MODULAR FORMS AND ALGEBRAIC K-THEORY

A. J. SCHOLL

In this paper, which follows closely the talk given at the conference, I will sketch
an example of a non-trivial element of K5 of a certain threefold, whose existence is
related to the vanishing of an incomplete L-function of a modular form at s = 1.
To explain how this fits into a general picture, we begin with a simple account, for
the non-specialist, of some of the conjectures (mostly due to Beilinson) which relate
ranks of K-groups and orders of L-functions, supplemented by examples coming from
modular forms. The picture presented is in some respects wildly distorted; among
the important topics which are given little mention are:

(i) the connection between special values of L-functions and higher regulators,
which is at the heart of the Beilinson conjectures;
(ii) the conjectures of Birch and Swinnerton-Dyer, and their generalisation by
Beilinson and Bloch;
(iii) the theory of (mixed) motives, which underlies the constructions of the last
section.
But I hope that it may be of some use as a gentle introduction to the subject, and to

prepare the reader for a more comprehensive account (see for example [9,17,18,21]
and above all [1]).

1. BEGINNINGS

The story begins with Dirichlet’s unit theorem: if F'is a number field with ring of
integers o, then

rtkop =r;+19—1
= ords—q Cp(s)

and there is the analytic class number formula, which at s = 0 reads:
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(1) Cr(0) =

where (}(0) denotes the leading coefficient in the Taylor series of (r(s) at s = 0.
More generally, let S be a finite set of primes of F', and oy g the ring of S-integers of



F. Then the S-unit theorem says
rkopg =11 +12 — 1+ #S
= ords—o Cr,5(5)

where (g s(s) is the incomplete zeta function:
Crs(s) = [T(1—Np™)".
pES

and the analogue of (1) is the S-class number formula.
Borel found a generalisation of these results to the zeta function at arbitrary neg-
ative integers:

Theorem. [5] Let [ > 0 be an integer. Then Kyop is finite, and

ri+1ry [ even
T l odd

= ords—_; (r($).

rk Kojp10p = {

Moreover the leading coefficient (j(—1) is equal, up to a non-zero rational factor, to
a “higher regulator”.

Remarks: (i) Here K;op are the higher K-groups of F', as defined by Quillen (see
section 2). This is a natural generalisation of the unit theorem since Kjorp = 0}.
The fact that K,;op are finitely generated was proved by Quillen.

(ii) The higher regulator is the determinant of a certain natural homomorphism

Kypiop @ R — R™,  my = ord,— CF(S)-

(iii) The analogue of the S-unit theorem for these higher K-groups is uninteresting;
on the one hand, one has

(2) Kporps®Q=KporQ=KF®Q

for every ¢ > 1 (cf. section 2); on the other, the individual Euler factors in (r(s) have
no poles at negative integer points, so

ords——; (p(s) = ords=—; Crs(s)

for any finite set S of primes and any [ > 0.



2. K-THEORY

For any scheme X there is a Grothendieck group KoX. It is defined as the abelian
group generated by symbols [£], where £ runs over all isomorphism classes of vector
bundles on X, with relations of the form

€] = [T+ €]

for every exact sequence 0 — & — & — £” — 0. For a ring R one can define KyR
to be Ky Spec R, or (which amounts to the same thing) as the Grothendieck group
of projective R-modules, with relations [M & N| = [M] + [N].

In a similar way one also has the group K| X, generated by [£] for arbitrary coherent
sheaves &£, with relations from exact sequences of coherent sheaves.

Quillen showed that KoX and K{X are part of an infinite sequence of groups K, X,
K, X for ¢ > 0, constructed as the higher homotopy groups 7,11 of certain spaces
attached to X. For some of the different ways to define them, see [10,16,22].

Among the important properties of these groups are:

(i) There are cup-products K,X x K, X — K, ,X;

(ii) For X regular (e.g. a smooth variety) K; X = K,X;

(iii) For Y C X a closed subscheme, there is a long exact sequence (the localisation

sequence)

= KY - KX > K(X-Y)—= K _|Y—..

(iv) O*(X) injects into KX, with equality if X = Spec F is the spectrum of a
field.
(v) The K-groups of finite fields are finite (of known order).

For a number field F' the localisation sequence gives

- — quF — KqUF,S — H Kq_lop/p — Kq_lop — ...
pesS

which together with (v) gives (2).

3. L-FUNCTIONS OF AN ALGEBRAIC VARIETY

Consider a smooth, projective algebraic variety X over Q. Since any variety over
a number field may be regarded—Dby restriction of scalars a la Grothendieck—as a
variety over Q (in general, not geometrically connected) the restriction to ground
field Q is not serious.

