
INTRODUCTION TO PLECTIC COHOMOLOGY

J. NEKOVÁŘ AND A. J. SCHOLL

Abstract. We formulate conjectures on the existence of extra symmetries of
the cohomology of Shimura varieties whose defining group is a restriction of

scalars from a totally real field. We discuss evidence in its favour and potential
arithmetic applications.

1. Introduction

This article1 is the first of a series of papers, in which we will examine the following
phenomenon:

In the presence of real multiplication (by a totally real
number field F of degree r), motives have a canonical and
functorial additional structure (F -plectic structure).

This statement is still largely conjectural – we call it the Plectic Conjecture2.
More precise, but less general versions of this conjecture will be presented in Sec-
tions 6–7 below. In this paper we wish to give a survey of what the conjectures are,
and what kind of consequences they have. In subsequent papers we will give more
precise and general formulations of the conjectures, and details of the constructions
and explicit computations outlined in the later part of this paper.

The geometric objects of interest are Shimura varieties and stacks (both pure
and mixed) attached to Shimura data of the form (G,X ), where G = RF/Q(H) is
obtained by restriction of scalars from an algebraic group H defined over F , and
diagrams consisting of such Shimura stacks and morphisms between them given in
group-theoretical terms.

For example, the groups H appearing in the following diagram

(1.1) GL(2)F nG2
a,F

��

RL/F (GL(1)L) nG2
a,F

oo

��
GL(2)F RL/F (GL(1)L)oo
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1The text that follows is an expanded version of the talk given by the second author at the

conference.
2The terminology comes from the Greek πλεκτ óς, meaning “twisted, wreathed” [12], and is

intended to reflect the wreath product structure of the plectic Galois group.
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(where L is a totally imaginary quadratic extension of F ) give rise to Shimura
stacks

A

��

Aτ
oo

��
Y {τ},oo

where Y is an open Hilbert modular variety attached to GL(2)F (and a fixed level
structure), τ ∈ Y is a CM point in Y and A is the universal object over Y . Morally,
A is the quotient [∆\A], where A is the non-existent universal Hilbert-Blumenthal
abelian scheme over Y , and ∆ ⊂ O×F,+ is a subgroup (depending on the level

structure) of finite index in the group of totally positive units of F . As we shall see
in Section 12 below, it will be useful to consider also the stack Y = [∆\Y ], with ∆
acting trivially on Y , which fits into the larger diagram

(1.2) A

��

Aτ
oo

��
Y

��

[∆\{τ}]oo

��
Y {τ},oo

The Plectic Conjecture makes sense not only on the level of motives, but also for
various realisations. If we consider, for example, `-adic étale realisations, then the
notion of a plectic structure (for fixed F , which will be dropped from the notation)
is straightforward. If M is a mixed motive (in the old-fashioned sense) over a field
k, then its `-adic realisation M` is a representation of the absolute Galois group
Γk = Gal(ksep/k) of k. This Galois group is contained in a larger plectic Galois

group Γpleck ⊃ Γk and a plectic structure on M` will be an action of Γpleck extending
the Galois action of Γk.

The fundamental example is that of

ΓQ = Aut(Q/Q) ⊂ Aut(F ⊗Q/F ) =: ΓplecQ ' Sr n ΓrF

(the latter isomorphism is non-canonical; it depends on the choice of r elements of
ΓQ extending the r embeddings of F to Q).

In the best of all possible worlds one would expect the following picture. If X
is a diagram of Shimura stacks for groups of the form Gi = RF/Q(Hi) which is
defined over a field k, then the structure map X → Spec(k) can be “plectified” to
a cartesian diagram

(1.3) X

π

��

// Xplec

πplec

��
Spec(k)

ι // Spec(k)plec,

in which the exotic “plectic” objects in the right column have the following prop-
erty: if we put everywhere (pro-)étale topology, then sheaves on Spec(k) (resp.

on Spec(k)plec) will be Γk-modules (resp. Γpleck -modules). Furthermore, the base
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change morphism
ι∗Rπplec,∗Q` −→ Rπ∗Q`

will be an isomorphism, which means that Rπplec,∗Q` will be a canonical object of

the derived category of Γpleck -modules with cohomology groups canonically isomor-
phic to the Γk-modules

Hi(Rπ∗Q`) = Hi
et(X ⊗k ksep,Q`) = hi(X)`,

namely, to the `-adic realisations of the cohomology motives hi(X). In other words,
Hi(Rπplec,∗Q`) will define a canonical plectic structure on hi(X)`.

Acknowledgements. The second author would like to express his thanks to the
Erwin Schrödinger Institute for their generous hospitality, when some of the work
for this article was done. Both authors were guests of the Fields Institute in the early
stages of this project, and the present paper was completed during an extended stay
at MSRI, supported by the National Science Foundation under grant no. 0932078
000.

2. Analytic cohomology of compact pure Shimura varieties

Let (G,X ) be an arbitrary pure Shimura datum (with the minimal set of axioms
[5, (2.1.1.1-3)]). Fix a point h ∈X and write X = G(R)/K∞, whereK∞ = G(R)h.

