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Introduction

This paper has two aims. The primary one is to clarify the relation between
results of Beilinson [1] and Flach [7]. We begin by briefly recalling the relevant
parts of their papers.

Suppose S is a connected smooth projective surface over Q. Beilinson’s con-
jectures relate the motivic cohomology groups H i

M(S,Q(n)) = K
(n)
2n−i(S) of S and

the L-function of the motive hi−1(S) at s = n. In what follows we will only be
concerned with the motive h2(S) and the “near-central” point s = 2. In this case:

• The motivic cohomology H3
M(S,Q(2)) is equal to the K-cohomology group

H1(S,K2)⊗Q, and H1(S,K2) is the H1 of the Gersten complex

K2k(S)
(∂C)−→

∐

C⊂S

k(C)∗
div−→

∐

P∈S

Z. (0.1)

Here C runs over irreducible curves in S and P over closed points; ∂C is
(up to a sign) the tame symbol attached to the valuation ordC of k(S); and
div is the divisor map.

• The Deligne cohomology group H3
D(S/R,R(2)) equals the cokernel of the

composite map

F 2H2
dR(S/R) −֒→ H2

dR(S/R) = H2(S(C),C)+ Im−→−→ H2(S(C),R(1))+

where + denotes the fixed part under the de Rham conjugation, which is the
product of the maps on Betti cohomology induced by complex conjugation
on S(C) and complex conjugation on the coefficients C.

• Beilinson’s conjectures predict that the regulator (Chern character) and
cycle class maps induce an isomorphism

H3
M/Z(S,Q(2))⊗Q R ⊕ NS(S)⊗Z R

∼−→ H3
D(SR,R(2))

where HM/Z ⊂ HM is the image of K1(S)⊗Q→ H3
M(S, 2), for any regular

proper model S over Z of S.
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Now suppose that S = X × X ′ is a product of modular curves. The graph of a
Hecke operator is a divisor on S, and its normalisation is itself a modular curve,
or union of modular curves. Beilinson’s construction is to take a collection of
modular units uα on Hecke correspondences Zα such that

∑
div uα = 0 (as a

0-cycle on S). Then {uα}Zα defines a class in H3
M(S, 2) by (0.1).

For the purposes of this introduction we consider only the simplest nontrivial
case. Take X = X0(N), X ′ = X0(N

′) and let ϕ : X → E, ϕ′ : X ′ → E ′ be Weil
parameterisations of modular elliptic curves over Q. The proper pushforward
(ϕ× ϕ′)∗ : H3

M(X ×X ′, 2)→ H3
M(E × E ′, 2) maps {uα} to a class c ∈ H3

M(E ×
E ′, 2).

The Deligne cohomology groupH3
D(E×E ′

R,R(2)) has dimension 3. The classes
of the algebraic cycles E×{0}, {0}×E ′ span a 2-dimensional subspace. If there
is a Q-isogeny between E and E ′ then its graph gives a further algebraic cycle.
Thus Beilinson’s conjectures predict that H3

M/Z(E × E ′, 2) is trivial if E and E ′

are Q-isogenous, and that it has dimension 1 otherwise.
In [1, §6], Beilinson showed that if E and E ′ are not isogenous, then the images

of the classes c in H3
D(E × E ′

R,R(2)), as the Hecke correspondence and units
are varied, span a 1-dimensional Q-subspace, in agreement with his conjectures.
Theorem 2.3.4 below, applied to this situation, completes the picture by proving
that these elements are indeed in H3

M/Z
(E ×E ′, 2).

The first part of the paper addresses two problems that arise in formulating
this result in general. The first is that, in order to define H3

M/Z(E × E ′, 2), one

needs a regular model for E × E ′ over Spec Z. (Conjecture 2.4.2.1 of [1], which
would circumvent this requirement, turns out to be overoptimistic, see Remark
1.1.7 below.) The natural candidate, the fibre product of the minimal regular
models of E and E ′, will have singularities if the conductors of E and E ′ have a
common factor. If E and E ′ have semi-stable reduction, these singularities are
ordinary double points (locally for the étale topology, of the form xy = x′y′ = p)
and can be resolved with a single blowup, but in general the existence of the
resolution is open.

The second problem is that (pace [1, §6]) the integrality statement does
not hold on the level of the product of modular curves — we can have c /∈
H3

M/Z(X × X ′, 2) . Indeed, if E and E ′ are isogenous, Flach [7] has shown

that Beilinson’s elements generate an infinite-dimensional subspace of H3
M(E ×

E ′, 2)/H3
M/Z(E × E ′, 2). Therefore the desired statement can only be true after

performing a motivic decomposition of X ×X ′.
Both of these difficulties are resolved by the construction of an (uncondition-

al!) theory of HM/Z for Chow motives. This is done in §1, using de Jong’s results
on alterations [6].

I would like to thank to Christopher Deninger for inviting me to the University
of Münster in the autumn of 1996, when a large part of this paper was written,
and especially Andreas Langer. Without his insistence this work would still be
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mere armchair mathematics. I also would like to thank Rob de Jeu, Matthias
Flach and Dinakar Ramakrishnan for helpful discussions. A related problem to
this is the question of the integrality of the elements of K1 of Hilbert modular
surfaces considered by Ramakrishnan [10], and it is reasonable to hope that sim-
ilar methods may help. The main difficulty seems to be to show that the action
of Hecke algebra on the Chow motive of a Hilbert modular surface is semisimple.

1 Integral motivic cohomology

1.1 Statement of results

1.1.1. Throughout this section, o will denote a Dedekind domain, and k its field
of fractions. We have in mind the two cases:

(i) k a number field, o the ring of S-integers of k for a (possibly empty, possibly
infinite) set of primes S of k.

(ii) k a local field, o its ring of integers.

1.1.2. Let Vk be the category of smooth projective k-schemes (which we simply
call k-varieties), and Vo the category of all projective and flat o-schemes X which
are regular (which we shall call o-varieties). The morphisms of Vk, Vo are k- and
o-morphisms. We denote the basechange functor Vo→ Vk by the subscript /k.

