Integral elements in K-theory and products of
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Introduction

This paper has two aims. The primary one is to clarify the relation between
results of Beilinson [1] and Flach [7]. We begin by briefly recalling the relevant
parts of their papers.

Suppose S is a connected smooth projective surface over Q. Beilinson’s con-
jectures relate the motivic cohomology groups H,(S,Q(n)) = Kéz)_Z(S) of S and
the L-function of the motive A~!(S) at s = n. In what follows we will only be
concerned with the motive h?(S) and the “near-central” point s = 2. In this case:

e The motivic cohomology H?, (S, Q(2)) is equal to the K-cohomology group
HY(S,Ky) ® Q, and HY(S, K5) is the H* of the Gersten complex

Kok(S) Y2 T ko) 2 [ z (0.1)

ccs pPeS

Here C' runs over irreducible curves in S and P over closed points; O¢ is
(up to a sign) the tame symbol attached to the valuation orde of k(S); and
div is the divisor map.

e The Deligne cohomology group H3(S/r,R(2)) equals the cokernel of the
composite map

F?H3p(S/R) — Hig(S/R) = H*(S(C),C)*—-H>(S(C), R(1))*

where + denotes the fixed part under the de Rham conjugation, which is the
product of the maps on Betti cohomology induced by complex conjugation
on S(C) and complex conjugation on the coefficients C.

e Beilinson’s conjectures predict that the regulator (Chern character) and
cycle class maps induce an isomorphism

H3,/2(5,Q(2)) ®g R ® NS(S) @z R — Hp(Sz, R(2))

where H gz, C Hpy is the image of K1(S)®@Q — H3,(S,2), for any regular
proper model S over Z of S.
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Now suppose that S = X x X’ is a product of modular curves. The graph of a
Hecke operator is a divisor on .S, and its normalisation is itself a modular curve,
or union of modular curves. Beilinson’s construction is to take a collection of
modular units u, on Hecke correspondences Z, such that »_ divu, = 0 (as a
0-cycle on S). Then {u,}z, defines a class in H3,(S,2) by (0.1).

For the purposes of this introduction we consider only the simplest nontrivial
case. Take X = Xo(NV), X' = Xo(N') and let ¢: X — E, ¢': X' — E’ be Weil
parameterisations of modular elliptic curves over Q. The proper pushforward
(o x @) H3 (X x X',2) — H3(E x E',2) maps {u,} to a class ¢ € H3(E x
E'.2).

The Deligne cohomology group H3(E x Ef, R(2)) has dimension 3. The classes
of the algebraic cycles E' x {0}, {0} x £’ span a 2-dimensional subspace. If there
is a Q-isogeny between E and E’ then its graph gives a further algebraic cycle.
Thus Beilinson’s conjectures predict that H?, ;z(E X E',2) is trivial if E and £’
are (Q-isogenous, and that it has dimension 1 otherwise.

In [1, §6], Beilinson showed that if F' and E’ are not isogenous, then the images
of the classes ¢ in H3(E x Ef,R(2)), as the Hecke correspondence and units
are varied, span a 1-dimensional Q-subspace, in agreement with his conjectures.
Theorem 2.3.4 below, applied to this situation, completes the picture by proving
that these elements are indeed in H3, (B X E',2).

The first part of the paper addresses two problems that arise in formulating
this result in general. The first is that, in order to define Hy, z(E x E',2), one
needs a regular model for £ x E’ over SpecZ. (Conjecture 2.4.2.1 of [1], which
would circumvent this requirement, turns out to be overoptimistic, see Remark
1.1.7 below.) The natural candidate, the fibre product of the minimal regular
models of £ and E’, will have singularities if the conductors of E and E’ have a
common factor. If £ and E’ have semi-stable reduction, these singularities are
ordinary double points (locally for the étale topology, of the form xy = z'y' = p)
and can be resolved with a single blowup, but in general the existence of the
resolution is open.

The second problem is that (pace [1, §6]) the integrality statement does
not hold on the level of the product of modular curves — we can have ¢ ¢
HJ?(A/Z(X x X',2) . Indeed, if £ and E’ are isogenous, Flach [7] has shown
that Beilinson’s elements generate an infinite-dimensional subspace of H},(FE X
E',2)/HY, z(E x E',2). Therefore the desired statement can only be true after
performing a motivic decomposition of X x X'

Both of these difficulties are resolved by the construction of an (uncondition-
all) theory of H sz for Chow motives. This is done in §1, using de Jong’s results
on alterations [6].

I would like to thank to Christopher Deninger for inviting me to the University
of Miinster in the autumn of 1996, when a large part of this paper was written,
and especially Andreas Langer. Without his insistence this work would still be
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mere armchair mathematics. I also would like to thank Rob de Jeu, Matthias
Flach and Dinakar Ramakrishnan for helpful discussions. A related problem to
this is the question of the integrality of the elements of K; of Hilbert modular
surfaces considered by Ramakrishnan [10], and it is reasonable to hope that sim-
ilar methods may help. The main difficulty seems to be to show that the action
of Hecke algebra on the Chow motive of a Hilbert modular surface is semisimple.

1 Integral motivic cohomology

1.1 Statement of results

1.1.1. Throughout this section, o will denote a Dedekind domain, and k its field
of fractions. We have in mind the two cases:

(i) k anumber field, o the ring of S-integers of k for a (possibly empty, possibly
infinite) set of primes S of k.