For each integer 7 in the range 0 < 7 < 2dim X there is an L-function L(h'(X), s),
which is an Euler product:

L(h'(X),s) = [[ B (0™) 7"



The polynomials P;,Si) (t) here are defined as follows. Pick a prime ¢ # p, and let
H(X) be the f-adic cohomology of X/Q, which is a finite-dimensional Q-vector
space on which Gal(Q/Q) acts continuously. Let I, C D, C Gal(Q/Q) be inertia
and decomposition subgroups at a prime of Q over p, and Frob, = ¢, Ve D,/I, the
inverse of the Frobenius substitution. Then

P = (1 - 1530, | (X))

is the characteristic polynomial of Frob, (the “geometric Frobenius”) acting on the
inertia invariants.

If X has a good reduction X, at p, then PISi) has integer coefficients, and does not
depend on ¢, by Deligne’s proof of the Weil conjectures [6]; moreover in this case the
zeroes of PIS“ (t) all have absolute value p~"/2. For general p it is conjectured that
Plgi) (t) has integer coefficients, is independent of ¢, and that its roots have absolute
values p~7/2 for various integers j < 4. This is known in very few cases (curves, a
class of surfaces and some sporadic higher-dimensional examples). For the conjectures
that follow to make sense, we must assume these local properties are true. It is then
conjectured that L(h'(X), s)—which is analytic and non-zero for R(s) > i/2 + 1, by
the Euler product—has a meromorphic continuation satisfying a functional equation
for the substitution s +— 1 +i — s.

4. GENERAL CONJECTURES

The part of Beilinson’s conjecture related to orders of L-functions can now be
approximately stated:

Let m be an integer satisfying m < % Write ¢ = 14+t — 2m. Then the order of
L(R'(X),s) at s = m is equal to the dimension of a certain subspace of K,(X)z ® Q.
More precisely, for g >0

dmK,Xz0Q= Y ordey, L(h(X),s).
1+i(ﬁgnn)1:q

Remarks: (i) The group K, Xz is defined as follows. Let X' be a regular model
for X over Z; in other words, X is a regular scheme, proper over Spec Z, such that
X ®Q = X. Then

K, Xz = Image(K,X — K,X).
It would be wrong to take K,X by itself; this can be seen already in the case of
X = Spec F, i =m =0 (so that ¢ = 1). For then K;X = F* has infinite rank, but
K,F)z = o} has the correct, finite rank. It was Bloch and Grayson who observed

that in higher dimensions, and for higher ¢, it might still be necessary to impose a
similar integrality condition (see section 5 below).



(ii) (dimension 0) In the case X = Spec F’ the conjecture is a consequence of Borel’s
theorem; as there is only one L-function (i = 0) there is no splitting up of the K-
groups. These are essentially the only L-functions for which the conjecture is known
to be true.

(iii) (dimension 1) If X is a curve, the conjectural picture is still quite simple.
There are three L-functions: L(h°(X),s) and L(h*(X),s), which are respectively
Cr(s) and (p(s — 1) (if X is irreducible with constant field F'), and the Hasse-Weil
L-function L(h'(X),s). There is a parity condition ¢ = 1 + i (mod 2). Therefore
the even K-groups K, X are expected to contribute to the order of the Hasse-Weil
L-function at the points s = 1 — ¢/2; whereas the contribution of the odd groups
should be to L(h°(X), s) and L(h?(X), s), and this should be accounted for by Borel’s
theorem.

For varieties of higher dimension it becomes necessary to specify a decomposition
of the K-groups into pieces corresponding to the various L-functions. There are
in fact two (conjecturally equivalent) ways to do this. The first rests on certain
conjectures on algebraic cycles (which are only known in a few cases). Suppose
that the decomposition of the cohomology H;(X) into its graded pieces is algebraic,
in the following strong sense: regard the projectors m;: H} (X) — H}(X) (for 0 <
i < 2dim X) as cohomology classes in HZ9™X(X x X). Then one wants algebraic
cycles II; on X x X whose cohomology classes are 7;, and whose images in the ring of
correspondences CH™X (X x X)®Q form a complete set of orthogonal idempotents.

This would follow from Grothendieck’s standard conjectures; it is the decomposi-
tion of the “motive” h(X) into submotives h*(X). It is known for curves and surfaces:
see [15] for more details.

