is a modular curve for a representatable
moduli problem. In practice we have in mind for X’ the basechange from Z[1/N]
to R of one of the following curves:

(i) X1(N) (for some N > 5), the modular curve over Z[1/N] parameterising
(generalised) elliptic curves with a section of order N;
(ii) X(N) (for some N > 3), parameterising elliptic curves with a full level N
structure a: (Z/N)?> — E,
(iii) X (N)2ith (for some N > 3), parameterising elliptic curves with “arith-
metic level N structure of determinant one” a: Z/N x uy — E
and we will limit ourselves to these cases, although most things should work if X’
is replaced by some other modular curve (perhaps for an “exotic” moduli problem).

We let Y/ C X’ be the open subset parameterising true elliptic curves, and
7' C X' the complementary reduced closed subscheme (the cuspidal subscheme).
We make the following hypotheses on the morphism g:

(A) g: X — X' is étale over Y’

(B) I'(X,0x) = K is a field.
We write Y, Z for the (reduced) inverse images of Y’, Z’ in X, and j: Y < X for
the inclusion.

A cusp is a connected component z C Z. The hypotheses imply (by Abhyankar’s
lemma) that ¢ is tamely ramified along Z’. We have z = Spec R,, where R, /R is
finite and étale. One knows that a formal uniformising parameter along a cusp
of X’ may be taken to be ¢*/™ for some m|N, and we may choose therefore a
parameter t, € (7)(\2 such that 6,t]'s = ¢ for some m, > 1, 6, € R}. Moreover m,
(the width of the cusp z) is invertible in R.

Because Y’ represents a moduli problem, there is a universal elliptic curve
m: E' — Y’ which in each of the cases (i-iii) extends to a stable curve of genus
one 7: E' — X', with a section e: X’ — E’ extending the zero section of E’. We
let wy, = e*QzE,,/X, be the cotangent bundle along e, and w its pullback to X.

If U is any R-scheme we shall simply write Q}; for the module of relative dif-
ferentials Q'U /R

The module of (R-valued) modular forms of weight £ > 0 on X is by definition
My(X) = H(X, w%F).
There is a well-known canonical “Kodaira—Spencer” isomorphism
KS(X'): w$? =5 0% (log Z').

Hypothesis (A) implies that g*Q%, (log Z’) = Q% (logY), and therefore KS(X’)
pulls back to give an isomorphism

KS(X): w$? =5 Q4 (log 2).
One therefore has
M(X) = H(X, w32 @ Ok (log 2))
and the submodule of cusp forms is
Su(X) = HO(X, w* % © Q).
Serre duality then gives a canonical isomorphism of free R-modules

Sp(X)Y = HY (X, w$27F).
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The relative de Rham cohomology of the family £’ — Y’ is a rank 2 locally free
sheaf &y = le*Q*E, Iy which carries an integrable connection V. Denote by wy-,
Ey the pullbacks of wy/, £y to Y.

There is a canonical extension (in the sense of [5]) of (y+, V) to a locally free
sheaf £x/ with logarithmic connection

V:Ex — Exr @ Q% (log Z')
whose residue map Resy — defined by the commutativity of the square
Exi  —Y Ex @ QL (log Z')

(—)®1l lid@Resz/

Resvy

Ex @O0y — Ex @Oy
— is nilpotent. The canonical extension may be described explicitly using the
Tate curve: in the cases (i-iii), each cusp z C Z’ is the spectrum of a cyclotomic
extension R’ = R[(y] (for some M|N depending on z). The basechange of E’ to
R'((¢"/™)) via the g-expansion map is canonically isomorphic to the pullback of
the Tate curve Tate(q)/Z[1/N]((¢"/™)), and there is a canonical basis

H g (Tate(q)/Z[1/N]((g"/™))) = Z[1/N]((¢"/™)) - wean ® Z[1/N)((¢"/™)) - Ecan
v(wcan) = gcan & dQ/q, V(fcan) =0

for the de Rham cohomology of the Tate curve. The canonical extension of &y
to X’ is then the unique extension for which, at each cusp z as above, éA’Xf,g; is
generated by wean and Eean. In particular, in the basis (Wean, Ecan) the residue map
at a cusp z of width m has matrix

0 0
Resv . = (m 0) .

