

Integral elements in K -theory and products of modular curves

A J Scholl

Introduction

This paper has two aims. The primary one is to clarify the relation between results of Beilinson [1] and Flach [7]. We begin by briefly recalling the relevant parts of their papers.

Suppose S is a connected smooth projective surface over \mathbb{Q} . Beilinson's conjectures relate the motivic cohomology groups $H_{\mathcal{M}}^i(S, \mathbb{Q}(n)) = K_{2n-i}^{(n)}(S)$ of S and the L -function of the motive $h^{i-1}(S)$ at $s = n$. In what follows we will only be concerned with the motive $h^2(S)$ and the “near-central” point $s = 2$. In this case:

- The motivic cohomology $H_{\mathcal{M}}^3(S, \mathbb{Q}(2))$ is equal to the K -cohomology group $H^1(S, \mathcal{K}_2) \otimes \mathbb{Q}$, and $H^1(S, \mathcal{K}_2)$ is the H^1 of the Gersten complex

$$K_2 k(S) \xrightarrow{(\partial_C)} \coprod_{C \subset S} k(C)^* \xrightarrow{\text{div}} \coprod_{P \in S} \mathbb{Z}. \quad (0.1)$$

Here C runs over irreducible curves in S and P over closed points; ∂_C is (up to a sign) the tame symbol attached to the valuation ord_C of $k(S)$; and div is the divisor map.

- The Deligne cohomology group $H_{\mathcal{D}}^3(S_{/\mathbb{R}}, \mathbb{R}(2))$ equals the cokernel of the composite map

$$F^2 H_{\text{dR}}^2(S_{/\mathbb{R}}) \hookrightarrow H_{\text{dR}}^2(S_{/\mathbb{R}}) = H^2(S(\mathbb{C}), \mathbb{C})^+ \xrightarrow{\text{Im}} H^2(S(\mathbb{C}), \mathbb{R}(1))^+$$

where $+$ denotes the fixed part under the de Rham conjugation, which is the product of the maps on Betti cohomology induced by complex conjugation on $S(\mathbb{C})$ and complex conjugation on the coefficients \mathbb{C} .

- Beilinson's conjectures predict that the regulator (Chern character) and cycle class maps induce an isomorphism

$$H_{\mathcal{M}/\mathbb{Z}}^3(S, \mathbb{Q}(2)) \otimes_{\mathbb{Q}} \mathbb{R} \oplus NS(S) \otimes_{\mathbb{Z}} \mathbb{R} \xrightarrow{\sim} H_{\mathcal{D}}^3(S_{/\mathbb{R}}, \mathbb{R}(2))$$

where $H_{\mathcal{M}/\mathbb{Z}} \subset H_{\mathcal{M}}$ is the image of $K_1(\mathcal{S}) \otimes \mathbb{Q} \rightarrow H_{\mathcal{M}}^3(S, 2)$, for any regular proper model \mathcal{S} over \mathbb{Z} of S .

Now suppose that $S = X \times X'$ is a product of modular curves. The graph of a Hecke operator is a divisor on S , and its normalisation is itself a modular curve, or union of modular curves. Beilinson's construction is to take a collection of modular units u_α on Hecke correspondences Z_α such that $\sum \text{div } u_\alpha = 0$ (as a 0-cycle on S). Then $\{u_\alpha\}_{Z_\alpha}$ defines a class in $H_{\mathcal{M}}^3(S, 2)$ by (0.1).

For the purposes of this introduction we consider only the simplest nontrivial case. Take $X = X_0(N)$, $X' = X_0(N')$ and let $\varphi: X \rightarrow E$, $\varphi': X' \rightarrow E'$ be Weil parameterisations of modular elliptic curves over \mathbb{Q} . The proper pushforward $(\varphi \times \varphi')_*: H_{\mathcal{M}}^3(X \times X', 2) \rightarrow H_{\mathcal{M}}^3(E \times E', 2)$ maps $\{u_\alpha\}$ to a class $c \in H_{\mathcal{M}}^3(E \times E', 2)$.

The Deligne cohomology group $H_{\mathcal{D}}^3(E \times E'_{\mathbb{R}}, \mathbb{R}(2))$ has dimension 3. The classes of the algebraic cycles $E \times \{0\}$, $\{0\} \times E'$ span a 2-dimensional subspace. If there is a \mathbb{Q} -isogeny between E and E' then its graph gives a further algebraic cycle. Thus Beilinson's conjectures predict that $H_{\mathcal{M}/\mathbb{Z}}^3(E \times E', 2)$ is trivial if E and E' are \mathbb{Q} -isogenous, and that it has dimension 1 otherwise.

In [1, §6], Beilinson showed that if E and E' are not isogenous, then the images of the classes c in $H_{\mathcal{D}}^3(E \times E'_{\mathbb{R}}, \mathbb{R}(2))$, as the Hecke correspondence and units are varied, span a 1-dimensional \mathbb{Q} -subspace, in agreement with his conjectures. Theorem 2.3.4 below, applied to this situation, completes the picture by proving that these elements are indeed in $H_{\mathcal{M}/\mathbb{Z}}^3(E \times E', 2)$.

The first part of the paper addresses two problems that arise in formulating this result in general. The first is that, in order to define $H_{\mathcal{M}/\mathbb{Z}}^3(E \times E', 2)$, one needs a regular model for $E \times E'$ over $\text{Spec } \mathbb{Z}$. (Conjecture 2.4.2.1 of [1], which would circumvent this requirement, turns out to be overoptimistic, see Remark 1.1.7 below.) The natural candidate, the fibre product of the minimal regular models of E and E' , will have singularities if the conductors of E and E' have a common factor. If E and E' have semi-stable reduction, these singularities are ordinary double points (locally for the étale topology, of the form $xy = x'y' = p$) and can be resolved with a single blowup, but in general the existence of the resolution is open.

The second problem is that (*pace* [1, §6]) the integrality statement does not hold on the level of the product of modular curves — we can have $c \notin H_{\mathcal{M}/\mathbb{Z}}^3(X \times X', 2)$. Indeed, if E and E' are isogenous, Flach [7] has shown that Beilinson's elements generate an infinite-dimensional subspace of $H_{\mathcal{M}}^3(E \times E', 2)/H_{\mathcal{M}/\mathbb{Z}}^3(E \times E', 2)$. Therefore the desired statement can only be true after performing a motivic decomposition of $X \times X'$.

Both of these difficulties are resolved by the construction of an (unconditional!) theory of $H_{\mathcal{M}/\mathbb{Z}}$ for Chow motives. This is done in §1, using de Jong's results on alterations [6].

I would like to thank Christopher Deninger for inviting me to the University of Münster in the autumn of 1996, when a large part of this paper was written, and especially Andreas Langer. Without his insistence this work would still be

mere armchair mathematics. I also would like to thank Rob de Jeu, Matthias Flach and Dinakar Ramakrishnan for helpful discussions. A related problem to this is the question of the integrality of the elements of K_1 of Hilbert modular surfaces considered by Ramakrishnan [10], and it is reasonable to hope that similar methods may help. The main difficulty seems to be to show that the action of Hecke algebra on the Chow motive of a Hilbert modular surface is semisimple.

1 Integral motivic cohomology

1.1 Statement of results

1.1.1. Throughout this section, \mathfrak{o} will denote a Dedekind domain, and k its field of fractions. We have in mind the two cases:

- (i) k a number field, \mathfrak{o} the ring of S -integers of k for a (possibly empty, possibly infinite) set of primes S of k .
- (ii) k a local field, \mathfrak{o} its ring of integers.

1.1.2. Let \mathcal{V}_k be the category of smooth projective k -schemes (which we simply call k -varieties), and $\mathcal{V}_{\mathfrak{o}}$ the category of all projective and flat \mathfrak{o} -schemes X which are regular (which we shall call \mathfrak{o} -varieties). The morphisms of \mathcal{V}_k , $\mathcal{V}_{\mathfrak{o}}$ are k - and \mathfrak{o} -morphisms. We denote the basechange functor $\mathcal{V}_{\mathfrak{o}} \rightarrow \mathcal{V}_k$ by the subscript $/k$.

1.1.3. Fix a field E of characteristic zero, and let $\mathcal{M}_k \otimes E$ be the category of Chow motives over k with coefficients in E . When there is no ambiguity we write \mathcal{M}_k for $\mathcal{M}_k \otimes E$. We use the conventions and notations of [12] regarding motives. In particular, if X_k, Y_k belong to \mathcal{V}_k then by definition we have

$$\begin{aligned} \text{Corr}^r(X_k, Y_k) &= \text{Hom}_{\mathcal{M}_k}(h(X_k), h(Y_k) \otimes \mathbb{L}^{-r}) \\ &= CH^{\dim X_k + r}(X_k \times Y_k) \otimes E \end{aligned}$$

if X_k is equidimensional. An object of \mathcal{M}_k is a triple (X_k, p, m) where $p = p^2 \in \text{Corr}^0(X_k, X_k)$ and $m \in \mathbb{Z}$; the *category of graded correspondences* $\mathcal{CV}_k^{\text{gr}}$ is the full subcategory of \mathcal{M}_k whose objects are of the form $(X_k, 1, m)$. The motive $\mathbb{L} = (\text{Spec } k, 1, -1)$ is the Lefschetz motive. We recover \mathcal{M}_k as the Karoubian envelope of $\mathcal{CV}_k^{\text{gr}}$.

