On the Hecke algebra of a noncongruence subgroup

A. J. Scholl

1.

Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index, and let \mathcal{H} denote the Hecke algebra of Γ . The aim of this note is to give some information about the action of \mathcal{H} on spaces of modular forms for certain noncongruence subgroups Γ , which can be deduced from the geometric results of [9].

We begin by recalling standard facts concerning Hecke algebras and modular forms, for details of which the reader is referred to Chapter 3 of Shimura's book [11]. By definition \mathcal{H} (in Shimura's notation, $R(\Gamma, GL_2(\mathbb{Q})^+) \otimes \mathbb{Q}$) is the \mathbb{Q} -algebra spanned by double cosets $[\Gamma\gamma\Gamma]$, for $\gamma \in GL_2(\mathbb{Q})$ with det $\gamma > 0$. Write as usual $M_k(\Gamma)$ for the complex vector space of holomorphic modular forms of weight $k \geq 0$, and $S_k(\Gamma)$ for the subspace of cusp forms. There is a natural action of \mathcal{H} on $M_k(\Gamma)$, which preserves $S_k(\Gamma)$. (In fact there is more than one way to normalise this action; the choice is irrelevant for this paper.)

The Petersson inner product

$$\langle f, g \rangle = \int_{\Gamma \setminus \mathfrak{H}} f(z) \overline{g(z)} y^{k-2} \, dx \, dy$$

is defined for $f \in M_k(\Gamma)$, $g \in S_k(\Gamma)$. The Hecke algebra is *-closed with respect to the Petersson inner product and so acts semisimply on $S_k(\Gamma)$, and leaves invariant the orthogonal complement $S_k(\Gamma)^{\perp} \subset M_k(\Gamma)$.

When Γ is a congruence subgroup the action of \mathcal{H} on $S_k(\Gamma)$ and $M_k(\Gamma)$ is quite well understood, by the work of Hecke [5] and Atkin-Lehner [1]. Firstly, the structure of \mathcal{H} itself is relatively simple; in particular, it contains a large commutative subalgebra \mathcal{T} , generated by the operators denoted here

$$T_p = \Gamma \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \Gamma, \quad S_p = \Gamma \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} \Gamma$$

for primes p not dividing the level of Γ . (This is not the usual definition of T_p , but agrees with it if $\Gamma = \Gamma_0(N)$.)

Secondly, one knows that $S_k(\Gamma)$ is a direct sum of simple \mathcal{H} -modules V_j , which are pairwise non-isomorphic. The complement $S_k(\Gamma)^{\perp}$ is not always a semisimple \mathcal{H} -module, but it is spanned by Eisenstein series and its structure can be explicitly described. Moreover, no subquotient of $S_k(\Gamma)^{\perp}$ is isomorphic to any V_j .

Finally, if $\Gamma_1(N) \subset \Gamma \subset \Gamma_0(N)$ for some N, one has even more precise information, by Atkin and Lehner's theory of newforms; each V_j contains a unique distinguished element f_j , which is an eigenvector for \mathcal{T} , and V_j is determined by the character of \mathcal{T} on f_j (in fact, even by the eigenvalues of the T_p for almost all p).

If Γ is not a congruence subgroup very little is known. Firstly, the structure of \mathcal{H} seems complex and difficult to compute. For example, if Γ is a normal subgroup of $\Gamma(1) = SL_2(\mathbb{Z})$ containing -1 then \mathcal{H} contains the group algebra of the finite group $\Gamma(1)/\Gamma$, which can be any finite group generated by an element of order 2 and one of order 3.