1.1.3. Fix a field E of characteristic zero, and let Mk ⊗ E be the category of
Chow motives over k with coefficients in E. When there is no ambiguity we write
Mk forMk⊗E. We use the conventions and notations of [12] regarding motives.
In particular, if Xk, Yk belong to Vk then by definition we have

Corrr(Xk, Yk) = HomMk
(h(Xk), h(Yk)⊗ L−r)

= CHdimXk+r(Xk × Yk)⊗E

if Xk is equidimensional. An object of Mk is a triple (Xk, p,m) where p = p2 ∈
Corr0(Xk, Xk) and m ∈ Z; the category of graded correspondences CVgr

k is the
full subcategory of Mk whose objects are of the form (Xk, 1, m). The motive
L = (Spec k, 1,−1) is the Lefschetz motive. We recover Mk as the Karoubian
envelope of CVgr

k .

1.1.4. As well as the contravariant functor h : Vopp
k → Mk, we have by trans-

position of the graph the covariant functor h∨ : Vk → Mk. The composites of
these functors with the evident functor Vo→ Vk will be denoted hk, h

∨
k .
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1.1.5. We recall the definition of motivic cohomology with rational coefficients:
for any Xk in Vk and n, i ∈ Z,

H i
M(X,E(n)) = K

(n)
2n−iXk ⊗E ⊂ K2n−iXk ⊗ E

where as usual K
(n)
q denotes the weight n Adams eigenspace of Kq ⊗Q. Motivic

cohomology extends uniquely to an additive covariant functor onMk (we recall
the construction in 1.3 below). Since the coefficient field E will be fixed in what
follows we will generally write simply H i

M(X, n).
For varieties which admit regular models over o, Beilinson has defined “integ-

ral motivic cohomology”. We show that this has an (unconditional) extension to
arbitrary motives over k:

1.1.6. Theorem. There is a unique way to define subspaces

H i
M/o

(M,n) ⊂ H i
M(M,n)

for every Chow motive M over k, satisfying:

(i) If c : M → N is a morphism in Mk then c(H i
M/o

(M,n)) ⊂ H i
M/o

(, n).

(ii) M 7→ H i
M/o

(M,n) is additive in M .

(iii) If X ∈ ObVo then

H i
M/o

(hk(X), n) = Im(K
(n)
2n−iX → K

(n)
2n−iX/k)⊗ E.

1.1.7. Remark. In [1, 2.4.2.1], Beilinson conjectures that one could work with
proper and flat models over o instead of regular models, replacing K-theory by
K ′-theory. However, it is not in general true that for proper flat o-schemes X
with smooth generic fibre, the image of K ′

∗X → K∗X/k depends only on X/k

(even ignoring torsion). Rob de Jeu has observed that this fails even in the case
of elliptic curves; see his paper [5] in this volume.

1.2 Alterations and motives

1.2.1. We recall the following theorem of de Jong [6, Theorem 4.5 and 8.2].
By definition, an alteration is a proper surjective generically finite morphism of
integral noetherian schemes.

1.2.2. Theorem. Let X be a proper flat o-scheme which is integral. There exists
a finite extension k′/k, an integral scheme X ′, projective over o′, the integral
closure of o in k′, and an o-morphism f : X ′ → X such that:

(i) X ′ is regular, and is semistable over o′;

(ii) f is an alteration.
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1.2.3. Let V ′
o
be the full subcategory of Vo comprising all o-varieties X for which

the structural morphism admits a Stein factorisation

X
g−→ Spec o

′ −→ Spec o

where g is semistable and o′ is the integral closure of o in a finite extension of k.
We shall show that de Jong’s theorem implies that the category of motives over
k is generated by V ′

o
, in a very strong sense.

1.2.4. Definition. CVgr
o

is the category whose objects are pairs (X,m), where
X ∈ ObV ′

o
and m ∈ Z, and whose morphisms are

HomCVgr
o

((X,m), (Y, n)) = HomCVgr
k
((X/k, 1, m), (Y/k, 1, n))

= HomMk
(hk(X), hk(Y )⊗ Lm−n).

There is an obvious functor CVgr
o
→ CVgr

k given by (X,m) 7→ (X/k, 1, m) on
objects, and the identity on morphisms; it is fully faithful by definition.

1.2.5. Lemma. Every morphism c : (X,m) → (Y, n) in CVgr

o
is an E-linear

combination of correspondences of the form g/k∗f
∗
/k, where f : Z → X, g : Z → Y

are morphisms in V ′
o
.

Proof. We can assume that c = [Z ′
/k] for some integral closed subscheme Z ′

/k ⊂
X/k × Y/k. Let Z ′ be the closure of Z ′

/k in X ×o Y , and let Z
p−→ Z ′ be an

alteration, with Z ∈ V ′
o

(the existence of p follows from de Jong’s theorem). We
have a commutative diagram:

Z

p

��
f

��






























g

��
44

44
44

44
44

44
44

44
4

Z ′

_�

��

X X × Yoo // Y

and g/k∗f
∗
/k = [p/k∗Z/k] = deg(p)c in Corr∗(X/k, Y/k).

1.2.6. Lemma. Let A, A′ be additive categories and λ : A′ → A a fully faithful
additive functor. Suppose:

• for every object T of A, there exists an object T ′ of A′ and A-morphisms

T
a−→ λT ′ b−→ T with ba = idT .
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Let Ã′, Ã be the Karoubian envelopes of A′, A. Then the canonical functor
λ̃ : Ã′ → Ã is an equivalence.

Proof. λ̃ is also fully faithful, so it is enough to show that every object of A lies
in the essential image; but if T ∈ ObA then the objects (λT ′, ab) and (T, idT ) of

Ã are isomorphic, and (λT ′, ab) = λ̃(T ′, λ−1(ab)).

1.2.7. Corollary. The functor

CVgr

o
→ CVgr

k

(X,m) 7→ (X/k, 1, m)

induces an equivalence of categories between C̃Vgr

o
and Mk.

Proof. We just have to check the condition of the lemma. If Xk ∈ ObVk is

irreducible, let X ′
k

h−→ Xk be an alteration with X ′
k = X ′ ⊗o k for some integral

X ′ ∈ ObV ′
o
. Then (a, b) = (h∗, deg(h)−1h∗) satisfy the condition.