1.1.4. As well as the contravariant functor $h: \mathcal{V}_k^{\text{opp}} \rightarrow \mathcal{M}_k$, we have by transposition of the graph the covariant functor $h^{\vee}: \mathcal{V}_k \rightarrow \mathcal{M}_k$. The composites of these functors with the evident functor $\mathcal{V}_{\mathfrak{o}} \rightarrow \mathcal{V}_k$ will be denoted h_k, h_k^{\vee} .

1.1.5. We recall the definition of motivic cohomology with rational coefficients: for any X_k in \mathcal{V}_k and $n, i \in \mathbb{Z}$,

$$H_{\mathcal{M}}^i(X, E(n)) = K_{2n-i}^{(n)} X_k \otimes E \subset K_{2n-i} X_k \otimes E$$

where as usual $K_q^{(n)}$ denotes the weight n Adams eigenspace of $K_q \otimes \mathbb{Q}$. Motivic cohomology extends uniquely to an additive covariant functor on \mathcal{M}_k (we recall the construction in 1.3 below). Since the coefficient field E will be fixed in what follows we will generally write simply $H_{\mathcal{M}}^i(X, n)$.

For varieties which admit regular models over \mathfrak{o} , Beilinson has defined “integral motivic cohomology”. We show that this has an (unconditional) extension to arbitrary motives over k :

1.1.6. Theorem. *There is a unique way to define subspaces*

$$H_{\mathcal{M}/\mathfrak{o}}^i(M, n) \subset H_{\mathcal{M}}^i(M, n)$$

for every Chow motive M over k , satisfying:

(i) If $c: M \rightarrow N$ is a morphism in \mathcal{M}_k then $c(H_{\mathcal{M}/\mathfrak{o}}^i(M, n)) \subset H_{\mathcal{M}/\mathfrak{o}}^i(N, n)$.

(ii) $M \mapsto H_{\mathcal{M}/\mathfrak{o}}^i(M, n)$ is additive in M .

(iii) If $X \in \text{Ob } \mathcal{V}_{\mathfrak{o}}$ then

$$H_{\mathcal{M}/\mathfrak{o}}^i(h_k(X), n) = \text{Im}(K_{2n-i}^{(n)} X \rightarrow K_{2n-i}^{(n)} X_{/k}) \otimes E.$$

1.1.7. Remark. In [1, 2.4.2.1], Beilinson conjectures that one could work with proper and flat models over \mathfrak{o} instead of regular models, replacing K -theory by K' -theory. However, it is not in general true that for proper flat \mathfrak{o} -schemes X with smooth generic fibre, the image of $K'_* X \rightarrow K_* X_{/k}$ depends only on $X_{/k}$ (even ignoring torsion). Rob de Jeu has observed that this fails even in the case of elliptic curves; see his paper [5] in this volume.

1.2 Alterations and motives

1.2.1. We recall the following theorem of de Jong [6, Theorem 4.5 and 8.2]. By definition, an *alteration* is a proper surjective generically finite morphism of integral noetherian schemes.

1.2.2. Theorem. *Let X be a proper flat \mathfrak{o} -scheme which is integral. There exists a finite extension k'/k , an integral scheme X' , projective over \mathfrak{o}' , the integral closure of \mathfrak{o} in k' , and an \mathfrak{o} -morphism $f: X' \rightarrow X$ such that:*

(i) X' is regular, and is semistable over \mathfrak{o}' ;

(ii) f is an alteration.

1.2.3. Let $\mathcal{V}'_{\mathfrak{o}}$ be the full subcategory of $\mathcal{V}_{\mathfrak{o}}$ comprising all \mathfrak{o} -varieties X for which the structural morphism admits a Stein factorisation

$$X \xrightarrow{g} \mathrm{Spec} \mathfrak{o}' \longrightarrow \mathrm{Spec} \mathfrak{o}$$

where g is semistable and \mathfrak{o}' is the integral closure of \mathfrak{o} in a finite extension of k . We shall show that de Jong's theorem implies that the category of motives over k is generated by $\mathcal{V}'_{\mathfrak{o}}$, in a very strong sense.

1.2.4. Definition. $\mathcal{CV}_{\mathfrak{o}}^{\mathrm{gr}}$ is the category whose objects are pairs (X, m) , where $X \in \mathrm{Ob} \mathcal{V}'_{\mathfrak{o}}$ and $m \in \mathbb{Z}$, and whose morphisms are

$$\begin{aligned} \mathrm{Hom}_{\mathcal{CV}_{\mathfrak{o}}^{\mathrm{gr}}}((X, m), (Y, n)) &= \mathrm{Hom}_{\mathcal{CV}_k^{\mathrm{gr}}}((X_{/k}, 1, m), (Y_{/k}, 1, n)) \\ &= \mathrm{Hom}_{\mathcal{M}_k}(h_k(X), h_k(Y) \otimes \mathbb{L}^{m-n}). \end{aligned}$$

There is an obvious functor $\mathcal{CV}_{\mathfrak{o}}^{\mathrm{gr}} \rightarrow \mathcal{CV}_k^{\mathrm{gr}}$ given by $(X, m) \mapsto (X_{/k}, 1, m)$ on objects, and the identity on morphisms; it is fully faithful by definition.

1.2.5. Lemma. *Every morphism $c: (X, m) \rightarrow (Y, n)$ in $\mathcal{CV}_{\mathfrak{o}}^{\mathrm{gr}}$ is an E -linear combination of correspondences of the form $g_{/k*}f_{/k}^*$, where $f: Z \rightarrow X$, $g: Z \rightarrow Y$ are morphisms in $\mathcal{V}'_{\mathfrak{o}}$.*

Proof. We can assume that $c = [Z'_{/k}]$ for some integral closed subscheme $Z'_{/k} \subset X_{/k} \times Y_{/k}$. Let Z' be the closure of $Z'_{/k}$ in $X \times_{\mathfrak{o}} Y$, and let $Z \xrightarrow{p} Z'$ be an alteration, with $Z \in \mathcal{V}'_{\mathfrak{o}}$ (the existence of p follows from de Jong's theorem). We have a commutative diagram:

$$\begin{array}{ccccc} & & Z & & \\ & \swarrow f & \downarrow p & \searrow g & \\ X & \longleftarrow X \times Y & \longrightarrow Y & & \end{array}$$

and $g_{/k*}f_{/k}^* = [p_{/k*}Z_{/k}] = \deg(p)c$ in $\mathrm{Corr}^*(X_{/k}, Y_{/k})$. \square

1.2.6. Lemma. *Let \mathcal{A} , \mathcal{A}' be additive categories and $\lambda: \mathcal{A}' \rightarrow \mathcal{A}$ a fully faithful additive functor. Suppose:*

- *for every object T of \mathcal{A} , there exists an object T' of \mathcal{A}' and \mathcal{A} -morphisms $T \xrightarrow{a} \lambda T' \xrightarrow{b} T$ with $ba = id_T$.*

Let $\widetilde{\mathcal{A}'}, \widetilde{\mathcal{A}}$ be the Karoubian envelopes of $\mathcal{A}', \mathcal{A}$. Then the canonical functor $\tilde{\lambda}: \widetilde{\mathcal{A}'} \rightarrow \widetilde{\mathcal{A}}$ is an equivalence.

Proof. $\tilde{\lambda}$ is also fully faithful, so it is enough to show that every object of \mathcal{A} lies in the essential image; but if $T \in \text{Ob } \mathcal{A}$ then the objects $(\lambda T', ab)$ and (T, id_T) of $\widetilde{\mathcal{A}}$ are isomorphic, and $(\lambda T', ab) = \tilde{\lambda}(T', \lambda^{-1}(ab))$. \square

1.2.7. Corollary. *The functor*

$$\begin{aligned} \mathcal{CV}_{\mathfrak{o}}^{gr} &\rightarrow \mathcal{CV}_k^{gr} \\ (X, m) &\mapsto (X_{/k}, 1, m) \end{aligned}$$

induces an equivalence of categories between $\widetilde{\mathcal{CV}_{\mathfrak{o}}^{gr}}$ and \mathcal{M}_k .

Proof. We just have to check the condition of the lemma. If $X_k \in \text{Ob } \mathcal{V}_k$ is irreducible, let $X'_k \xrightarrow{h} X_k$ be an alteration with $X'_k = X' \otimes_{\mathfrak{o}} k$ for some integral $X' \in \text{Ob } \mathcal{V}'_{\mathfrak{o}}$. Then $(a, b) = (h^*, \deg(h)^{-1}h_*)$ satisfy the condition. \square

1.2.8. Corollary. *Let \mathcal{C} be an E -linear Karoubian category whose Hom-groups are \mathbb{Z} -graded. Suppose we have functors*

$$\begin{aligned} H: \mathcal{V}'_{\mathfrak{o}}^{\text{opp}} &\rightarrow \mathcal{C} \\ H': \mathcal{V}'_{\mathfrak{o}} &\rightarrow \mathcal{C} \end{aligned}$$

satisfying:

- (i) For every $X \in \text{Ob } \mathcal{V}'_{\mathfrak{o}}$, $H(X) = H'(X)$.
- (ii) H and H' are additive for disjoint unions.
- (iii) For $f: X \rightarrow Y$, Hf is graded of degree 0; $H'f$ is graded of degree $\dim Y - \dim X$ if X and Y are integral.
- (iv) For any finite collection of diagrams $X \xleftarrow{f_{\alpha}} Z_{\alpha} \xrightarrow{g_{\alpha}} Y$ in $\mathcal{V}'_{\mathfrak{o}}$ and $c_{\alpha} \in E$, the morphism

$$\sum_{\alpha} c_{\alpha} H'g_{\alpha} \circ Hf_{\alpha}: H(X) \rightarrow H(Y)$$

depends only on the class of $\sum c_{\alpha} g_{\alpha/k*} f_{\alpha/k}^*$ in $\text{Corr}^*(X_{/k}, Y_{/k})$.