Furthermore, in contrast to the congruence case the operators T_p often act in an essentially trivial way. To be more precise, let $\Gamma' \supset \Gamma$ be the smallest congruence group containing Γ . Write Γ' as a union of double cosets $\cup \Gamma \gamma_i \Gamma$. Then the operator $\operatorname{tr}_{\Gamma,\Gamma'} = \sum [\Gamma \gamma_i \Gamma] \in \mathcal{H}$ clearly maps $M_k(\Gamma)$ into $M_k(\Gamma')$, and $\operatorname{pr}_{\Gamma,\Gamma'} = (\Gamma' : \Gamma)^{-1} \operatorname{tr}_{\Gamma,\Gamma'}$ is a projector onto that subspace. Moreover the restriction of $\operatorname{pr}_{\Gamma,\Gamma'}$ to $S_k(\Gamma)$ is the orthogonal projection, with respect to the Petersson inner product, onto $S_k(\Gamma')$.

Define the spaces of primitive forms on Γ by

$$M_k(\Gamma)^{\text{prim}} = \ker(\operatorname{tr}_{\Gamma,\Gamma'}: M_k(\Gamma) \to M_k(\Gamma')); \quad S_k(\Gamma)^{\text{prim}} = S_k(\Gamma) \cap M_k(\Gamma)^{\text{prim}}.$$

Thus $S_k(\Gamma)^{\text{prim}}$ is the orthogonal complement of the subspace of modular forms for congruence groups in $S_k(\Gamma)$.

Conjecture (Atkin). In \mathcal{H} the identity $T_p = T_p \circ \operatorname{tr}_{\Gamma,\Gamma'}$ holds; in particular, $T_p f = 0$ for every $f \in M_k(\Gamma)^{\operatorname{prim}}$.

Serre [10] proved this conjecture assuming $\Gamma \subset \Gamma' = SL_2(\mathbb{Z})$ is a normal subgroup. In [12] Thompson explains how this result may be extended to certain non-normal subgroups. The present note concerns the action of the entire Hecke algebra \mathcal{H} on $M_k(\Gamma)^{\text{prim}}$. We will exhibit some cases when it is rather trivial. We consider the following subgroups of $SL_2(\mathbb{Z})$. Write Γ_{43} for the subgroup generated by the matrices

$$\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$$

and Γ_{52} for the subgroup generated by

$$\begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}.$$

 Γ_{52} and Γ_{43} both have index 7 and two cusps, of widths 4 and 3 (5 and 2, respectively).

Theorem 1. Let $\Gamma = \Gamma_{43}$ or Γ_{52} , and let k be a positive even integer. Then there is a homomorphism $\chi: \mathcal{H} \to \mathbb{C}$ such that

$$Tf = \chi(T)f$$
 for all $T \in \mathcal{H}$ and $f \in M_k(\Gamma)^{\text{prim}}$.

Remarks. (i) In particular, the Hecke algebra cannot distinguish between cusp forms and Eisenstein series on Γ —in contrast to the case of a congruence group. This is of course related to the failure of the Manin-Drinfeld theorem [4] for arbitrary Γ , in the case of weight 2 forms. In [7] it is explained how this gives rise to Eisenstein series whose Fourier coefficients are transcendental.

- (ii) It is possible to write down the character χ of the Theorem in purely group-theoretic terms, by taking f to be a suitable Eisenstein series. But we will not go into this here.
- (iii) Let Γ_{711} be the subgroup of index 9 generated by

$$\begin{pmatrix} 1 & 7 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$$

which has a cusp of width 7 and two cusps of width 1. This group was studied in [2] and extensively in [8]. The same method of proof as of Theorem 1 shows that there is a codimension 1 subspace of $M_k(\Gamma_{711})^{\text{prim}}$ containing $S_k(\Gamma_{711})^{\text{prim}}$, on which \mathcal{H} acts through a character.

2.

