Height pairings and special values of L-functions
A. J. Scholl*

Introduction

The object of this paper is to give a “motivic” interpretation of the height pairings on
algebraic cycles introduced by Beilinson [2], Bloch [4] and Gillet and Soulé [14]. The
existence of such an interpretation was sketched in [21], §V.

Let X be a smooth projective variety over Q, and suppose that a, b > 0 are integers
satisfying a+b=dim X + 1. In the rest of this paper we shall use Beilinson’s definition of
the height pairing for cycles. Recall from [2] that (under suitable hypotheses) there are
defined local pairings <z,y>, € Q, <z,y> € R for cycles z and y of codimensions a and
b whose supports are disjoint. With these one constructs a global pairing <z,y>q € R,
which depends only on the rational equivalence classes of x and y. By the moving lemma
this defines a pairing on Chow groups

<,>q:CH*(X)®CH"(X) — R.

Our first result reinterprets the local height pairings. Fix disjoint closed subsets Y, Z
of codimensions a, b, and let H, H' be the groups of cycles defined over Q whose supports
are contained in Y and Z, respectively. Then the local pairings can be described as follows.
Consider the cohomology group H2*~1(X —Yrel Z,Q;(a)). As a Gal(Q/Q)-module it has
a canonical filtration (by weight) with graded pieces H' ® Q;(0), H?*~1(X,Q;(a)) and
HY®Q;(1). The essential observation is that (under suitable assumptions) the restriction
of this representation to the inertia group at a finite prime p # [ is partially split; the
constituent H22~1(X,Q;(a)) is a direct summand and one is left with an extension of
H' ® Qi(0) by HY ® Q;(1). By Kummer theory this is classified by a homomorphism
H ® H' — Q, which turns out to be precisely the local pairing at p. For the infinite
component one replaces the [-adic cohomology with cohomology with real coefficients,
viewed as a mixed R-Hodge structure.

In other words, there is an interpretation of the (local) height pairing in terms of
the “mixed motive” h?~1(X —Y rel Z)(a). However in order to make this a truly motivic
interpretation it is desirable to remove the dependence on the choice of supports Y, Z. The
construction we adopt is suggested by the conjectures on periods and special values of L-
functions, as reformulated in [21]; see also 7.8 below. These relate the behaviour at s =0
of the L-function of the motive M = h2%~1(X)(a) to the cycle class groups CH?(X)?,
CH?(X)%. 1In sections 6-7 we attach to X a certain “mixed motive” M whose weight
filtration has three non-trivial graded pieces, isomorphic to

(CH*(X)")'®Q(1), M and CH*(X)°®Q(0).

Associated to M is its period mapping M; QR — (MdR/FO) ®R. We show that it can be
described simply in terms of the period mapping for M and the (global) height pairing.

* Partially funded by NSF grant DMS-8610730

1



This shows that the Birch-Swinnerton-Dyer-Beilinson-Bloch conjecture for the behaviour
of the L-series of M at s =0 is essentially equivalent to the critical value conjectures for
mixed motives ([21], conjectures A—C). At present we can only construct M under certain
hypotheses; the most desirable (conjectural) situation is described in §6.2-6.7.

To perform these constructions in an unconditional way, the first requirement is a
theory of mixed motives. A candidate for such a theory has been constructed independently
by Deligne and Jannsen; we recall their construction in §1 below.

In order to compare the “motivic” and “geometric” pairings it is useful to work over
an arbitrary number field, which we do up until section 6. However for the construction
of a unique “universal extension” we need the ground field to be Q.

One recurrent problem in the comparison of heights is that of signs. I have tried very
hard to ensure consistency of signs (see section 0 for the necessary conventions), as the
signature of the height pairing should be significant (see [2] for a precise conjecture).

Here are some related topics not covered in this account:

(i) A formulation of the motivic pairing for motives with arbitrary coefficients. However
this should present no essential difficulty.

(ii) A description of the relation between the heights considered here and bi-extensions
(see [18] and [5]). The canonical pairings of section 3 are none other than splittings
of local biextensions, as was pointed out to me by Beilinson.

(iii) A precise description of Brylinski’s height pairings [6] for local systems on curves in
the motivic setting.

(iv) p-adic pairings. For this, see the forthcoming work of Nekovaf[19], in which a related—
but rather more sophisticated—p-adic theory is developed.

The author would like to thank the Institute for Advanced Study for their hospitality in
the year 1989-90, during which some of this paper was written.



0. Notations and signs

If k is a number field and v is a finite place v of k we write G, C Gal(k/k) for a decomposition
group at v, Z, C G, for the inertia subgroup, and Frob, € G, for a geometric Frobenius
element. The completion of k£ at v is k, and the residue field k(v); we write ¢, for its
cardinality. If there is no risk of confusion, we write O for the ring of integers of k. If X
is a k-scheme, we write X for X @ k.

Cohomology groups of schemes are (unless otherwise indicated) étale cohomology; for
schemes not defined over an algebraically closed we use continuous étale cohomology [15].
Likewise all Galois cohomology is continuous group cohomology [22].

For a (suitably good) scheme X, the group of codimension p cycles on X is denoted
ZP(X) and the Chow group CHP(X). If X is a scheme over a field k of characteristic
zero, the subgroups of cycles and rational equivalence classes whose cohomology classes in
H?P(X,Q;(p)) vanish are denoted ZP(X)° and CHP(X)? respectively.

If A is an abelian group we often write Aq in place of A® Q.

Signs. The definition of height pairings given in [2] involves exact sequences of cohomology
and duality, and therefore gives rise to problems of signs. We follow the “usual” conventions
for signs; to avoid any confusion, this means that in the derived category we take for
distinguished triangles those coming from semi-split short exact sequences of complexes
(in agreement with SGA47 “C.D.” and [3]). Recall also that if A" and B" are complexes and
A'®B" is their tensor product (with usual differential d ygp = da®idp+(—1)84id 4, Rdp)
then the canonical isomorphisms

All]®@ B«— (A® B)[1] — A®(B[1]) (0.0.1)

are given by
a®ba®brs (—1)%8@ g0,

Useful references for signs in connection with tensor products are SGA4, Exp. XVII §1,
and [12] (but note that the first reference takes the opposite convention for distinguished
triangles in the derived category). We need the following compatibilities. Unless stated
otherwise, 0 denotes the connecting homomorphism in the long exact sequence for coho-
mology with supports.