We write wy, Ex for the pullbacks of wy,, £x to X. Since the residues are
nilpotent, £x is equal to the canonical extension of &y .
The Hodge filtration of £y extends to give a short exact sequence

0—>F16X:QT%EX:Q—)FO:€X Qv 0

and the Kodaira-Spencer map is obtained (by tensoring with w) from the composite
Wy Ex 1 Ex @ Q4 (log Z) — wY ® Ok (log Z)

In [11], some de Rham cohomology groups associated to modular forms were de-
fined. Define, for an integer k > 2,

QOEY) = e =symt 2 ey
Qe =vEF ) 1 e ek c e8P @ 0k (log 2)

and let
V=20l ol )

be the (k — 2)-th symmetric power of the connection V. This makes Q‘(ng_Q))
into a complex of locally free Ox-modules with R-linear maps. Define

DR(Y, k):=H' (X, ¢ @ Q% (log 2)),
(4.1) DR(X,k):=H'(X,Q* (™))
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In the notation of §2 of [11], DR(X, k) = Li—2(X, R) and DR(Y, k) = Ti,—2(X, R).
The Hodge filtration on 5%72) is the symmetric power of the Hodge filtration
F*® on Ex: its associated graded is

g E8 7D = {w?}(k_wﬂ posg=kez

0 otherwise
Define the filtration F** on the complex 5;672) ® Q% (log Z) by
Fi(E$ @ Qi (log 2)) = FIH(EF ) Qi (log Z).

Then the connection V*~2) respects F'*. On the associated graded, V*=2) is Ox-
linear, and if (k — 2)! is invertible in R, away from the extreme degrees it is an
isomorphism:

g% (EF Y © 0% (log 2)) = wPF
g (e Y @ 0% (log 2)) = wPF % © Ok (log 2)[ 1]
gr% vk-2), grfm 5)((]6_2) = gr{;l 5;6_2) ® Q% (log Z) ifo<j<k-1

In fact, gr% VE=2) = j(KS ® idyor—2;) if 0 < j < k — 1. Therefore from the
spectral sequences for the cohomology of the filtered complexes

EF D 9 0% (log Z), F*) and (Q*(E¢?), F*)
we obtain a commutative diagram with exact rows

0 —— Sp(X) —— DR(X, k) —— Sip(X)¥ —— 0

“l ! H

0 — 5 My(X) —— DR(Y,k) — Sp(X)¥ —— 0
and
J oc(k—2)\\ _ 17j (k—2) . _ e
H (X, Q& 7)) =H (X, 7 @0Q%(logZ))=0 ifj#1,k>0.

More precisely, there are isomorphisms in the derived category

k—1

(4.2) EFP @ 0% (log 2) = [wPF 2 w2 2 0k (log Z) |
k—1

(4.3) EYY) = (W 7o wR ek ]

where DF~1 is a differential operator which is characterised by its effect on g¢-
expansion:
d

a dq
dq

q

DF1(fu2oh) = (=D* (d

k—1
can (k _ 2)' ) (f) w‘/:f;lQ ®

(see [11, proof of 2.7(ii)]).
Finally note that from the exact sequence of complexes
00— (eF ) 5 el 2 0% (log 2) % w2220, — 0

we obtain an exact sequence

0 — DR(X,k) — DR(Y, k) 23 1(Z, w22 0z) — 0
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5. MODULAR FORMS OF THE SECOND AND THIRD KIND

For any k € Z, and any R, define
ME(X) =T (Y, wy),

the R-module of weakly (or meromorphic) modular forms of weight k on X. We say
that an element of M;" k(X) is a weak cusp form if, at each cusp, its g-expansion has
vanishing constant term. Let S¥%(X) C M;}"*(X) denote the submodule of weak
cusp forms.

Composing D¥~! with the Kodaira-Spencer isomorphism we obtain a R-linear
map

ok 1. M3k (X)) — MYE(X)

which on g-expansions is given by (gd/dg)*~!, and whose image is contained in
Syk(X).