1.2.8. Corollary. Let C be an E-linear Karoubian category whose Hom-groups
are Z-graded. Suppose we have functors

H : V ′
o

opp → C
H ′ : V ′

o
→ C

satisfying:

(i) For every X ∈ ObV ′
o
, H(X) = H ′(X).

(ii) H and H ′ are additive for disjoint unions.

(iii) For f : X → Y , Hf is graded of degree 0; H ′f is graded of degree dimY −
dimX if X and Y are integral.

(iv) For any finite collection of diagrams X
fα←− Zα

gα−→ Y in V ′
o

and cα ∈ E,
the morphism

∑

α

cαH
′gα ◦Hfα : H(X)→ H(Y )

depends only on the class of
∑
cαgα/k∗f

∗
α/k in Corr∗(X/k, Y/k).

Then there is an additive functor H̄ :Mk → C such H̄ ◦hk = H and H̄ ◦h∨k = H ′.
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Proof. First define the restriction of H̄ to CVgr
o

. On objects, put H̄(X,m) =

H(X) with grading Gri H̄(X,m) = Gri+mH(X) . If X
f←− Z

g−→ Y is a
diagram in V ′

o
with dimY − dimZ = n−m, write

H(g/k∗f
∗
/k) = H ′g ◦Hf ∈ Homn−m

C (H(X), H(Y ))

= Hom0
C(H̄(X,m), H̄(Y, n)).

Extend this definition by E-linearity to the group of formal linear combinations

H̃om((X,m), (Y, n)) =

{
∑

α

cαgα/k∗f
∗
α/k

∣∣∣∣ X
fα←− Zα

gα−→ Y , cα ∈ E,
dim Y − dimZα = n−m

}

By the hypotheses and lemma 1.2.5, it factors through the quotient

H̃om((X,m), (Y, n)) //

H̄

**TTTTTTTTTTTTTTTTT
HomCVgr

o

((X,m)(Y, n))

H̄

��
�
�
�

HomC(H̄(X,m), H̄(Y, n))

and this gives a functor on CVgr
o

with the required properties. Since C̃Vgr
o

is
equivalent to Mk by Corollary 1.2.7 and C is Karoubian, H̄ factors through
Mk.

1.3 Motivic cohomology

1.3.1. We briefly recall how the pullback and pushforward maps in motivic
cohomology are defined; see [13] or [14] for details. If f : X → Y is a morphism
of schemes, the pullback f ∗ : K∗Y → K∗X is a λ-ring homomorphism, hence
induces a map on the Adams eigenspaces, which are motivic cohomology.

1.3.2. If X, Y are smooth over a field and equidimensional, and f is proper,
then we have a proper pushforward map in K-theory

f∗ : K∗X
∼← K ′

∗X → K ′
∗Y

∼→ K∗Y

by composing the pushforward map in K ′-theory with the Poincaré duality iso-
morphism K∗(−)

∼−→ K ′
∗(−) for regular schemes. This composite map respects

the γ-filtration up to a shift of dimY − dimX (by the Riemann-Roch theorem),
inducing a map

Grγ(f∗) : Gr•γ K∗X → Gr•−dimX+dim Y
γ K∗Y.

Composing this with the isomorphism K
(n)
∗ (−)

∼−→ Grn
γ K∗(−)⊗Q (given by the

formal Chern character) this defines the pushforward map for a proper morphism
of smooth varieties.
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1.3.3. Now fix q ∈ N, and define graded E-vector spaces H(X) = H ′(X) for X
in Vo by

H(X) = Gr∗γ Im(KqX → KqX/k)⊗ E
≃

⊕

n

Im(K(n)
q X → K(n)

q X/k)⊗E ⊂
⊕

n

H2n−q
M (X/k, n)

Let f : X → Y be any morphism in Vo. The pullback map

f ∗
/k :

⊕

n

H2n−q
M (Y/k, n)→

⊕

n

H2n−q
M (X/k, n)

maps H(Y ) into H(X) (since f is a morphism of the underlying o-schemes), and
we take this to be Hf . For H ′f , we consider the Cartesian diagram

X/k
� � jX //

f/k

��

X

f

��

Y/k
� � jY // Y

The projection formula gives

f/k∗j
∗
XKqX = j∗Y f∗KqX ⊂ j∗YKqY

hence f/k∗(H(X)) ⊂ H(Y ). So if we define Hf = f ∗
/k, H

′f = f/k∗, then all the

conditions of Corollary 1.2.8 are satisfied (taking C to be the category of graded
Q-vector spaces). This proves Theorem 1.1.6.

1.3.4. Corollary. Let E = Q. If X/k is smooth and proper over k and we are
given a diagram

X ′
/k

� � j
//

φ

��

X ′

X

where φ is an alteration and X ′ is proper and flat over o and regular, then

H i
M/o

(h(X/k), n)
∼−→
φ∗

Im
[
K

(n)
2n−i(X

′)
j∗−→ K

(n)
2n−i(X

′
/k)

]
∩ φ∗K

(n)
2n−iX.

Proof. This follows from Theorem 1.1.6 because on motivic cohomology, φ∗φ
∗ is

multiplication by the generic degree of φ.
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1.3.5. We shall write down explicitly the (rather simple) relation between the
local and global situations. Let k be a number field, v a finite place of k, and kv

the completion of k at v. There is a basechange functor Mk →Mkv , M 7→ Mv,
inducing natural maps

ρv : H i
M(M,n)→ H i

M(Mv, n)

and likewise in K-theory.

1.3.6. Proposition.

H i
M/o

(M,n) =
⋂

v/∈S

ρ−1
v H i

M/ov
(Mv, n) ⊂ H i

M(M,n).

Proof. It is enough to check this for M = hk(X). In this case it follows at once
from the diagram of localisation sequences:

KqX −−−→ KqX/k −−−→
⊕

v/∈S Kq−1X ⊗ k(v)y
y

y
∏

v/∈S KqX ⊗ ov −−−→
∏

v/∈S KqX ⊗ kv −−−→
∏

v/∈S Kq−1X ⊗ k(v)

in which the right hand vertical arrow is an injection.

2 K1 of products of modular curves

2.1 Notations and conventions

2.1.1. We recall some basic facts about modular curves (see [4] or [9]). For a
positive integer n, Mn denotes the modular curve over Q parameterising elliptic
curves with full level n structure. It is the complement in the proper curve Mn

of the cusps M∞
n (a finite union of copies of Spec Q(µn)).