The ring CH%™ ¥ (X x X)®Q acts on K, X ® Q. So if the projectors II; exist, one
can write K, X ® Q = ®K,h'(X), where K,h'(X) = IL(K,X ® Q). Let K,h'(X)/z
be the image of the composite:

K,X®Q— K,X®Q — K,h'(X).
The precise conjecture would then be:
dim K h'(X)z = ordsn L(R'(X),s) forg=1+1i—2m > 0.

Beilinson actually uses an alternative description of the decomposition, which is not
conjectural, and gives a reasonably computable theory (for example, it is compatible
with the maps in the localisation sequence when suitably interpreted). There are
certain operators ¢? (Adams operators) acting on the groups K, X, coming from the
exterior power operation on vector bundles. Define K é")X to be the subspace of
K,X ®Q on which 9? acts as multiplication by p”, with p > 1. It is known that this
is independent of p > 1 and that one has a direct sum decomposition:

KqX & Q - @nzothn)X.



Defining K é")X sz to be the image of K, X®Q in K, é")X , Beilinson’s precise conjecture
reads:

Conjecture 4.1. [1]
dim K" X7 = ords—, L(h'(X), 5)
forq=1+i—-2m>0andn=1+i—m=q+m.

Remark: The relation between these two decompositions is almost completely con-
jectural. It is only over a number field that one expects the two decompositions to
be the same—this is apparent even in the case X = Spec F.

To formulate an S-integral version of the conjecture, let S be a finite set of rational
primes, and Zs = Z[{p~'},es], as in the first section. Let X5 = X ® Zg be the
restriction of the regular model to Spec Zg, and define

KXz, = Image(K,Xs ® Q — K[ X)

Conjecture 4.2. Let Lg(h'(X),s) be the incomplete L-function (i.e. with the Euler
factors for p € S removed). Then:

dim K\ X 7, = ordy—, Ls(h'(X), 5)
forq=1+i—-2m>0andn=1+7—m=q+m.

Remarks: (i) The order of the incomplete L-function at s = m is the sum of the
order of the complete L-function and

> dimker(Frob, —p™ | Hj(X)")

peS
(assuming that the action of Frob, is semisimple). In particular, if p is a prime
of good reduction, then there will be no contribution to the sum unless m = i/2.
Thus for m < i/2 (ie. ¢ > 1) the order of Lg stabilises as soon as S contains all
bad primes. At the same time, K, X,z is the kernel of the boundary map in the
localisation sequence:

KXz = ker(K,X — [] K| Xe,).
pgs

For a good prime p, K; Ap, = K, 1Ar, and Parshin has conjectured that this is
torsion if ¢ — 1 # 0. If this conjecture is true, then the left-hand side of conjecture
4.2 also stabilises as soon as S contains all bad primes.

(ii) Conjecture 4.2 was made by Deligne in [7]. He also asked for the existence of
an S-regulator analogous to the one for units. A general candidate for this has yet
to be constructed; for something in this direction see section §4.7 of [17].



5. MODULAR CURVES

Let I' be a congruence subgroup of SLy(Z) of level n, and let Ur be the modular
curve, whose set of complex points is the non-compact Riemann surface I'\ ). There
is the standard compactification

Xr = Ur U (cusps)

which has the structure of an irreducible curve over the field Q(¢,) (although it often
can be defined over a smaller field). The Hasse-Weil L-function of Xr is a product

9

L(hl(Xr)> s) = H L(fs,s)

i=1

where f; are certain (not necessarily distinct!) newforms of weight 2 and some level,
and L(f;, s) is the associated Hecke L-series. There is a functional equation relating
L(h*(X),s) and L(h'(X),2 — s).

At the point s = m = (1+4)/2 = 1 one has the conjecture of Birch and Swinnerton-
Dyer. This fits into the framework of 4.1 because of the relation between K, of a
curve and its Jacobian. At other points the functional equation determines the order
of vanishing of the L-function, and

orde_p, L(RY(X),s) =g form =0, -1, =2, ...

Conjecture 4.1 therefore predicts that Ky, X,z will have rank at least g, for every
positive integer 7.

Remarks: (i) As defined here, g will equal ¢(n) times the genus of the curve Xr.
If the chosen field of definition is Q, g will be simply the genus.

(ii) The levels of the forms f; need not equal n, or even divide n; however they
always divide n?.

The simplest case is the point s = 0. Here we have the fundamental result of
Beilinson:

Theorem. (a) [1] There exists a g-dimensional subspace Pr of KoXr ® Q; its reg-
ulator is a mon-zero rational multiple of L9 (h*(Xr),0).
(b) [19] Pr is contained in Ky X,z @ Q.