Suppose R = K is a field. Then one knows (cf. [5]) that the restriction map

H* (X, ¢ @ 0% (log 2)) — H*(YV,€F 2 @ 03)

is an isomorphism, and since Y is affine, the cohomology group on the right can be
computed as the cohomology of the complex of groups of global sections.

We therefore have the following description of the de Rham cohomology groups
as “forms of the second and third kind”:

Theorem 5.1. If R is a field, there exist canonical isomorphisms

My (X) SEE(X)
Okt (M3, (X)) OF =1 (M3, (X))
compatible with the inclusions on both sides. The Hodge filtrations on DR(Y, k)
and DR(X, k) are induced by the inclusion My(X) C MY*(X).

DR(Y, k) = DR(X,k) =

Remarks. (i) When k = 2 we simply recover the classical formulae for the first de
Rham cohomology of a smooth affine curve Y = X \ Z over a field of characteristic
zero:

and for the complete curve X

{forms of the 2nd kind on X, regular on Y}
d(I'(Y,0y))

(ii) Suppose K = C and Y(C) = T'\$ is a classical modular curve. Then one has

a natural isomorphism from DR(X, K) to Eichler-Shimura parabolic cohomology

[14] given by periods:
7(z0)
f(z) — (/ P(z,1)f(2) dz)

for homogeneous P € C[Tp, Ti] of degree (k — 2).

Hap (X/K) =

For general R, the description given in the theorem needs to be modified. Since
the R-modules DR(Y, k) and DR(X, k) are locally free, and their formation com-
mutes with basechange, restriction to Y induces an injective map
MyE(X)

(5.2) DR(Y, k) — O (X))
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For each cusp z C Z, let R, = I'(2,0,) and let t, € 6;2 be a uniformising
parameter on X along z. Say that f € M}"*(X) is weakly exact if for every cusp z,
the principal part of f at z is in the image of #*~1. Explicitly, if the expansion of
fat zis > ant? ® w® the condition is that a,, € n*~'R, for every n < 0. Let

can?
SWRTex(X) ¢ MPRT(X) € MYE(X)
denote the submodules of weakly exact cusp and modular forms, respectively.
If g € My, (X) then evidently 6*~1(g) is weakly exact.

Theorem 5.3. For any R the maps (5.2) induce isomorphisms

B kafeX(X) . SWkieX(X)
DR(X, k) = W&(X)) DR(X k) = W&(X))

Proof. Let X, = SpecO/Xz denote the formal completion of X along Z, and
Y,z = X,z — Z the complement; thus

Xz = HSpec R.[t.]] DY)z = HSpec R.((t.)).

Then Y [[ X,z is a faithfully flat affine covering of X, and so its Cech complex
computes the cohomology of any complex of coherent Ox-modules with R-linear
maps. Applying this to the complex (4.2), we see that DR(X, k) is the H' of the
double complex of R-modules:

k—
L(Y)z,w?F) AN (Y z,w")

I I

k—1
My (X) & T(X 7,02 F) s SP%(X) @ T(X )7, wh)

or equivalently the H' of the complex

k—1 F(YZ wk)
MR (X) T spe(x) 2 Al
k ( ) — Dk ( ) - I‘(X/Z,gk) +0k71F(Y/Z’£27k)
and Sy5"%(X) is precisely ker(8). Likewise for DR(Y, k). O

6. g-EXPANSIONS AND CRYSTALLINE STRUCTURE

Let z C Z be a cusp, and write

d d
0= qd7q - mZtZTQ7
a derivation of R,((t,)). We have the local expansion maps
R [[t.]]

R ((t2))
T () M L R ((8)
such that the restriction of f € DR(X,k) to the formal neighbourhood of z is
loc.(f) ® w&h.