(ii) k a local field, o its ring of integers.

1.1.2. Let Vj be the category of smooth projective k-schemes (which we simply
call k-varieties), and V, the category of all projective and flat o-schemes X which
are regular (which we shall call o-varieties). The morphisms of Vy, V, are k- and
o-morphisms. We denote the basechange functor V, — V. by the subscript /.

1.1.3. Fix a field E of characteristic zero, and let M ® E be the category of
Chow motives over k with coefficients in /. When there is no ambiguity we write
M, for M ® E. We use the conventions and notations of [12] regarding motives.
In particular, if X}, Y; belong to V} then by definition we have

COI"I"T(Xk, Yk) = HOIIle (h(Xk), h(Yk) &® L_T)
— CHdika—l—r(Xk % Yk) ® E

if X}, is equidimensional. An object of M, is a triple (X}, p,m) where p = p? €
Corr’(Xy, Xi) and m € Z; the category of graded correspondences CVE is the
full subcategory of M; whose objects are of the form (X, 1,m). The motive
L = (Speck,1,—1) is the Lefschetz motive. We recover My, as the Karoubian
envelope of CVY'.

1.1.4. As well as the contravariant functor h: V., — My, we have by trans-

position of the graph the covariant functor hY: V,, — M. The composites of
these functors with the evident functor V, — V; will be denoted hy, h).
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1.1.5. We recall the definition of motivic cohomology with rational coefficients:
for any Xy in V}, and n, i € Z,

Hiy (X, E(n)) = K" X, ® E C Koy_i X, ® E

2n—i

where as usual Kén) denotes the weight n Adams eigenspace of K, ® Q. Motivic
cohomology extends uniquely to an additive covariant functor on My (we recall
the construction in 1.3 below). Since the coefficient field E will be fixed in what
follows we will generally write simply H},(X,n).

For varieties which admit regular models over o, Beilinson has defined “integ-
ral motivic cohomology”. We show that this has an (unconditional) extension to
arbitrary motives over k:

1.1.6. Theorem. There is a unique way to define subspaces
Hjyo(M,n) C Hj(M,n)
for every Chow motive M over k, satisfying:
(i) If c: M — N is a morphism in M, then C(ijo(M, n)) C H/i\/l/o(,n).
(i) M +— H/i\/l/o(M, n) is additive in M.
(1it) If X € ObV, then
Hig ol (X)) = Im(K§2) X — KL

2n—1i 2n—

X)) O F.

1.1.7. Remark. In [1, 2.4.2.1], Beilinson conjectures that one could work with
proper and flat models over o instead of regular models, replacing K-theory by
K’-theory. However, it is not in general true that for proper flat o-schemes X
with smooth generic fibre, the image of K| X — K.X, depends only on X
(even ignoring torsion). Rob de Jeu has observed that this fails even in the case
of elliptic curves; see his paper [5] in this volume.

1.2 Alterations and motives

1.2.1. We recall the following theorem of de Jong [6, Theorem 4.5 and 8.2].
By definition, an alteration is a proper surjective generically finite morphism of
integral noetherian schemes.

1.2.2. Theorem. Let X be a proper flat 0-scheme which is integral. There exists
a finite extension k'/k, an integral scheme X', projective over o', the integral
closure of o in k', and an o-morphism f: X' — X such that:

(i) X' is regular, and is semistable over o’;

(i1) f is an alteration.
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1.2.3. Let V) be the full subcategory of V, comprising all o-varieties X for which
the structural morphism admits a Stein factorisation

X % Speco’ — Speco

where ¢ is semistable and o’ is the integral closure of 0 in a finite extension of k.
We shall show that de Jong’s theorem implies that the category of motives over
k is generated by V!, in a very strong sense.

1.2.4. Definition. CV% is the category whose objects are pairs (X, m), where
X € ObV! and m € Z, and whose morphisms are

HOHICV?((X, m)? (Y> n)) = HomCVir((X/ka 1a m)? (}/}k> 1a n))
— Homug, (y (X), by (Y) @ L"),

There is an obvious functor CV& — CV;' given by (X, m) — (X, 1,m) on
objects, and the identity on morphisms; it is fully faithful by definition.

1.2.5. Lemma. Every morphism c: (X,m) — (Y,n) in CV? is an E-linear
combination of correspondences of the form g/k*f/*k, where f: Z — X, q9: Z =Y
are morphisms in V..

Proof. We can assume that ¢ = [Z),] for some integral closed subscheme Z), C

Xip X Yy Let Z' be the closure of Z;k in X x,Y, and let Z -2 Z' be an
alteration, with Z € V! (the existence of p follows from de Jong’s theorem). We
have a commutative diagram:

/Z |
]

X+— XXxY —Y

and g, [/ = [P Zk] = deg(p)c in Corr™(Xk, Yy). O

1.2.6. Lemma. Let A, A’ be additive categories and \: A" — A a fully faithful
additive functor. Suppose:

e for every object T of A, there exists an object T" of A" and A-morphisms
T - AT - T with ba = idy.
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getf\:ﬁ, le;be the Karoubian envelopes of A', A. Then the canonical functor
A A — A is an equivalence.

