

Plectic structures in number theory & geometry

Tony Scholl

Joint work with Jan Nekovář (Paris VI)

UNIVERSITY OF
CAMBRIDGE

Shimura varieties

Class of algebraic varieties with rich arithmetic structure.

Numerous applications in number theory:

- Mazur: bounding torsion subgroups of elliptic curves over \mathbb{Q}
- Breuil–Conrad–Diamond–Taylor–Wiles: modularity theorem (and FTL...)
- Gross–Zagier–Kolyvagin: “Heegner points” (introduced by Birch) giving special cases of BSD conjectures

These all use 1-dimensional Shimura varieties (modular curves).

Higher-dimensional Shimura varieties are harder to exploit (e.g. no explicit function theory).

But sometimes they appear to have extra symmetries — *plectic structure*. (“Almost” product structure)

Künneth formula

X_1, X_2 topological spaces, $X = X_1 \times X_2$.

Theorem (Künneth formula)

$$H^n(X, \mathbb{Q}) \simeq \bigoplus_{i+j=n} H^i(X_1, \mathbb{Q}) \otimes H^j(X_2, \mathbb{Q})$$

So

$$H^*(X, \mathbb{Q}) \stackrel{\text{def}}{=} \bigoplus_n H^n(X, \mathbb{Q}) \simeq H^*(X_1, \mathbb{Q}) \otimes H^*(X_2, \mathbb{Q})$$

Functorial, and if X_i have some extra structure, preserved by this isomorphism (e.g. automorphisms of X_i).

Künneth formula in Hodge theory

Suppose X_i/\mathbb{C} are algebraic varieties. Then $H^n(X_i)$ has a (mixed) *Hodge structure*.

X_i projective and smooth. Then have *Hodge decomposition* (\mathbb{Z}^2 -grading on H^*) given by forms of type (p, q)

$$H^n(X, \mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}(X)$$

and

$$H^{p,q}(X) = \bigoplus_{\substack{p_1+p_2=p \\ q_1+q_2=q}} H^{p_1,q_1}(X_1) \otimes H^{p_2,q_2}(X_2)$$

So $H^*(X, \mathbb{C})$ has a $\mathbb{Z}^2 \times \mathbb{Z}^2$ -grading ("plectic Hodge structure")

If X_i aren't smooth projective, get something more complicated ("plectic mixed Hodge structure").

Künneth formula in ℓ -adic cohomology

Suppose X_i are varieties over field k , separable closure \bar{k} .

Have ℓ -adic (étale) cohomology $H^*(X_{/\bar{k}}, \mathbb{Q}_\ell)$, which has action of $\Gamma_k = \text{Gal}(\bar{k}/k)$.

Künneth formula is an isomorphism of representations of Γ_k :

$$H^*(X_{/\bar{k}}, \mathbb{Q}_\ell) \simeq H^*(X_{1/\bar{k}}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} H^*(X_{2/\bar{k}}, \mathbb{Q}_\ell)$$

Gives more: from actions on two factors, get action of product $\Gamma_k \times \Gamma_k$ on $H^*(X_{/\bar{k}}, \mathbb{Q}_\ell)$.

“Usual” action is restriction to diagonal $\Gamma_k \subset \Gamma_k \times \Gamma_k$.

- Künneth theorem is actually on level of “cochain complexes”: so $R\Gamma(X_{/\bar{k}}, \mathbb{Q}_\ell)$ is a complex of vector spaces with action of $\Gamma_k \times \Gamma_k$.
- Need Künneth formula to define the $\Gamma_k \times \Gamma_k$ -action (no natural action of product on $X_{/\bar{k}}$).

Beyond Künneth?

Varieties which aren't products?

Trivial example: G finite group acting (freely, say) on X_1 and X_2 ,
 $Y = (X_1 \times X_2)/G$.

Then Y is not (in general) a product, but $H^*(Y) = H^*(X_1 \times X_2)^G$ behaves in the same way:

- plectic Hodge structure (\mathbb{C} case)
- action of $\Gamma_k \times \Gamma_k$ (arithmetic case).