Suppose now that R = ox for a finite unramified extension K/Q,, and let o
be the arithmetic Frobenius automorphism of K. For each z, denote also by o the
Frobenius automorphism of R, (which is also an unramified extension of Z,). By
Hensel’s lemma there is a unique v, with

Y. €14pR. and ™ = 67/o(0s).

loc,: DR(X,k) —
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The o-linear endomorphism g — ¢” of R((¢q)) then extends to a unique o-linear
endomorphism of R, ((t.)) whose reduction is Frobenius, given by

t. = .12

Then, as explained in §3 of [11], there are compatible o-linear endomorphisms ¢ of
DR(X, k) and DR(Y, k), with the property that

(61)  loca(f) =D antl = loc.(¢(f) =" olan)yrtr

Let us assume that R = Z,, so that ¢ is now linear. Let z C Z be a cusp with
R.=Z, lf fe M,‘C’kae"(X)7 write the local expansion of f at z as

(6.2) f=Ffowin, f=) b0)il=) an)g"™, bn)=25""a(n)e L,

Suppose that H(T) = Z;ZO T7 € Z,[T) satisfies H(¢)(f) = 0 in DR(Y, k). Then
loc,(H(¢)f) = 0, which is equivalent to the following congruences: if p*|n then

(6.3) Zp(kfl)jAja(n/pj) =0 mod p*~Vs,

j=0
Here we follow the usual convention that a(n) = b(n) = 0 for n not an integer, and
the left hand side is interpreted as

5on/me 3 pkDi Ay =D/ 0=V /) € 5777,
3=0
cf. [11, Thm, 5.4]. Putting this together we obtain the following extension of the
ASD congruences to weakly modular forms:

Theorem 6.4. Suppose that R = Z[1/M] and that z is a cusp with R, = R. Let
fe M,:’k_cx(X), with local expansion at z (6.2). Let p be a prime not dividing M
with p > k — 2, and suppose that the image of f in DR(Y ® Z,, k) is annihilated
by H(¢) for some polynomial H(T) = 25:0 A;T7 € Z,[T). then for every integer
n the congruences (6.3) hold.

7. FERMAT GROUPS AND MODULAR FORMS

Modular function and modular forms on Fermat curves have been studied by
D. Rohrlich [13] and T. Yang [15], among others. We follow here the notation of
[15].

Let A be the free subgroup of SLy(Z) generated by the matrices A := (} ?) and
B :=(19). One has that I'(2) = {£I}A. Given a positive integer N, the Fermat
group ®(N) is defined to be the subgroup of A generated by AV, BY and the
commutator [A, A]. Tt is known that the modular curve X (®(N)) is isomorphic to
the Fermat curve X~ + Y~ = 1. The group ®(N) is a congruence group only if
N =1,2,4 and 8.

Let N > 1 be an odd integer. Denote by ®q(N) the group generated by ®(NV)
and A. Tt is a subgroup of A of index N and genus zero. (The other two genus
zero index N subgroups of A that contain ®(N) are generated by ®(N) and AB~1
and B respectively.) The associated modular curve X (®o(N)) is a quotient of the

Fermat curve, and is isomorphic to the curve
U

oV = ,

1—u
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where u = X N and v = % Denote by H the complex upper half-plane. If 7 € H
and g = 2™, then

B 3 1—q¢" 1/2
Ar) =~ 1/2H( o)
5 B 1+q¢" 1/2
— 1/2
1_)\( B / H( 1+q7L

are modular functions for I'(2). Moreover, they are holomorphic on H, and A(7) #
0,1 for all 7 € H. It follows that there exist holomorphic functions Z(r) and g(7)
on H, such that (7)Y = A(7) and (7)Y = 1 — A(7), so we have that

#r)Y + ()Y =1

and in fact both Z(7) and §(7) are modular functions for ®(N). We normalize Z(7)
and §(7) by setting

2(r) = (-1)¥16%&#(r) and y(r) = 16~ §(7).
Now, z(7) and y(7) have rational Fourier coefficients, and we have that

(7.1) z(r)N —y(r)N = —16.

For v = (¢%) € SLy(Z) and a (weakly) modular form f(7) of weight k define
as usual the slash operator

(fIN(7) = (e +d)* f (7).
A straightforward calculation [15, §2] shows

(x[A)(7) = Cnva(r)  (2]B)(r) = (na(T),
WlA)(7) = Cva(r)  (yIB)(7) = y(7),
)

where (y is a primitive Nth root of unity. Hence t(7) := ﬁ is invariant under
Dy(N).