Proof. X is also fully faithful, so it is enough to show that every object of A lies
in the essential image; but if 7" € Ob A then the objects (A1”, ab) and (T, idr) of
A are isomorphic, and (AT", ab) = A(T", A" (ab)). O

1.2.7. Corollary. The functor
CVI — vy
(X,m) — (X, 1,m)
induces an equivalence of categories between C/)\/ET and M.

Proof. We just have to check the condition of the lemma. If X; € Ob)} is

irreducible, let X, ", X be an alteration with X p = X' ®, k for some integral
X" € ObV.. Then (a,b) = (h*,deg(h)"'h,) satisfy the condition. O

1.2.8. Corollary. Let C be an E-linear Karoubian category whose Hom-groups
are Z-graded. Suppose we have functors

H: V., — C
H:V,—C
satisfying:
(i) For every X € ObV!, H(X) = H'(X).
(1)) H and H' are additive for disjoint unions.

(i1i) For f: X — Y, Hf is graded of degree 0; H'f is graded of degree dimY —
dim X iof X and Y are integral.

(iv) For any finite collection of diagrams X doz, 5N Y in V! and ¢, € E,
the morphism

> caH'gaoHfo: H(X) — H(Y)

depends only on the class oncaga/k*f;/k in Corr™ (X g, Yri).

Then there is an additive functor H: M,, — C such Hoh, = H and Hoh) = H'.
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Proof. First define the restriction of H to CV¥. On objects, put H(X,m) =
H(X) with grading Gr' H(X,m) = Gr'™ H(X) . If X L7 S visa
diagram in V! with dimY — dim Z = n — m, write
H(g.fji) = H'go Hf € Homg™™ (H(X), H(Y))
= HomQ(H (X, m), H(Y,n)).

Extend this definition by E-linearity to the group of formal linear combinations

— fa Ja
Hom((X,m),(Y, n)) = {anga/k*f;/k X — Za — Y’ Ca € E’}

dmY —dimZ, =n—m

By the hypotheses and lemma 1.2.5, it factors through the quotient

Hom((X, m), (Y, n)) — Homeyg (X, m)(Y,n))

H -
| H
<+

Home(H (X, m), H(Y,n))

and this gives a functor on CV§" with the required properties. Since 5)7? is
equivalent to M, by Corollary 1.2.7 and C is Karoubian, H factors through
M. O

1.3 Motivic cohomology

1.3.1. We briefly recall how the pullback and pushforward maps in motivic
cohomology are defined; see [13] or [14] for details. If f: X — Y is a morphism
of schemes, the pullback f*: K.Y — K,X is a A-ring homomorphism, hence
induces a map on the Adams eigenspaces, which are motivic cohomology.

1.3.2. If X, Y are smooth over a field and equidimensional, and f is proper,
then we have a proper pushforward map in K-theory

Fo KX S KX - KYSEKY

by composing the pushforward map in K’-theory with the Poincaré duality iso-
morphism K,(—) — K/(—) for regular schemes. This composite map respects
the y-filtration up to a shift of dimY — dim X (by the Riemann-Roch theorem),
inducing a map

Gry(fs): Grf KX — Gr;_dimXerimY K.Y.
Composing this with the isomorphism K™ (—) — G1 K.(—) ®Q (given by the

formal Chern character) this defines the pushforward map for a proper morphism
of smooth varieties.
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1.3.3. Now fix ¢ € N, and define graded E-vector spaces H(X) = H'(X) for X
in V, by

H(X) = Grl Im(K,X — K, X)) ® E
~@PIm(EMX - KMXy) @ EC @ Hy “(Xp,n)

Let f: X — Y be any morphism in V,. The pullback map
fit @ HY (V) — @D Hiy (X n)

maps H(Y) into H(X) (since f is a morphism of the underlying o-schemes), and
we take this to be Hf. For H'f, we consider the Cartesian diagram

X/k(L)X

| lf

The projection formula gives
Jiedx Ko X = jy [ Ko X C jy KY

hence f/(H(X)) C H(Y). So if we define Hf = fj,, H'f = [, then all the
conditions of Corollary 1.2.8 are satisfied (taking C to be the category of graded
Q-vector spaces). This proves Theorem 1.1.6.

1.3.4. Corollary. Let E = Q. If X is smooth and proper over k and we are
given a diagram

‘|

X

where ¢ is an alteration and X' is proper and flat over o and reqular, then
2n—1 2n—1 2n—i<*

Hiajol (X)), m) = T | K52 (X') 25 K2 ((X)) | 0" Ky X

Proof. This follows from Theorem 1.1.6 because on motivic cohomology, ¢.¢* is
multiplication by the generic degree of ¢. O
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1.3.5. We shall write down explicitly the (rather simple) relation between the
local and global situations. Let k£ be a number field, v a finite place of k, and &,
the completion of k at v. There is a basechange functor My — My, , M — M,,
inducing natural maps

pot Hyy(M,n) — Hj, (M, n)
and likewise in K-theory.