Then there is an additive functor $\bar{H}: \mathcal{M}_k \rightarrow \mathcal{C}$ such $\bar{H} \circ h_k = H$ and $\bar{H} \circ h_k^{\vee} = H'$.

Proof. First define the restriction of \bar{H} to $\mathcal{CV}_\sigma^{\text{gr}}$. On objects, put $\bar{H}(X, m) = H(X)$ with grading $\text{Gr}^i \bar{H}(X, m) = \text{Gr}^{i+m} H(X)$. If $X \xleftarrow{f} Z \xrightarrow{g} Y$ is a diagram in \mathcal{V}'_σ with $\dim Y - \dim Z = n - m$, write

$$\begin{aligned} H(g_{/k*} f_{/k}^*) &= H'g \circ Hf \in \text{Hom}_{\mathcal{C}}^{n-m}(H(X), H(Y)) \\ &= \text{Hom}_{\mathcal{C}}^0(\bar{H}(X, m), \bar{H}(Y, n)). \end{aligned}$$

Extend this definition by E -linearity to the group of formal linear combinations

$$\widetilde{\text{Hom}}((X, m), (Y, n)) = \left\{ \sum_{\alpha} c_{\alpha} g_{\alpha/k*} f_{\alpha/k}^* \mid \begin{array}{l} X \xleftarrow{f_{\alpha}} Z_{\alpha} \xrightarrow{g_{\alpha}} Y, c_{\alpha} \in E, \\ \dim Y - \dim Z_{\alpha} = n - m \end{array} \right\}$$

By the hypotheses and lemma 1.2.5, it factors through the quotient

$$\begin{array}{ccc} \widetilde{\text{Hom}}((X, m), (Y, n)) & \longrightarrow & \text{Hom}_{\mathcal{CV}_\sigma^{\text{gr}}}((X, m)(Y, n)) \\ & \searrow \bar{H} & \downarrow \begin{smallmatrix} \text{Id} \\ \bar{H} \end{smallmatrix} \\ & & \text{Hom}_{\mathcal{C}}(\bar{H}(X, m), \bar{H}(Y, n)) \end{array}$$

and this gives a functor on $\mathcal{CV}_\sigma^{\text{gr}}$ with the required properties. Since $\widetilde{\mathcal{CV}_\sigma^{\text{gr}}}$ is equivalent to \mathcal{M}_k by Corollary 1.2.7 and \mathcal{C} is Karoubian, \bar{H} factors through \mathcal{M}_k . \square

1.3 Motivic cohomology

1.3.1. We briefly recall how the pullback and pushforward maps in motivic cohomology are defined; see [13] or [14] for details. If $f: X \rightarrow Y$ is a morphism of schemes, the pullback $f^*: K_* Y \rightarrow K_* X$ is a λ -ring homomorphism, hence induces a map on the Adams eigenspaces, which are motivic cohomology.

1.3.2. If X, Y are smooth over a field and equidimensional, and f is proper, then we have a proper pushforward map in K -theory

$$f_*: K_* X \xleftarrow{\sim} K'_* X \rightarrow K'_* Y \xrightarrow{\sim} K_* Y$$

by composing the pushforward map in K' -theory with the Poincaré duality isomorphism $K'_*(-) \xrightarrow{\sim} K'_*(-)$ for regular schemes. This composite map respects the γ -filtration up to a shift of $\dim Y - \dim X$ (by the Riemann-Roch theorem), inducing a map

$$\text{Gr}_\gamma(f_*): \text{Gr}_\gamma^\bullet K_* X \rightarrow \text{Gr}_\gamma^{\bullet - \dim X + \dim Y} K_* Y.$$

Composing this with the isomorphism $K_*^{(n)}(-) \xrightarrow{\sim} \text{Gr}_\gamma^n K_*(-) \otimes \mathbb{Q}$ (given by the formal Chern character) this defines the pushforward map for a proper morphism of smooth varieties.

1.3.3. Now fix $q \in \mathbb{N}$, and define graded E -vector spaces $H(X) = H'(X)$ for X in $\mathcal{V}_\mathfrak{o}$ by

$$\begin{aligned} H(X) &= \text{Gr}_\gamma^* \text{Im}(K_q X \rightarrow K_q X_{/k}) \otimes E \\ &\simeq \bigoplus_n \text{Im}(K_q^{(n)} X \rightarrow K_q^{(n)} X_{/k}) \otimes E \subset \bigoplus_n H_{\mathcal{M}}^{2n-q}(X_{/k}, n) \end{aligned}$$

Let $f: X \rightarrow Y$ be any morphism in $\mathcal{V}_\mathfrak{o}$. The pullback map

$$f_{/k}^*: \bigoplus_n H_{\mathcal{M}}^{2n-q}(Y_{/k}, n) \rightarrow \bigoplus_n H_{\mathcal{M}}^{2n-q}(X_{/k}, n)$$

maps $H(Y)$ into $H(X)$ (since f is a morphism of the underlying \mathfrak{o} -schemes), and we take this to be Hf . For $H'f$, we consider the Cartesian diagram

$$\begin{array}{ccc} X_{/k} & \xhookrightarrow{j_X} & X \\ f_{/k} \downarrow & & \downarrow f \\ Y_{/k} & \xhookrightarrow{j_Y} & Y \end{array}$$

The projection formula gives

$$f_{/k*} j_X^* K_q X = j_Y^* f_* K_q X \subset j_Y^* K_q Y$$

hence $f_{/k*}(H(X)) \subset H(Y)$. So if we define $Hf = f_{/k}^*$, $H'f = f_{/k*}$, then all the conditions of Corollary 1.2.8 are satisfied (taking \mathcal{C} to be the category of graded \mathbb{Q} -vector spaces). This proves Theorem 1.1.6.

1.3.4. Corollary. *Let $E = \mathbb{Q}$. If $X_{/k}$ is smooth and proper over k and we are given a diagram*

$$\begin{array}{ccc} X'_{/k} & \xhookrightarrow{j} & X' \\ \phi \downarrow & & \\ X & & \end{array}$$

where ϕ is an alteration and X' is proper and flat over \mathfrak{o} and regular, then

$$H_{\mathcal{M}/\mathfrak{o}}^i(h(X_{/k}), n) \xrightarrow[\phi^*]{\sim} \text{Im} \left[K_{2n-i}^{(n)}(X') \xrightarrow{j^*} K_{2n-i}^{(n)}(X'_{/k}) \right] \cap \phi^* K_{2n-i}^{(n)} X.$$

Proof. This follows from Theorem 1.1.6 because on motivic cohomology, $\phi_* \phi^*$ is multiplication by the generic degree of ϕ . \square

1.3.5. We shall write down explicitly the (rather simple) relation between the local and global situations. Let k be a number field, v a finite place of k , and k_v the completion of k at v . There is a basechange functor $\mathcal{M}_k \rightarrow \mathcal{M}_{k_v}$, $M \mapsto M_v$, inducing natural maps

$$\rho_v: H_{\mathcal{M}}^i(M, n) \rightarrow H_{\mathcal{M}}^i(M_v, n)$$

and likewise in K -theory.

1.3.6. Proposition.

$$H_{\mathcal{M}/\mathfrak{o}}^i(M, n) = \bigcap_{v \notin S} \rho_v^{-1} H_{\mathcal{M}/\mathfrak{o}_v}^i(M_v, n) \subset H_{\mathcal{M}}^i(M, n).$$

Proof. It is enough to check this for $M = h_k(X)$. In this case it follows at once from the diagram of localisation sequences:

$$\begin{array}{ccccccc} K_q X & \longrightarrow & K_q X_{/k} & \longrightarrow & \bigoplus_{v \notin S} K_{q-1} X \otimes k(v) & & \\ \downarrow & & \downarrow & & \downarrow & & \\ \prod_{v \notin S} K_q X \otimes \mathfrak{o}_v & \longrightarrow & \prod_{v \notin S} K_q X \otimes k_v & \longrightarrow & \prod_{v \notin S} K_{q-1} X \otimes k(v) & & \end{array}$$

in which the right hand vertical arrow is an injection. \square

2 K_1 of products of modular curves

2.1 Notations and conventions

2.1.1. We recall some basic facts about modular curves (see [4] or [9]). For a positive integer n , M_n denotes the modular curve over \mathbb{Q} parameterising elliptic curves with full level n structure. It is the complement in the proper curve \overline{M}_n of the cusps M_n^∞ (a finite union of copies of $\text{Spec } \mathbb{Q}(\mu_n)$).

2.1.2. If n is the product of two coprime integers each ≥ 3 , then the curve M_n has a standard regular model $M_{n/\mathbb{Z}}$ over \mathbb{Z} which parameterises elliptic curves with a Drinfeld level n structure, and which is the complement in a proper curve $M_{n/\mathbb{Z}}$ of the cuspidal subscheme $M_{n/\mathbb{Z}}^\infty$, a union of copies of $\text{Spec } \mathbb{Z}[\mu_n]$. Apart from the fact that $\overline{M}_{n/\mathbb{Z}}$ is regular, we need to know that the structural morphism $\overline{M}_{n/\mathbb{Z}} \rightarrow \text{Spec } \mathbb{Z}$ factors through $\text{Spec } \mathbb{Z}[\mu_n]$, and that $\overline{M}_{n/\mathbb{Z}} \rightarrow \text{Spec } \mathbb{Z}[\mu_n]$ is smooth away from the supersingular points in characteristic $p|n$.