0.1. Lemma. Let X be a scheme, K, Ky € Db(Xét,Z/l”), and Y7, Yo C X closed
subsets. Then the diagram:
L
HY (X, K1) @HY(X —Yy,Ky) — HEM, (X —Yy, K1 ®K>)

lid®6 la

L
HY (X, K1) @HE(X,,K.) —  HESNX, K@ K,)

commutes with sign (—1)P. (The second vertical arrow is the boundary in the long exact

sequernce
"'—)HY10Y2(X)—>HY1(X)—)HY1—Y2(X)_>”.')

Proof. See [12], Corollary 2.3. |



0.2. Lemma. Let X be a scheme and Y a closed subscheme. Let F, G € D®(Xg,Z/n).
Then the diagram

HP(Y,#F)QHYX -Y,j*G) <& Hr(Y,i*F)oHI(X,G)

l6®id lu

L
HPYX,jij* )@ HY(X -Y,j*G) —  HPFH(X,FG)

commutes up to sign (—1)P*+1,

Proof. Compatibilities of this kind seem to be generally well-known, but I could not find
a reference for this, even in the special case required here (proof of 7.5 below), and so for
completeness will give a proof. The general result we need from homological algebra is:

Proposition. Suppose that
0 — A % B % C — 0
0+ A & B oo o 0

are exact sequences of bounded-below complexes of R-modules, which have splittings s :
C™ — B", s': A’™ — B'™ in every degree. Let f:C — A[l], f': A" — C'[1] be the usual
connecting homomorphisms: f=ds—sd, etc. Let : BQB' — D be a pairing into another
complex whose restriction to AQ® C' is chain homotopic to zero. Then there are defined
canonical pairings

a:A®RA' D, ~:C®C' —D
such that in the diagram

, fl-uet , e ,
Cl-1]9A" —— AQA" +—— AQB

la J{u@l
B
‘1(0.0.1) D +—— BQ®DB
Tv Tl@v'
, 1®f'[-1] , v®1 ,
CeA[-1] —— C®C'" +«— B®C

the two right-hand squares commute up to homotopy, and the left-hand pentagon is anti-
commutative up to homotopy.

Proof. We give the necessary formulae: if So(u®v’) =dH + Hd for a homotopy H, then
a and « are defined by

a(z®y)=puz®s'y)— (—1)PH(zQw'y), v(z®y)=»(sz®v'y)—H(wry)

and the sum of the two maps C[—1]® A’ — D coming from the left-hand pentagon equals
dK + Kd with
K=B0(s®s):CP A1 — DPT1. |
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In the present case we replace the triangle
JijsF = F = i,d"F — jij" F[1]

by a short exact sequence of complexes of injective sheaves 0 - A — B —C — 0, and take
A=T(X,A), etc. For the second sequence we take

0«+—TI(U,j*T)«+—TI'(X,I)«—Ty(X,Z)+—0

for an injective resolution G —Z. Since the pairing
L L
RIv(X,F)QRI'(X,jij*G) —» RI'(X,FQQG)

L
is zero in the derived category (it factors through RI'(X, i, Ri'F ® jij*G) = 0) we can choose

L
a complex D representing RI'(X, F®G) such that the hypotheses of the proposition are
satisfied. [

0.3. Consider a first quadrant spectral sequence E;j = E . Denoting the filtration on
the abutment by Fil’, recall that the differentials of the spectral sequence give rise to

edge-homomorphisms
e:Er,  =Fil’El — Ey"

el:ker(e®) =Fil' B, — E3" 1.

0.4. Lemma. Let 7 be an abelian rigid F'-linear tensor category, where F' is a field of
characteristic zero. Let K*, L' € D*(T). Write H*(T,—) =Ext’-(17,—), and consider the
edge homomorphisms e* attached to the spectral sequences

Ef =H'(T,# (K"))=H"(T,K"), Ef=H'(T,#/(K'®L))=H"(T,K'®L)

Then the following diagram is commutative:
U

Fil' H(T,K")@ HI(T,L") —  Fil' H*(T,K'®L")
lel®eo lel
HYT, HYK))@HT,H(L)) - HYT,H*-YK'QL"))
(We have written ® for ® since by hypothesis tensor product is exact.)

Proof. The edge homomorphisms can be described as follows: consider the distinguished
triangle
TSn_lK'—WSnK'i)’H," (K")[—n].

Then e° and Fil' are given by the short exact sequence
60: n n .
0 — H'T,7en 1K) — HY(T,renK?) © =7 HY(T MM (K)[-n))
| | |
Fil' H*(T,K") H™(T,K") HOY(T,H"(K"))
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and e! is the map
e = H" (1 ):Fil' H(T,K") = HM(T  rgn1 K )—H (T, K"~} (K")).
We have a commutative diagram

T<i-1 K ®@7<; L’ — T<ivi—1(K QL")

! !

HL(K ) —i+ @RI (L)[—j] 5 H+H-Y (K @L)[~i—j+1]
where the map (x) is given by the cup product #*~'(K")@HI (L") = {1~ (K'® L") in
degree i+ j — 1; this differs from the “correct” map (0.0.1) by the factor (—1)7. Taking
cohomology and using the functoriality of cup-product, the claim of the lemma follows. B

1. A category of mixed motives

1.0. A manageable category of motives has been constructed by Deligne [11], in which
the morphisms are defined by absolute Hodge cycles. This construction has been extended
independently by Deligne ([10], §1) and Jannsen ([16], part I) to give a category of mixed
motives. We recall here some of the properties of these categories. For simplicity we
consider only motives with coefficients in Q.

1.1. Let k£ be a number field. The category CV}, is defined to be the category whose objects
are symbols h(X) for smooth and projective varieties X over k, and whose morphisms are
homological correspondences defined by absolute Hodge cycles. The Tannakian category
M, of (unmixed) motives over k is constructed from CVj by adjoining the kernels of
projectors and the Tate motive Q(1), and modifying the commutativity constraint (see
[11] Ch. 2.6 for details). Associated to an object M of M, are its various realisations M;,
Mgyg and M, (for each o:k — C) together with the comparison isomorphisms

Ia,l:Ma®Q Ql%Mla IU’OOZM(,@QCL)MdR@aC.