Quotients by infinite groups? \longrightarrow Shimura varieties.

Shimura varieties

Shimura variety: an algebraic variety S (over number field) such that $S(\mathbb{C}) = \sqcup \Gamma \backslash D$ where

- D a Hermitian symmetric domain G/K
- $\Gamma \subset G$ arithmetic subgroup

Basic example: modular curves.

- $D = \mathcal{H}$ upper half plane $= SL_2(\mathbb{R})/SO(2)$.
- $\Gamma =$ congruence subgroup of $SL_2(\mathbb{Z})$, e.g.

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}$$

$\Gamma_0(N) \backslash \mathcal{H} = Y_0(N)$, affine curve.

Projective closure $X_0(N) = Y_0(N) \cup$ (finite) defined over \mathbb{Q} .

Cohomology of modular curves

In dimension 1 (as representation of $\Gamma_{\mathbb{Q}}$)

$$H^1(X_0(N)_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) = \left(\begin{array}{l} \text{sum of 2-dimensional pieces,} \\ \text{parametrised by modular forms} \end{array} \right)$$

For every elliptic curve E/\mathbb{Q} , $\exists N$ such that

$$H^1(E_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) \subset H^1(X_0(N)_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell).$$

(One formulation of the **modularity theorem**)

Plectic structure I

Plectic structure arises when $D = D_1 \times \cdots \times D_r$ but Γ is not commensurable with $\Gamma_1 \times \cdots \times \Gamma_r$.

Simplest example: **Hilbert modular surfaces**. $D = \mathcal{H} \times \mathcal{H}$, $F = \mathbb{Q}(\sqrt{d})$ real quadratic field.

Γ congruence subgroup:

$$\begin{aligned}\Gamma \subset SL_2(F) \subset SL_2(\mathbb{R}) \times SL_2(\mathbb{R}) = G \\ \sqrt{d} \quad \mapsto \quad (\sqrt{d}, -\sqrt{d})\end{aligned}$$

$S = \Gamma \backslash (\mathcal{H} \times \mathcal{H})$, algebraic surface defined over number field (often over \mathbb{Q}).

Can replace F by a totally real field of degree $r > 1$, $D = \mathcal{H}^r$ giving *Hilbert–Blumenthal modular varieties* (HBMV)

Plectic structure: Hodge theory

Theorem

Suppose $D = D_1 \times \cdots \times D_r$ and $X = \Gamma \backslash D$ is **compact**. Then have canonical plectic Hodge structure

$$H^*(X, \mathbb{C}) = \bigoplus_{\underline{p}, \underline{q} \in \mathbb{Z}^r} H^{\underline{p}, \underline{q}}(X)$$

Proof. Hodge structure on $H^*(X)$ depends mainly on G , not Γ :

$$H^*(X, \mathbb{C}) = \bigoplus_{\pi} H^*(\mathfrak{g}, \mathfrak{k}; \pi)^{m(\pi, \Gamma)} \quad (\text{Matsushima's formula})$$

Here π are irred. reps of $\mathfrak{g} = \text{Lie}(G)$, and Lie algebra cohomology $H^*(\mathfrak{g}, \mathfrak{k}, \pi)$ has Hodge decomposition (Laplacian \leftrightarrow Casimir) and

$$H^*(\mathfrak{g}, \mathfrak{k}, \pi_1 \otimes \cdots \otimes \pi_r) = \bigotimes_i H^*(\mathfrak{g}_i, \mathfrak{k}_i, \pi_i)$$

Plectic structure: mixed Hodge theory

Case of noncompact quotient more complicated.

Theorem

S an HBMV (any dimension). Then $H^n(S, \mathbb{C})$ has a canonical plectic mixed Hodge structure.

This means it has $(2r + 1)$ filtrations:

- W_\bullet (weight, increasing) and
- $F_j^\bullet, \overline{F_j^\bullet}$ (Hodge and conjugate, decreasing) for $1 \leq j \leq r$

+ certain conditions — in particular, $\text{gr}_*^W H^n(S)$ has a \mathbb{Z}^{2r} -grading.