2.1.3. We need also to consider the modular curves at infinite level: $M = \varprojlim M_n$, $\overline{M} = \varprojlim \overline{M}_n$. These are schemes over $\mathbb{Q}(\mu_\infty)$ which are not of finite type. M is regular, but \overline{M} is not (the local rings at the cusps are non-discrete valuation rings since the coverings $\overline{M}_{n'} \rightarrow \overline{M}_n$ are ramified at the cusps).

2.1.4. Let G be the algebraic group GL_2 , and write $G_p = G(\mathbb{Q}_p)$, $G_f = G(\mathbb{A}_f)$ (finite adelic points). Then G_f acts on M and \overline{M} , and this action extends to the models over \mathbb{Z} . (We assume that our level structures are defined so that this is a right action). If

$$K_n = \ker \left(G(\hat{\mathbb{Z}}) \rightarrow G(\mathbb{Z}/n\mathbb{Z}) \right)$$

is the standard level n open compact subgroup of G_f then M_n is the quotient M/K_n and $\overline{M}_n = \overline{M}/K_n$. For any open compact subgroup $K \subset G_f$ write $M_K = M/K$, $\overline{M}_K = \overline{M}/K$.

2.1.5. We write $\mathcal{H}_f = \mathcal{H}(G_f)$ for the Hecke algebra of locally constant $\overline{\mathbb{Q}}$ -valued functions of compact support on G_f . It is an algebra under convolution and has the involution $\phi \mapsto \phi^t$, where $\phi^t(x) = \phi(x^{-1})$. Write $\mathcal{H}_n = \mathcal{H}(G_f, K_n)$ for the level n subalgebra of \mathcal{H}_f (the subalgebra of K_n -biinvariant functions).

2.1.6. We can regard \mathcal{H}_f as a module for the product $G_f \times G_f$ by

$$((g_1, g_2)\phi)(x) = \phi(g_1^{-1}xg_2) \quad (2.1.6.1)$$

and in the usual way it then becomes an $\mathcal{H}_f \otimes \mathcal{H}_f$ -module, given by

$$(\psi_1 \otimes \psi_2)\phi = \psi_1 * \phi * \psi_2^t$$

if $\psi_i, \phi \in \mathcal{H}_f$. We then have the following consequence of Frobenius reciprocity:

2.1.7. Lemma. *Let σ_i ($1 \leq i \leq 3$) be smooth $\overline{\mathbb{Q}}$ -representations of G_f , with σ_2, σ_3 admissible. Then*

$$\text{Hom}_{G_f \times G_f}(\sigma_1 \otimes \mathcal{H}_f, \sigma_2 \otimes \sigma_3) = \text{Hom}_{G_f}(\sigma_1 \otimes \tilde{\sigma}_2 \otimes \tilde{\sigma}_3, \overline{\mathbb{Q}}).$$

Here $G_f \times G_f$ acts on $\sigma_2 \otimes \sigma_3$ by the tensor product action, and on $\sigma_1 \otimes \mathcal{H}_f$ by $(g_1, g_2)(v \otimes \phi) = g_1v \otimes (g_1, g_2)\phi$, cf. (2.1.6.1).

Proof. More generally, let H be a group of t-d type [2], and $K \subset H$ a closed subgroup. Let σ, τ be smooth representations of K and H respectively over a field F of characteristic zero, and $\tilde{\tau}$ the H -contragredient of τ . Then (cf. [2] section 1)

$$\text{Hom}_H(c\text{-}\text{Ind}_K^H \sigma, \tilde{\tau}) \xrightarrow{\sim} \text{Hom}_K(\sigma \otimes \tau, F).$$

Taking $H = G_f \times G_f$, K to be the the diagonal, and $\tau = \sigma_2 \times \sigma_3$ gives the lemma. \square

The obvious analogous statements hold for the local Hecke algebra $\mathcal{H}_p = \mathcal{H}(G_p)$.

2.1.8. If $H = \varprojlim H_i$ is any profinite set and S is a scheme, we can form the product scheme $\overline{H} \times S$, which is the inverse limit of the finite disjoint unions $H_i \times S$. If H is locally profinite (for example, $H = G_f$) we can similarly define $H \times S$ by gluing. We will use constructions of this kind without further comment and leave the (elementary) justifications to the reader.

2.2 Motivic decomposition

2.2.1. We now review the decomposition of the motive of a modular curve. We will work in the category $\mathcal{M}_{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ of Chow motives over \mathbb{Q} with coefficients in $\overline{\mathbb{Q}}$ — an object of this category is a triple $V = (X, p, m)$ where X is a smooth projective \mathbb{Q} -scheme, $m \in \mathbb{Z}$ and $p = p^2 \in \text{Corr}^0(X, X) \otimes \overline{\mathbb{Q}}$. (We use the letter V to avoid confusion with modular curves.) If χ is a Dirichlet character, we write $V(\chi)$ for the twist of V by the Artin motive attached to χ .

2.2.2. There is the usual Chow-Künneth decomposition

$$h(\overline{M}_n) = h^0(\overline{M}_n) \oplus h^1(\overline{M}_n) \oplus h^2(\overline{M}_n)$$

which depends on the choice of a 0-cycle of nonzero degree on \overline{M}_n . We take the decomposition determined by a cusp (or any sum of cusps); since all cusps are linearly equivalent modulo torsion by Manin-Drinfeld, this decomposition is canonical, and is respected by the change of level maps $h(\overline{M}_n) \rightarrow h(\overline{M}_{n'})$ for $n|n'$. We have $h^0(\overline{M}_n) = h(\text{Spec } \mathbb{Q}(\mu_n))$ and $h^2(\overline{M}_n) = \mathbb{L} \otimes h(\overline{M}_n)$.

2.2.3. The Hecke algebra \mathcal{H}_n acts on the motive $h(\overline{M}_n)$ by correspondences. Since Hecke operators take cusps to cusps, this action preserves the Chow-Künneth decomposition. The action of \mathcal{H}_n on $h^1(\overline{M}_n)$ is semisimple, since the map

$$\text{End } h^1(\overline{M}_n) \rightarrow \text{End } \Omega^1(\overline{M}_n/\mathbb{Q}) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$$

is injective. Moreover, if p is prime and $p \equiv 1 \pmod{n}$, the Hecke operator T_p acts on $h^0(\overline{M}_n)$ and $h^2(\overline{M}_n)$ by multiplication by $p+1$. Since $p+1$ cannot be an eigenvalue of T_p on $\Omega^1(\overline{M}_n/\mathbb{Q})$ (since $p+1 > 2\sqrt{p}$), it follows that there exists an element of \mathcal{H}_n (even a polynomial in T_p) which is the identity on $h^1(\overline{M}_n)$ and annihilates h^0 and h^2 .

2.2.4. According to the multiplicity one theorem, there is a decomposition

$$\Omega^1(\overline{M}_n/\mathbb{Q}) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} = \bigoplus_{\pi} [\pi]^{K_n}$$

into pairwise non-isomorphic \mathcal{H}_n -modules. Each $[\pi]^{K_n}$ is the space of K_n -invariants of K_n in an irreducible admissible representation $\pi: G_f \rightarrow GL([\pi])$, and

$$\Omega^1(\overline{M}/\mathbb{Q}) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} \stackrel{\text{def}}{\equiv} \varinjlim \Omega^1(\overline{M}_n/\mathbb{Q}) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} = \bigoplus_{\pi} [\pi]$$

We therefore get the decomposition of the motive:

$$h^1(\overline{M}_n) = \bigoplus_{\pi} V_{\pi} \otimes_{\overline{\mathbb{Q}}} [\pi]^{K_n}$$

where the sum is over those π occurring in $\Omega^1(\overline{M}) \otimes \overline{\mathbb{Q}}$ such that $[\pi]^{K_n} \neq 0$, and where

$$V_{\pi} = \text{Hom}_{\mathcal{H}_n}([\pi]^{K_n}, h^1(\overline{M}_n)) \in \mathcal{M}_{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$$

The motives V_{π} are simple of rank 2, and $V_{\pi}, V_{\pi'}$ are isomorphic if and only if $\pi \simeq \pi'$. We also know that

$$V_{\pi}^{\vee} \simeq V_{\tilde{\pi}} \otimes \mathbb{L}^{\otimes -1}.$$

2.2.5. It is convenient to work in the Ind-category $\text{Ind-}\mathcal{M}_{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$, whose objects are inductive systems of objects of $\mathcal{M}_{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$. In $\text{Ind-}\mathcal{M}_{\mathbb{Q}} \otimes \overline{\mathbb{Q}}$ we can simply write

$$h^1(\overline{M}) \stackrel{\text{def}}{=} \lim_{\rightarrow} h^1(\overline{M}_n) = \bigoplus_{\pi} V_{\pi} \otimes [\pi].$$

2.2.6. By the Künneth formula $h(\overline{M}_n^2) = h(\overline{M}_n) \otimes h(\overline{M}_n)$ we can decompose the motive of \overline{M}_n^2 in the limit as

$$h(\overline{M}^2) = \bigoplus_{0 \leq i, j \leq 2} h^i(\overline{M}) \otimes h^j(\overline{M})$$

in which the most interesting part is

$$h^{1,1}(\overline{M}^2) = h^1(\overline{M})^{\otimes 2} = \bigoplus_{\pi, \pi'} V_{\pi \times \pi'} \otimes [\pi \times \pi']..$$