A motive M over k is pure of weight w if the eigenvalues of an unramified Frobenius
element Frob, € Gal(k/k) acting on M; have absolute value g, /2 and if for each o the
Hodge filtration induces a Hodge structure on M, which is pure of weight w. If X is
smooth and projective over k, then M = h*(X)(m) is pure of weight w =i —2m; and every
unmixed motive is a direct sum of pure motives.
1.2. To define a category of mixed motives, Deligne and Jannsen first define a category of
“mixed realisations” MR. An object R of MRy is given by the following data:
— For each ¢ : k — C, a finite-dimensional Q-vector space R,, depending only on the
restriction of o to k;
— A finite-dimensional k-vector space Rgygr, with a decreasing filtration F* (Hodge) and
an increasing filtration W. (weight);

— For every prime [ a finite-dimensional continuous representation R; of Gal(k/k);
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— A family of isomorphisms (“comparison”)

10700 :R0®C l) RdR®0 C
I,1: R, ®Q; — Ry

These are subject to certain conditions:

(i) For each o the filtrations F*, W. define (through I, ) a mixed Q-Hodge structure

on R,;

(ii) If p€ Gal(k/k) then I,,;=pol,;

(iii) The filtration I, I . ,W. on Ry is Gal(k/k)-equivariant and independent of o. (Note
that the filtration I;  W. on R,®C is defined over Q, by (i)).

1.3. For any scheme X of finite type over k, the singular, de Rham and [/-adic cohomology

groups associate to X certain mixed realisations h*(X). (The same is true of the cohomol-

ogy groups with support.) Jannsen then proves ([16], Theorem 4.4) that My is equivalent

(by the obvious functor) to the smallest Tannakian subcategory of MR} containing the

realisations h¢(X) for X smooth and projective over k. One may then define MMy, the

category of mixed motives over k, as the smallest Tannakian subcategory of MRy contain-

ing h?(X) for every X of finite type over k. The category MM, contains My as a full,

semisimple subcategory. Each mixed motive carries an increasing filtration (the weight

filtration W.) whose graded pieces are pure motives.

It is also convenient to work with mixed realisations coming from cohomology with
support or relative cohomology, as the comparison isomorphisms are defined in these cases
also. See for example the discussion in [8] (for relative cohomology) as well as the treatment
in [16], 6.11 where it is shown that all the long exact cohomology sequences are compatible
with the comparison isomorphisms. In some cases this does not enlarge the category of
realisations considered:—

1.4. Proposition. Let U be quasiprojective over k, and j: Z — U a closed subset. Then
there is for each i a mixed motive h*(Urel Z) over k whose realisations are isomorphic to
the relative cohomology groups of (U, 7).

Proof. Let Z <— W be a closed immersion of Z into some quasi-projective variety which
factors through the inclusion Z < U. (For example, take W =U.) Let X C W x A! denote

the union of U x {0}, Z=Z x A! and W x {1}. We have a commutative diagram (in, say,
singular cohomology):

H=Y(ZuW) -5 Hi(XrelZUW) — H{(X)

ls | |
H-YW(U) —  H"Y(2) —  H'(Urelz) — HYU).

Now the inglusion of W in ZUW induces an isomorphism on cohomology, and the re-
striction H*=Y(W) — H'*=1(Z) factors through H*='(U). Therefore the map v factors
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through H*~1(U) as indicated by the dotted arrow and so @ is zero. Hence H*(Urel Z) —
ker (H"(X) ~ H{(ZU W)), defining the motive ¥ (Urel Z). n

1.5. Remarks. (i) In particular the compatibility with the comparison isomorphisms shows
that there is a long exact sequence of mixed motives

—hNZ) — W (UrelZ) — W (U) — W (Z) — ...

(ii) Jannsen’s definition in §4 of [16] of MM} uses only smooth quasiprojective vari-
eties. This is probably inadequate for our purposes. He has suggested the possiblility of
enlarging MMy, to include h*(X) for simplicial varieties X; then MM}, would automati-
cally contain motives attached to mapping cones of arbitrary proper morphisms. See [16],
Appendix C2-3 for further discussion.

1.6. We may define the L-function of a mixed motive E over k to be the Euler product
over finite places v of k

L(E,s)=][Lw(E,s)

where
Ly (E, s) =det(1—g; *Frob, |[EF) ", w/.

Here it is tacitly assumed that the Euler factors are independent of [ (which in this gener-
ality is not even known for the good factors). Since the graded pieces Gr;}V E of E are pure

motives, L(E,s) will in general differ from the product HL(Gr;}VE,s) by a finite number
of Euler factors (as the passage to invariants under inertia is not an exact functor). There
is one obvious case in which we have equality.

1.7. Definition. FE is a mixed motive over O if the weight filtration on E; splits over
Z,, for every l, v with v/l.

1.8. The mixed motives over O form a full Tannakian subcategory MMo of MMy,
containing M. We denote the Yoneda extension groups in MMy, MM by Exty,(-,-),
Exti)(-,+). If E, E' are mixed motives over O, then it is clear that Ext), = Ext) = Hom,
and Extg, (E, E') is the subgroup of Exty (FE, E') comprising the classes of extensions E’ —
E" — FE whose [-adic realisation splits over Z,,, for all [ and all v /I.

1.9. Remark. The definition 1.7 is not the only one possible. One could insist that the
weight filtration splits as a representation of the whole decomposition group. However if the
pure parts Gr}}v E; satisfy Deligne’s conjecture on the purity of the monodromy filtration
(see 3.6 below) one can show that these definitions are equivalent. We prefer to use the
inertia group, although at times will need to know that the splitting is in fact invariant
under G,. (I am grateful to Jan Nekovaf for drawing this last point to my attention.)