2.1.2. If n is the product of two coprime integers each ≥ 3, then the curve Mn

has a standard regular modelMn/Z over Z which parameterises elliptic curves with
a Drinfeld level n structure, and which is the complement in a proper curve Mn/Z

of the cuspidal subscheme M∞
n/Z

, a union of copies of Spec Z[µn]. Apart from

the fact that Mn/Z is regular, we need to know that the structural morphism
Mn/Z → Spec Z factors through Spec Z[µn], and that Mn/Z → Spec Z[µn] is
smooth away from the supersingular points in characteristic p|n.

2.1.3. We need also to consider the modular curves at infinite level: M =
lim←−Mn, M = lim←−Mn. These are schemes over Q(µ∞) which are not of finite

type. M is regular, but M is not (the local rings at the cusps are non-discrete
valuation rings since the coverings Mn′ → Mn are ramified at the cusps).
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2.1.4. Let G be the algebraic group GL2, and write Gp = G(Qp), Gf = G(Af)
(finite adelic points). Then Gf acts on M and M , and this action extends to the
models over Z. (We assume that our level structures are defined so that this is a
right action). If

Kn = ker
(
G(Ẑ)→ G(Z/nZ)

)

is the standard level n open compact subgroup of Gf then Mn is the quotient
M/Kn and Mn = M/Kn. For any open compact subgroup K ⊂ Gf write
MK = M/K, MK = M/K.

2.1.5. We write Hf = H(Gf) for the Hecke algebra of locally constant Q-valued
functions of compact support on Gf . It is an algebra under convolution and has
the involution φ 7→ φt, where φt(x) = φ(x−1). Write Hn = H(Gf , Kn) for the
level n subalgebra of Hf (the subalgebra of Kn-biinvariant functions).

2.1.6. We can regard Hf as a module for the product Gf ×Gf by

((g1, g2)φ)(x) = φ(g−1
1 xg2) (2.1.6.1)

and in the usual way it then becomes an Hf ⊗Hf -module, given by

(ψ1 ⊗ ψ2)φ = ψ1 ∗ φ ∗ ψt
2

if ψi, φ ∈ Hf . We then have the following consequence of Frobenius reciprocity:

2.1.7. Lemma. Let σi (1 ≤ i ≤ 3) be smooth Q-representations of Gf , with σ2,
σ3 admissible. Then

HomGf×Gf
(σ1 ⊗Hf , σ2 ⊗ σ3) = HomGf

(σ1 ⊗ σ̃2 ⊗ σ̃3,Q).

Here Gf × Gf acts on σ2 ⊗ σ3 by the tensor product action, and on σ1 ⊗Hf

by (g1, g2)(v ⊗ φ) = g1v ⊗ (g1, g2)φ, cf. (2.1.6.1).

Proof. More generally, let H be a group of t-d type [2], and K ⊂ H a closed
subgroup. Let σ, τ be smooth representations of K and H respectively over a
field F of characteristic zero, and τ̃ the H-contragredient of τ . Then (cf. [2]
section 1)

HomH(c- IndH
K σ, τ̃ )

∼−→ HomK(σ ⊗ τ, F ).

Taking H = Gf × Gf , K to be the the diagonal, and τ = σ2 × σ3 gives the
lemma.

The obvious analogous statements hold for the local Hecke algebra Hp =
H(Gp).
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2.1.8. If H = lim←−Hi is any profinite set and S is a scheme, we can form the
product scheme H × S, which is the inverse limit of the finite disjoint unions
Hi × S. If H is locally profinite (for example, H = Gf ) we can similarly define
H×S by gluing. We will use constructions of this kind without further comment
and leave the (elementary) justifications to the reader.

2.2 Motivic decomposition

2.2.1. We now review the decomposition of the motive of a modular curve. We
will work in the category MQ ⊗ Q of Chow motives over Q with coefficients in
Q — an object of this category is a triple V = (X, p,m) where X is a smooth
projective Q-scheme, m ∈ Z and p = p2 ∈ Corr0(X,X)⊗ Q. (We use the letter
V to avoid confusion with modular curves.) If χ is a Dirichlet character, we write
V (χ) for the twist of V by the Artin motive attached to χ.

2.2.2. There is the usual Chow-Künneth decomposition

h(Mn) = h0(Mn)⊕ h1(Mn)⊕ h2(Mn)

which depends on the choice of a 0-cycle of nonzero degree on Mn. We take
the decomposition determined by a cusp (or any sum of cusps); since all cusps
are linearly equivalent modulo torsion by Manin-Drinfeld, this decomposition is
canonical, and is respected by the change of level maps h(Mn) → h(Mn′) for
n|n′. We have h0(Mn) = h(Spec Q(µn)) and h2(Mn) = L⊗ h(Mn).

2.2.3. The Hecke algebra Hn acts on the motive h(Mn) by correspondences.
Since Hecke operators take cusps to cusps, this action preserves the Chow-Künneth
decomposition. The action of Hn on h1(Mn) is semisimple, since the map

End h1(Mn)→ End Ω1(Mn/Q)⊗Q Q

is injective. Moreover, if p is prime and p ≡ 1 (mod n), the Hecke operator Tp

acts on h0(Mn) and h2(Mn) by multiplication by p+1. Since p+1 cannot be an
eigenvalue of Tp on Ω1(Mn/Q) (since p + 1 > 2

√
p), it follows that there exists

an element of Hn (even a polynomial in Tp) which is the identity on h1(Mn) and
annihilates h0 and h2.

2.2.4. According to the multiplicity one theorem, there is a decomposition

Ω1(Mn/Q)⊗Q Q =
⊕

π

[π]Kn

into pairwise non-isomorphicHn-modules. Each [π]Kn is the space ofKn-invariants
of Kn in an irreducible admissible representation π : Gf → GL([π]), and

Ω1(M/Q)⊗Q Q
def
= lim

→
Ω1(Mn/Q)⊗Q Q =

⊕

π

[π]
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We therefore get the decomposition of the motive:

h1(Mn) =
⊕

π

Vπ ⊗Q [π]Kn

where the sum is over those π occurring in Ω1(M)⊗Q such that [π]Kn 6= 0, and
where

Vπ = HomHn([π]Kn, h1(Mn)) ∈MQ ⊗Q

The motives Vπ are simple of rank 2, and Vπ, Vπ′ are isomorphic if and only if
π ≃ π′. We also know that

V ∨
π ≃ Vπ̃ ⊗ L⊗−1.