Here for each pair (π, π') of irreducible admissible representations of G_f occurring in $\Omega^1(\overline{M}) \otimes \overline{\mathbb{Q}}$, we have written

$$V_{\pi \times \pi'} = V_{\pi} \otimes V_{\pi'}$$

and $[\pi \times \pi']$ is the space of the exterior tensor product of π and π' . We get a corresponding decomposition of the motivic cohomology:

$$\begin{aligned} H_{\mathcal{M}}^3(\overline{M}^2, 2) &= \bigoplus_{i,j} H_{\mathcal{M}}^3(h^{i,j}(\overline{M}_n^2), 2) \\ &\supset H_{\mathcal{M}}^3(h^{1,1}(\overline{M}^2), 2) = \bigoplus_{\pi, \pi'} H_{\mathcal{M}}^3(V_{\pi \times \pi'}, 2) \otimes [\pi \times \pi']. \end{aligned} \quad (2.2.6.1)$$

2.2.7. We need to recall what are the rank one submotives of $V_{\pi \times \pi'}$. These exist if and only if there is a Dirichlet character χ such that

$$\pi' \simeq \tilde{\pi} \otimes \chi \circ \det. \quad (2.2.7.1)$$

To each such character corresponds a unique submotive of $V_{\pi \otimes \pi'}$ isomorphic to $\mathbb{L}(\chi)$, and we write

$$V_{\pi \times \pi'} = V_{\pi \times \pi'}^{\text{trans}} \oplus V_{\pi \times \pi'}^{\text{alg}} \quad (2.2.7.2)$$

where $V_{\pi \times \pi'}^{\text{alg}}$ is the sum of the rank one submotives associated to that characters satisfying (2.2.7.1). If no such χ exists then of course $V_{\pi \times \pi'}^{\text{trans}} = V_{\pi \times \pi'}$.

Suppose then that there is a χ satisfying (2.2.7.1). Assume first that π does not have complex multiplication. Then χ is unique, and $V_{\pi \times \pi'}^{\text{trans}}$ is a simple motive of rank 3; in fact

$$V_{\pi \times \pi'}^{\text{trans}} = \text{Ad}^2 V_{\pi} \otimes \mathbb{L}(\chi)$$

where if V is any motive, $\text{Ad}^2 V$ is its adjoint square, which is the kernel of the projector $V \otimes V^{\vee} \rightarrow \mathbb{1} \rightarrow V \otimes V^{\vee}$.

If π has complex multiplication, and ϵ is the quadratic character attached to the CM field, then if (2.2.7.1) holds we also will have

$$\pi' \simeq \tilde{\pi} \otimes \epsilon \chi \circ \det.$$

In this case $V_{\pi \times \pi'} = \mathbb{L}(\chi) \oplus \mathbb{L}(\epsilon \chi)$, and $V_{\pi \times \pi'}^{\text{trans}}$ is a simple rank 2 motive.

2.2.8. Returning to finite level, consider now the motivic cohomology of $\overline{M}_n^2 \setminus M_n^{\infty 2}$. We have a diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & H_{\mathcal{M}}^3(\overline{M}_n^2, 2) & \longrightarrow & H_{\mathcal{M}}^3(\overline{M}_n^2 \setminus M_n^{\infty 2}, 2) & \longrightarrow & \mathbb{Q}[M_n^{\infty 2}] \\ & & \uparrow & & & & \\ & & H_{\mathcal{M}}^3(h^{1,1}(\overline{M}_n^2), 2) & & & & \end{array}$$

where the vertical arrow has a unique $\mathcal{H}_n \otimes \mathcal{H}_n$ -equivariant splitting, given by the Chow-Künneth decomposition. Moreover, $\mathcal{H}_n \otimes \mathcal{H}_n$ acts on $H_{\mathcal{M}}^3(h^{1,1}(\overline{M}_n^2), 2)$ via the tensor product of representations of the form $[\pi]^{K_n}$, whereas on $\mathbb{Q}[M_n^{\infty 2}]$ it acts via representations occurring in Eisenstein series. So by the Manin-Drinfeld theorem, there is a unique $\mathcal{H}_n \otimes \mathcal{H}_n$ -equivariant splitting of the composite inclusion

$$H_{\mathcal{M}}^3(h^{1,1}(\overline{M}_n^2), 2) \hookrightarrow H_{\mathcal{M}}^3(\overline{M}_n^2 \setminus M_n^{\infty 2}, 2)$$

and it is induced by an element of $\mathcal{H}_n \otimes \mathcal{H}_n$. Passing to infinite level, we obtain a unique $G_f \times G_f$ -equivariant splitting of the inclusion

$$H_{\mathcal{M}}^3(h^{1,1}(\overline{M}^2), 2) \hookrightarrow H_{\mathcal{M}}^3(\overline{M}^2 \setminus M^{\infty 2}, 2). \quad (2.2.8.1)$$

2.3 Beilinson's elements

2.3.1. Unless otherwise noted, the reader should interpret all products of schemes as absolute products (over $\text{Spec } \mathbb{Z}$). Consider the map

$$\begin{aligned} M \times G_f &\rightarrow M^2 = M \times M \\ (m, g) &\mapsto (m, mg) \end{aligned}$$

which is $G_f \times G_f$ -equivariant with respect to the action

$$(m, g)(g_1, g_2) = (mg_1, g_1^{-1}gg_2)$$

of $G_f \times G_f$ on $M \times G_f$. If $K \subset K' \subset G_f$ are open compact subgroups, then we get the diagram below in which the composite horizontal maps $i_K, i_{K'}$ are proper:

$$\begin{array}{ccc} i_K: M \times G_f/K \times K & \longrightarrow & M_K^2 \hookrightarrow \overline{M}_K^2 \setminus M_K^{\infty 2} \\ \downarrow & & \downarrow \beta \\ i_{K'}: M \times G_f/K' \times K' & \longrightarrow & M_{K'}^2 \hookrightarrow \overline{M}_{K'}^2 \setminus M_{K'}^{\infty 2} \end{array} \quad (2.3.1.1)$$

2.3.2. The quotient $M \times G_f/K \times K$ can be written as a disjoint union of modular curves of finite level

$$\coprod_{KgK \in K \setminus G_f/K} M_{K \cap gKg^{-1}}$$

from which it is easy to check that the two squares in (2.3.1.1) are Cartesian. We have in K -theory $i_{K*}\alpha^* = \beta^*i_{K'*}$. Therefore the proper pushforward $i_{K*}: \mathcal{O}^*(M \times G_f/K \times K) \rightarrow H_{\mathcal{M}}^3(\overline{M}_K^2 \setminus M_K^{\infty 2}, 2)$ defines in the limit a map

$$\begin{array}{ccc} \lim_{\rightarrow} \mathcal{O}^*(M \times G_f/K \times K) & & \lim_{\rightarrow} H_{\mathcal{M}}^3(\overline{M}_K^2 \setminus M_K^{\infty 2}, 2) \\ \parallel & & \parallel \\ \mathcal{O}^*(M \times G_f) & \xrightarrow{i_*} & H_{\mathcal{M}}^3(\overline{M}^2 \setminus M^{\infty 2}, 2) \end{array}$$

We have $\mathcal{O}^*(M \times G_f) \otimes_{\mathbb{Z}} \overline{\mathbb{Q}} = \mathcal{O}^*(M) \otimes_{\mathbb{Z}} \mathcal{H}_f$, and the induced action of $G_f \times G_f$ is via the first factor on $\mathcal{O}^*(M)$ and by the action (2.1.6.1) on \mathcal{H}_f .

2.3.3. Now we compose with the Manin-Drinfeld splitting of (2.2.8.1) and use the motivic decomposition (2.2.6.1) to get a $G_f \times G_f$ -equivariant homomorphism

$$\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \mathcal{H}_f \rightarrow H_{\mathcal{M}}^3(V_{\pi} \otimes V_{\pi'}, 2) \otimes [\pi \times \pi'].$$

Applying Frobenius reciprocity 2.1.7, we finally get the *Beilinson homomorphism*

$$\mathbb{B}(\pi \times \pi'): (\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}')_{G_f} \rightarrow H_{\mathcal{M}}^3(V_{\pi \times \pi'}, 2)$$

whose source is the maximal quotient of $\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}'$ on which G_f acts trivially. We can then state the main result of this paper, which completes [1, Theorem 6.1.1]:

2.3.4. Theorem. *Suppose π is not isomorphic to any twist of π' . Then the image of $\Gamma(\pi \times \pi')$ is contained in $H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}, 2)$.*

2.3.5. Remark. Beilinson's conjectures predict that the space $H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}, 2)$ is 1-dimensional. Beilinson's computations [1] of the composition of $\Gamma(\pi \times \pi')$ and the regulator show that the dimension is at least one. In the other direction, in [8] M. Harris and the author prove that the source $(\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}')_{G_f}$ of the map $\Gamma(\pi \times \pi')$ is exactly 1-dimensional if (and only if) π' is not a twist of π . In other words, the image of $\Gamma(\pi \times \pi')$ has dimension one.