Consider Y = ShK(G,X ), for a fixed level structure3 K ⊂ G(Q̂). If the analytic

space Y an =
∐k
i Γi\X is compact, then its cohomology can be written in terms of

the Hilbert space decomposition⊕
i

L2(Γi\G(R)/Z(R)) =
⊕̂

π∈Irr(G(R))

π⊕m(π)

using relative Lie cohomology of g = Lie(G(R))C:

H∗(Y an,C) =
⊕
π

H∗(g,K∞;π)⊕m(π),

with only finitely many π contributing.
In the plectic case G = RF/Q(H) there are real algebraic groups Hv = H ⊗F,v R

for all infinite primes v of F and product decompositions

G(R) =
∏
v|∞

Hv(R), K∞ =
∏
v|∞

K∞,v, X =
∏
v|∞

Xv.

Moreover, π =
⊗

v|∞ πv with πv ∈ Irr(Hv(R)). The Künneth formula for relative

Lie algebra cohomology (with hv = Lie(Hv(R))C)

H∗(g,K∞;π) =
⊗
v|∞

H∗(hv,K∞,v;πv)

then yields a “weak Künneth decomposition” (with finitely many terms)

(2.1) H∗(Y an,C) =
⊕
π

(⊗
v|∞

H∗(hv,K∞,v;πv)

)⊕m(π)

The plectic conjecture in this particular case asserts that the appearance of
⊗

v|∞
in (2.1) should be of a motivic origin. In particular, it should manifest itself in

3Here and elsewhere, L̂ = L⊗ Ẑ denotes the ring of finite adeles of a number field L.
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every cohomological realisation. In the Hodge-de Rham realisation this amounts to
suitable period relations (such as those conjectured by Oda [17] and Yoshida [25]).
In the real Hodge realisation, since each of the individual factors H∗(hv,K∞,v;πv)
has a natural Hodge decomposition induced by the Hodge torus C∗ → Hv(R), the
total cohomology of Y has a “plectic Hodge structure”: it has a canonical Zr ×Zr-
grading

H∗C =
⊕

p,q∈Zr
Hpq

with Hpq = Hqp (see in Section 16 below).

3. Interlude: induction and tensor induction

For any ΓF -module N , the wreath product Sr nΓrF naturally acts on both N⊕r

and N⊗r; the restrictions of these module structures to ΓQ yield, respectively, the
induced module and the tensor induction of N :

Ind
ΓQ
ΓF

(N) ' N⊕r
∣∣
ΓQ
, ⊗ - Ind

ΓQ
ΓF

(N) ' N⊗r
∣∣
ΓQ
.

A more canonical version of this wreath product is the plectic group

ΓQ#ΓF = Aut(Sets)-ΓF (ΓQ),

which is canonically isomorphic to Aut(F ⊗ Q/F ) and which acts canonically on

the intrinsically defined Ind
ΓQ
ΓF

(N) and ⊗ - Ind
ΓQ
ΓF

(N). The inclusion ΓQ ⊂ ΓQ#ΓF
is given by the action of ΓQ on itself by left translations.

4. Etale cohomology of quaternionic Shimura varieties

A Shimura variety Y = ShK(G,X ) (pure or mixed) is defined over its reflex field
E ⊂ Q ⊂ C, which does not change if we replace (G,X ) by the corresponding pure
Shimura datum (Gred,Xred). The étale cohomology groups H∗ = H∗et(Y ⊗EQ,Q`)
are then `-adic representations of ΓE .

Consider pure quaternionic Shimura varieties: for these G = RF/Q(H), where

H = B× is the multiplicative group of a quaternion division algebra B over F (so
that Y is compact).

In the totally indefinite case B⊗R 'M2(R)r we have X ' (C−R)r, dim(Y ) = r
and E = Q. The cohomology then decomposes as

H∗ = H∗int ⊕H∗rest,

with the interesting part H∗int = Hr
int coming from cuspidal Hilbert modular eigen-

forms f (of parallel weight 2) occurring only in degree r. The semi-simplification
of the Q`[ΓQ]-module Hr

int was determined in [9, 20] (see also [13, 14]). Together
with the recent proof of semi-simplicity of Hr

int [16, Thm. 5.20(3)] this yields

H∗int '
⊕
f

V ⊗rf

∣∣⊕m(f)

ΓQ
,

where Vf is the two-dimensional `-adic representation of ΓF attached [18, 24, 22]
to f . The remaining part of H∗ is isomorphic to

H∗rest '
⊕
χ

(χ⊕ χ(−1))⊗r
∣∣⊕m(χ)

ΓQ
,
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where χ : ΓF → Q×` runs through characters of finite order, and χ (resp. χ(−1) :=
χ⊗Q`(−1)) occurs in H0 (resp. in H2).

In particular, H∗ is a direct sum of tensor inductions of certain two-dimensional
representations of ΓF , and therefore has an (in general noncanonical) action of the
plectic group ΓQ#ΓF . The Plectic Conjecture described in the following sections
both refines and generalises this action.

In the general case we have B ⊗R 'M2(R)t ×Hr−t with t ≥ 1, X ' (C−R)t,
dim(Y ) = t and the reflex field E is determined by

ΓE = ΓQ ∩ ((St n ΓtF )× (Sr−t n Γr−tF )) ⊂ Sr n ΓrF .

Thanks to [9, 20, 16], the étale cohomology of Y again decomposes as H∗ = H∗int⊕
H∗rest, where

H∗int = Ht
int '

⊕
f

V ⊗tf

∣∣⊕m(f)

ΓE
, H∗rest '

⊕
χ

(χ⊕ χ(−1))⊗t
∣∣⊕m(χ)

ΓE
,

hence is a direct sum of “partial” tensor inductions.