2.2.5. It is convenient to work in the Ind-category Ind-MQ ⊗Q, whose objects
are inductive systems of objects ofMQ⊗Q. In Ind-MQ⊗Q we can simply write

h1(M)
def
= lim

→
h1(Mn) =

⊕

π

Vπ ⊗ [π].

2.2.6. By the Künneth formula h(M 2
n) = h(Mn) ⊗ h(Mn) we can decompose

the motive of M2
n in the limit as

h(M 2) =
⊕

0≤i,j≤2

hi(M)⊗ hj(M)

in which the most interesting part is

h1,1(M 2) = h1(M)⊗2 =
⊕

π,π′

Vπ×π′ ⊗ [π × π′]..

Here for each pair (π, π′) of irreducible admissible representations of Gf occurring
in Ω1(M)⊗Q, we have written

Vπ×π′ = Vπ ⊗ Vπ′

and [π × π′] is the space of the exterior tensor product of π and π′. We get a
corresponding decomposition of the motivic cohomology:

H3
M(M 2, 2) =

⊕

i,j

H3
M(hi,j(M 2

n), 2)

⊃ H3
M(h1,1(M 2), 2) =

⊕

π,π′

H3
M(Vπ×π′, 2)⊗ [π × π′]. (2.2.6.1)
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2.2.7. We need to recall what are the rank one submotives of Vπ×π′. These exist
if and only if there is a Dirichlet character χ such that

π′ ≃ π̃ ⊗ χ ◦ det . (2.2.7.1)

To each such character corresponds a unique submotive of Vπ⊗π′ isomorphic to
L(χ), and we write

Vπ×π′ = V trans
π×π′ ⊕ V alg

π×π′ (2.2.7.2)

where V alg
π×π′ is the sum of the rank one submotives associated to that characters

satisfying (2.2.7.1). If no such χ exists then of course V trans
π×π′ = Vπ×π′.

Suppose then that there is a χ satisfying (2.2.7.1). Assume first that π does
not have complex multiplication. Then χ is unique, and V trans

π×π′ is a simple motive
of rank 3; in fact

V trans
π×π′ = Ad2 Vπ ⊗ L(χ)

where if V is any motive, Ad2 V is its adjoint square, which is the kernel of the
projector V ⊗ V ∨ → 1→ V ⊗ V ∨.

If π has complex multiplication, and ǫ is the quadratic character attached to
the CM field, then if (2.2.7.1) holds we also will have

π′ ≃ π̃ ⊗ ǫχ ◦ det .

In this case Vπ×π′ = L(χ)⊕ L(ǫχ), and V trans
π×π′ is a simple rank 2 motive.

2.2.8. Returning to finite level, consider now the motivic cohomology of M 2
n \

M∞
n

2. We have a diagram

0 // H3
M(M 2

n, 2) // H3
M(M 2

n \M∞
n

2, 2) // Q[M∞
n

2]

H3
M(h1,1(M2

n), 2)

?�

OO

where the vertical arrow has a unique Hn⊗Hn-equivariant splitting, given by the
Chow-Künneth decomposition. Moreover, Hn⊗Hn acts on H3

M(h1,1(M 2
n), 2) via

the tensor product of representations of the form [π]Kn, whereas on Q[M∞
n

2] it
acts via representations occurring in Eisenstein series. So by the Manin-Drinfeld
theorem, there is a uniqueHn⊗Hn-equivariant splitting of the composite inclusion

H3
M(h1,1(M 2

n), 2) →֒ H3
M(M2

n \M∞
n

2, 2)

and it is induced by an element of Hn ⊗Hn. Passing to infinite level, we obtain
a unique Gf ×Gf -equivariant splitting of the inclusion

H3
M(h1,1(M 2), 2) →֒ H3

M(M 2 \M∞2, 2). (2.2.8.1)
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2.3 Beilinson’s elements

2.3.1. Unless otherwise noted, the reader should interpret all products of schemes
as absolute products (over Spec Z). Consider the map

M ×Gf →M2 = M ×M
(m, g) 7→ (m,mg)

which is Gf ×Gf -equivariant with respect to the action

(m, g)(g1, g2) = (mg1, g
−1
1 gg2)

of Gf × Gf on M × Gf . If K ⊂ K ′ ⊂ Gf are open compact subgroups, then we
get the diagram below in which the composite horizontal maps iK , iK ′ are proper:

iK : M ×Gf/K ×K //

��

M2
K

� � // M 2
K \M∞

K
2

β

��

iK ′ : M ×Gf/K
′ ×K ′ // M2

K ′
� � // M 2

K ′ \M∞
K ′

2

(2.3.1.1)

2.3.2. The quotient M×Gf/K×K can be written as a disjoint union of modular
curves of finite level

∐

KgK∈K\Gf/K

MK∩gKg−1

from which it is easy to check that the two squares in (2.3.1.1) are Cartesian. We
have inK-theory iK∗α

∗ = β∗iK ′∗. Therefore the proper pushforward iK∗ : O∗(M×
Gf/K ×K)→ H3

M(M2
K \M∞

K
2, 2) defines in the limit a map

lim
→
O∗(M ×Gf/K ×K) lim

→
H3

M(M 2
K \M∞

K
2, 2)

‖ ‖
O∗(M ×Gf)

i∗−−−→ H3
M(M 2 \M∞2, 2)

We have O∗(M ×Gf)⊗Z Q = O∗(M)⊗ZHf , and the induced action of Gf ×Gf

is via the first factor on O∗(M) and by the action (2.1.6.1) on Hf .

2.3.3. Now we compose with the Manin-Drinfeld splitting of (2.2.8.1) and use
the motivic decomposition (2.2.6.1) to get a Gf ×Gf -equivariant homomorphism

O∗(M)⊗Z Hf → H3
M(Vπ ⊗ Vπ′, 2)⊗ [π × π′].