2. Kummer theory

2.0. In this section we recall certain properties of extensions of Q(0) by Q(1) and local
analogues.

2.1. We first review some facts about extensions of Hodge structures. A basic reference
for most of this is [7]. For A= Q or R, let 4 denote the category of mixed A-Hodge
structures, and ’Hj the category of mixed A-Hodge structures over R (that is, with a
Frobenius at infinity ®.,). For H € 7—[;{ one has the “de Rham” R-structure Hyr C Hc,
namely the invariants of the semilinear extension of ®,, to Hc = Hr ® C. As a matter of
notation, for any mixed motive M over Q we write M, for the associated mixed A-Hodge
structure (with Frobenius at infinity where appropriate).

2.2. Proposition. (i) Let H € Hr be a pure Hodge structure. Then
Extjy, (R(0), H) = Hr\Hc/F°(Hc)-
(i) Let H € Hi; be a pure Hodge structure over R. Then

EXt;{;(R(O), H)=H{\Har/F°(Har). o

2.3. Corollary. (i) If w(H)=—1 then Exty, (R(0),H) :Ext,lH; (R(0),H)=0.
(i) Exty,, (R(0),R(1))= Ext,}#n (R(0),R(1)) =R. u

2.4. In the second part of the corollary, we normalise the isomorphism so that ¢t € R
corresponds to the following extension H; of R(0) by R(1):

— H; = C, as real vector space, with complex conjugation for ®.,; there is an obvious
exact sequence R(1) » H; — R;

— F°(H;®C) is generated by
) t
2m1

For the proof, see [7] or [16].
2.5. Now let K be a non-archimedean local field, with Gal(K/K) =g, and inertia group
Z. Let V be a continuous finite-dimensional [-adic representation of G, where [ is a prime
number different from the residue characteristic of K. Then we have a canonical isomor-
phism:
HYZ,V) S V(-1)z

compatible with the action of G/Z. In particular, if 1 is not an eigenvalue of Frobenius
on V(—1)z, any extension V — E — Q,; of G-modules splits over Z. Dually, if 1 is not an
eigenvalue of Frobenius on VZ, then any extension Q;(1) — E — V of G-modules splits
over 7.



2.6. When V =Q(1) we recover the isomorphism:

Extz(Qu, Qi(1)) = HY(Z,Qi(1)) = Qi (2.6.1)

the second isomorphism being given by Kummer theory. We fix the normalisation of this
isomorphism so that 1 € Q; corresponds to the extension

0 Q1) »Ty(K* /%) Qi — Q;—0

with 7 a uniformiser in K.

2.7. The 1-motives defined in [8] can be regarded as mixed motives. In particular, for
every x € k* there is a 1-motive K (z) = [Z-—+G,] which is an extension of Q(0) by Q(1),
trivial if and only if z is a root of unity. Recall from [8] how K(z) may be constructed
geometrically:

Let C be the singular curve obtained from G,,/k by identifying the points 1 and z.
Then h'(C)(1) =h' (G, rel{1,z}) sits in an exact sequence:

0— A—h'(C)(1) — B—0

where
A= coker (h°(P")(1) — r°({1,2})(1))

B=ker(h}y 3 (PY)(1) — h*(P1)(1))
We fix an isomorphism A — Q(1) by evaluation at x, and an isomorphism Q(0) — B by
the difference [oo] —[0] of the cohomology classes of 0, co. In terms of these isomorphisms

h'(C)(1) is isomorphic as an extension to K(z). We now recall from §10.3 of loc. cit. some
of its realisations:—

(I-adic)—the class of the extension K {x); is
r®1€k*@Q =H"(k/k,Qi(1)) =Extgg/r (Qi(0), Qu(1)).

(Hodge)—the R-Hodge structure K(r), /g is isomorphic to H; with t =log|o(x)]|.

2.8. Tt is hoped (cf. for example [10], §2.4) that these 1-motives generate Ext (Q(0),Q(1)),
i.e. that Ext;(Q(0),Q(1)) = k*® Q. One consequence would be that any extension E of
Q(0) by Q(1) is uniquely determined by the following local data:

— for finite v and each [ prime to g¢,, the action of Z,, on Ej, given by the invariant
to,1: Exty (Q(0), Q(1)) = Exte i i) (Qu(0), Qu(1)) = k*@Qi—Qu;
— the class of the R-Hodge structures F, /g, given by the invariant
to s Exty (Q(0),Q(1)) — Exty, (R(0),R(1)) » R.
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Moreover t, = t,; would be Q-valued and independent of I, and there would be a

“product” formula:
Y —loggy-te+ Y te=0. (2.8.1)

v finite og:k—C

For motives over O we would have Ext,(Q(0),Q(1)) = O* ® Q, and in particular
Extz(Q(0),Q(1)) =0.

2.9. Remark. It is in keeping with the formalism of Beilinson’s conjectures to hope that
something much more general is true: namely, that if M is any pure motive of weight > —1,
then an extension F of M by Q(1) is determined by the extensions of R-Hodge structures
E, /g together with the extensions of Z,-modules E; (for every ! and every finite v/l). For
motives E over O this would essentially amount to the injectivity of Beilinson’s regulator.

3. Pairings attached to certain mixed motives

3.0. Let G be a finite-dimensional representation of Gal(k/k) over Q. There is associated
to G in the usual way an Artin motive, which we denote G(0). Thus the o-realisation of
G(0) is simply G itself, for any o. Write G(n) for the Tate twist G(0) ® Q(n).

3.1. Now let FE be a mixed motive over k with
G (E)=M, GilV(E)=G1(0), Gr"%(E)=G5(1)

and Ger (E)=0 for i < —2 and i > 0, for Galois representations G1, G5 as above. We will
construct in this section local pairings

R for v an infinite place of k

J— . v
by —bv,E" G1 % G2 — { Q; for v a finite place, UJ/l

under certain hypotheses.

3.2. The pairings will transform as follows under finite field extensions k'/k. Let v’ be any
place of k¥’ over k, of ramification degree e(v'/v). Write E’ for the basechange of E to k.
Then

bvr7El = 6(’0’/’1)) . wa.