5. Plectic reflex Galois group

Let (G,X ) be an arbitrary pure Shimura datum. Recall that, if

µ = µh : Gm,C −→ GC

is the cocharacter attached to a point h : S −→ GR of X , then its conjugacy class

[µ] ∈ Hom(Gm,C, GC)/int(G(C)) = Hom(Gm,Q, GQ)/int(G(Q))

depends only on (G,X ). The set of conjugacy classes of cocharacters has a natural
action of ΓQ, and the stabiliser of [µ] is the absolute Galois group of the reflex field:
ΓE = (ΓQ)[µ].

In the plectic case G = RF/Q(H), since GQ = H⊗F (F ⊗Q), the set of conjugacy

classes of cocharacters admits an action of the plectic Galois group ΓplecQ = Aut(F⊗
Q/F ) = ΓQ#ΓF , extending that of ΓQ.

Definition 5.1. The plectic reflex Galois group of (RF/Q(H),X ) is the stabiliser

(ΓplecQ )[µ] of [µ] in ΓplecQ . More generally, the plectic reflex Galois group of a mixed

Shimura datum of the form (RF/Q(H),X ) is defined to be the plectic reflex Galois
group of the corresponding pure Shimura datum (RF/Q(Hred),Xred).

Proposition 5.2. There exists an isomorphism ΓplecQ ' Sr n ΓrF under which

(ΓplecQ )[µ] corresponds to
∏
i(Sri n ΓriFi), for suitable finite extensions Fi/F and

ri ≥ 1 such that
∑
i ri = r.

For example, in the quaternionic case H = B× the plectic reflex Galois group is
isomorphic to (St n ΓtF )× (Sr−t n Γr−tF ) ⊂ Sr n ΓrF .

6. `-adic plectic conjecture for pure Shimura varieties

Let (G,X ) be a pure Shimura datum for G = RF/Q(H) with reflex field E.

For every open compact subgroup K ⊂ G(Q̂) = H(F̂ ), the subgroup of central

elements ZH(F̂ ) acts on Y = ShK(G,X ) by right multiplication, with the discrete
subgroup ∆ = ∆(K) := ZH(F )+ ∩K (which is a finitely generated abelian group)
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acting trivially. In the quaternionic case H = B×, ∆ is a subgroup of finite index
in O×F,+.

One can attach to any algebraic representation ξ : GQ` −→ GL(N)Q` satisfying

ξ(∆) = 1 a lisse étale Q`-sheaf Lξ on Y (if K is small enough). Its geometric étale
cohomology is related to the corresponding equivariant cohomology (for the trivial
action of ∆ on Y )

RΓet(Y ⊗E Q,∆; Lξ) = RΓet([∆\Y ]⊗E Q,Lξ) ∈ D+(Q`[ΓE ])

by

(6.1) RΓet([∆\Y ]⊗E Q,Lξ) = RΓet(Y ⊗E Q,Lξ)⊗Q RΓet(∆,Q).

In fact, one can make sense of RΓet([∆\Y ]⊗E Q,Lξ) for arbitrary ξ (viewing Lξ

as a sheaf on the stack Y = [∆\Y ]), but its cohomology groups vanish if ξ is
irreducible and ξ(∆) 6= 1.

We can now state the Plectic Conjecture in the `-adic setting (for Y a pure
Shimura variety).

Conjecture 6.1. RΓet([∆\Y ]⊗E Q,Lξ) has a canonical and functorial lift to an

object RΓet,plec([∆\Y ]⊗E Q,Lξ) of D+(Q`[(Γ
plec
Q )[µ]]).

Remark 6.2. In view of (6.1), this is equivalent (for ξ with ξ(∆) = 1) to the
corresponding statement for the complex RΓet(YQ,Lξ).

We expect (at least) functoriality with respect to Hecke correspondences and to
morphisms of Shimura data (of the same type), and compatibility with products.

A weaker form of this conjecture involves only cohomology groups:

Conjecture 6.3. The Galois action of ΓE = (ΓQ)[µ] on étale cohomology groups

H∗ = H∗et([∆\Y ] ⊗E Q,Lξ) extends to a canonical and functorial action of the

plectic reflex Galois group (ΓplecQ )[µ].

Proposition 6.4. Conjecture 6.3 holds for H0
et, with the action of (ΓplecQ )[µ] fac-

toring through
∏
i ΓabFi .

Proof. This follows from the explicit formula [5, 2.6] for the Galois action on
π0(Y ⊗E Q). �

Proposition 6.5. If Y is compact, then the expected expression for the Euler
characteristic ∑

k≥0

(−1)k[Hk] ∈ G0(Q`[ΓE ])

lies in the image of G0(Q`[(Γ
plec
Q )[µ]]).