ℓ -adic cohomology of HBMVs

S an HBMV associated to F of degree r . [Assume S defined $/\mathbb{Q}$.]

- most interesting cohomology is $H^r(S_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$, representation of $\Gamma_{\mathbb{Q}}$.
- contains subrepresentations U_f of dimension 2^r , indexed by (Hilbert) modular forms f .
- To f is attached a 2-dimension representation V_f of Γ_F .
- If $f \leftrightarrow E/F$ (elliptic curve) then $V_f = H^1(E_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$.

Langlands, Brylinski–Labesse:

$\underbrace{V_f \otimes \cdots \otimes V_f}_{r \text{ times}}$ repr. of $\Gamma_F^r \rtimes \text{Sym}(r) \stackrel{\text{def}}{=} \Gamma_F^{pl} =$ "plectic Galois group"

and permutation action on $\Gamma_{\mathbb{Q}}/\Gamma_F$ gives $\Gamma_{\mathbb{Q}} \hookrightarrow \Gamma_F^{pl}$ (" \otimes -induction")

Theorem (Brylinski–Labesse, Nekovář)

$U_f, V_f^{\otimes r}$ are isomorphic (as representations of $\Gamma_{\mathbb{Q}}$).

Plectic structure on ℓ -adic cohomology

So at least part of H^r has an action of Γ_F^{pI} . In fact all of H^* does:

Theorem (“Beyond Künneth”)

There is a (non-unique) action of Γ_F^{pI} on $H^(S_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ extending the action of $\Gamma_{\mathbb{Q}}$.*

[here S really is a Shimura variety attached to GL_2/F , which is a disjoint union of HBMVs.]

Conjecture (“Plectic conjecture, ℓ -adic version”)

There is a canonical complex of $\mathbb{Q}_\ell[\Gamma_F^{pI}]$ -modules $R\Gamma(S^{pI}, \mathbb{Q}_\ell)$ whose restriction of $\Gamma_{\mathbb{Q}}$ is $R\Gamma(S_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$.

(Also for SVs associated to any reductive G/F , functoriality...)

Consequences of the plectic conjecture

Plectic formalism \implies constructions and theorems for modular curves (i.e. over \mathbb{Q}) can be extended to HBMVs (i.e. over F).

E.g. there exist plectic analogues of classical theta functions (which are related to L -values, and should give rise to generalisations of elliptic units). For modular curves, there are *Heegner points* associated to an imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$:

$$\tau \in \mathcal{H} \cap K$$

→ points $Q_\tau \in X_0(N)(\overline{\mathbb{Q}})$

→ $P_\tau \in E(\overline{\mathbb{Q}})$ (even $E(\mathbb{Q})$) for elliptic curve E/\mathbb{Q}

⇒ (Gross–Zagier, Kolyvagin) special cases of BSD conjectures (when L -function has simple zero at $s = 1$)

Is there a plectic version of this?

Plectic Heegner points???

S an HBMV for F , degree r ; E/F elliptic curve with $H^1(E)^{\otimes r} \subset H^r(S)$.

$\tau \in K =$ totally imaginary quadratic extension of F
 \rightarrow “CM points” $Q_\tau \in S(\overline{\mathbb{Q}})$.

Plectic formalism $\implies \exists$ cohomology class

$$\begin{aligned} [Q_\tau] &\in H^r(\Gamma_F^{pl}, H^r(S_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)(r)) \\ &\downarrow \\ &H^r(\Gamma_F^{pl}, \bigotimes^r H^1(E_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)(r)) \\ &\quad \parallel \text{(K\"unneth)} \\ &\Lambda^r H^1(\Gamma_F, H^1(E_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)(1)) \\ &\quad \cup \text{(Kummer theory)} \\ &\Lambda^r E(F) \otimes \mathbb{Q}_\ell \end{aligned}$$

Speculation: $[Q_\tau]$ maps into $\Lambda^r E(F)$ iff $\text{ord}_{s=1} L(E, s) \geq r$, and if so, \exists “plectic Gross–Zagier” formula relating $[Q_\tau]$ and $L^{(r)}(E, 1)$.

THE END