Applying Frobenius reciprocity 2.1.7, we finally get the Beilinson homomorphism

B(π × π′) :
(
O∗(M)⊗Z π̃ ⊗Q π̃

′
)

Gf
→ H3

M(Vπ×π′, 2)
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whose source is the maximal quotient of O∗(M) ⊗Z π̃ ⊗Q π̃
′ on which Gf acts

trivially. We can then state the main result of this paper, which completes [1,
Theorem 6.1.1]:

2.3.4. Theorem. Suppose π is not isomorphic to any twist of π′. Then the
image of B(π × π′) is contained in H3

M/Z
(Vπ×π′, 2).

2.3.5. Remark. Beilinson’s conjectures predict that the space H3
M/Z

(Vπ×π′ , 2)

is 1-dimensional. Beilinson’s computations [1] of the composition of B(π × π′)
and the regulator show that the dimension is at least one. In the other direction,
in [8] M. Harris and the author prove that the source (O∗(M) ⊗Z π̃ ⊗Q π̃

′)Gf
of

the map B(π× π′) is exactly 1-dimensional if (and only if) π′ is not a twist of π.
In other words, the image of B(π × π′) has dimension one.

2.3.6. We now consider the case where π, π′ are twists of one another, so that
Vπ×π′ has the decomposition (2.2.7.2). The composite of the Beilinson homo-
morphism with the projection onto the algebraic component:

B(π × π′) :
(
O∗(M)⊗Z π̃ ⊗Q π̃

′
)

Gf
→ H3

M(Vπ×π′, 2)

→ H3
M(V alg

π×π′, 2) =

{
H1

M(1(χ), 1) (no CM)

H1
M(1(χ) + 1(ǫχ), 1) (CM)

is not particularly interesting; it can be described explicitly, using Lemma 2.5.2
below. (The motivic cohomology H1

M(1(χ), 1) is simply the χ-isotypical compon-
ent of Q(µ∞)∗ ⊗Z Q.) The transcendental component is more interesting.

2.3.7. Theorem. Assume that π′ is isomorphic to a twist of π.
(i) If π′ 6≃ π̃, the image of B(π × π′) lies in H3

M/Z
(V trans

π×π′ , 2).

(ii) (Flach [7]) If π′ ≃ π̃, then the image of B(π×π′) in H3
M/H3

M/Z(V trans
π×π′ , 2)

is infinite-dimensional.

2.3.8. Remark. Beilinson’s conjectures imply that H3
M/Z

(V trans
π×π′ , 2) = 0 (as the

associated Deligne cohomology group is zero). So in case (i) the Beilinson ele-
ments should be trivial.

2.3.9. Remark. In the case when π′ ≃ π̃ does not have complex multiplication,
Flach’s argument shows that for every prime p at which π is unramified, the
image of B(π × π̃) does not lie in H3

M/Z(p)
(V trans

π×π̃ , 2). His proof (which we do not

reproduce here) can be summarised as follows: for each such p the motive Vπ

can be reduced mod p to obtain a motive V
(p)
π over Fp, and the obstruction to

the integrality of an element of H3
M(Vπ×π̃, 2) can be computed from the exact

localisation sequence

H3
M/Z(p)

(Vπ×π̃, 2)→ H3
M(Vπ×π̃, 2)

∂p−→ Pic(V
(p)
π×π̃).



16 Integral elements in K-theory and products of modular curves

Now Pic(V
(p)
π×π̃) = EndV

(p)
π , and the subspace

Pic(V
alg(p)
π×π̃ ) ⊂ Pic(V

(p)
π×π̃) (2.3.9.1)

simply corresponds to those endomorphisms of V
(p)
π which lift to characteristic

zero; in other words, the one-dimension subspace generated by the identity en-
domorphism. Then Flach uses an explicit modular unit supported on the Hecke
correspondence Tp to construct an element of H3

M(Vπ×π̃, 2) whose image under ∂p

is the graph of Frobenius; hence its transcendental component is not integral.
The same argument works in the case of complex multiplication: in this case

the subspace (2.3.9.1) consists of all endomorphisms which lift to characteristic
zero over the CM field. For a good prime p which is inert in the CM field, the
Frobenius endomorphism of V

(p)
π does not lift, so for all such primes the Flach

element gives an element of H3
M(V trans

π×π̃ , 2) which is non-integral at p.

2.3.10. Because we are working with a product of curves, it is possible to prove
that integral motivic cohomology is the same as the Bloch-Kato f -subspace.
We only make this statement precise in the case of ℓ-adic cohomology over Qp,
with p 6= ℓ; if U is any continuous finite-dimensional ℓ-adic representation of
Gal(Qp/Qp), then H1

f (Qp, U) = H1
nr(Qp, U) is the unramified Galois cohomology,

which fits into the exact sequence

0 // H1(Qnr
p /Qp, U)Ip // H1(Qp, U) // H1(Qnr

p , U)Frobp=1 // 0

H1
nr(Qp, U)
· ·

H1/H1
nr(Qp, U)
· ·

For a smooth and proper variety X over Q, one has an ℓ-adic Abel-Jacobi homo-
morphism

AJ(X, j) : H2j−1
M (X, j) −→ H1(Q, H2j−2(X,Qℓ)(j))

and localising at p one can show that for j = 2 and X a product of two curves,
the sequence

0 −→ H3
M/Z(p)

(X, 2) −→ H3
M(X, 2)

AJ(X,2)−−−−→ H1/H1
nr(Qp, H

2(X,Qℓ)(2))

is exact.

2.3.11. We can now consider in greater detail the case π′ ≃ π̃. Assume that π
has no complex multiplication. For a motive V , let Vℓ denote its ℓ-adic realisation.
We then get for every p and every ℓ 6= p an exact sequence:

0→ H3
M/Z(p)

(V trans
π×π̃ , 2)⊗Qℓ → H3

M(V trans
π×π̃ , 2)⊗Qℓ → H1/H1

nr(Qp, V
trans
π×π̃,ℓ(2)).
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We can ask when the last group

H1/H1
nr(Qp, V

trans
π×π̃,ℓ(2)) =

(
Ad2 Vπ,ℓ

)Frobp=1

Ip

is nonzero. We know that Frobenius acts semisimply on Vπ,ℓ (since it is part of
the H1 of a curve), so

dim
(
Ad2 Vπ,ℓ

)Frobp=1

Ip
= dim EndGal(Qp/Qp)(Vπ,ℓ)− 1.

