ON SOME ¢(-ADIC REPRESENTATIONS OF Gal(Q/Q)
ATTACHED TO NONCONGRUENCE SUBGROUPS.

A. J. SCHOLL

ABSTRACT. The f-adic parabolic cohomology groups attached to noncongruence
subgroups of SLy(Z) are finite-dimensional ¢-adic representations of Gal(Q/K)
for some number field K. We exhibit examples (with K = Q) for which the
primitive parts give Galois representations whose images are open subgroups of
the full group of symplectic similitudes (of arbitrary dimension). The determi-
nation of the image of the Galois group relies on Katz’s classification theorem
for semisimple subalgebras of sl,, containing a principal nilpotent element, for
which we give a short conceptual proof, suggested by I. Grojnowski.

1. INTRODUCTION

Let I' € PSLy(Z) be a subgroup of finite index. In the papers [8, 9, 11| we
studied f-adic Galois representations attached to cusp forms on I'. Attached to
I' is a certain field Kt and, for each even integer k > 0, a compatible system of
(-adic representations

pe = perr: Gal(Q/Kr) — GL2a(Qy)

where d = djo is the dimension of the space Sy 2(I") of cusp forms on I" of weight
k + 2. These representations are defined using ¢-adic parabolic cohomology, and
are a mild generalisation of the ¢-adic representations of Deligne [3]. If I” is the
smallest congruence subgroup of SLy(Z) containing I' then py, contains as an
invariant subspace the restriction of pgj v to Gal(Q/Kr). The representation we
are concerned with here is the quotient, which we denote p%?

For any I" the representations py ; r are the ¢-adic realisations of a certain motive
(in the sense of Grothendieck) My defined over Kr. (For congruence subgroups
this was shown in [10], and the trivial generalisation to other groups was explained
n [11].) The Hodge type of My is of the form (k+1,0)?+ (0, %k + 1)¢, and so the
representations pyxr are (by Faltings [5]) Hodge-Tate of the same type. Moreover
by Deligne’s proof of the Weil conjectures, they are pure of weight £ + 1. As a
final general remark, there is a perfect pairing

Myr ® Mppr — Q(—k —1)

which is alternating (since k is even) and so the image of p . is (after suitable
conjugation) contained in GSpe4(Qy), the group of symplectic similitudes. The
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same statements hold for the quotient pﬁnﬁ (since it is the kernel of an algebraic
projector, given by the trace from I to T').

We considered in [11] the following three subgroups of PSLy(Z). Write 'y for
the subgroup generated by the matrices

1) G (o)

and I'so for the subgroup generated by

RN

Thus I'y3 and I'sy both have index 7 and two cusps, of widths 4 and 3 (5 and 2,
respectively). Also let I'71; be the subgroup of index 9 generated by

b1 G300 G5

which has a cusp of width 7 and two cusps of width 1.

If I is one of these three groups then it can be shown (cf. [11], §4.9) that Kt = Q.
By applying standard formulae for the dimensions of spaces of modular forms, we
find that in each case dim p;; T = k.

Using methods from algebraic geometry, and in particular the theory of vanish-
ing cycles, we obtained in [11] a criterion for the image of p, to contain a unipotent
element with a “long” Jordan block. In particular, in §4 of [11] the following result

is proved:

Theorem 1. Let I' be one of I'sy, Taz, 711 Let p =7, 7 or 2 respectively, and
let £ # p. Let k > 2 be even. Then the image under pjy of an inertia subgroup
at p contains a unipotent element X such that (X — 1)*=1 £ 0.

We now fix once and for all a prime ¢ different from the prime p of Theorem 1,
and write C' for the completion of the algebraic closure of Q,. Let Gjr C GSpy/c
be the connected component of the identity in the Zariski closure of the image of
P 1t is a connected algebraic group over C'. In this paper we use Theorem 1
to prove:

Theorem 2. Let I' be as in Theorem 1, and k > 2 an even integer. Then Gy =

GSpk/c.
By Bogomolov’s theorem [1] it follows that the image of pif}m is an open subgroup
of GSpr(Qy).

Apart from showing that the motives associated to non-congruence subgroups
can in some sense be as general as possible, Theorem 2 also gives an explicit
construction, for every even k and every prime ¢, of an f-adic representation
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p: Gal(Q/Q) — GSpi(Q) with open image, which occurs in the f-adic coho-
mology of a smooth projective variety over Q. It does not seem easy to produce
examples of such representations by other methods.

These methods apply also to the case of k odd (although there is some ambiguity
in the notion of field of definition for odd weight — see [8, Remark 5.10(iii)] for a
discussion) and, although we have not checked all the details, it seems likely that
one will obtain odd-dimensional representations of Gal(Q/Q) whose image is open
in a group of orthogonal similitudes (except perhaps in the case kK = 7, where a
group of type Gy might conceivably occur).

2. NUMBER-THEORETIC PART

In this section we reduce Theorem 2 to a Lie-theoretic statement. It is convenient
to axiomatise the properties of ,022}1 we use. Assume that we have a Qy-vector space

V of dimension k& > 2 and a continuous representation p: Gal(Q/Q) — Aut(V).
Let G C GL(V) be the connected component of the identity in the Zariski closure
of the image of p. Consider the following conditions on (p, V):

(H1) p is pure of some weight w € Z;

(H2) The restriction of p to Gal(Q,/Qy) is Hodge-Tate, with exactly two Hodge-
Tate weights;

(H3) For some p # ¢ there is an open subgroup I’ C I, of the inertia group at p
such that the restriction of p to I’ is unipotent and indecomposable.