3.3. The pairing at an archimedean place can be constructed unconditionally. By 2.3
there is a canonical splitting in HR:

E;,jr=M;r®Vs/Rr
where V; /g is an extension:
0— G2(1)r = Vo/r — G1(0)r — 0.
This extension is classified by an element of
Exty, (G1(0)r,G2(1)r) =Hom(G1,G2) ®Exty, (R(0), R(1)) =Hom(G1,G2) @R
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(where the isomorphism is normalised as in 2.4 above) and thus determines a pairing

G 1 X G;/ —R
which we define to be b, if v is a real place corresponding to the embedding o, and %bv if
v is complex. It is obvious that this satisfies the compatibility of 3.2.

3.4. To define the pairings b, g at finite places we need a hypothesis. Denote by M;, M,
the intermediate layers of the extension F:

M1:E/W_2(E), MQZW_l(E).
3.5. Hypothesis. The motives My, M5 are motives over O.
By 2.5, this would follow automatically from the following hypothesis involving only M:

3.6 Hypothesis. For every l, v with v/l, no eigenvalue of Frob,, on MlI” or M;(—1)z, is
a root of unity.

(Recall that for M = h?»~1(X)(n), X smooth and proper over k, this would in turn be a
consequence of Deligne’s conjecture ([20], 3.8) on the purity of the monodromy filtration.)

3.7. First assume that Gal(k/k) acts trivially on G;. Then there is a splitting of the
extension of Z,-modules, unique up to isomorphism

Ei =M@V,
for every | with v/l, where V, ; is an extension
0-G20Q(1)=V, - G1®Q; —0,

unique up to isomorphism (as an extension). In fact, by hypothesis both the extensions of
Z,-modules W_1(Ey), E;/W_o(E;) are split. So there is a short exact sequence

0 — Extz (G1®Q;,G2®Qu(1)) — Extr (G1®Qq, Ma,)
— EXti—v (G1®Qu, M) —0
in which the class [E;] € Extiv (G1® Qq, M2;) maps to zero in Extirv (G1® Qq,M;). The

class of the extension V,,; is then the inverse image of [Ej] in Exté,v (G19Q,G20Qu(1)).
The isomorphism (2.6.1) gives

Extz (G1®Q,G2®Qu(1)) = Hom(G1,G2) ®Q,
and the class [V, ;] therefore defines a pairing b,,.

3.8. (The general case.) It is simple to check (using 2.6 above) that the pairings just
defined satisfy the basechange property 3.2. In order to define them in general, choose an
extension k’/k such that Gal(k/k') acts trivially on G; and G2, and set

1
b B = ey

3.9. Conjecture. The pairings b, g for finite v are Q-valued and independent of l.

3.10. We need some formal properties of these pairings. The proofs are straightforward
consequences of the definitions. In each case the hypothesis 3.5 is assumed to hold.
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3.11. Proposition. Let ¢,:G1 — Hy, ¢o: Hy — G be Gal(k/k)-homomorphisms, and
let E' be a mixed motive over k with graded pieces Ho(1), M and H,(0). Write E for the
motive with graded pieces G5(1), M and G1(0) which is obtained from E’ by pullback and
pushout via ¢, and ¢o. Then the pairings attached to E, E' satisfy

bv,E(Il,@)=bu,E'(¢1($1)7$20¢2)- u

3.12. Proposition. Let E be as above, and suppose there is a commutative diagram

0 — M — Mi — G1(0) — 0

l L H

0 — M — E/W_oFE) — G1(0) — 0

in which M’ is pure of weight —1. Let E’ be the mixed motive with graded pieces Ga(1),
M’, G1(0) obtained from E by pullback with w. Then b, g = b, g. [ |

3.13. Proposition. Let E, E' both be extensions of G1(0) by Ms, and let E"” be their
Baer sum. Then b, g =b, g+b, g. [ |

3.14. Proposition. Let M = 0 and let E be the extension K<xz> of the previous
section, with G1 =Gy = Q (with trivial Galois action), and x € k*. Then

_ [ log|z|, forw infinite
bo(1:1) = {ordv(x) for v finite. .
3.15. Proposition. Assume that G; are trivial Galois modules and that k= Q. Then
the pairing b g is a perfect pairing if and only if E is a critical mixed motive, and if this
is the case then

ct(E)=ct(M)-detboo g- |

Recall [21] that E is critical if the period mapping I 1 (E), defined by the commutative
diagram
Ep®C D EL®R

lzloo(E) l Ir (E)

E;r®C D FE;r®R —— (E4r/F°)QR

is an isomorphism; and that if this is the case the period ¢t (E) € R*/Q* is the determinant
of I%(E), calculated with respect to the Q-structures E};, E4r/F°.

3.16. Remark. We tacitly assume, in the construction of the height pairing for extensions
of motives, that the local pairings b, g vanish for all but a finite number of v. Working in
the category of mixed motives proposed by Jannsen this is automatic; for the [-adic realisa-
tion F; of any mixed motive is obtained by tensor operations from the /-adic cohomology of
some varieties over k. By the theorems on contructibility and generic basechange in /-adic
cohomology, E; therefore extends to a smooth Q;-sheaf of an open subset U C Spec O, and
for a finite prime v € U we then will have b, g=0.

13



4. The local geometric pairings

4.0. For this section let X be a smooth and projective scheme over a number field k,
equidimensional of dimension N. We will relate the pairings of the preceding section to
the local height pairings (or link indices) as described in [2] §2, whose definition we now
recall.

4.1. Assume that X extends to a regular scheme X" which is flat and proper over O. Then
there is an intersection pairing (see for example [13] §6)

<,>x:CH*(X)°®@CH®(X)° =R

where a and b satisfy a+b=N+1, CH"(X) is the Chow group of codimension n cycles
on X modulo rational equivalence, and CH™(X)? =ker{CH"(X) — H*(X ®k,Q;(n))}.

4.2. Under some restrictions the pairing can be defined at the level of cycles on X rather
than X. For this, write CH™(X)g for the image in CH™(X)q of

(Mker{2"(X)q — H™ (X & k(1) Qi(n))}.
v,l
vl

If £, n are elements of CH* (X)%O, they can be lifted to cycles &', n' on X (with Q-

coefficients) whose classes in H**(X ®k(v),Q;(x)) are zero for every v, | with v/, and one
can then define

< m>x =< n'>x
which depends only on &, 7.
4.3. Conjecture 2.2.5 of [2] asserts that

CH"(X)® =CH" (X)) ker{CH™ (X)q — H™(X ®k,Qi(n))}.