To proceed further, it is most natural to consider the possible types of the local
factor πp of π, in the rough classification of irreducible admissible representations
of GL2(Qp):

2.3.12. If πp is principal series, then there are quasi-characters µ1, µ2 : Q∗
p → Q

∗

with |µi(p)| =
√
p, such that Vπ,ℓ = [µ1]⊕ [µ2]. Moreover, it is known [3] that one

cannot have µ1 = µ2, so in this case H1/H1
nr has dimension 1.

• If πp is unramified, then Flach’s construction 2.3.7(ii) shows that the image
of B(π × π′) maps onto H1/H1

nr. More generally, if πp is a twist of an
unramified representation (i.e. if µ1/µ2 is unramified) then it is not hard
to show (although we do not give the details) that after twisting, the Flach
elements map onto H1/H1

nr.

• If µ1/µ2 is ramified, it is not clear whether there are global elements of
motivic cohomology whose images generate H1/H1

nr.

2.3.13. If πp is special or supercuspidal then Vπ,ℓ is indecomposable as a repres-
entation of Gal(Qp/Qp) over Qℓ. Hence in this case H1/H1

nr = 0, and so every
class is automatically integral at p.

2.3.14. The case of complex multiplication can be treated in the same way. Let
F be the (imaginary quadratic) field of complex multiplication; then there is a
Hecke character φ : Gal(Q/F )→ Q

∗

ℓ such that Vπ,ℓ is the representation obtained
from φ by induction. Then

EndQℓ
Vπ,ℓ = Vπ×π̃,ℓ(1) = V trans

π×π̃,ℓ(1)⊕Qℓ ⊕Qℓ(ǫ).

The restriction of Vπ,ℓ to Gal(Qp/Qp) is irreducible if p is ramified in F , and is
the sum of two non-isomorphic characters otherwise. We therefore obtain

dimH1/H1
nr(Qp, V

trans
π×π̃,ℓ(1)) =

{
1 if p is inert in F

0 otherwise.

So if p is split or ramified, there is no obstruction to integrality. If p is an inert
prime of good reduction, the Flach element maps to a generator H1/H1

nr, by the
discussion in Remark 2.3.9. Therefore the only ambiguity remaining is when p is
an inert prime for which φp is ramified.
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2.4 Modular units

2.4.1. We recall without proof the results of [11] about the representation theory
of modular units. For a continuous character χ : A∗

f → Q
∗

(resp. χ : Q∗
p → Q

∗
),

define S(χ) (resp. Sp(χ)) to be the space of locally constant Q-valued functions
φ on Gf resp. Gp such that

φ

((
a b
0 d

)
g

)
= χ(d)

∥∥∥a
d

∥∥∥φ(g) for all

(
a b
0 d

)
, g ∈ Gf resp. Gp.

Here ‖−‖ denotes finite idelic (resp. p-adic) modulus. Right translation make
S(χ), Sp(χ) admissible representations of Gf and Gp and if χ = ⊗pχp for charac-

ters χp : Q∗
p → Q

∗
, almost all unramified, then S(χ) is a restricted tensor product

S(χ) =
⊗′

p

Sp(χp)

with respect to the spherical vectors φo
p ∈ Sp(χp) for χp unramified, uniquely

determined by the condition φo
p|G(Zp) = 1.

2.4.2. Define subspaces for χ = 1:

S(1)0 = ker

(∫

G(Ẑ)

: S(1)→ Q

)

Sp(1)0 = ker

(∫

G(Zp)

: Sp(1)→ Q

)

Then Sp(1)0 is an irreducible Gp-module (the Steinberg representation of Gp),
and there is a short exact nonsplit sequence

0 // Sp(1)0 // Sp(1)
λp

// Q // 0

∪| ∪|

φo
p

� // 1.

Moreover S(1)0 is the space spanned by all ⊗′φp ∈ S(1) such that for at least one
p, λp(φp) = 0.

2.4.3. Write S(1)00 for the space spanned by all ⊗′φp ∈ S(1) such that for at
least two distinct p, λp(φp) = 0. It fits into an exact sequence:

0 −−−→ S(1)00 −−−→ S(1)0 (Φp)p−−−→
⊕
p

Sp(1)0 −−−→ 0

∪| ∪|

⊗′φq 7→
(∏

q 6=p

λq(φq)φp

)
p

(note that Φp is well-defined!)
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2.4.4. Recall from [11] the representation-theoretic description of the space of
modular units and its integral subspace. The divisor map gives an exact sequence

0 −→ Q(µ∞)∗ −→ O∗(M)
div−→ S(1)0 ⊕

⊕

χ 6=1

S(χ) (2.4.4.1)

which becomes exact on the right when the first 2 groups are tensored with Q
(Manin-Drinfeld theorem). The integral units O∗(M/Z) fit into an exact sequence

0 −→ Z[µ∞]∗ −→ O∗(M/Z)
div−→ S(1)00 ⊕

⊕

χ 6=1

S(χ) (2.4.4.2)

which maps to (2.4.4.1) by the obvious maps in the three terms. More precisely,
for any p the sequence

0 −→ Q(µ∞)∗O∗(M/Z(p)
)⊗Z Q −→ O∗(M)⊗Z Q

Φp◦div−→ Sp(1)0 −→ 0

is exact.

2.5 Proofs

2.5.1. Lemma. For every (π, π′) the image under the Beilinson homomorphism
B(π, π′) of O∗(M/Z)⊗ π̃ ⊗ π̃′ lies in H3

M/Z(Vπ×π′, 2).

Proof. Recall that the Beilinson homomorphism is obtained from the pushforward
map O∗(M) ⊗Z Hf → H3

M(M2 \ M∞2, 2) by composing with the projection
(2.2.8.1), which at any finite level is given by an element of the Hecke algebra.
Therefore it is enough to show that

Im
[
O∗(M/Z)⊗Z Hf → H3

M(M 2 \M∞2, 2)
]
∩H3

M(M2, 2) ⊂ H3
M/Z(M2, 2).