1.3.6. Proposition.

Hiyo(M,n) = (1) iy Higyo, (Mo, n) C Hiy (M, n).
vgS
Proof. 1t is enough to check this for M = h,(X). In this case it follows at once
from the diagram of localisation sequences:

KX - Ko Xk - @U¢S K¢ 1 X @ k(v)

| | l

[logs KeX ©® 0y —— Tlogs KeX @by —— [logs Ky X @ k(v)

in which the right hand vertical arrow is an injection. O

2 K of products of modular curves

2.1 Notations and conventions

2.1.1. We recall some basic facts about modular curves (see [4] or [9]). For a
positive integer n, M, denotes the modular curve over Q parameterising elliptic
curves with full level n structure. It is the complement in the proper curve M,
of the cusps M (a finite union of copies of Spec Q(g,,)).

2.1.2. If n is the product of two coprime integers each > 3, then the curve M,
has a standard regular model M,, /7 over Z which parameterises elliptic curves with
a Drinfeld level n structure, and which is the complement in a proper curve M,, 7
of the cuspidal subscheme M9, a union of copies of SpecZ|u,]. Apart from
the fact that Mn/z is regular, we need to know that the structural morphism
M, /7, — SpecZ factors through SpecZ[p,], and that M, ;; — SpecZlp,] is
smooth away from the supersingular points in characteristic p|n.

2.1.3. We need also to consider the modular curves at infinite level: M =
lim M, M = lim M,. These are schemes over Q(p,,) which are not of finite
type. M is regular, but M is not (the local rings at the cusps are non-discrete
valuation rings since the coverings M, — M, are ramified at the cusps).
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2.1.4. Let G be the algebraic group GL,, and write G, = G(Q,), Gy = G(Ay)
(finite adelic points). Then G acts on M and M, and this action extends to the
models over Z. (We assume that our level structures are defined so that this is a
right action). If

K, = ker (G(Z) - G(Z/nZ))

is the standard level n open compact subgroup of Gy then M, is the quotient
M/K, and M, = M/K,. For any open compact subgroup K C G, write
Mg =M/K, Mg =M/K.

2.1.5. We write H; = H(G) for the Hecke algebra of locally constant Q-valued
functions of compact support on Gy. It is an algebra under convolution and has
the involution ¢ — ¢, where ¢'(z) = ¢(z71). Write H,, = H(Gy, K,,) for the
level n subalgebra of H; (the subalgebra of K,,-biinvariant functions).

2.1.6. We can regard H; as a module for the product Gy x G by

((91,92)0)(2) = d(g; '2go) (2.1.6.1)

and in the usual way it then becomes an H; ® H -module, given by

(V1 @ o) = thy % * 1

if 1;, ¢ € Hy. We then have the following consequence of Frobenius reciprocity:

2.1.7. Lemma. Let o; (1 <i<3) be smooth Q-representations of Gy, with oy,
o3 admissible. Then

Homg, xq, (01 @ Hy, 09 ® 03) = Homg, (01 ® 62 ® 73, Q).

Here Gy x Gy acts on 09 ® o3 by the tensor product action, and on o1 ® Hy
by (91,92) (v ® ¢) = g1v @ (g1, g2) b, cf. (2.1.6.1).

Proof. More generally, let H be a group of t-d type [2], and K C H a closed
subgroup. Let o, 7 be smooth representations of K and H respectively over a
field F' of characteristic zero, and 7 the H-contragredient of 7. Then (cf. [2]
section 1)

Homp (c-Indl 0, 7) = Homg (o @ 7, F).

Taking H = Gy x Gy, K to be the the diagonal, and 7 = 02 X 03 gives the
lemma. O

The obvious analogous statements hold for the local Hecke algebra H, =

H(G,).
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2.1.8. If H = lim H; is any profinite set and S is a scheme, we can form the
product scheme H x S, which is the inverse limit of the finite disjoint unions
H; x S. If H is locally profinite (for example, H = Gy) we can similarly define
H x S by gluing. We will use constructions of this kind without further comment
and leave the (elementary) justifications to the reader.

2.2 Motivic decomposition

2.2.1. We now review the decomposition of the motive of a modular curve. We
will work in the category Mg ® Q of Chow motives over Q with coefficients in
Q — an object of this category is a triple V = (X, p,m) where X is a smooth
projective Q-scheme, m € Z and p = p? € Corr’(X, X) ® Q. (We use the letter
V to avoid confusion with modular curves.) If x is a Dirichlet character, we write
V(x) for the twist of V' by the Artin motive attached to .

2.2.2. There is the usual Chow-Kiinneth decomposition
h(M,) = h°(M,) ® h*(M,) ® h*(M,,)

which depends on the choice of a O-cycle of nonzero degree on M,. We take
the decomposition determined by a cusp (or any sum of cusps); since all cusps
are linearly equivalent modulo torsion by Manin-Drinfeld, this decomposition is

canonical, and is respected by the change of level maps h(M,) — h(M,,) for
n|n’. We have h%(M,) = h(Spec Q(u,,)) and h?(M,,) =L & h(M,,).

2.2.3. The Hecke algebra H, acts on the motive h(M,) by correspondences.
Since Hecke operators take cusps to cusps, this action preserves the Chow-Kiinneth
decomposition. The action of H,, on h'(M,) is semisimple, since the map

End h'(M,) — End Q'(M,,/Q) ®¢ Q

is injective. Moreover, i p is prime and p = 1 (mod n), the Hecke operator T,
acts on h°(M,,) and h*(M,,) by multiplication by p+1. Since p+ 1 cannot be an
eigenvalue of T, on Q'(M, /Q) (since p + 1 > 2,/p), it follows that there exists

an element of H,, (even a polynomial in 7,) which is the identity on h'(M,,) and
annihilates h° and hZ.