For the moment we allow Γ to be arbitrary, and assume that $k \geq 2$. In this situation there are then defined the Eichler-Shimura cohomology groups associated to Γ ([11], Chapter 8). There is a \mathbb{Q} -vector space $\mathcal{W}_k(\Gamma)$, together with an inclusion $\iota: S_k(\Gamma) \hookrightarrow \mathcal{W}_k(\Gamma) \otimes \mathbb{C}$ such that the map $(f,g) \mapsto \iota f + \overline{\iota g}$ is an isomorphism

$$S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \xrightarrow{\sim} W_k(\Gamma) \otimes \mathbb{C}.$$
 (2.1)

To recover this from the results of [11], we take X to be the (k-2)-fold symmetric power of the standard representation $\Gamma \hookrightarrow GL_2(\mathbb{Q})$. The space $\mathcal{W}_k(\Gamma)$ is, in the notations of [11] §8.1, the cohomology group $H_P^1(\Gamma, X)$. The isomorphism (2.1) is the complexification of Theorem 8.2 of [11].

Moreover if one uses ordinary rather than parabolic cohomology, one obtains a larger space $W_k^*(\Gamma)$ (which is $H^1(\Gamma, X)$ in the notations of [11]) together with an inclusion $M_k(\Gamma) \hookrightarrow W_k^*(\Gamma) \otimes \mathbb{C}$ giving an isomorphism

$$M_k(\Gamma) \oplus \overline{S_k(\Gamma)} \xrightarrow{\sim} W_k^*(\Gamma) \otimes \mathbb{C}.$$
 (2.2)

(This isomorphism is well known but does not figure in [11]. The essential ingredients of a proof in exactly the context needed here can be found in §2 of [6], especially 2.13(iii).) The Hecke algebra acts on $\mathcal{W}_k^*(\Gamma)$, leaving invariant $\mathcal{W}_k(\Gamma)$. With respect to this action the isomorphisms (2.1) and (2.2) are \mathcal{H} -equivariant. Write

$$\mathcal{W}_k^*(\Gamma)^{\mathrm{prim}} = \ker (\operatorname{tr}_{\Gamma,\Gamma'} : \mathcal{W}_k^*(\Gamma) \to \mathcal{W}_k^*(\Gamma')).$$

To prove Theorem 1 it is enough to prove that $\mathcal H$ acts on $\mathcal W_k^*(\Gamma)^{\mathrm{prim}}$ through a character.

Let ℓ be a prime number. Then associated to Γ there is a certain algebraic number field K, and a continuous homomorphism

$$\rho_{\ell} : \operatorname{Gal}(\overline{\mathbb{Q}}/K) \to \operatorname{Aut}(\mathcal{W}_k^*(\Gamma) \otimes \mathbb{Q}_{\ell})$$

whose image commutes with that of \mathcal{H} . The representation ρ_{ℓ} leaves the parabolic subspace $\mathcal{W}_k(\Gamma) \otimes \mathbb{Q}_{\ell}$ invariant. These representations were introduced by Deligne [3] in the case of congruence subgroups, in which case one may take $K = \mathbb{Q}$. For general Γ the representations have been studied in [6], [8] and [9]. We refer to §5.3 and 5.10(ii) of [6] for the precise definitions. In the cases considered here, one has in fact $K = \mathbb{Q}$.

Using methods from algebraic geometry, and in particular the theory of vanishing cycles, we obtained in [9] a criterion for the image of ρ_{ℓ} to contain a "long" unipotent element. In particular, in §4 of [9] the following result is proved:

Theorem 2. Let Γ be one of Γ_{52} , Γ_{43} , Γ_{711} . Let p=7, 7 or 2 respectively, and let $\ell \neq p$. Let k>2 be even. Then the image under ρ_{ℓ} of an inertia subgroup at p contains a unipotent element $U \in \operatorname{Aut}(\mathcal{W}_k^*(\Gamma)^{\operatorname{prim}} \otimes \mathbb{Q}_{\ell})$ such that $(U-1)^{k-2} \neq 0$.

More generally, the conclusion of Theorem 2 holds for any Γ which satisfies the following condition about the reduction of the modular curve attached to Γ ; there is a smooth point in the reduction mod p of the modular curve which is the reduction modulo p of exactly two cusps.