Sketch proof. The predicted Euler characteristic formula is a linear combination of
partial tensor inductions[⊗

i

ρ⊗rii

]∣∣
ΓE
, ρi : ΓFi −→ GLni(Q`). �

Proposition 6.6. In the quaternionic case H = B× (including the case H =
GL(2)F of open Hilbert modular varieties) the Galois action of ΓE extends to an

action (in general, to many actions) of (ΓplecQ )[µ] on cohomology, commuting with
all Hecke correspondences.
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Proof. We can assume that ξ is irreducible and ξ(∆) = 1; then ξ =
⊗

v|∞ ξv, where

ξv is an irreducible representation of GL(2)Q` of the form ξv = Symkv−2(Q2

`) ⊗
det(w−kv)/2, w ∈ Z and kv ≥ 2 are integers such that kv ≡ w (mod 2). In the
compact case B 6= M2(F ) the description of H∗ given in Section 4 still holds,
modulo a suitable Tate twist and the fact that f will be a Hilbert modular form
of weight k = (kv)v|∞ (moreover, H∗rest will be non-zero only if kv = 2 for all v).
In the case B = M2(F ) the Galois representation H∗rest need not be semi-simple
thanks to a contribution from Eisenstein series (see [7], [4] in the case r = 2), but
the corresponding extension class extends to the plectic Galois group. �

Remark 6.7. The canonical action of (ΓplecQ )[µ] whose existence is predicted by
Conjecture 6.3 should be characterised in this case by a suitable local-global com-
patibility. In the case where B is totally indefinite, and p is a good prime, the
factorisation of p determine a factorisation of the geometric Frobenius endomor-
phism of the special fibre at p of the Shimura variety. The characterisation in this
case should amount to the compatibility of the action of these “partial Frobenii”
on `-adic cohomology with the action of the corresponding elements of the plectic
group.

Proposition 6.8. If H = GL(2)F , then ΓplecQ acts canonically on the set of cusps
of the Hilbert modular variety Y and on its set of CM points.

Proof. The action on cusps is easy. The action on CM points follows from the fact
that Tate’s half-transfer is plectic; cf. [15, 2.2.5], where a slightly different case is
treated. �

7. `-adic plectic cohomology: the pure case

Recall that geometric and arithmetic (absolute) étale cohomology groups of a
scheme of finite type X → Spec(k) are related by

RΓet(X,Q`(n)) = RΓ(Γk,RΓet(X ⊗k ksep,Q`(n))),

hence by a Hochschild-Serre spectral sequence

(7.1) Eij2 = Hi(Γk, H
j
et(X ⊗k ksep,Q`(n)) =⇒ H∗et(X,Q`(n)).

Let Y = ShK(G,X ) and ∆ be as in Section 6.

Definition 7.1. If Conjecture 6.1 holds and if the representation Q`(n) (n ∈ Z)

of ΓE extends to a natural representation Q`(n)plec of (ΓplecQ )[µ] (for example, if

H = B× and t | n, then Q`(n)plec = Q`(n/t)⊗t as a representation of StnΓtF ), then
the plectic étale cohomology RΓet,plec([∆\Y ],Lξ(n)) of [∆\Y ] with coefficients in
Lξ(n) is defined as

RΓ((ΓplecQ )[µ],RΓet,plec([∆\Y ]⊗E Q,Lξ)⊗Q`(n)plec).

Likewise (when ξ(∆) = 1) define corresponding groups with [∆\Y ] replaced by Y .

The Hochschild-Serre spectral sequence (7.1) will then be replaced by its plectic
analogue

(7.2) Eij2 = Hi((ΓplecQ )[µ], H
j
et([∆\Y ]⊗E Q,Lξ)(n)) =⇒ H∗et,plec([∆\Y ],Lξ(n)).
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In the speculative framework of (1.3), the plectic cohomology of X with coeffi-
cients in an étale sheaf F on Spec(k) admitting a natural extension to a plectic
étale sheaf Fplec on Spec(k)plec would simply be given by RΓet(Xplec,Fplec).

8. The mixed case

The notion of a mixed Shimura datum (G,X ) as defined in the literature [19]
precludes4 (for G genuinely mixed i.e. G 6= Gred) the case G = RF/Q(H) of interest
here, and for a good reason: the corresponding double coset space

G(Q)\X ×G(Q̂)/K

is not even an analytic space. Typically, its fibres over the corresponding pure
Shimura variety are quotients of a semi-abelian variety (equipped with an OF -
action) by a subgroup of finite index in O×F,+. However there should be a good

notion of the mixed Shimura stack S hK(G,X ) in such a situation. Surprisingly,
the general theory of such objects has not yet been developed. In the case H =
GL(2) n G2

a, such a stack does exist, and is just the stack A of pointed Hilbert-
Blumenthal abelian varieties (without prescribed polarisation) and level structure
K. The stack Y in diagram (1.2) is the base moduli stack of HBAVs with level
structure K, provided K is sufficiently small.

We then expect Conjecture 6.1 to hold (and therefore Definition 7.1 to make
sense) for the stacks S hK(G,X ) whenever G = RF/Q(H) and, with appropriate
modifications, for diagrams.

9. Motivation

Plectic cohomology (provided it exists) is interesting for the following reason.

Every construction involving usual arithmetic cohomology
groups of elliptic curves or modular curves (and Kuga-
Sato varieties over them) can be carried out with abelian
varieties with real multiplication and Hilbert modular va-
rieties using plectic cohomology.

The output of the construction will be a usual (non-plectic) object, but in order to
construct it one will have to pass through the plectic world.

10. Theta functions and classical zeta elements

Many classical zeta elements responsible for special values of L-functions of au-
tomorphic forms on GL(1) and GL(2) over Q (and on GL(1) over imaginary qua-
dratic fields) arise from a motivic version of a suitably normalised two-variable
theta-function Θ(z, τ) ([21, Thm. 1.2.1], [8]) or from a slightly modified func-
tion (which is a meromorphic function, rather than a section of a line bundle)

dΘ(z, τ) = (−1)(d−1)/2Θ(z, τ)d
2

/Θ(dz, τ), where d > 1 is an integer prime to 6.
For example, the functions

g(τ) = dΘ((aτ + b)/N, τ) ∈ O(Y (N))× (a, b ∈ Z, (6N, d) = 1)

(with at least one of the integers a, b not divisible by N) are Siegel (or modular)
units on the open modular curve Y (N).