The proof of the theorem involves an explicit construction of elements of Ko X1 ®Q.
We indicate here the idea of the construction; for details, including the definition and
calculation of the regulator, the reader should consult [1],[2] or [19]. The basic tool
is:

Theorem (Manin-Drinfeld). Any divisor of degree zero on Xt supported on the
cusps is of finite order in the Jacobian of Xr.



This guarantees a good supply of elements of O*(Ur), which are the modular units;
for example the function A(nz)/A(z) is such a function. Now if ¢, ¢ € O*(Ur), we
may form the cup product g U ¢’ € KyUr. The localisation sequence gives an exact
sequence:

0 — KoXr ® Q — KoUpr ® Q % K, (cusps) @ Q
(it is exact on the left since Ky of a number field is torsion).

Lemma. Assume that the cusps are rational over the field of constants of Xr. Let W
be the subspace of KoUr®@Q generated by elements of the form cUh, with h € O*(Ur)
and ¢ a constant function. Then O(W) = 0(K2Ur ® Q).

Accordingly for any cup-product g U ¢, there are h, € O*(Ur) ® Q and constant
functions ¢, such that

gUg,—l—anUhQEKgXp@Q.

By varying g, ¢’ one thus obtains a subspace Qr C Ky Xr ® Q. For IV C I there is a
direct image map:
QF,F’: KQXF/ X Q — KQXF & Q

and the subspace of the theorem is obtained as

Pr=J0rr(Qr)
Fl
where I runs over all congruence subgroups IV C I'.
The proof that dim(Pr) > g is by finding the regulators of these elements, which
reduces to the calculation of a certain Rankin-Selberg integral. The proof that the
elements belong to Ky Xtz results from examining the localisation sequence:

(3) 0 — KoXrjz — KoXp 2 P KX @F,
p

and using the structure of the reduction modulo p of the modular curves [8,12]. The
key ingredient is the fact that the action of the Hecke algebra on supersingular points
in characteristic p can be expressed in terms of the action on suitable (characteristic
zero) cusp forms (see for example [13]).

For example, consider the first non-trivial case, the modular curve X = X(11) q,
which has g = 1. There are just two cusps 0 and oo, and their difference has order
5 in the Jacobian of Xy(11), so that the group of modular units has rank 1. If g is
a generator, then g U g € K is torsion (as the cup-product is skew-symmetric). So
Qr,a1) = 0, and modular units on I'g(11) do not suffice to give a non-zero element
of K5. However the covering X;(11) is an elliptic curve with 5 cusps, all of them
rational (it is the Weil curve 11A of the tables in [3]). This curve is one of a number
studied by Bloch and Grayson in [4]. By calculating the regulator (numerically) they
determined an element of Qr, 11y of infinite order. Since the isogeny X;(11) — X,(11)



induces an isomorphism on K, ® Q, this produces the desired non-zero element of
K3(Xo(11)) ® Q. The integrality of this element was also verified by Bloch and
Grayson.

In this setting, conjecture 4.2 states that

ords—o Ls(Xr,s) =g+ > my,

peS

where m,, is the number of times (1 — p~*)~! occurs in the Euler factor of L(Xt, s)
at p. When g = 1, then m, = 1 if the reduction mod p of Xt has an ordinary double
point with rational tangent directions, and is 0 otherwise. This is also precisely the
rank of K{Ar/p,, suggesting that the boundary map 0 in (3) is surjective, up to
torsion. (For a more detailed analysis of a more general situation, see §4.7 of [17].)
The calculations of Bloch and Grayson exhibit, in many cases, non-integral elements
of K5(Xr) in partial confirmation of this result.

Consider for example the case of X(11). The only bad prime is p = 11, where the
reduction is split multiplicative, and conjecture 4.2 therefore predicts that Ko(Xo(11))
has rank 2. Bloch and Grayson found two independent elements of Ky by working
with functions with divisors with support in the 5 rational points of X(11) (only two
of which are cusps). However, unlike the case of the integral elements (Beilinson’s
theorem), there is as yet no general construction of the “extra” elements predicted
by conjecture 4.2.

6. GENERALISATIONS

The results of the previous section have been generalised in various ways. One
is by considering the behaviour of L(XT,s) at negative integers s = — < 0. Here
Beilinson has proved:

Theorem. [2] There exists a subspace of dim Ko io(Xr) ® Q of dimension g =
ords—_; L(Xr, s).

He also proves that elements constructed have the predicted regulators. We should
remark that in this case there is, up to torsion, no difference between Koy 92Xtz
and Koo X, since K j’ of a (possibly singular) curve over a finite field is torsion if
j > 1, by [11]. The construction of the elements uses not just the modular curves
themselves but also the “Kuga-Sato varieties” (fibre products of the universal families
of elliptic curves).