Note that since H>(X ® k(v),Qi(n)) = H?>*(X ® O,Q;(n)) by the proper basechange
theorem, the “absolute” cycle map

CH"(X)q — H*™(X ®k™,Q;(n)) (4.3.1)

is zero on CH™(X)Q for every I and every v/l.

4.4. The pairing <, >y is defined as a sum of local terms. In [2] Beilinson expresses
the pairing <,>x as a sum of local terms, each defined cohomologically. The terms for
the finite and infinite primes are completely analogous. To describe them in a unified way,
introduce a rigid abelian tensor category 7, with coefficient ring A =Ends(1), and objects
RI.(X), RI'v(X) in the derived category D®(T) for schemes of finite type X/F and closed
subsets Y C X. Write RI'(X) = RI'x(X). The cases we need to consider are:

(i) F is either a number field or a finite extension of QpF, T is the category of

continuous finite-dimensional representations of Gal(F/F) over A = Q;, and RI\(X) =
RI'. (X4, Qu);

14



(i) F=R or C, T is the category of mixed R-Hodge structures over F', and RI.(X)
is the Hodge complex constructed in [1].

4.5. In both cases there is a “Tate object” A(1) of T (A = Q; or R), and we write
RI.(X,n)=RI.(X)®A(n). The corresponding cohomology objects in 7 will be denoted
H!(X,n). We then obtain “absolute” cohomology complexes and groups:

RFT‘(Xa ’)’l) = RHOIII(].T,M.(X, ’)’l)) € D(A)a
HY% (X,n)=H"(RIr.(X,n))
and the “Hochschild-Serre” spectral sequence:
Ey = H(T,H!(X,n)) = Ext'(17, H! (X,n)) = H{/ (X,n)).

In the case (i) Hy(—,n) is the continuous étale cohomology [15] with coefficients Q;(n);
in (ii) it is the absolute Hodge (or Deligne-Beilinson) cohomology [1] Hy(—,A(n)).

4.6. The functors RI. enjoy the usual properties of cohomology with supports. For ex-
ample, there are triangles:

RIy(X) - RI(X) = RI(X~Y) = RIy(X)[1]
ﬂC(X - Y) - ﬂC(X) %ﬂc(y) %EC(X - Y)[l],

duality pairings
RIy(X)®QRI'(Y)— RIy(X), RI.(X)®RI'(X)— RI.(X)

and a trace map
Tr: RIL(X) — A(~N)[~2N]

if X is smooth of dimension N.

4.7. For X smooth and Y C X of codimension d one has the purity
Hy(X)=0 fori<2d

and the cycle class map
cly : A(—d) — HZ(X)

which is an isomorphism if Y is absolutely irreducible. This induces an absolute cycle map
clry : Z4(X) - Hiy (X,d)

which becomes an isomorphism when tensored with A.

4.8. For l-adic cohomology these are all standard facts, simply because Gal(F/F) acts
by transport of structure. In the case of Hodge cohomology the fact that the various
arrows are compatible with the Hodge structures is not always obvious, but follows from
the results of [1] and [8].
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4.9. We will refer to case (i) with F' a finite extension of QJ* and case (ii) as the local
cases. In the local cases there is a canonical isomorphism

HY(T,A(1)) =Ext(A(0),A(1)) = A (4.9.1)

given by 2.6 in case (i), and by 2.4 in case (ii).

4.10. In all the cases we are considering, the functor H" factors through MM}, when
k C F, so we can speak of the 7-realisation of a mixed motive over k.

Ideally one would like to be able to take 7 = MMy, itself, but at present this is
unknown. In this case the groups Hy would hopefully be the motivic cohomology groups
H 4. This would be part of the formalism of a “derived category of motivic sheaves”, as
explained in [2] §5.10—see also [9] (both these references are discussed in [17]).

4.11. Although Beilinson’s local pairings can be defined in a purely local setting, we will
assume that we are in the setting of 4.1, and that one of the local cases for T, with
F Dk, has been fixed. To simplify the notation, in the cohomology groups we will write
X in place of X ® F, etc. Let &, n be cycles on X of codimensions a, b respectively,
with disjoint supports Y, Z. Assume that their global absolute cohomology classes in
HZ*(X, ) vanish; this is true if their rational equivalence classes lie in CH*(X)g), cf.

(4.3.1) above. Write V = X — Z and let cly(n) € H2*~'(V,b) be any cohomology class
whose image in H%—l” 7(Xk,b) is cl7 z(n). The local pairing <&,n>x 7 is by definition the
image of —cl7 vy (§) ®cly(n) under the composite map

HZy (Vo) @ HZW(V,b) % HEW(V,N+1) -5 HE(T,1)

lz Jz(4.9.1)

H¥(X,a)@HF T (V)b) ———— ===~ - A

4.12. The cases of interest here are the non-archimedean case 4.4(i) with F = k)", and
the archimedean case 4.4(ii) with F' =k, (v infinite). We then write <,>x , instead of
<>Xx,7-

If &, n are cycles with disjoint support whose rational equivalence classes belong to
CH*(X )%), then for v finite <¢,7>x , is in Q and (as the notation suggests) is independent
of [. The global pairing is given by

< m>x =Y <En>xw— Y 108, <En>x 0.

v|oo v

4.13. Since we want to be precise about the signs we give some details of the proof of the
above compatibility in the case of a finite place. Write R for the ring of integers of F' =k},
and use e to denote supports in the closed fibre X,,. Let m: X — Spec O be the structural
morphism, and Y, Z the supports of £, n in X. We then have the following diagram:
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HYG ™ (Xr, m' Qua—N) @ HP (Vi Qu(b))  —  Hy* ™Y (X, ' Qu(a—N)) @ H* 7 (Vi Qu(b))

lid@@

HY 53N (X, 7' Qula—N)) @ HZ 4 (Xr, Qu(b))

|0

HZ(Xg,m'Qu(1))

n

H2(Spec R,Q,(1))

Td(.)