The modular curve X (2) has three cusps: 0, 1, and oco. There is one cusp of the
curve X (®g(N)) lying above each of the cusps 0 and 1, and N cusps ooy,...,00N
lying above the cusp oo. As functions on X (®g(N)), A(7) and 1 — A\(7) have simple
poles at oo;, and they have zeros of order N at the cusps 0 and 1 respectively.
The function ¢(7) is holomorphic on H, nonzero at the cusps above infinity, has a
pole of order one at the cusp 1, and a zero of order one at the cusp 0 (so t(7) is a
Hauptmoduln for X (®g(N))).

Denote by S3(®o(N)) the space of cusp forms of weight 3 for ®o(N). It is well
known that 01(7) := (3, ¢z e”"27)2 is a modular form of weight 1 for A. It has a
zero at the (irregular) cusp 1 of order 1/2.

Let T' be a finite index subgroup of SLa(Z) of genus g such that —I ¢ T". For k
odd, Shimura [14, Theorem 2.25] gives the following formula for the dimension of

Si(T)

dim 54(T) = (k ~ 1)(g ~ 1) + 50k~ 2)r1 + 3 —1T2+Z o
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where r; is the number of regular cusp, 72 is the number of irregular cusps, and
the e; are the orders of elliptic points. Since ®¢(N) has no elliptic points (A being
free), it follows that dim S3(N) = 2.

Define f;(1) := 9?(7‘)#(7‘)@ for i =1,2,... N — 1. The divisor of f;(7)

is

N

. : 1 .

div(fi) = i(0) + (5N = )(1) + 3 (00)
j=1

Hence {f;(7)}, fori =1,..., &=L form a basis of S3(®o(N)). Ifi = £ .. N—1,

then f;(7) has a pole at the cusp 1, and since the cusp 1 is irregular the constant

Fourier coefficient is zero. It follows f;(7) € SY*~(®q(N)). Since (t|B)(r) =

Cnt(T), it follows that (fi|B)(T) = (i fi(T).

8. {-ADIC REPRESENTATIONS

In this section we define two closely related compatible families of /-adic Galois
representations of Gal(Q/Q) attached to the space of cusp forms S3(®¢(N)). The
first family py ¢ : Gal(Q/Q) — GLx_1(Qy) is a f-adic realisation of the motive
associated to the space of cusp forms S3(®o(N)) (which we recall has dimension
(N —1)/2). Tt is a special case of second author’s construction from [11, Section
5]. For a more detailed description see [9, Section 5].

To describe the second family, consider the elliptic surface fibred over the mod-
ular curve X (®o(N)) defined by the affine equation

EN Y2 = X(X +1)(X +tV),
together with the map
h: &N — X(®o(N)),
mapping (X,Y,t) — ¢. It is obtained from the Legendre elliptic surface fibred
over X (2)
Y =X(X-1)(X-)N),
by substituting A = 1 — ¢¥. Note that A corresponds to A\(7) = 16q% — 128¢ +

7O4qg + - -+, the usual lambda modular function on I'(2), and we can check directly
that

A7) =1—t(r)"N.
The map h is tamely ramified along the cusps and elliptic points so following [9, Sec-
tion 5] we may define ¢(-adic Galois representation p} , : Gal(Q/Q) — GLn_1(Qr)
as follows: let X (®)" be the complement in X (®) of the cusps and elliptic points.
Denote by i the inclusion of X (®¢)° into X(®g), and by b’ : Ey — X (Po(N))°
the restriction of h. For a prime ¢ we obtain a sheaf
Fo=R'h.Q
on X(®)°, and also a sheaf i,/, on X(®g). The action of Gal(Q/Q) on the
Qy-space
Wy = HL(X(®0) ® Q,1.F)

defines an (-adic representation pj , : Gal(Q/Q) — GLx_1(Qy).