2.3.6. We now consider the case where π, π' are twists of one another, so that $V_{\pi \times \pi'}$ has the decomposition (2.2.7.2). The composite of the Beilinson homomorphism with the projection onto the algebraic component:

$$\begin{aligned} \Gamma(\pi \times \pi') : (\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}')_{G_f} &\rightarrow H_{\mathcal{M}}^3(V_{\pi \times \pi'}, 2) \\ &\rightarrow H_{\mathcal{M}}^3(V_{\pi \times \pi'}^{\text{alg}}, 2) = \begin{cases} H_{\mathcal{M}}^1(\mathbb{1}(\chi), 1) & (\text{no CM}) \\ H_{\mathcal{M}}^1(\mathbb{1}(\chi) + \mathbb{1}(\epsilon\chi), 1) & (\text{CM}) \end{cases} \end{aligned}$$

is not particularly interesting; it can be described explicitly, using Lemma 2.5.2 below. (The motivic cohomology $H_{\mathcal{M}}^1(\mathbb{1}(\chi), 1)$ is simply the χ -isotypical component of $\mathbb{Q}(\mu_{\infty})^* \otimes_{\mathbb{Z}} \overline{\mathbb{Q}}$.) The transcendental component is more interesting.

2.3.7. Theorem. *Assume that π' is isomorphic to a twist of π .*

- (i) *If $\pi' \not\simeq \tilde{\pi}$, the image of $\Gamma(\pi \times \pi')$ lies in $H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}^{\text{trans}}, 2)$.*
- (ii) *(Flach [7]) If $\pi' \simeq \tilde{\pi}$, then the image of $\Gamma(\pi \times \pi')$ in $H_{\mathcal{M}/\mathbb{Z}}^3 / H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}^{\text{trans}}, 2)$ is infinite-dimensional.*

2.3.8. Remark. Beilinson's conjectures imply that $H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}^{\text{trans}}, 2) = 0$ (as the associated Deligne cohomology group is zero). So in case (i) the Beilinson elements should be trivial.

2.3.9. Remark. In the case when $\pi' \simeq \tilde{\pi}$ does not have complex multiplication, Flach's argument shows that for every prime p at which π is unramified, the image of $\Gamma(\pi \times \tilde{\pi})$ does not lie in $H_{\mathcal{M}/\mathbb{Z}_{(p)}}^3(V_{\pi \times \tilde{\pi}}^{\text{trans}}, 2)$. His proof (which we do not reproduce here) can be summarised as follows: for each such p the motive V_{π} can be reduced mod p to obtain a motive $V_{\pi}^{(p)}$ over \mathbb{F}_p , and the obstruction to the integrality of an element of $H_{\mathcal{M}}^3(V_{\pi \times \tilde{\pi}}, 2)$ can be computed from the exact localisation sequence

$$H_{\mathcal{M}/\mathbb{Z}_{(p)}}^3(V_{\pi \times \tilde{\pi}}, 2) \rightarrow H_{\mathcal{M}}^3(V_{\pi \times \tilde{\pi}}, 2) \xrightarrow{\partial_p} \text{Pic}(V_{\pi \times \tilde{\pi}}^{(p)}).$$

Now $\text{Pic}(V_{\pi \times \tilde{\pi}}^{(p)}) = \text{End } V_{\pi}^{(p)}$, and the subspace

$$\text{Pic}(V_{\pi \times \tilde{\pi}}^{\text{alg}(p)}) \subset \text{Pic}(V_{\pi \times \tilde{\pi}}^{(p)}) \quad (2.3.9.1)$$

simply corresponds to those endomorphisms of $V_{\pi}^{(p)}$ which lift to characteristic zero; in other words, the one-dimension subspace generated by the identity endomorphism. Then Flach uses an explicit modular unit supported on the Hecke correspondence T_p to construct an element of $H_{\mathcal{M}}^3(V_{\pi \times \tilde{\pi}}, 2)$ whose image under ∂_p is the graph of Frobenius; hence its transcendental component is not integral.

The same argument works in the case of complex multiplication: in this case the subspace (2.3.9.1) consists of all endomorphisms which lift to characteristic zero over the CM field. For a good prime p which is inert in the CM field, the Frobenius endomorphism of $V_{\pi}^{(p)}$ does not lift, so for all such primes the Flach element gives an element of $H_{\mathcal{M}}^3(V_{\pi \times \tilde{\pi}}^{\text{trans}}, 2)$ which is non-integral at p .

2.3.10. Because we are working with a product of curves, it is possible to prove that integral motivic cohomology is the same as the Bloch-Kato f -subspace. We only make this statement precise in the case of ℓ -adic cohomology over \mathbb{Q}_p , with $p \neq \ell$; if U is any continuous finite-dimensional ℓ -adic representation of $\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$, then $H_f^1(\mathbb{Q}_p, U) = H_{\text{nr}}^1(\mathbb{Q}_p, U)$ is the unramified Galois cohomology, which fits into the exact sequence

$$\begin{array}{ccccccc} 0 & \longrightarrow & H^1(\mathbb{Q}_p^{\text{nr}}/\mathbb{Q}_p, U)^{\mathcal{I}_p} & \longrightarrow & H^1(\mathbb{Q}_p, U) & \longrightarrow & H^1(\mathbb{Q}_p^{\text{nr}}, U)^{\text{Frob}_p=1} \longrightarrow 0 \\ & & \parallel & & & & \parallel \\ & & H_{\text{nr}}^1(\mathbb{Q}_p, U) & & & & H^1/H_{\text{nr}}^1(\mathbb{Q}_p, U) \end{array}$$

For a smooth and proper variety X over \mathbb{Q} , one has an ℓ -adic Abel-Jacobi homomorphism

$$AJ(X, j): H_{\mathcal{M}}^{2j-1}(X, j) \longrightarrow H^1(\mathbb{Q}, H^{2j-2}(\overline{X}, \mathbb{Q}_{\ell})(j))$$

and localising at p one can show that for $j = 2$ and X a product of two curves, the sequence

$$0 \longrightarrow H_{\mathcal{M}/\mathbb{Z}_{(p)}}^3(X, 2) \longrightarrow H_{\mathcal{M}}^3(X, 2) \xrightarrow{AJ(X, 2)} H^1/H_{\text{nr}}^1(\mathbb{Q}_p, H^2(\overline{X}, \mathbb{Q}_{\ell})(2))$$

is exact.

2.3.11. We can now consider in greater detail the case $\pi' \simeq \tilde{\pi}$. Assume that π has no complex multiplication. For a motive V , let V_{ℓ} denote its ℓ -adic realisation. We then get for every p and every $\ell \neq p$ an exact sequence:

$$0 \rightarrow H_{\mathcal{M}/\mathbb{Z}_{(p)}}^3(V_{\pi \times \tilde{\pi}}^{\text{trans}}, 2) \otimes \overline{\mathbb{Q}}_{\ell} \rightarrow H_{\mathcal{M}}^3(V_{\pi \times \tilde{\pi}}^{\text{trans}}, 2) \otimes \overline{\mathbb{Q}}_{\ell} \rightarrow H^1/H_{\text{nr}}^1(\mathbb{Q}_p, V_{\pi \times \tilde{\pi}, \ell}^{\text{trans}}(2)).$$

We can ask when the last group

$$H^1/H_{\text{nr}}^1(\mathbb{Q}_p, V_{\pi \times \tilde{\pi}, \ell}^{\text{trans}}(2)) = (\text{Ad}^2 V_{\pi, \ell})_{\mathcal{I}_p}^{\text{Frob}_p=1}$$

is nonzero. We know that Frobenius acts semisimply on $V_{\pi, \ell}$ (since it is part of the H^1 of a curve), so

$$\dim (\text{Ad}^2 V_{\pi, \ell})_{\mathcal{I}_p}^{\text{Frob}_p=1} = \dim \text{End}_{\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}(V_{\pi, \ell}) - 1.$$

To proceed further, it is most natural to consider the possible types of the local factor π_p of π , in the rough classification of irreducible admissible representations of $GL_2(\mathbb{Q}_p)$:

2.3.12. If π_p is principal series, then there are quasi-characters $\mu_1, \mu_2: \mathbb{Q}_p^* \rightarrow \overline{\mathbb{Q}}^*$ with $|\mu_i(p)| = \sqrt{p}$, such that $V_{\pi, \ell} = [\mu_1] \oplus [\mu_2]$. Moreover, it is known [3] that one cannot have $\mu_1 = \mu_2$, so in this case H^1/H_{nr}^1 has dimension 1.

- If π_p is unramified, then Flach's construction 2.3.7(ii) shows that the image of $\text{B}(\pi \times \pi')$ maps onto H^1/H_{nr}^1 . More generally, if π_p is a twist of an unramified representation (*i.e.* if μ_1/μ_2 is unramified) then it is not hard to show (although we do not give the details) that after twisting, the Flach elements map onto H^1/H_{nr}^1 .
- If μ_1/μ_2 is ramified, it is not clear whether there are global elements of motivic cohomology whose images generate H^1/H_{nr}^1 .

2.3.13. If π_p is special or supercuspidal then $V_{\pi, \ell}$ is indecomposable as a representation of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ over $\overline{\mathbb{Q}}_\ell$. Hence in this case $H^1/H_{\text{nr}}^1 = 0$, and so every class is automatically integral at p .

2.3.14. The case of complex multiplication can be treated in the same way. Let F be the (imaginary quadratic) field of complex multiplication; then there is a Hecke character $\phi: \text{Gal}(\overline{\mathbb{Q}}/F) \rightarrow \overline{\mathbb{Q}}_\ell^*$ such that $V_{\pi, \ell}$ is the representation obtained from ϕ by induction. Then

$$\text{End}_{\overline{\mathbb{Q}}_\ell} V_{\pi, \ell} = V_{\pi \times \tilde{\pi}, \ell}(1) = V_{\pi \times \tilde{\pi}, \ell}^{\text{trans}}(1) \oplus \overline{\mathbb{Q}}_\ell \oplus \overline{\mathbb{Q}}_\ell(\epsilon).$$

The restriction of $V_{\pi, \ell}$ to $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is irreducible if p is ramified in F , and is the sum of two non-isomorphic characters otherwise. We therefore obtain

$$\dim H^1/H_{\text{nr}}^1(\mathbb{Q}_p, V_{\pi \times \tilde{\pi}, \ell}^{\text{trans}}(1)) = \begin{cases} 1 & \text{if } p \text{ is inert in } F \\ 0 & \text{otherwise.} \end{cases}$$

So if p is split or ramified, there is no obstruction to integrality. If p is an inert prime of good reduction, the Flach element maps to a generator H^1/H_{nr}^1 , by the discussion in Remark 2.3.9. Therefore the only ambiguity remaining is when p is an inert prime for which ϕ_p is ramified.