2.2.4. According to the multiplicity one theorem, there is a decomposition

0'(M,/Q) 89 Q = Pa]*"

into pairwise non-isomorphic H,,-modules. Each [r]%" is the space of K,,-invariants
of K,, in an irreducible admissible representation 7: Gy — GL([n]), and

—; def

Q'(M/Q) ®¢ Q = lim Q' (M,,/Q) ®¢ Q@ = P[]
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We therefore get the decomposition of the motive:
=P V- g "

where the sum is over those 7 occurring in Q'(M) ® Q such that [7]%" # 0, and
where

Vi = Homyy, ([7]%", Y (M,)) € Mg ® Q

The motives V, are simple of rank 2, and V,, V., are isomorphic if and only if
m ~ 7'. We also know that

VY~V @LEL

2.2.5. It is convenient to work in the Ind-category Ind-Mgqg ® Q, whose objects
are inductive systems of objects of Mg ® Q. In Ind-Mgp® Q we can simply write

hmh1 @V ® [

2.2.6. By the Kiinneth formula h(M?) = h(M,) ® h(M,) we can decompose
the motive of M?2 in the limit as

def

(M) =

in which the most interesting part is

WOL(VE?) = b\ (D)% = @ Vst @ [ x 7]..

7,7’

Here for each pair (7, ') of irreducible admissible representations of Gy occurring
in QM) ® Q, we have written

V7r><7r’ = vﬂ' & vﬂ"

and [ x 7] is the space of the exterior tensor product of 7 and 7’. We get a
corresponding decomposition of the motivic cohomology:

HY (M, 2) = @D H, (k' (M32),2)
,J

> HY, (M (M?), 2 EB}@M (Vixa, 2) @ [mx 7). (2.2.6.1)
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2.2.7. We need to recall what are the rank one submotives of V. These exist
if and only if there is a Dirichlet character y such that

'~ 7 ®yodet. (2.2.7.1)

To each such character corresponds a unique submotive of Vg, isomorphic to
L(x), and we write

Vi = VIS @ V208 (2.2.7.2)
where Vflxgﬂ, is the sum of the rank one submotives associated to that characters
satisfying (2.2.7.1). If no such x exists then of course V2% =V, .

Suppose then that there is a x satisfying (2.2.7.1). Assume first that = does
not have complex multiplication. Then x is unique, and V2% is a simple motive
of rank 3; in fact

Vtrans — Ad2 V7r ® L(X)

TXT

where if V is any motive, Ad®V is its adjoint square, which is the kernel of the
projector V@V¥Y —-1—-V VY.

If 7 has complex multiplication, and ¢ is the quadratic character attached to
the CM field, then if (2.2.7.1) holds we also will have

7'~ 7 ®exodet.

In this case Vi = L(x) @ L(ex), and V22 is a simple rank 2 motive.

X!

2.2.8. Returning to finite level, consider now the motivic cohomology of M2 \
M2 We have a diagram

0 —— H, (M, 2) —— H{(M}\ M;*?,2) — Q[M;*?]

J

Hjy (WM (M), 2)

where the vertical arrow has a unique ‘H,, ® H,-equivariant splitting, given by the
Chow-Kiinneth decomposition. Moreover, H,, ® H,, acts on H3,(h1(M?2),2) via
the tensor product of representations of the form [r]%", whereas on Q[MS°?] it
acts via representations occurring in Eisenstein series. So by the Manin-Drinfeld
theorem, there is a unique ‘H,,®H,,-equivariant splitting of the composite inclusion

Hjy(h (M), 2) — Hyy (M \ M3, 2)

and it is induced by an element of ‘H,, ® H,,. Passing to infinite level, we obtain
a unique Gy x G-equivariant splitting of the inclusion

HY (W (M?),2) — Hy, (M?\ M™2)2). (2.2.8.1)
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2.3 Beilinson’s elements

2.3.1. Unless otherwise noted, the reader should interpret all products of schemes
as absolute products (over SpecZ). Consider the map

MxGp— M>=Mx M
(m, g) — (m,mg)
which is Gy x Gy-equivariant with respect to the action
(m., 9)(g1, 92) = (Mg, 91 ' 992)

of Gy x Gy on M x Gy. If K C K' C Gy are open compact subgroups, then we
get the diagram below in which the composite horizontal maps iy, ik are proper:

iK: MxGp/KxK — Mg —> M5\ M?

l lﬁ (2.3.1.1)

igr: M x Gp/K' x K' —— M2, ~—— M?2%,\ M?

2.3.2. The quotient M xG;/K x K can be written as a disjoint union of modular
curves of finite level

T Mxrgrg
KgKeK\Gy/K

from which it is easy to check that the two squares in (2.3.1.1) are Cartesian. We
have in K-theory ix.a* = 3"ig:.. Therefore the proper pushforward i, O* (M x
Gi/K x K) — Hy, (M3 \ M?,2) defines in the limit a map

lim O*(M x G/ K x K) lim H3 (M2 \ M2, 2)
| I
O*(M x Gy) — s H3,(M2\ M>2,2)

We have O*(M x G;) ®7 Q = O*(M) ®z H;, and the induced action of G x G
is via the first factor on O*(M) and by the action (2.1.6.1) on H;.