From standard formulae for dimensions of spaces of modular forms, one computes without difficulty that in the cases Γ_{43} , Γ_{52} one has dim $M_k(\Gamma)^{\text{prim}} = \dim S_k(\Gamma)^{\text{prim}} + 1 = k/2$ for even $k \geq 2$. Therefore dim $\mathcal{W}_k^*(\Gamma)^{\text{prim}} = k - 1$, and so the Jordan normal form for U has exactly one block. Also since $S_k(\Gamma)^{\text{prim}}$ has codimension 1 in $M_k(\Gamma)^{\text{prim}}$, the Hecke algebra acts semisimply on $M_k(\Gamma)^{\text{prim}}$, hence also on $\mathcal{W}_k^*(\Gamma)^{\text{prim}}$. Its image in End $\mathcal{W}_k^*(\Gamma)^{\text{prim}}$ commutes with U, and is therefore contained in the scalars. This proves Theorem 1.

For the case of $\Gamma = \Gamma_{711}$ (remark (iii) following Theorem 1) one has dim $M_k(\Gamma)^{\text{prim}} = \dim S_k(\Gamma)^{\text{prim}} + 2 = k/2 + 1$, but one knows that the Galois representation $\mathcal{W}_k^*(\Gamma)/\mathcal{W}_k(\Gamma) \otimes \mathbb{Q}_\ell$ is the Tate twist of the permutation representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the cusps of the modular curve. In particular, the inertia group at p acts through a finite quotient, hence the Jordan normal form for U acting of $\mathcal{W}_k(\Gamma)^{\text{prim}} \otimes \mathbb{Q}_\ell$ still has exactly one block. The claimed result follows easily by the same method.

Remark. We chose the three subgroups Γ_{43} , Γ_{52} , Γ_{711} for ease of computation, rather than for any special properties they have. In particular, we expect many noncongruence groups to satisfy the requirements of Theorem 2.

Acknowledgement

This paper was written in the spring of 1993, while the author was an S.E.R.C Visiting Fellow at the Isaac Newton Institute for Mathematical Sciences, Cambridge.

References

- **1** A. O. L. Atkin, J. Lehner; Newforms on $\Gamma_0(m)$. Math. Annalen **185** (1970), 134–160
- **2** A. O. L. Atkin, H. P. F. Swinnerton-Dyer; *Modular forms on noncongruence subgroups*. AMS Proc. Symp. Pure Math. XXIX (1969), 1–25
- 3 P. Deligne; Formes modulaires et représentations ℓ-adiques. Sém. Bourbaki, exposé 355. Lect. notes in mathematics 179, 139–172 (Springer-Verlag, Berlin-Heidelberg-New York 1969)
- 4 V. G. Drinfeld; Two theorems on modular curves. Functional Anal. Appl. 7 (1973), 155–156
- **5** E. Hecke; *Mathematische Werke*. Vandenhoeck und Ruprecht, Göttingen, 1959
- **6** A. J. Scholl; Modular forms and de Rham cohomology; Atkin–Swinnerton-Dyer congruences. Invent. math. **79** (1985), 49–77
- **7** A. J. Scholl; Fourier coefficients of Eisenstein series on noncongruence subgroups. Math. Proc. Camb. Phil. Soc. **99** (1986), 11–17
- **8** A. J. Scholl; The ℓ -adic representations associated to a certain noncongruence subgroup. J. fur die reine und ang. Math. **392** (1988), 1–15
- **9** A. J. Scholl; Vanishing cycles and non-classical parabolic cohomology. Invent. math. (in press, 1996)
- 10 J.-P. Serre; Letter to Thompson. Appendix to [12]
- 11 G. Shimura; Introduction to the arithmetic theory of automorphic functions. Publications of the Math. Soc. of Japan 11 (Iwanami Shoten/Princeton, 1971)
- 12 J. G. Thompson; *Hecke operators and noncongruence subgroups*. In: Group Theory (Singapore 1987), 215–224 (de Gruyter, Berlin-New York, 1989)

Department of Mathematical Sciences Science Laboratories University of Durham Durham DH1 3LE England

e-mail: a.j.scholl@durham.ac.uk