2.4 Modular units

2.4.1. We recall without proof the results of [11] about the representation theory of modular units. For a continuous character $\chi: \mathbb{A}_f^* \rightarrow \overline{\mathbb{Q}}^*$ (resp. $\chi: \mathbb{Q}_p^* \rightarrow \overline{\mathbb{Q}}^*$), define $\mathcal{S}(\chi)$ (resp. $\mathcal{S}_p(\chi)$) to be the space of locally constant $\overline{\mathbb{Q}}$ -valued functions ϕ on G_f resp. G_p such that

$$\phi\left(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} g\right) = \chi(d) \left\| \frac{a}{d} \right\| \phi(g) \quad \text{for all } \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, g \in G_f \text{ resp. } G_p.$$

Here $\|-\|$ denotes finite idelic (resp. p -adic) modulus. Right translation make $\mathcal{S}(\chi)$, $\mathcal{S}_p(\chi)$ admissible representations of G_f and G_p and if $\chi = \otimes_p \chi_p$ for characters $\chi_p: \mathbb{Q}_p^* \rightarrow \overline{\mathbb{Q}}^*$, almost all unramified, then $\mathcal{S}(\chi)$ is a restricted tensor product

$$\mathcal{S}(\chi) = \bigotimes'_p \mathcal{S}_p(\chi_p)$$

with respect to the spherical vectors $\phi_p^o \in \mathcal{S}_p(\chi_p)$ for χ_p unramified, uniquely determined by the condition $\phi_p^o|_{G(\mathbb{Z}_p)} = 1$.

2.4.2. Define subspaces for $\chi = 1$:

$$\begin{aligned} \mathcal{S}(1)^0 &= \ker\left(\int_{G(\hat{Z})}: \mathcal{S}(1) \rightarrow \overline{\mathbb{Q}}\right) \\ \mathcal{S}_p(1)^0 &= \ker\left(\int_{G(\mathbb{Z}_p)}: \mathcal{S}_p(1) \rightarrow \overline{\mathbb{Q}}\right) \end{aligned}$$

Then $\mathcal{S}_p(1)^0$ is an irreducible G_p -module (the Steinberg representation of G_p), and there is a short exact nonsplit sequence

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathcal{S}_p(1)^0 & \longrightarrow & \mathcal{S}_p(1) & \xrightarrow{\lambda_p} & \overline{\mathbb{Q}} \longrightarrow 0 \\ & & \Downarrow & & \Downarrow & & \\ & & \phi_p^o & \longmapsto & 1. & & \end{array}$$

Moreover $\mathcal{S}(1)^0$ is the space spanned by all $\otimes' \phi_p \in \mathcal{S}(1)$ such that for at least one p , $\lambda_p(\phi_p) = 0$.

2.4.3. Write $\mathcal{S}(1)^{00}$ for the space spanned by all $\otimes' \phi_p \in \mathcal{S}(1)$ such that for at least two distinct p , $\lambda_p(\phi_p) = 0$. It fits into an exact sequence:

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathcal{S}(1)^{00} & \longrightarrow & \mathcal{S}(1)^0 & \xrightarrow{(\Phi_p)_p} & \bigoplus_p \mathcal{S}_p(1)^0 \longrightarrow 0 \\ & & \Downarrow & & \Downarrow & & \\ \otimes' \phi_q & \mapsto & \left(\prod_{q \neq p} \lambda_q(\phi_q) \phi_p \right)_p & & & & \end{array}$$

(note that Φ_p is well-defined!)

2.4.4. Recall from [11] the representation-theoretic description of the space of modular units and its integral subspace. The divisor map gives an exact sequence

$$0 \longrightarrow \mathbb{Q}(\mu_\infty)^* \longrightarrow \mathcal{O}^*(M) \xrightarrow{\text{div}} \mathcal{S}(1)^0 \oplus \bigoplus_{\chi \neq 1} \mathcal{S}(\chi) \quad (2.4.4.1)$$

which becomes exact on the right when the first 2 groups are tensored with $\overline{\mathbb{Q}}$ (Manin-Drinfeld theorem). The integral units $\mathcal{O}^*(M_{/\mathbb{Z}})$ fit into an exact sequence

$$0 \longrightarrow \mathbb{Z}[\mu_\infty]^* \longrightarrow \mathcal{O}^*(M_{/\mathbb{Z}}) \xrightarrow{\text{div}} \mathcal{S}(1)^{00} \oplus \bigoplus_{\chi \neq 1} \mathcal{S}(\chi) \quad (2.4.4.2)$$

which maps to (2.4.4.1) by the obvious maps in the three terms. More precisely, for any p the sequence

$$0 \longrightarrow \mathbb{Q}(\mu_\infty)^* \mathcal{O}^*(M_{/\mathbb{Z}(p)}) \otimes_{\mathbb{Z}} \overline{\mathbb{Q}} \longrightarrow \mathcal{O}^*(M) \otimes_{\mathbb{Z}} \overline{\mathbb{Q}} \xrightarrow{\Phi_p \circ \text{div}} \mathcal{S}_p(1)^0 \longrightarrow 0$$

is exact.

2.5 Proofs

2.5.1. Lemma. *For every (π, π') the image under the Beilinson homomorphism $\text{B}(\pi, \pi')$ of $\mathcal{O}^*(M_{/\mathbb{Z}}) \otimes \tilde{\pi} \otimes \tilde{\pi}'$ lies in $H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}, 2)$.*

Proof. Recall that the Beilinson homomorphism is obtained from the pushforward map $\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \mathcal{H}_f \rightarrow H_{\mathcal{M}}^3(\overline{M}^2 \setminus M^{\infty 2}, 2)$ by composing with the projection (2.2.8.1), which at any finite level is given by an element of the Hecke algebra. Therefore it is enough to show that

$$\text{Im} [\mathcal{O}^*(M_{/\mathbb{Z}}) \otimes_{\mathbb{Z}} \mathcal{H}_f \rightarrow H_{\mathcal{M}}^3(\overline{M}^2 \setminus M^{\infty 2}, 2)] \cap H_{\mathcal{M}/\mathbb{Z}}^3(\overline{M}^2, 2) \subset H_{\mathcal{M}/\mathbb{Z}}^3(\overline{M}^2, 2).$$

We shall work at some finite level n . Choose a finite extension $F/\mathbb{Q}(\mu_n)$, Galois over \mathbb{Q} , over which \overline{M}_n acquires semistable reduction; let $\overline{M}'_{n/\mathbb{Z}}$ be the semistable model thus obtained. Since $\overline{M}'_{n/\mathbb{Z}}$ is smooth over $\mathbb{Z}[\mu_n]$ away from supersingular points, we can assume that there is a birational morphism $\overline{M}'_{n/\mathbb{Z}} \rightarrow \overline{M}_{n/\mathbb{Z}} \otimes_{\mathbb{Z}[\mu_n]} \mathfrak{o}_F$ which is an isomorphism away from the supersingular points in characteristic $p|n$.

To obtain a regular alteration of $\overline{M}'_{n/\mathbb{Z}}$ it then suffices to take the normalisation of $\overline{M}'_{n/\mathbb{Z}} \times_{\mathbb{Z}} \overline{M}'_{n/\mathbb{Z}}$, which has only ordinary double points as singularities, and blow them up once. We write $\overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}}$ for the result.

Let $\tau_\alpha: \bar{Y}_\alpha \rightarrow \overline{M}_n \times \overline{M}_n$ be Hecke correspondences, and $Y_\alpha \subset \bar{Y}_\alpha$ the complements of all cusps. We can assume that $Y_\alpha = M_m$ for some large m (the same for each α). Suppose that $u_\alpha \in \mathcal{O}^*(M_{m/\mathbb{Z}})$ are modular units, such that $\sum \tau_{\alpha*}(u_\alpha) \in H_{\mathcal{M}}^3(\overline{M}_n^2, 2)$. We are going to show that the pullback of $\sum \tau_{\alpha*}(u_\alpha)$

to $(\overline{M}_n \otimes F)^2$ extends to an element of $K_1(\overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}_{n/\mathbb{Z}}) \otimes \mathbb{Q}$ — by Corollary 1.3.4 this will prove the lemma.

Because it is a Hecke correspondence, the morphism

$$\tau_\alpha: \overline{M}_m \rightarrow \overline{M}_n \times \overline{M}_n$$

extends to a correspondence $\overline{M}_{m/\mathbb{Z}} \rightarrow \overline{M}_{n/\mathbb{Z}} \times \overline{M}_{n/\mathbb{Z}}$. By resolution of singularities for arithmetic surfaces, we can find some regular model $\overline{M}'_{m/\mathbb{Z}}$ for $\overline{M}_{m/F} := \overline{M}_m \otimes_{\mathbb{Q}(\mu_n)} F$ over \mathfrak{o}_F such that each τ_α extends to a correspondence

$$\tau'_\alpha: \overline{M}'_{m/\mathbb{Z}} \rightarrow \overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}}$$

and such that $\overline{M}'_{m/\mathbb{Z}} \rightarrow \overline{M}_{m/\mathbb{Z}}$ is finite away from supersingular points.