4The axiom 2.1(vii) of [19], that the maximal R-split central torus is Q-split, is violated.
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Specialisations of g to CM points τ ∈ Q(
√
−D) (resp. to cusps) give elliptic units

(resp. cyclotomic units) in abelian extensions of Q(
√
−D) (resp. of Q).

Cup products g1 ∪ g2 ∈ K2(Y (N)) of two Siegel units were related by Beilinson
[1] (via the regulator map) to the values of L′(f, 0) for cusp forms f of weight 2, and
by Kato [8] (via an Euler system arising from norm-compatible systems of elements
g1,n ∪ g2,n ∈ K2(Y (Npn))) to the Iwasawa Main Conjecture for cusp forms.

Moreover, the motivic version of dΘ(z, τ) arises as the first term of the motivic
elliptic polylogarithm.

11. Theta functions and cohomology

We recall the invariant cohomological definition of dΘ(z, τ), for arbitrary families
of elliptic curves in any of the following absolute (= arithmetic) cohomology theories
Hi(−, j).

• Motivic cohomology Hi
M (−,Z(j)) or Hi

M (−,Q(j)).
• Arithmetic étale cohomology Hi

et(−,Z`(j)) or Hi
et(−,Q`(j)).

• Deligne-Beilinson absolute Hodge cohomology Hi
H (−,R(j)) (for varieties

over R or C).
• (Log-)syntomic cohomology Hi

syn(−, sQp(j)) (for varieties over a p-adic
field).

Let E −→ Y be an elliptic curve over a scheme Y . The divisor map

(11.1) div : H1(E − E[d], 1) −→ H0(E[d], 0)deg=0

admits a canonical section (characterised by a suitable compatibility with norm
maps) after tensoring with Z[1/6d]. This gives, for each divisor D of degree zero
supported on the d-torsion of E, a canonical element

θD ∈ H1(E − E[d], 1)⊗ Z[1/6d]

with div(θD) = D. For D = d2(0) −
∑
x∈E[d](x) we obtain an element dΘ ∈

H1(E − E[d], 1) (in this case there is no need to tensor by Z[1/6d]) which is equal
to the function dΘ(z, τ) in the universal case when Y = Y (N) (since in motivic
cohomology H1

M (X,Z(1)) = O(X)×).
For any nowhere-vanishing torsion section x : Y → E of order prime to d, the

pullback g = x∗(dΘ) ∈ H1(Y, 1) is a “cohomological Siegel unit”. The cup product
of two such classes is an element g1 ∪ g2 ∈ H2(Y, 2). In motivic cohomology, this is
one of Beilinson’s elements, and its image in absolute Hodge cohomology is given
by a product of two Eisenstein series. When Y = Y (Npn) for n varying, the image
in p-adic étale cohomology is Kato’s Euler system.

12. Towards zeta elements over totally real fields

Our goal is to generalise the constructions in Sections 10 and 11 from Q to an
arbitrary totally real number field F of degree r > 1. One novelty is that we
will obtain formulae for leading terms of L-functions at points where they have a
derivative of order r.

Instead of elliptic curves, it is natural to consider Hilbert-Blumenthal abelian
varieties (= abelian varieties of dimension r equipped with an action of OF ). If
A→ S is a family of HBAV over a scheme S, the divisor map (11.1) is replaced by
a map

H2r−1(A−A[d], r) −→ H0(A[d], 0)deg=0,
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which again admits a canonical section after tensoring by Z[1/d(2r + 1)!]. To
simplify the notation, we assume that the ring of coefficients of our cohomology
theory is a Z[1/d(2r+ 1)!]-algebra. As in Section 11, we obtain canonical elements

dΘ ∈ H2r−1(A−A[d], r) (d > 1) and their pull-backs by torsion sections x : S → A
of order prime to d, namely, x∗(dΘ) ∈ H2r−1(S, r).

The problem is that the element x∗(dΘ) is not interesting. For example, its
specialisation to any Q-valued point (in particular, any CM point) of S will lie in
the image of the group H2r−1

M (Spec(Q),Z(r))⊗ Z[1/d(2r + 1)!], which for r > 1 is
a torsion group.

One can try to remedy the situation by considering refined cohomology theories.
As in the Introduction, we should replace the universal elliptic curve E → Y (N) by
the stack A over Y = [∆\Y ], where Y is an open Hilbert modular variety attached
to RF/Q(GL(2)F ) and a suitable level structure, and where ∆ ' Zr−1 (a subgroup

– depending on the level structure – of O×F,+ of finite index) acts trivially on Y .

This means that we need to rerun the previous constructions for stacks (i.e. for
equivariant cohomology groups).

We then obtain elements dΘ ∈ H2r−1(A − A [d], r) and, for any nowhere zero
torsion section x : Y → A of order prime to d,

x∗(dΘ) ∈ H2r−1([∆\Y ], r) =
⊕

i+j=2r−1

Hi(Y, r)⊗Hj(∆,Z).

Taking the cap product with a fixed generator [∆] ∈ Hr−1(∆,Z) ' Z we obtain
elements

g = x∗(dΘ) ∩ [∆] ∈ Hr(Y, r).