Proposition 5.1 of [9] implies that the two representations pj , and pn . are
isomorphic up to a twist by a quadratic character of Gal(Q/Q).
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9. JACOBI SUMS AND GROSSENCHARACTERS OF CYCLOTOMIC FIELD

We review some results of Weil [16]. Let m > 1 be an integer, (,, a primitive
m-th root of unity, and p a prime ideal of Q((,,) relatively prime to m. For any
integer ¢ prime to m, let o, € Gal(Q((;,)/Q) be the automorphism ¢, — ¢¢,.
Denote by ¢ the norm of p, so that ¢ = 1 (mod m). Let x, be the m-th power
residuse symbol: for € Q((,,) prime to p, xp(x) is the unique m-th root of unity
such that

q—1
Xp(x) =2 ™ (mod p).
It follows that xp : Z[(m]/p = Fy — py is a multiplicative character of order m.

Definition (Jacobi sums). For a positive integer r and a = (ay,...,a,) € Z" we
define
Jap):=(=D" > xplz)™ . xp(a),

z1+...tz,.=—1(p)
z1,...,Lr mod p

where sum ranges over complete set of representatives of congruence classes modulo
p in Q(¢mn). We extend the definition of J,(a) to all ideals a of Q((,,) prime to m
by multiplicativity.

Let K be a number field. Jx = H/V K its idele group of K. Recally that a
Groisencharacter of K is any continuous homomorphism 1: Jx — C*, trivial on
the group of principal ideles K* C Jg, and that v is unramified at a prime p if
bloy) = 1.

Recall also the standard way to view a Grossencharacter v as a function on the
nonzero ideals of K, as follows. Let p be a prime of K, let # be a uniformizer of
K, and let o, € Jg be the idele with component 7 at the place p and 1 at all
other places. One defines

b(p) = {w(ap) if ¢ is unramified at p,

0 otherwise
and extends the definition to all nonzero ideals by multiplicativity.

Definition. The Hecke L-series attached to a Grossencharacter ¥ of K is given by
the Euler product over all primes of K

e =T 35)

Theorem 9.1 (Weil, [16]). For each a # (0) the function J,(a) is a Grossenchar-
acter on Q(() of conductor dividing m?. Its ideal factorisation is given by the
formula

(Ja(a)) = aom (@)
where
wo- T B

(t,m)=1 Lp=1
t mod m

and (z) denotes the fractional part of a rational number x.

We will need the following technical lemma.
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Lemma 9.2. Let N > 1 be an odd integer, k and d positive integers with d|N, p = 1
(mod N) a rational prime, p a prime of Z[(n,q] above p, and p a prime of Z[C x_, |
d

above p. Write (p* —1)/d = 2NN'/d. Let Ji2,n/a)(p) and Jon: nn-/ay(P) be Jacobi
sums associated to the fields Q((n/q) and Q(C,x_,) with defining ideals 2N/d and

d

(p¥ — 1)/d (i.e. the characters x, and xj are of order 2N/d and (p* —1)/d =
2NN'/d). Then

k ~
(Je2,n/a) (IJ))Q = Jon', N7 a) (D)

Proof. Straightforward calculation shows that the character Xév " is the lift of Xp>
i.e. xp(Norm(z)) = Xév'(:r), for all x € Z[¢ ,x_,]/p, where Norm(x) is the norm from
- =
Z[Cy: 1 1/p to Z[Cy /.
Using the factorization of Jacobi sums by Gauss sums (see [3, 2.1.3]), the lemma

then follows directly from the Davenport-Hasse theorem on lifted Gauss sums (see
[3, 11.5.2]). O

10. TRACES OF FROBENIUS

To simplify notation, denote F = i,Fy. The Lefschetz fixed point formula and
standard facts about elliptic curves over finite fields gives the following theorem.

Theorem 10.1. Tr(Frob,|W;) may be computed as follows:
(1)
Tr(Frobg|Wy) = — Z Tr(Frobg|Fy).
teX(Po(N))(Fq)
(2) If the fiber EN is smooth, then
Tr(Frobg|Fy) = Tr(Frobg|H' (), Qp)) = ¢+ 1 — #& (F,).
(3) If the fiber EN is singular, then

1 if the fiber is split multiplicative,
Tr(Frobg|F,) = 4 —1 if the fiber is nonsplit multiplicative,
0 if the fiber is additive.