The divisor of cusps $M_{n/\mathbb{Z}}^\infty \subset \overline{M}_{n/\mathbb{Z}}$ pulls back to a divisor $M_{n/\mathbb{Z}}^{\infty'} \subset \overline{M}'_{n/\mathbb{Z}}$, which is a disjoint union of copies of $\text{Spec } \mathfrak{o}_F$. Write $M'_{n/\mathbb{Z}} = \overline{M}'_{n/\mathbb{Z}} \setminus M_{n/\mathbb{Z}}^{\infty'}$ for its complement. Define similarly $M_{m/\mathbb{Z}}^{\infty'}, M_{m/\mathbb{Z}}^{\infty'}$. The inverse image of $M_{n/\mathbb{Z}}^{\infty^2}$ in $\overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}}$ is a finite union of copies of $\text{Spec } \mathfrak{o}_F$, which we will simply denote $M_{n/\mathbb{Z}}^{\infty'} \hat{\times} M_{n/\mathbb{Z}}^{\infty'}$. The restriction

$$\tau'_\alpha: M'_{m/\mathbb{Z}} \rightarrow \overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}} \setminus M_{n/\mathbb{Z}}^{\infty'} \hat{\times} M_{n/\mathbb{Z}}^{\infty'}$$

is then proper.

The units u_α extend to units u'_α on $M'_{m/\mathbb{Z}}$ and so

$$\tau'_{\alpha*}(u'_\alpha) \in K_1(\overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}} \setminus M_{n/\mathbb{Z}}^{\infty'} \hat{\times} M_{n/\mathbb{Z}}^{\infty'})$$

We now have a commutative diagram of localisation sequences:

$$\begin{array}{ccccccc} K_1(\overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}}) & \xrightarrow{\theta} & K_1(\overline{M}'_{n/\mathbb{Z}} \hat{\times} \overline{M}'_{n/\mathbb{Z}} \setminus M_{n/\mathbb{Z}}^{\infty'} \hat{\times} M_{n/\mathbb{Z}}^{\infty'}) & \rightarrow & K_0(M_{n/\mathbb{Z}}^{\infty'} \hat{\times} M_{n/\mathbb{Z}}^{\infty'}) \\ \downarrow & & \downarrow & & \downarrow \\ K_1((\overline{M}_{n/F})^2) & \rightarrow & K_1((\overline{M}_{n/F})^2 \setminus (M_{n/F}^\infty)^2) & \rightarrow & K_0((M_{n/F}^\infty)^2) \end{array}$$

and when tensored with \mathbb{Q} the right-hand vertical arrow is an isomorphism. The middle vertical arrow maps $\tau'_{\alpha*}(u'_\alpha)$ to $\tau_{\alpha*}(u_\alpha)$. Since $\sum \tau_{\alpha*}(u_\alpha) \in H_M^3(\overline{M}_n^2, 2)$, it follows from this diagram that

$$\sum \tau'_{\alpha*}(u'_\alpha) \in \text{Im}(\theta)$$

as required. □

2.5.2. Lemma. (i) If π' is not a twist of π , $\mathbf{B}(\pi, \pi')$ vanishes on $\mathbb{Q}(\boldsymbol{\mu}_\infty)^* \otimes \tilde{\pi} \otimes \tilde{\pi}'$.

(ii) If π' is a twist of π , then

$$\mathbf{B}(\pi, \pi')(\mathbb{Q}(\boldsymbol{\mu}_\infty)^* \otimes \tilde{\pi} \otimes \tilde{\pi}') \subset H_{\mathcal{M}}^3(V_{\pi \times \pi'}^{\text{alg}}, 2) \subset H_{\mathcal{M}}^3(V_{\pi \times \pi'}, 2).$$

Proof. (i) The action of G_f on $\mathbb{Q}(\boldsymbol{\mu}_\infty)^*$ factors through the determinant. If π and π' are not twists of one another, this implies that

$$(\mathbb{Q}(\boldsymbol{\mu}_\infty)^* \otimes \tilde{\pi} \otimes \tilde{\pi}')_{G_f} = 0.$$

(Alternatively one can use the argument in (ii) following.)

(ii) The homomorphism

$$\mathbb{Q}(\boldsymbol{\mu}_\infty)^* \otimes \mathcal{H}_f \rightarrow H_{\mathcal{M}}^3(\overline{M}^2, 2)$$

can be described as follows: work at some finite level n , and let $a \in \mathbb{Q}(\boldsymbol{\mu}_n)^*$. For any Hecke correspondence $\tau: \overline{M}_m \rightarrow \overline{M}_n^2$, let $c_1(\tau)$ be the class of the cycle $\tau_*(\overline{M}_m)$ in $\text{Pic}(\overline{M}_n^2) \otimes \overline{\mathbb{Q}} = H_{\mathcal{M}}^2(\overline{M}_n^2, 1)$. Then the homomorphism is given by

$$a \otimes \tau \longmapsto pr_1^*(a) \cup c_1(\tau). \quad (2.5.2.1)$$

In particular, it factors through $\mathbb{Q}(\boldsymbol{\mu}_\infty)^* \otimes \text{Pic}(\overline{M}^2) \otimes \overline{\mathbb{Q}}$, so that its image under the motivic decomposition lies in the algebraic part. \square

2.5.3. Corollary. The composite of the Beilinson homomorphism for $V_{\pi \times \pi'}^{\text{trans}}$ and the quotient map $H_{\mathcal{M}} \rightarrow H_{\mathcal{M}}/H_{\mathcal{M}/\mathbb{Z}}$ factors as

$$\begin{array}{ccc} (\mathcal{O}^*(M) \otimes_{\mathbb{Z}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}')_{G_f} & \xrightarrow{\mathbf{B}(\pi \times \pi')} & H_{\mathcal{M}}^3(V_{\pi \times \pi'}^{\text{trans}}, 2) \\ (\Phi_p \circ \text{div})_p \downarrow & & \downarrow \\ \bigoplus_p (\mathcal{S}_p(1)^0 \otimes_{\overline{\mathbb{Q}}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}')_{G_f} & \longrightarrow & H_{\mathcal{M}}^3/H_{\mathcal{M}/\mathbb{Z}}^3(V_{\pi \times \pi'}^{\text{trans}}, 2) \end{array}$$

Proof. This follows from 2.5.1, 2.5.2 and the description of the modular units in §2.4. \square

Proof of theorems 2.3.4 and 2.3.7(i). Both results follow as soon as we show that, if $\pi' \not\simeq \tilde{\pi}$, the bottom horizontal arrow in the above diagram is zero. For this, it is enough to show that for each p ,

$$(\mathcal{S}_p(1)^0 \otimes_{\overline{\mathbb{Q}}} \tilde{\pi} \otimes_{\overline{\mathbb{Q}}} \tilde{\pi}')_{G_f} = 0. \quad (*)$$

Fix a prime p . For every $q \neq p$, the subgroup $G_q \subset G_f$ acts trivially on $\mathcal{S}_p(1)^0$, and by strong multiplicity one, there exist infinitely many q such that π'_q and π_q are not contragredient to one another. Choose one such $q \neq p$. Then $(\tilde{\pi}_q \otimes \tilde{\pi}'_q)_{G_q} = 0$, hence $(*)$ holds. \square

References

- [1] A. A. Beilinson: *Higher regulators and values of L -functions*. J. Soviet Math. **30** (1985), 2036–2070
- [2] P. Cartier: *Representations of \mathfrak{p} -adic groups: a survey*. Proc. Symp. Pure Math. AMS **33** part 1 (1979), 111–155
- [3] R. Coleman, B. Edixhoven: *On the semi-simplicity of the U_p -operator on modular forms*. Math. Ann. **310** (1998), 119–127.
- [4] P. Deligne, M. Rapoport: *Les schémas de modules des courbes elliptiques*. Modular functions of one variable II, Lect. notes in mathematics **349**, 143–316 (Springer, 1973)
- [5] R. de Jeu: *A counterexample to a conjecture of Beilinson's*. This volume
- [6] A. J. de Jong: *Smoothness, semi-stability and alterations*. Publ. Math. IHES **83** (1996), 51–93
- [7] M. Flach: *A finiteness theorem for the symmetric square of an elliptic curve*. Inventiones math. **109** (1992), 307–327
- [8] M. Harris, A. J. Scholl: *Trilinear forms on reducible representations of GL_2* . In preparation.
- [9] N. M. Katz, B. Mazur: *Arithmetic moduli of elliptic curves*. Ann. of Math. Studies **108** (1985)
- [10] D. Ramakrishnan: *Valeurs de fonctions L des surfaces d'Hilbert-Blumenthal en $s = 1$* . C.R. Acad. Sci. Paris **301**, sér.I, no.18 (1985), 805–812
- [11] A. J. Scholl: *On modular units*. Math. Annalen **285** (1989), 503–510
- [12] —: *Classical motives*. In: Motives, Seattle 1991, ed. U. Jannsen, S. Kleiman, J-P. Serre. Proc Symp. Pure Math **55** (1994), part 1, 163–187
- [13] C. Soulé: *Opérations en K -théorie algébrique*. Canad. J. Math. **37** (1985), 488–550
- [14] G. Tamme: *The theorem of Riemann-Roch*. In: Beilinson's conjectures on special values of L -functions, ed. M. Rapoport, N. Schappacher, P. Schneider (Academic Press, 1988), 103–168