2.3.3. Now we compose with the Manin-Drinfeld splitting of (2.2.8.1) and use
the motivic decomposition (2.2.6.1) to get a G x G j-equivariant homomorphism

O*(M) @z Hp — Hay(Ve @ Vi, 2) @ [ x 7).
Applying Frobenius reciprocity 2.1.7, we finally get the Beilinson homomorphism
. * ~ o 3 ,
B(m x7'): ((9 (M) ®Z7T®Q7T)Gf — Hyy(Vixrr, 2)
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whose source is the maximal quotient of O*(M) ®z 7 ®z 7' on which G acts
trivially. We can then state the main result of this paper, which completes [1,
Theorem 6.1.1]:

2.3.4. Theorem. Suppose 7 is not isomorphic to any twist of . Then the
image of B(w x ') is contained in H;’VI/Z(VWXW,, 2).

2.3.5. Remark. Beilinson’s conjectures predict that the space H3}, /Z(Vﬂmz, 2)
is 1-dimensional. Beilinson’s computations [1] of the composition of B(m x 7)
and the regulator show that the dimension is at least one. In the other direction,
in [8] M. Harris and the author prove that the source (O*(M) ®@z T ®g 7')q, of
the map B(m x 7’) is exactly 1-dimensional if (and only if) 7’ is not a twist of .
In other words, the image of G(m x 7’) has dimension one.

2.3.6. We now consider the case where m, ' are twists of one another, so that
Vs has the decomposition (2.2.7.2). The composite of the Beilinson homo-
morphism with the projection onto the algebraic component:

B(r x 7'): (O (M) @z 7 ®g ﬁ’)Gf — H3(Vasar, 2)
valg ) 2) — H./l\/l(l(X)? 1) (IlO CM)
e H(1(x) + Uex), 1) (CM)

is not particularly interesting; it can be described explicitly, using Lemma 2.5.2
below. (The motivic cohomology H3,(1(x), 1) is simply the y-isotypical compon-
ent of Q(p.,)* ®z Q.) The transcendental component is more interesting.

— H(

2.3.7. Theorem. Assume that 7' is isomorphic to a twist of .
(i) If 7' £ 7, the image of B(m x «') lies in H3, ,, (VIAF, 2).

™

(it) (Flach [7]) If ©" ~ 7, then the image of B(m x ') in H%/H%/Z(V;rxaﬁ, 2)
18 infinite-dimensional.

X7

2.3.8. Remark. Beilinson’s conjectures imply that H3, 2 (Viinr,2) = 0 (as the
associated Deligne cohomology group is zero). So in case (i) the Beilinson ele-
ments should be trivial.

2.3.9. Remark. In the case when 7’ ~ 7 does not have complex multiplication,
Flach’s argument shows that for every prime p at which 7 is unramified, the
image of B(m x ) does not lie in H?, /Z(p)(V;rXa;S, 2). His proof (which we do not
reproduce here) can be summarised as follows: for each such p the motive V,
can be reduced mod p to obtain a motive Vi over F,, and the obstruction to
the integrality of an element of H J?(/t (Vex#,2) can be computed from the exact

localisation sequence

H%/Z(p)(vﬂxﬁ, 2) — H3(Vixz,2) O, Pic(V(p)~),

TXTT
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Now Pic(V.?.) = End Vi), and the subspace

Pic(V"eP) ¢ Pic(V.%)) (2.3.9.1)
simply corresponds to those endomorphisms of V7r(p ) which lift to characteristic
zero; in other words, the one-dimension subspace generated by the identity en-
domorphism. Then Flach uses an explicit modular unit supported on the Hecke
correspondence T, to construct an element of H J?{/I(Vmﬁ, 2) whose image under 0,
is the graph of Frobenius; hence its transcendental component is not integral.
The same argument works in the case of complex multiplication: in this case
the subspace (2.3.9.1) consists of all endomorphisms which lift to characteristic
zero over the CM field. For a good prime p which is inert in the CM field, the
Frobenius endomorphism of V? does not lift, so for all such primes the Flach

element gives an element of H3, (V%% 2) which is non-integral at p.

2.3.10. Because we are working with a product of curves, it is possible to prove
that integral motivic cohomology is the same as the Bloch-Kato f-subspace.
We only make this statement precise in the case of ¢-adic cohomology over Q,,
with p # ¢; if U is any continuous finite-dimensional ¢-adic representation of

Gal(Q,/Qp), then H}(Q,,U) = H}\.(Qp, U) is the unramified Galois cohomology,
which fits into the exact sequence

0 —— Hl(Q;r/Qp’U)Ip — Hl(@p’U) - Hl( Er’U)Frobpzl s 0
: ||

HL(Q,.U) H'JHL(Q,,U)

For a smooth and proper variety X over Q, one has an ¢-adic Abel-Jacobi homo-
morphism

AJ(X,5): HYTY(X, j) — HY(Q, H¥*(X,Qu)(5))

and localising at p one can show that for j = 2 and X a product of two curves,
the sequence

AJ(X,2 —
0 — Hyp (X,2) — H3(X,2) 252 0y HL(Q,, HA(X,Q0)(2))

is exact.