Theorem 10.2. Let N > 1 be an odd integer, and ¢ a prime. The Galois represen-
tations ply , and @d‘NJ(QQAN/d) have the same local factors at every prime pt 2NZ.

Proof. Let k be a positive integer, p be an odd prime, and g = p* such that ¢ = 1
(mod N). Let x be any character of F) of order 2N (which exists since ¢ = 1
(mod 2N)). We count the points on the elliptic surface £V (excluding all points at
infinity):

#ENF) =D > (N@@+D)(@+Y) +1)

teF, zcF,

=+ > xXNa+1) > xNa@+tV).

z€F, teF,
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Now

S+ =[] =@ Y Y e ()

tel, r1+x2=— x N of order |N
N-1
= XN (@) + XN (-1) > X)X (@2).
i=1 x14zo=—2
Define

Then

#EN(F) ="+ > xV(@(x+1)) <Z T (@)X (z) + xN(fr)>

z€lFy

N-1
=+ Z Ji(1) Z YN (=2 = DXV (=1)x () + Z Nz +1)

z€F, z€F,

N-1
=¢*+ ) Ji(1)>
i=1

The fibre &N of the elliptic surface EV is singular if and only if ¢ = 0 or V¥ = 1.
(In the calculation below, we refer to these ¢ as bad, and the others as good). In
the first case, & : y? = (z + 1)z? has split multiplicative type. In the second case,
EN 1 y? = x(x + 1)? is split multiplicative if xV(—1) = 1 (or equivalently if p = 1
(mod 4)), and nonsplit multiplicative if x’¥(—1) = —1. Denote by M the number
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of Nth roots of unity in F,. Theorem 10.1 implies

Tr(Frobg|Wy) = — Z Tr(Froby|Fy)
tEX (Po(N))(Fq)
= Z #EN(F,) — (g + 1) - #{t good} — Z Tr(Frobg|F:)
t good t bad
= #EN(Fy) + #{t good} — > (#& (Fy) — 1)
t bad

— (q+ D)#{t good} — (xV (~1)M +1)

N—-1
=q¢*+ Z Ji(1)* = (g —1) = M(q —x"(-1))
—qlg—1-M) = (N(-1)M +1)
= - Ji(1)?

i=1

Suppose that p =1 (mod 2N) (so that p splits completely in Q(¢ax)). It is enough

to show that Tr(Frobg|[We) = 3_g x>y J2,8/a) (p)?*, where the second sum is over

the primes of Q((an/q) lying above p. Fix d|N. For any p a prime of Q(¢,x_, ) above
=

p the residual degree of p in Q({,x_, ) is k (since the order of p in (Z/d(p* — 1)Z) *
d
is k), hence x; is a character of F* of order L;l. We can choose p such that

Togios g (B) = Ja(1)%

(pN v 2d

By Lemma 9.2 it follows
Ja(1)? = Ja.nyay) (p)7F,

where p is the prime of Q(x/q) below p. Since Jy;(1)?’s are conjugate to each other
for j=1,...,N/d with (j, N/d) = 1, it follows that

Z Jai(1)* = Z Ja.nyay(p)*F.

(4,N/d)=1 p above p

The claim follows after summing over d|N. The case p # 1 (mod N) is proved in
a similar way. O