Q

®

2
@
2
®

Hy (Vi, 7' Qu(1))

Hl(Xk,ﬂ'!Ql(l))

o
!
n

H* (k, Qu(1))

17

l(2.6.1)
Q

H¥ (X3, Qi(a)) @ H**=1(Vi, Qu(b))

|0

HZN TN (Vi Qu(N +1))



Let £ € H%‘gﬁg.(XR,ﬂ!Ql(a — N)) be the cohomology class of the extension of ¢ to X,

whose existence is assured by the definition of CH(X)g. The image of £ ®cly(n) in

the first column is the intersection pairing on Xg; the image of —¢ ® cl, (n) round the
extreme right-hand edge of the diagram is the cohomological definition from 4.11. The
parts of the diagram labelled 2, 3 clearly commute; 4 commutes because the trace map
mn' —id is compatible with the boundary in the long exact cohomology sequence; and 5
is anti-commutative (see SGA41, “Cycle” 2.1.3). The desired compatibility follows from
the commutativity of 1, which is a consequence of 0.1 above.

4.14. Using our sign conventions, the sign in Beilinson’s definition [2] 2.1.1(i) should be
reversed; (iii) is correct as it stands; and the sign in (ii) depends on the normalisation of
the signs in the Mayer-Vietoris sequence.

5. Comparison of the local pairings

5.0. Let X be as in 4.0 above, and let a, b > 1 be integers with a+b= N +1. To make
the comparison between the motivic and geometric pairings, we assume that X admits a
regular model over O as 4.1, and that the hypothesis 3.6 holds for the motive M = h?*~1(a).

5.1. Let Y, Z, be disjoint closed subschemes of X of codimensions a, b respectively. Let
U=X-Y,V=X-Z. We introduce some further notation. Write Z¢(X) for the
group of cycles of codimension a with coefficients in Q which are supported on Y, and
likewise for Z. Write Z&(X)° for the subgroup of cycles homologically equivalent to zero.
Analogously, define

HZ*(X,Q(a))’ = ker(H%l(Y, Qi(a)) = H**(X,Qu(a))).

Write H = Z%(Y)O and H = Z%(Y)O. These spaces are equipped with an action of

Gal(Q/Q), and may be viewed as Artin motives. The cycle class map gives isomorphisms
HoQ ~H(X,Q(b)°, H'®Q~Hy*(X,Qi/a))°

which we use without further comment.

5.2. Consider the motive E = h?*~}(Urel Z)(a) (as in 1.4 above). There are exact se-
quences
R**2(U)(a) — h** 2(Z)(a) — E — h**" 1 (U)(a) — 0

and
0— M — h?* Y U)(a) — H'(0) — 0
(since dimZ =a—1 and codimY =a). The trace map defines an isomorphism
h?2=2(Z)(a) ~
HY(1).
2y @)
Therefore E is a motive with Gr? E = HY(1)® M @ H'(0). By 2.5 and the hypotheses

of 5.0 the motives W_1E and E/W_5E are motives over O, whence there are the local
pairings of §3:

for finite v
byg: HxH — { Qi ’
= R for infinite v.
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Theorem 5.3. If¢ € H', ( € H and their rational equivalence classes belong to C H* (X)OQ0
then b, g(§,() =<€,(>x, for every place v of k.

Proof. We first recall that the local geometric pairing enjoys a basechange property anal-
ogous to 3.2—this is almost automatic from the definition. Therefore we may assume
(enlarging k if necessary) that the action of Gal(k/k) on H and H' is trivial. Fix v and
take the corresponding 7-cohomology as in 4.4 above. By abuse of notation write H(n)
for the objects H® A(n) of T. Define a map 6 by the commutativity of the diagram:

H Y HZ(X,a) — HO(T,H?(X,a))

| |
o Fi'HE (V) — HZ2(V,a) - HO(T,H?(V,a))

el

HY(T,Hz*~'(V,a))

(Here Fil" and e* are the filtration and edge homomorphisms coming from the “Hochschild-
Serre” spectral sequence

Ey = H(T,Hi(V,a)) = Hf .(V,a);
c.f. 0.3 above.)
Proposition 5.4. 0 is the classifying map for the extension:
0 — H?>Y(XrelZ,a) — H?*'(UrelZ,a) — H'(0)—0

[
HZ?"Y(V,a)

This is a very mild generalisation of [16], Lemma 9.4 (l-adic) and Lemma 9.2 and
Remark 9.7(c) (Hodge). |

We now have split short exact sequences

9,

0 — HY(1) —3 H?'(V,a) — H* YX,a) — 0
0 — H»YX,b) — H?»YVb) -5 H(0) — 0

which are dual, by lemma 0.2. Choose splittings in T

o: H(0) — H?*~1(V,b)
mH* 1(V,a) — HY(1)
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which are adjoint with respect to this duality; in other words, so that the diagram
H2 ' (V,a—1)@H 23  H2Y(V,a—1)@H® ' (V,b)
lT®1 lP.D. (5.4.1)
HY®H(0) conrget A(0)
is commutative. Without loss of generality we may also assume (by choice of c~l7- in 4.8)

that the diagram
HoA —  HT,H(0))

|ar |70

H2N(V,b) s HO(T,H?L(V,b)

commutes. We now have a large diagram:
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H2 (X,a)°@ H? ' (V,b)

lobvious@id
Fil' H2*(V,a)® H7*~'(V,b)
clr,y ®clr J/el®eo
HYT,Hz*"(V,a) @ HY(T,H*~(V,b))
/000 Tid@a
HeH %Y HY(T,H*~Y(V,a))® H

21

0
S ER(V,N+1)

®
5 HY(T,HN*Y(V,N+1))

=S YT HY @A) @ H

HY(T,A(1))

Tcontract

HY®QHHY (T,A(1))



of the Hochschild-Serre spectral sequence. [

7.3. By passage to the limit over Y we obtain the desired homomorphism «. Now by
Poincaré duality there is an isomorphism A2°~1(X)(b) ~ MV (1), which in accordance with
the conventions for signs (cf. Lemma 0.2) is normalised by taking the cup-product in the

order
h2=1(X)(a) x h2~1(X)(b) = B2V (X) (N +1)25Q(1).