2.3.11. We can now consider in greater detail the case ©’ ~ 7. Assume that 7
has no complex multiplication. For a motive V', let V, denote its ¢-adic realisation.
We then get for every p and every ¢ # p an exact sequence:

0 — Hyg,, (ViF"2) @ Q — Hiy (VS 2) @ Q — H'/Hy(Q,, ViR(2)).
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We can ask when the last group

Hl/Hir(Qp> Vt;a;rl,sﬁ(2)) = (Ad2 VW,Z)

Frob,=1

™ Ip

is nonzero. We know that Frobenius acts semisimply on V;, (since it is part of
the H! of a curve), so

Frob,y=1

dim (Ad® Vi),

- dim EndGal(@p/Qp)(Vﬂ’yZ) - ]_.

To proceed further, it is most natural to consider the possible types of the local
factor m, of 7, in the rough classification of irreducible admissible representations

of GLQ(QP)Z

2.3.12. Tfm, is principal series, then there are quasi-characters iy, pa: Q) — Q
with |pi(p)| = /D, such that V; ;, = [11] @ [p2]. Moreover, it is known [3] that one
cannot have 1 = po, so in this case H'/H! has dimension 1.

o If 7, is unramified, then Flach’s construction 2.3.7(ii) shows that the image
of B(m x 7') maps onto H'/H_ . More generally, if 7, is a twist of an
unramified representation (i.e. if u1/po is unramified) then it is not hard
to show (although we do not give the details) that after twisting, the Flach
elements map onto H'/H} .

o If 111/po is ramified, it is not clear whether there are global elements of
motivic cohomology whose images generate H'/H] .

2.3.13. If m, is special or supercuspidal then V , is indecomposable as a repres-
entation of Gal(Q,/Q,) over Q,. Hence in this case H'/H} = 0, and so every
class is automatically integral at p.

2.3.14. The case of complex multiplication can be treated in the same way. Let
F be the (imaginary quadratic) field of complex multiplication; then there is a
Hecke character ¢: Gal(Q/F) — @Q, such that V., is the representation obtained
from ¢ by induction. Then

Endg, Veo = Vasze(1) = V(1) © Q @ Qye).

The restriction of V,, to Gal(Q,/Q,) is irreducible if p is ramified in F, and is
the sum of two non-isomorphic characters otherwise. We therefore obtain

dimHl/Hir(@p, s 1)) {1 if p is 1'nert in F'

’ 0 otherwise.
So if p is split or ramified, there is no obstruction to integrality. If p is an inert
prime of good reduction, the Flach element maps to a generator H'/H! . by the
discussion in Remark 2.3.9. Therefore the only ambiguity remaining is when p is
an inert prime for which ¢, is ramified.
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2.4 Modular units

2.4.1. We recall without proof the results of [11] about the representation theory
of modular units. For a continuous character x: A} — Q" (resp. x: Q — @*),
define S(x) (resp. S,(x)) to be the space of locally constant Q-valued functions
¢ on Gy resp. G, such that

a b a a b
) ((0 d) g) = x(d) pi o(g) for all (O d)’ g € Gy resp. G,,.
Here ||—|| denotes finite idelic (resp. p-adic) modulus. Right translation make

S(x), Sp(x) admissible representations of Gy and G, and if y = ®,X, for charac-
ters x,: Q) — Q' almost all unramified, then S (x) is a restricted tensor product

500 = R S,(x)

with respect to the spherical vectors ¢9 € S,(x,) for x, unramified, uniquely
determined by the condition ¢|qz,) = 1.

2.4.2. Define subspaces for y = 1:

S(1)° = ker (/G(Z): S(1) — @)
Spl1)! = e </G<Zp) o @)

Then S,(1)? is an irreducible G -module (the Steinberg representation of G,),
and there is a short exact nonsplit sequence

00— S0 — S,1) 2> T — 0
w w

¢y > L.

Moreover §(1) is the space spanned by all ®'¢, € S(1) such that for at least one
b, Ap((bp) = 0.

2.4.3. Write S(1)% for the space spanned by all ®'¢, € S(1) such that for at
least two distinct p, A\,(¢,) = 0. It fits into an exact sequence:

0 —— S1)® —— S1)° 2 Ps,(1)°  —— 0
P
w w

®'¢g  — <q£[p )‘q(qbq)qbp)p

(note that @, is well-defined!)
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2.4.4. Recall from [11] the representation-theoretic description of the space of
modular units and its integral subspace. The divisor map gives an exact sequence

0 — Qpo,)" — O (M) =5 S1)° & P S() (2.4.4.1)
Xx#1

which becomes exact on the right when the first 2 groups are tensored with Q
(Manin-Drinfeld theorem). The integral units O*(M,z) fit into an exact sequence

0 — Zlpy ] — O (Myz) =5 S1)® & P S(v) (2.4.4.2)
x#1

which maps to (2.4.4.1) by the obvious maps in the three terms. More precisely,
for any p the sequence

— ®podiv

0— Q(,uoo)*o*(M/Z(p)) ®7Q — O (M) ®,Q *— S,(1)" — 0

is exact.

2.5 Proofs

2.5.1. Lemma. For every (w, ') the image under the Beilinson homomorphism
B(m,7') of O*(M;z) @ # @ " lies in H/?{/t/z(vnxw, 2).