11. ATKIN AND SWINNERTON-DYER CONGRUENCES

We now apply results of §5 to obtain congruences of Atkin and Swinnerton-
Dyer type between the Fourier coefficients of the (weakly) modular forms f;(7).
Let p > 3 be a prime such that p { N. Set R = Z,, write X = X(®¢(NN)) and
X’ = X(2) for the extensions of the curves considered above to smooth proper
curves over. Let ¢ : X — X’ be the finite morphism that extends the quotient
map O(N)\H — T'(2)\H (see proof of [11, Proposition 5.2 a)]). Denote by W :=
DR(X,3)®Q, de Rham space corresponding to this data. The action of B = (3 9)
on the space of cusp forms S3(P¢(NN)) extends to W: for hY € S3(Po(N))Y and
f € S3(®o(N)) we have (hY|B)(f) = hV(f|B~!). We write W = @ 71W;, where
W; is the eigenspace of B corresponding to the eigenvalue (4. Since (f;|B)() =
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Cifi(r) fori=1,...,N —1and fi(r) € Sy* (®o(N)), Theorem 5.3 implies that
fi(r) € W;. Let ¢ be the linear Frobenius endomorphism of W defined in §6.
Proposition 11.1. Fori=1,...,N —1,
d(W;) C Wip mod N-
Proof. Since B¢ = ¢BP (see [10, Section 4.4]), for f € W; we have
S(NIB = o((fI1B)") = (¥ (1),

and the claim follows. O

Define «; € Zp by ¢(fi) = @i fip mod N-
Proposition 11.2.

s N-—1
2 Zfl—l,...T,

Ord”(ai):{o ifi=NE N -1

Proof. Proposition 3.4 of [11] implies
$(S3(®o(N))) C p?DR(X, 3).

Since the f; are normalized, it follows that ord,(a;) > 2, for i = 1,...,%
On the other hand, the determinant of ¢ is 4p?dm53(Po(N) — 45N-1" hence
ordp(aq -ag - ... an—1) = N — 1 and the claim follows. O

Let fi(1) = ¢'/? + 2511 ai(j)q%, fori=1,...,N — 1. From the description of
the action of ¢ (6.1) on the de Rham space DR(X,3) (and DR(X,3)®) when f; is
a cusp form, see §2), we thus obtain:

Corollary 11.3. Fori=1,...,N — 1 and any positive integer j,

2
%ai (]) = ai-p mod N(p]) (mOd p2(ordp(j)+1)).

Suppose I is a noncongruence subgroup of SLy(Z) of finite index such that the
modular curve X (T') has a model over Q (see §2). Based on Atkin and Swinnerton-
Dyer’s discovery, Li, Long and Yang made the precise conjecture (Conjecture 1.1
of [9]) that for each integer k > 2, there exists a positive integer M such that for
every prime p t M there is a basis of Si(I') ® Z,, consisting of p-integral forms h;(7),
1 <i<d:=dimS(T), algebraic integers A,(i), and characters x; such that, for

each 4, the Fourier coefficients of h;(1) = 3_; a;(j)g* (u being the width of the
cusp at infinity) satisfy the congruence relation

ai(np) — Ay(i)ai(n) + xi(p)p* 'ai(n/p) =0 (mod plF~HU+ord(n)),
for all n > 1.

Theorem 11.4. Let p be any prime congruent to 2 or 3 (mod 5) be a prime. There
is no basis of S3(Po(5)) satisfying Atkin—Swinnerton-Dyer congruence relations for

p.
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Proof. Assume that {g1(7), g2(7)} is a normalized basis satisfying ASD congruences
at p. Theorem 10.2 implies that py, the ¢-adic representation attached to S3(®g(5)),
is isomorphic to the quadratic twist of Grossencharacter of Q(¢s). In particular,
since p is inert in Q((5), we have that H,(T) = T* 4 p*. Theorem 2.1 implies that

bi(p"‘m) = j:p4bi(m) (mod pG), for pfm e N,

and in particular p|b;(p*).

Since g;(7) satisfy ASD congruences, for some algebraic integer A, (i) we have
that b;(p*) = A,(i)b;i(p*~1) (mod p), for all k > 1. It follows that p|b;(p) (if this
were not the case, this would imply that p { b;(p¥) for all k). Hence the p-th Fourier
coefficient of fi(7) and f2(7) is divisible by p. However, Proposition 11.2 implies

that either ¢(fi(7)) = a1 fo(7) or ¢(f2(T)) = aafi(7), and ord, () = ordy(ag) =
0. It follows from Corollary 11.3 that p-th Fourier coefficient of f1(7) or f2(7) is
not divisible by p which is in contradiction with our assumption. (I

Remark. J. Kibelbek [8] has given an example of a space of weight two modular
forms that does not admit a basis satisfying Atkin and Swinnerton-Dyer congruence
relations.
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