The numerology is now more satisfactory, but any specialisation of g to a Q-valued
point of Y (in particular, any CM point) of Y will lie in the image of the torsion
group

Hr
M (Spec(Q),Z(r))⊗ Z[1/d(2r + 1)!] = KM

r (Q)⊗ Z[1/d(2r + 1)!].

Moreover, the cup product g1∪g2 ∈ H2r(Y, 2r) will also be uninteresting. This can
be seen in étale realisations: in the Hochschild-Serre spectral sequence

(12.1) Eij2 = Hi(ΓQ, H
j
et(Y ⊗Q Q,Q`(2r)) =⇒ H∗et(Y,Q`(2r))

the groups Hj
et(Y ⊗QQ,Q`(2r)) are interesting only for j = r (as in Section 4), but

Hi(ΓQ,−) = 0 for i > 2. In particular, H2r
et (Y,Q`(2r)) is uninteresting if r > 2.

If r = 2, the relevant Galois H2 may be non-zero, but is not expected to contain
any non-trivial images of elements of motivic cohomology (since motivic H2 over
number fields is expected to vanish).

To sum up, the elements g ∈ Hr(Y, r) are no good, either. We need to do
something else.

13. Plectic theta elements

The solution is to plectify the previous construction. In order to do that, we
will assume in Sections 13–15 that Conjecture 6.1 holds for all objects appearing
in the diagram (1.2) (see Section 6 for partial results in this direction), as well as
for complements of torsion sections arising from the level structure. The plectic

formalism from Section 7 (with (ΓplecQ )[µ] = ΓplecQ = Aut(F ⊗ Q/F ) ' Sr n ΓrF for
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Y , Y = [∆\Y ] and A ) then applies and we obtain plectic theta elements (more
precisely, their `-adic realisations)

dΘplec ∈ H2r−1
et,plec(A −A [d],Q`(r)),

their pull-backs by torsion sections arising from the level structure

x∗(dΘplec) ∈ H2r−1
et,plec([∆\Y ],Q`(r))

and plectic Siegel classes

gplec = x∗(dΘ) ∩ [∆] ∈ Hr
et,plec(Y,Q`(r)).

14. Specialisations of plectic Siegel classes and Stark’s conjectures

The plectic reflex group of a point τ ∈ Y which has complex multiplication by a
quadratic extension L of F is isomorphic to Sr nΓrL. The specialisation gplec(τ) of
gplec at τ will be contained in the group

Hr
et,plec({τ},Q`(r)) ' Hr(Sr n ΓrL,Q`(r)⊗ Z[Gal(Lτ/L)])

'
∧r

Q`[Gal(Lτ/L)]H
1(ΓLτ ,Q`(1)),

where Lτ/L is a finite abelian extension depending on τ and the isomorphisms come
from the plectic Hochschild-Serre spectral sequence (7.2) and Shapiro’s Lemma.

If the above construction has a motivic version, then gplec(τ) will be the image
of a motivic element

gM ,plec(τ) ∈
∧r

Q[Gal(Lτ/L)]H
1
M (Lτ ,Q(1)) '

∧r
Q[Gal(Lτ/L)](L

×
τ ⊗Q),

whose existence is predicted by a variant of Stark’s conjectures.
Similarly, specialisations of gplec to cusps will yield elements of∧r

Q`[Gal(F ′/F )]H
1(ΓF ′ ,Q`(1))

whose motivic versions will be contained in
∧r

Q[Gal(F ′/F )](F
′×⊗Q), for finite abelian

extensions F ′/F .

15. Plectic constructions involving plectic Siegel classes

If gplec,1, gplec,2 ∈ Hr
et,plec(Y,Q`(r)) are two plectic Siegel classes, we can consider

their cup product
gplec,1 ∪ gplec,2 ∈ H2r

et,plec(Y,Q`(2r)).
The plectic Hochschild-Serre spectral sequence (7.2) gives a map

H2r
et,plec(Y,Q`(2r)) −→ Err2 = Hr(Sr n ΓrF , H

r
et(Y ⊗Q Q,Q`)(2r)).

Geometric étale cohomology Hr
et(Y ⊗Q Q,Q`) contains as direct summands repre-

sentations of Sr n ΓrF of the form

V ⊗rf ⊗ Z[Gal(F ′/F )],

where f is a cuspidal Hilbert eigenform of parallel weight 2 over F , F ′/F is a finite
abelian extension (depending on the level structure) and Sr (resp. ΓrF ) acts on
Z[Gal(F ′/F )] trivially (resp. through the product map ΓrF → ΓabF ). Projecting the
image of gplec,1∪gplec,2 on such a summand and using Shapiro’s Lemma, we obtain
an element

(gplec,1 ∪ gplec,2)f ∈ Hr(Sr n ΓrF , (Vf (2))⊗r ⊗ Z[Gal(F ′/F )])
'
∧r

Q`[Gal(F ′/F )]H
1(ΓF ′ , Vf (2)).
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Such elements (with Z`-coefficients) form an Euler system of rank r, which gener-
alises Kato’s Euler system.

Fix an embedding i : Y ↪→ Y1×Y2 given by group-theoretical data, where Y1 and
Y2 are also open Hilbert modular varieties (attached to the same field F ). Let f1, f2

be cuspidal Hilbert eigenforms of parallel weight 2 over F occurring in geometric
cohomology of Y1 and Y2, respectively.