We thus obtain a homomorphism
CH"(X)? — Extg(Q(0),h*(X)(b)) = Extg (Q(0), MY (1)) = Extg (M, Q(1))

which we take to be —f.

7.4. In a moment we will need an alternative description of 5. Consider the exact sequence
h?=2(X)(a) — h**72(Z)(a) — h** (X rel Z)(a) — h**~ 1 (X)(a) — 0.  (7.4.1)

A cycle ¢ € Z%(X) gives a trace map h??~2(Z) — Q(—a+1), which vanishes on the image
of h?2=2(X) if ¢ is homologically equivalent to zero. By pushout we obtain directly an
extension of M by Q(1), whose class we denote §'().

Proposition 7.5. The extension classes 3(¢) and () are equal.

Proof. By the compatibility 0.2, the [-adic realisation of the exact sequence (7.4.1) is dual
to the local cohomology sequence

0— H? 1 (X,b—1) — B (Ub— 1) "3 HP(X,b—1) — H*(X,b-1).

By the comparison theorems the same is true in the other realisations (in a way compatible
with the comparison isomorphisms) and the trace map is dual to the cycle class map
Z5(X)— HZP(X,b). The extension classes therefore agree. |

7.6. One hopes that a ® Q, f ® Q are isomorphisms, and one might dream that
<a(zr),B(y)>m = <z,y>x. In the absence of 6.3 we will be content with the follow-
ing motivic interpretation of <—,—>x.

Theorem 7.7. Let GC CHPY (X)OQO, G'CcCH* (X)%) be any finite-dimensional subspaces.

Assume the hypotheses of 5.0 hold. Then there is a motive M over Z with the following
properties:

(i) GtV M=G'(0), Gr™,; M =M and Gr", M =GV (1); Gr/¥ M =0 for all other i.

(ii) The classes of the intermediate extensions
0 — M — M/W_,M — G'0) — 0
0 — GY(1) — WM — M — 0
are given by «, [ respectively.
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(iii) If x € G', y € G then bm7ﬂ(x,y):<x,y>x.

Proof.  We first construct a motive E’ over Q satisfying (i) and (ii). By the moving
lemma, there are disjoint closed subschemes Y, Z of X, of codimensions a, b respectively,
such that any element of G’ (resp. G) is rationally equivalent to a cycle supported in Y
(resp. Z). Using the same notations as in 5.1 above, we define E”' = h2¢~}(Urel Z)(a).

Choose splittings over G and G’
sply:G' — Z8(X)°C H', spl,:G— 25(X)°CcH

of the cycle class maps. Applying to E” pullback by sply and pushout by the transpose
of spl,, we obtain a motive E' with Gr!¥ E' =GV (1) ® M & G’(0). From the construction
and 7.2 above it is clear that the extensions E'/W_sE’ and W_,E’ are classified by the
homomorphisms «, £, and in particular do not depend on the choice of splittings. (Of
course F' itself does in general depend on this choice.)

By 5.3 above and 3.11 it follows that, for any y € G’ and z € G,
by, 5 (y,2) = <sply (y),splz(2)>g, for v=o00 or p.

This and the hypotheses imply that the pairings b, g are Q-valued, independent of
[. By 6.1 above we may therefore construct M = E, a motive over Z, satisfying all the
requirements of the theorem. [

7.8. To explain the connection with special values of L-functions, we first briefly review
the reformulation of the conjectures of Beilinson and others in terms of periods of mixed
motives [21]. If M is a pure motive of weight w € Z, then under some general hypotheses
it is possible to construct a certain associated mixed motive, which in the present context
we have denoted M, in four steps:

(i) First remove any submotive isomorphic to Q(0). This means replace M by the quo-
tient motive M, in the exact sequence

0 — Hom(Q(0), M)®Q(0) - M — M; — 0.

(ii) Next remove any quotient motive isomorphic to Q(1). This replaces M7 by Ms, which
is the kernel:
0— My — M; — Hom(M1,Q(1))¥®Q(1) =0

(iii) Now take the universal extension of My by Q(1) on the left and by Q(0) on the right.
This comes from the two exact sequences

0 — Exty (M2, Q(1))V®Q(1) = M3 — My —0
0— M3 — M — Ext} (Q(0), M3) ® Q(0) — 0

Using the hypothesis Exty (Q(0),Q(1)) =0 it is easily seen that in step (iii) the order

in which the extensions are made is immaterial, and that M has a three-step filtration,
with associated graded pieces Exty(Q(0), M)®Q(0), My and Exty(M,Q(1))V@Q(1).
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7.9. In [21] it was explained that the conjectures of Beilinson and Bloch are equivalent to
the conjecture:

The mixed motive M is critical (see 3.15 above) and L(M,0)/ct (M) € Q*.

7.10. This is a special case of the conjectures A-C of [21]. In fact it was shown in section
VI of that paper that this is in some sense the essential case of those conjectures. We now
explain this in greater detail in the present case when M = h2?~!(a) has weight -1. This
is the only case in which both of the groups Exty (M, Q(1)) and Exty(Q(0), M) can be
non-zero. We write p, p’ for their dimensions (assumed to be finite in the entire discussion).
To make the link between the motivic and the geometric setting we need to assume that
the maps «, 3 are isomorphisms.

The L-function of M is
L(M,s)=L(M,s)-((s+1)-((s)".

(Note that we have exact equality here as M is a motive over Z; were this not the case

we would have to remove one or more Euler factors of the form (1—p~%)~!, which would
change the order of L(M,s) at s =0.) On the other hand, combining 7.7(iii) with 3.15
above, we see that M is critical if and only if the height pairing <-,«>g is non-singular;

—_~

and if this is the case, then ¢™ (M) = c¢T(M)-det<-,->g. Thus the “motivic” conjecture
7.9 is in this case equivalent to the conjunction of the statements:

e The geometric height pairing <-,->¢ is non-singular;

e ords—g L(M,s) = p, and the leading coefficient in the Taylor series of L(M,s) about
s=0 is a rational multiple of ¢ (M)-det <-,->¢.

This is precisely the generalisation by Beilinson and Bloch of the Birch-Swinnerton-
Dyer conjectures to arbitrary Chow groups.
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