We shall work at some finite level n. Choose a finite extension F/Q(µn), Galois
over Q, over which Mn acquires semistable reduction; let M ′

n/Z be the semistable

model thus obtained. Since Mn/Z is smooth over Z[µn] away from supersingular
points, we can assume that there is a birational morphism M ′

n/Z →Mn/Z⊗Z[µn]oF

which is an isomorphism away from the supersingular points in characteristic p|n.
To obtain a regular alteration ofM2

n/Z
it then suffices to take the normalisation

ofM ′
n/Z×ZM

′
n/Z, which has only ordinary double points as singularities, and blow

them up once. We write M ′
n/Z

∧×M ′
n/Z

for the result.

Let τα : Ȳα → Mn ×Mn be Hecke correspondences, and Yα ⊂ Ȳα the com-
plements of all cusps. We can assume that Yα = Mm for some large m (the
same for each α). Suppose that uα ∈ O∗(Mm/Z) are modular units, such that∑
τα∗(uα) ∈ H3

M(M2
n, 2). We are going to show that the pullback of

∑
τα∗(uα)
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to (Mn ⊗ F )2 extends to an element of K1(M
′
n/Z

∧×Mn/Z) ⊗ Q — by Corollary
1.3.4 this will prove the lemma.

Because it is a Hecke correspondence, the morphism

τα : Mm →Mn ×Mn

extends to a correspondence Mm/Z →Mn/Z×Mn/Z. By resolution of singularities
for arithmetic surfaces, we can find some regular model M ′

m/Z for Mm/F :=

Mm ⊗Q(µn) F over oF such that each τα extends to a correspondence

τ ′α : M ′
m/Z →M ′

n/Z

∧×M ′
n/Z

and such that M ′
m/Z
→ Mm/Z is finite away from supersingular points.

The divisor of cusps M∞
n/Z
⊂ Mn/Z pulls back to a divisor M∞′

n/Z
⊂ M ′

n/Z
,

which is a disjoint union of copies of Spec oF . Write M ′
n/Z

= M ′
n/Z
\M∞

n/Z
′ for

its complement. Define similarly M∞′
m/Z

, M ′
m/Z

. The inverse image of M∞
n/Z

2 in

M ′
n/Z

∧×M ′
n/Z is a finite union of copies of Spec oF , which we will simply denote

M∞′
n/Z

∧×M∞′
n/Z

. The restriction

τ ′α : M ′
m/Z →M ′

n/Z

∧×M ′
n/Z \M∞′

n/Z

∧×M∞′
n/Z

is then proper.
The units uα extend to units u′α on M ′

m/Z and so

τ ′α∗(u
′
α) ∈ K1(M

′
n/Z

∧×M ′
n/Z \M∞′

n/Z

∧×M∞′
n/Z)

We now have a commutative diagram of localisation sequences:

K1(M
′
n/Z

∧×M ′
n/Z

)
θ→K1(M

′
n/Z

∧×M ′
n/Z
\M∞′

n/Z

∧×M∞′
n/Z

)→K0(M
∞′
n/Z

∧×M∞′
n/Z

)

↓ ↓ ↓
K1((Mn/F )2) → K1((Mn/F )2 \ (M∞

n/F )2) → K0((M
∞
n/F )2)

and when tensored with Q the right-hand vertical arrow is an isomorphism. The
middle vertical arrow maps τ ′α∗(u

′
α) to τα∗(uα). Since

∑
τα∗(uα) ∈ H3

M(M 2
n, 2), it

follows from this diagram that

∑
τ ′α∗(u

′
α) ∈ Im(θ)

as required.
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2.5.2. Lemma. (i) If π′ is not a twist of π, B(π, π′) vanishes on Q(µ∞)∗⊗π̃⊗π̃′.
(ii) If π′ is a twist of π, then

B(π, π′)(Q(µ∞)∗ ⊗ π̃ ⊗ π̃′) ⊂ H3
M(V alg

π×π′, 2) ⊂ H3
M(Vπ×π′, 2).

Proof. (i) The action of Gf on Q(µ∞)∗ factors through the determinant. If π and
π′ are not twists of one another, this implies that

(Q(µ∞)∗ ⊗ π̃ ⊗ π̃′)Gf
= 0.

(Alternatively one can use the argument in (ii) following.)
(ii) The homomorphism

Q(µ∞)∗ ⊗Hf → H3
M(M2, 2)

can be described as follows: work at some finite level n, and let a ∈ Q(µn)∗.
For any Hecke correspondence τ : Mm → M2

n, let c1(τ) be the class of the cycle
τ∗(Mm) in Pic(M 2

n)⊗Q = H2
M(M 2

n, 1). Then the homomorphism is given by

a⊗ τ 7−→ pr∗1(a) ∪ c1(τ). (2.5.2.1)

In particular, it factors through Q(µ∞) ∗⊗Pic(M 2)⊗Q, so that its image under
the motivic decomposition lies in the algebraic part.

2.5.3. Corollary. The composite of the Beilinson homomorphism for V trans
π×π′ and

the quotient map HM → HM/HM/Z factors as

(
O∗(M)⊗Z π̃ ⊗Q π̃

′
)

Gf

B(π×π′)−−−−→ H3
M(V trans

π×π′ , 2)

(Φp◦div)p

y
y

⊕
p

(
Sp(1)0 ⊗Q π̃ ⊗Q π̃

′
)

Gf
−−−→ H3

M/H3
M/Z(V trans

π×π′ , 2)

Proof. This follows from 2.5.1, 2.5.2 and the description of the modular units in
§2.4.

Proof of theorems 2.3.4 and 2.3.7(i). Both results follow as soon as we show that,
if π′ 6≃ π̃, the bottom horizontal arrow in the above diagram is zero. For this, it
is enough to show that for each p,

(
Sp(1)0 ⊗Q π̃ ⊗Q π̃

′
)

Gf
= 0. (∗)

Fix a prime p. For every q 6= p, the subgroup Gq ⊂ Gf acts trivially on Sp(1)0, and
by strong multiplicity one, there exist infinitely many q such that π′

q and πq are
not contragredient to one another. Choose one such q 6= p. Then (π̃q⊗ π̃′

q)Gq = 0,
hence (∗) holds.
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