Proof. Recall that the Beilinson homomorphism is obtained from the pushforward
map O*(M) ®z H; — Hy,(M? \ M>2 2) by composing with the projection
(2.2.8.1), which at any finite level is given by an element of the Hecke algebra.
Therefore it is enough to show that

Im [O*(M)z) ®z Hy — Hj (M?\ M>?,2)] 0 H}(M?,2) C Hj s (M?,2).

We shall work at some finite level n. Choose a finite extension F/Q(pu,,), Galois
over Q, over which M,, acquires semistable reduction; let M; /7 be the semistable
model thus obtained. Since M, sz is smooth over Z[u, | away from supersingular
points, we can assume that there is a birational morphism M/ Y My /z®zip,)0F
which is an isomorphism away from the supersingular points in characteristic p|n.

To obtain a regular alteration of Mi /7, it then suffices to take the normalisation
of M’ /7 xz M’ /7 which has only ordinary double points as singularities, and blow
them up once. We write M’ /ZQM; 1z for the result.

Let 7,: Y, — M, x M, be Hecke correspondences, and Y, C Y, the com-
plements of all cusps. We can assume that Y, = M,, for some large m (the

same for each a)._Suppose that u, € O*(M,,/z) are modular units, such that
3 Tax (o) € Hy(M?2,2). We are going to show that the pullback of Y~ 7. (ua)
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to (M, ® F)? extends to an element of K, (H’H/ZQHN/Z) ® Q — by Corollary
1.3.4 this will prove the lemma.
Because it is a Hecke correspondence, the morphism

Ta: My, — My x M,

extends to a correspondence M, /7 — M, /2% M, sz By resolution of singularities
for arithmetic surfaces, we can find some regular model M ’m/Z for Mp,/p =

M,, ®q(u,) ' over op such that each 7, extends to a correspondence

«

o M;n/Z - M;L/ZQM;L/Z

and such that M’ 7~ M 7 is finite away from supersingular points.

The divisor of cusps M;j‘/’Z C Mn/Z pulls back to a divisor_ Mff/”z C M;L /2
which is a disjoint union of copies of Specop. Write lez/z = M;/Z \ M;;;’Z’ for
its complement. Define similarly Mg’f/’z, M sz~ The inverse image of M§722 in
H’n /ZQM;L /7 18 a finite union of copies of Spec o, which we will simply denote
M 07’2 % M;;”Z The restriction

n

7?;1 M, /7 M;/ZQM;/Z \ MO7/Z>A< fi‘/’z

m n

is then proper.
The units u, extend to units ug, on M, , and so

To(Ug,) € KI(M;/ZQM;L/Z \ Mo7,Z>A< ff/’z)

n

We now have a commutative diagram of localisation sequences:

K (3T, 30T, ) 2 0 (0T, 50T, \ M MESE) — KoM, % M35,)
l ! l

Ki(Mwr)?) —  Ki(Myyp)\ (M5p)") = Ko((Mp3p)?)

and when tensored with Q the right-hand vertical arrow is an isomorphism. The
middle vertical arrow maps 7/, (u/,) t0 Tax(uq). Since Y Tou(ua) € Hi(M2,2), it
follows from this diagram that

S 7 () € Tm(0)

as required. O
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2.5.2. Lemma. (i) If 7’ is not a twist of m, B(w, ') vanishes on Q(u,)* @77
(i) If 7' is a twist of w, then

B(ﬂ-a 7T/) (@(/J’oo)* ® T ® 7}/) - H?Vl(valg 2) - H./?(/l (VWXW/? 2>

X7

Proof. (i) The action of G on Q(p.,)* factors through the determinant. If 7 and
7' are not twists of one another, this implies that

Qp) @7 7) g, =0.

(Alternatively one can use the argument in (ii) following.)
(ii)) The homomorphism

Qlpee)” @ Hy — Hyy(M?,2)

can be described as follows: work at some finite level n, and let a € Q(u,,)".
For any Hecke correspondence 7: M, — M 2 let ¢1(7) be the class of the cycle
7.(M,,) in Pic(M2) ® Q = H3,(M?,1). Then the homomorphism is given by

a®T— pri(a) Uc(r). (2.5.2.1)

In particular, it factors through Q(p. ) * ® Pic(M?) ® Q, so that its image under
the motivic decomposition lies in the algebraic part. O

2.5.3. Corollary. The composite of the Beilinson homomorphism for V"% and
the quotient map Hpyg — Hpg/Hpayz factors as

B(rxw’)
—_—

(0*(M) @27 @5 7)., (Vi 2)

(Ppodiv)p l l

D(S,(1)° @7 @)y, —— Hi/Hiyn(Vii,2)
p

Proof. This follows from 2.5.1, 2.5.2 and the description of the modular units in
§2.4. 0

Proof of theorems 2.3.4 and 2.3.7(i). Both results follow as soon as we show that,
if 7' % 7, the bottom horizontal arrow in the above diagram is zero. For this, it
is enough to show that for each p,

(Sp(l)o ®a T X0 ﬁ-/)Gf =0. (*)

Fix a prime p. For every ¢ # p, the subgroup G, C G acts trivially on S,(1)°, and
by strong multiplicity one, there exist infinitely many ¢ such that 7 and 7, are
not contragredient to one another. Choose one such ¢ # p. Then (7, ®7,)g, = 0,
hence (x) holds. O
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