If we apply to gplec the plectic Gysin map

i∗ : Hr
et,plec(Y,Q`(r)) −→ H3r

et,plec(Y1 × Y2,Q`(2r))

composed with the map

H3r
et,plec(Y1 × Y2,Q`(2r)) −→ Hr(Sr n ΓrF , (Vf1 ⊗ Vf2)(2))⊗r ⊗ Z[Gal(F ′/F )])

coming from plectic Hochschild-Serre spectral sequence, we obtain an element of∧r
Q`[Gal(F ′/F )]H

1(ΓF ′ , Vf1 ⊗ Vf2(2)),

for a certain finite abelian extension F ′/F . This is a generalisation of [10].
One can also replace Y1 × Y2 by a Hilbert modular variety attached to a totally

real quadratic extension F0 of F . In this case Vf1 ⊗ Vf2 is replaced by the tensor
induction of Vf0 , for a cuspidal eigenform f0 of weight 2 over F0, yielding an element
of ∧r

Q`[Gal(F ′/F )]H
1(ΓF ′ , (⊗ - IndΓF

ΓF0
(Vf0))(2)).

16. Plectic Hodge theory

The constructions of the previous two sections are for the moment conjectural,
relying on the existence of the plectic struture on étale cohomology. However in the
analogous setting of real Hodge structures, it is possible to give a fairly complete
unconditional description of the plectic structure, and to construct the Hodge-
theoretic version of the plectic theta elements of Section 13. Explicit computations
then lead to formulae for special values of L-functions, as predicted by Stark’s con-
jectures (for L-functions of abelian characters of CM-fields) and Beilinson’s conjec-
tures (for L-functions of Hilbert modular forms). In this and the following section
we will give some indications as to how this works. Further details, including the
foundations of plectic Hodge theory, will appear in a later paper in this series.

For cohomology with real coefficients, all that matters is the algebra F ⊗ R, so
for the moment we will largely ignore F , and simply fix an integer r ≥ 1. For
n = (n1, . . . , nr) ∈ Zr we shall write |n| =

∑
ni.

Definition 16.1. A (pure) r-plectic real Hodge structure of weight n ∈ Z is a
finite-dimensional real vector space V whose complexification carries a grading in-
dexed by Z2r:

VC := V ⊗R C =
⊕

p,q∈Zr
V pq

such that V pq = V qp, and V pq = 0 unless |p + q| = n.

Such things form the objects of weight n of an obvious Tannakian category,
which is easily seen to be equivalent to the category of representations of the real
algebraic group Sr, where S = RC/RGm is the Deligne torus. Restricting to the
diagonal S ⊂ Sr gives a forgetful functor from plectic to usual Hodge structures.
One has the “plectic Tate object” R(r)plec, for which the only non-vanishing V pq
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occurs for p = q = (−1, . . . ,−1), and whose image under the forgetful functor is
the usual Tate structure R(r).

Given a plectic Hodge structure V one can define r “partial Hodge filtrations”
(F •j )1≤j≤r on VC, given by

F pj VC =
∑

p,q∈Zr
pj≥p

V pq.

The discussion of Section 2 shows that the real cohomology of a compact pure
Shimura variety Y associated to a group of the form RF/QH has a canonical plectic
Hodge structure.

When Y is not compact, we need the notion of a plectic mixed Hodge structure.
Recall [6] that the category RMHS of real mixed Hodge structures is equivalent
to the category of representations of a real pro-algebraic group GH , which is the
semidirect product of S and a pro-unipotent group U , whose Lie algebra is described
in loc. cit. Explicitly, a representation V of GH gives rise to two bigradings VC =⊕
V pqF =

⊕
V pq
F̄

, the first of which comes from the action of S ⊂ GH , together with

a nilpotent endomorphism δ ∈ End(VC) such that V pq
F̄

= exp(δ)(V pqF ). It satisfies

δ(V pqF ) ⊂
∑
p′<p,q′<q V

p′q′

F , and the graded components of δ are the images of the

(free) generators of LieUC. The filtrations F , F̄ and W can be recovered from the
bigradings as

F pVC =
∑
p′≥p

V p
′q

F , F̄ qVC =
∑
q′≥q

V pq
′

F̄
, WnVC =

∑
p+q≤n

V pqF =
∑

p+q≤n

V pq
F̄
.

We may then simply define the category RMHSplec of plectic real mixed Hodge
structures to be the category RepR(G r

H ).
If V is an object of RMHSplec then from the action of Sr ⊂ G r

H it acquires a
Z2r-grading, and therefore a weight filtration W• (defined over R) and r partial
Hodge filtrations F •j (defined over C) in such a way that grWn V becomes a pure
plectic Hodge structure of weight n. Conversely, suppose one is given a real vector
space V together with a real filtration W• on V and r complex filtrations F •j , such

that on each grWn V the Fj induce a pure plectic Hodge structure. Then, provided
the filtrations satisfy a further technical compatibility which we will not write down
here, V is a plectic mixed Hodge structure.

It is natural to expect that the real cohomology of a Shimura variety/stack
(pure or mixed), whose associated group is a restriction of scalars from F , carries
a natural plectic mixed Hodge structure. It seems hard to see this directly from
the Lie algebra-theoretic description of cohomology in the non-compact case (it is
not even known how to detect the weight filtration). However in simple cases, one
can construct the plectic structure directly, using toroidal compactifications. In
particular, one has the following result.