It is possible to generalise these results to cusp forms of weight k£ > 2. If f is such
a cusp form (assumed to be a newform of some level), then its L-series L(f, s) occurs
in the L-function of Vj, a Kuga-Sato variety of dimension k£ — 1. (For weight two, V5
is Xr.) Corresponding to the simple zero of L(f,s) at the point s = — < 0, we can
construct a non-zero element of Ko (Vi) ® Q, and determine its regulator. For a



precise statement of this and the previous results, and some indications of the proofs,
we refer to §5 of [9].

There are very few examples of evidence in support of conjecture 4.2. Other than
the examples of Bloch-Grayson and the example of the next section, there is only
the work of Mestre and Schappacher [14]. They consider the symmetric square L-
function of an elliptic curve E over Q at s = 0 (where it vanishes to order 2), and
exhibit in many cases an experimental relation with K3(F x FE), generalising all the
phenomena observed by Bloch and Grayson.

7. AN EXAMPLE

Let I' < PSLy(Z) be a subgroup of index 7, with two cusps, one of width 5
and another of width two. It is easy to show (by constructing fundamental regions,
for example) that up to conjugacy there is exactly one such subgroup: one such is
generated by the elements

L) 6 ()

The associated modular curve Xr has genus zero, and there is a rational parameter
t on Xt satisfying the equation
C (t+18)(t* +t —26)°
(7t +1)2

where j is the modular invariant. (Similar constructions were made by Klein and
Fricke: see [0] for further examples and references.) Let ¢ : E — Xt be an elliptic
surface with invariant j; such a surface may be obtained by taking the affine equation

A L 5T

although there are others. Finally let V' be a nonsingular model over Q for the fibre
product E' x x. E.

Similar fibre varieties were studied in [20], and the same methods can be used
to show that the interesting part of the L-function L(h3(V),s) is a Hecke L-series
L(f,s), where f is a certain cusp form on I'y(35) of weight 4. At the bad primes 5
and 7 the Euler factors of the L-series are (1 +5'7%)~! and (1 — 717%)71,

The functional equation shows L(f,1) # 0, and so the incomplete L-function
Ls(f,s) vanishes at s = 1 if and only if 7 € S. Conjecture 4.2 predicts that there is a
non-zero element £ € Ky(V)®Q, which is non-integral. We now give the construction
of such an element.

Let co € Xr be the cusp t = oco. The fibre E, of ¢ is a Néron polygon, so
there is a canonical (up to sign) inclusion G,, < E. Therefore (at any rate if the



model V' is sufficiently carefully chosen) the fibre V., contains a copy of G,, x G,, =
Spec Q[x1, x7", 29, 25']. The element

r1Uxg € K2(Gm X Gm) ®Q

can be shown to extend to an element of K} (V) ® Q. By the functoriality of K’-
theory with respect to the inclusion V., < V we obtain an element

EeKy(V)oQ=Ky(V)®Q.
Theorem. & is non-zero.

We can only give a vague idea of the proof here. It relies on the existence of the
(-adic regulator map

Ky(V) = Hgl™(V. Z4(3))

which takes values in the f-adic cohomology of V/Q (as distinct from that of V/Q).
Here as usual Z,(j) denotes the Gal(Q/Q) module which is dual to the module of
{-power roots of unity, tensored with itself j times. In this case we obtain a class
in H*(V,Q(3)), and from the Hochschild-Serre spectral sequence this maps to an
element

& € H'(Gal(Q/Q), H(V) ® Qu(3))

or equivalently, to a class of extensions of Galois modules
0 — H;(V,Q) — (extension) — Qy(—3) — 0

This extension class is realised by a subquotient of the cohomology of the open variety
V — Vo — V., (where V. is the fibre at the other cusp ¢t = —1/7). Using the theory of
vanishing cycles, one then shows that the action of Gal(Q;/Q) on this cohomology
is highly non-trivial, which is enough to prove the non-vanishing of £. Full details
will appear elsewhere.

Remark: It should be noted that I' is not a congruence subgroup. Indeed, for con-
gruence subgroups the analogous elements to £ are always trivial. This is an example
of the “Manin-Drinfeld principle”, and was proved by Beilinson in [2] by explicitly
constructing elements of K-theory of the open varieties, analogous to modular units.
I know of no examples of non-integral elements of the K-groups of Kuga-Sato vari-
eties for congruence subgroups, and it would be of great interest to have a general
construction of them.
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