Theorem 16.2. Let G = RF/QGL(2) and X = (C−R)r. Then the real cohomology

of Y = ShK(G,X ), for K ⊂ G(Q̂) a sufficiently small open compact subgroup,
carries a canonical plectic mixed Hodge structure. The same is true for the mixed
Shimura stack A attached to G = RF/Q(GL(2) nG2

a).

In fact, slightly more is true: by the methods of [3], there exists a complex
RΓ(Y,R) equipped with filtrations W• and (after tensoring with C) F •j , whose
cohomology is H∗(Y,R) together with its plectic Hodge structure. Then a similar
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procedure to [2] gives plectic absolute Hodge cohomology groups Hi
H ,plec(Y,R(rn)),

together with a spectral sequence

Eij2 = ExtiRMHSplec
(R(−nr)plec, Hj(Y,R)) =⇒ Hi+j

H ,plec(Y,R(rn)).

Similar statements hold for the cohomology of A and A −A [d].

17. An arithmetic application

The formal procedure described in Section 13 may now be carried through in
plectic absolute Hodge cohomology. One thus obtains canonical elements

dΘH ,plec ∈ H2r−1
H ,plec(A −A [d],R(r)),

together with their pull-backs by torsion sections arising from the level structure

x∗(dΘH ,plec) ∈ H2r−1
H ,plec([∆\Y ],R(r))

and, by taking the cap-product with a generator of Hr−1(∆,Z), classes

gH ,plec = x∗(dΘH ,plec) ∩ [∆] ∈ Hr
H ,plec(Y,R(r)).

which are the plectic analogues of the functions log |(Siegel unit)|.
There is an explicit formula for the form representing the class gH ,plec in terms

of coordinates. For simplicity we give this in the case Y = Γ\Hr for Γ ⊂ SL2(OF ),
parametrising abelian varieties Aτ = Λτ\Cr for τ = (τj) ∈ Hr, where H is the

upper half-plane and Λτ = d−1
F +OF τ . The variety Aτ carries a canonical principal

polarisation associated to the form
∑
dzj∧dz̄j/ Im(τj). Let (−,−) be the associated

Hermitian form on Cr. For γ ∈ Λτ , let χγ : Aτ → U(1) be the character given
by Pontryagin duality and the polarisation form. The real analytic function g(τ)
representing the class gH ,plec is then given by

g(τ) = (constant)
∑

y∈Aτ[d]

∑′

γ

(χγ(x+ y)− χγ(x))

r∏
j=1

1

γj γ̄j
,

the sum being taken over nonzero γ ∈ Λτ modulo ∆. When τ is a CM-point, taking
finite Fourier transforms of these series one obtains special values L(χ, 1), where χ
is an abelian character of the Galois group of the CM field F (τ).

Space precludes describing in detail here the Hodge-theoretic version of the cup
product constructions sketched in Section 15, which lead to a formula for the r-th
derivative L(r)(f, 0), where f is a cuspidal Hilbert eigenform of parallel weight 2.

The plectic theta elements constructed above form the first of a hierarchy of
cohomology classes, coming from a plectic analogue of the abelian polylogarithm
classes of Wildeshaus [23]. There are explicit formulae for these higher plectic
classes, related to those described by Levin [11]. Restricting to torsion sections,
these polylogarithmic classes define plectic Eisenstein classes in the plectic absolute
Hodge cohomology of Y (now with non-trivial coefficients), and evaluating these
at CM points gives a cohomological interpretation for the derivatives L(r)(χ, 0), for
all algebraic Hecke characters χ of the CM field for which s = 0 is a non-critical
value with ords=0L(χ, s) = r.
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18. Final speculations

Suppose X is a Shimura variety or stack of the type considered, or a diagram of
such objects. In the presence of Conjecture 6.1, we have defined (7.1) the plectic
absolute étale cohomology groups H∗et,plec(X,Q`(n)) of X, for appropriate n ∈ Z.

We have also (in many cases unconditionally) plectic absolute Hodge cohomology
groups H∗H ,plec(X,R(n)). In view of the universal nature of (usual) motivic coho-
mology, one is led to speculate:

Question 18.1. Do there exist “plectic motivic cohomology groups” for X:
H∗M ,plec(X,Z(n)) or H∗M ,plec(X,Q(n)), with good functorial properties, together
with functorial maps to the plectic étale and absolute Hodge groups?

Suppose such groups did exist, and were sufficiently functorial that the construc-
tions of Sections 13–14 could be carried out. As indicated there, one could then
prove versions of Stark’s conjectures for abelian characters of CM and totally real
fields, as well as special cases of Beilinson’s conjectures for non-critical L-values of
Hilbert modular forms.

The discussion in Sections 11–16 involved generalisations of “cyclotomic” zeta
elements. It is tempting to ask:

Question 18.2. Is there a plectic analogue of anticyclotomic zeta-elements, such
as Heegner points and (generalised) Heegner cycles?

Let f be a Hilbert modular eigenform over F and χ an algebraic Hecke character
of a totally imaginary quadratic extension L of F (suitably compatible with the
central character of f). It seems that a hypothetical geometric version (1.3) of the
plectic formalism would yield interesting elements responsible for the special values
of anticyclotomic Rankin-Selberg L-functions L(f × θχ, s) at the central point, in
the case when the order of vanishing a of the L-function satisfies 1 ≤ a ≤ r. This
will be discussed in more detail in a later paper in this series.
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