We remind the reader: (H1) means that p is unramified outside a finite set S of
primes, and that for all p ¢ S U {¢} the eigenvalues of a geometric Frobenius at
p are algebraic numbers, all of whose conjugates have absolute value p*/2. As for
(H2), write o for the unique continuous action of Gal(Q,/Q,) on C extending the
Galois action on Q. Let xeya: Gal(Q/Q) — Z; be the cyclotomic character, so
that for any ¢"-th root of unity n € Q and g € Gal(Q/Q), g(n) = X< and set

V(i) = {v €V ®q C ‘ (p@o)(g) = Xiycl(g)v for all g € Gal(@é/@g)}.

Then V' is Hodge-Tate if the natural map @ V (i) ®q, C — V ®q, C' is an isomor-
phism, and its Hodge-Tate weights are those i for which V(i) # 0. Finally, by the
structure of the tame inertia group, (H3) is equivalent to the existence of some
unipotent X € p(f,) whose Jordan form has a single block.

In the case p = pgfi;“, as explained in the Introduction, (H1) is satisfied with
w =k + 1 and (H2) with weights {0, —k — 1}. Condition (H3) is the content of
Theorem 1.

Proposition 3. Let p: Gal(Q/Q) — Aut(V) be a representation satisfying (H1)
and (H3), and whose restriction to Gal(Q,/Qy) is Hodge-Tate. Then the restriction
of p to any open subgroup of Gal(Q/Q) is absolutely irreducible.
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Proof. Let E/Q, be a finite extension such that [’ is the inertia subgroup of
Gal(Q,/E), let ¢ be the order of the residue field of E, and let Frob, € Gal(Q,/E)
be a geometric Frobenius — that is, the inverse of any element lifting the g-power
Frobenius on the residue field. In particular, xeya(Frob,) = ¢ .

Hypothesis (iii) says that the Jordan normal form of p|; has one block, so the
invariants V!' form a 1-dimensional subspace of V', on which Frob, acts as a scalar
a € Q). Picking X € p(I') — {1}, set N = logX:V — V (the “logarithm
of monodromy at p” operator [4]), so that N is a nilpotent endomorphism of V/
satisfying p(9)N = Xeya(g)Np(g) for any g € Gal(Q,/Q,). Then V! = ker N,
and ker N7t /ker NV ~ V @ Xc_yjd for 0 < j < k. Therefore the complete set of
eigenvalues of p(Frob,) is {ag’ |0 < j <k —1}.

Recall that if y: Gal(Q/Q) — @} is a continuous homomorphism whose restric-
tion to the decomposition group at ¢ is Hodge-Tate, then x is the product of an
integral power of Y.y and a character of finite order. So there exists an integer
m and a character € of finite order such that detp = x_je. By hypothesis (i),
m = wk/2. Then

det p(Frob,) = H aq’ = q"e(Frob,)

and so « is the product of ¢®=%t1/2 and a root of unity.

Now if V! C V is a Gal(Q/Q)-invariant subspace of dimension k&’ > 0 then
V and V' have the same space of I'-invariants (since V! is 1-dimensional) and
V' satisfies the hypotheses of the Proposition. Therefore the previous argument
applied to V' gives

laf = gwK+D/2, ie. kK =k.

So p is irreducible. Finally, let U be any subspace of the space of p which is
invariant under some open subgroup H C Gal(Q/Q), and let g € Gal(Q/Q).
Then U and p(g)U are both invariant under the open subgroup I” = HNH/N I’
of I,. But since the action of I” also has one Jordan block, it has a unique invariant
subspace of each dimension. So p(g)U = U, hence U is invariant under Gal(Q/Q).
So as p is irreducible, its restriction to H is also irreducible.

Finally, the same argument carries through if we replace Q, by a finite extension,
so the restriction of p to any open subgroup is absolutely irreducible. U

As a consequence, since G' contains the image of an open subgroup of Gal(Q/Q),
it acts (absolutely) irreducibly on V', and therefore (being connected by definition)
it is reductive. In particular, for £ = dim(V') = 2 we have G = G Ly. Henceforth
we assume that (p, V') satisfies hypotheses (H1)-(H3) above, and that k£ > 2.

Let g = LieG Nsl(V ® C); since V is an irreducible G-module, the centre of
Lie G has dimension at most one, hence g is a semisimple Lie algebra over C' . By
(H3) there exists a unipotent element of G whose Jordan decomposition has one
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block; let x € g be its logarithm. Then z is a nilpotent element of g which has
just one Jordan block, viewed as an endomorphism of V @ C'.

Now recall the 1-dimensional Hodge-Tate torus associated to p (as a represen-
tation of the local Galois group). Let Hy C GL(V ®g, C) be the Zariski closure
of the the image of Gal(Q,/Q;) by p. Since p is Hodge-Tate, there is a unique
homomorphism ¢: G,, — H, for which V(i) ® C' is the eigenspace of the character
t — t" of G,,. (See [12], §1.4, where ( is denoted hy.) Passing to the Lie alge-
bra, there is a unique semisimple element 2y = d{ € Lie H, C Lie G such that
V(i) @ C =ker(zgr —i) CV®C.

We now appeal to the following result of Katz (the Classification Theorem 9.10
in [6]):

Proposition 4. Let V' be a finite-dimensional vector space of dimension k over an
algebraically closed field of characteristic zero, and g a semisimple Lie subalgebra
of sl(V'). Assume that g contains a nilpotent element x which as an endomorphism
of V' has only one Jordan block. Then one of the following holds:

(i) g ~ sly with V ~ Sym*~!

(i) g = s1(V);
(iii) k is even, g = sp(V') for a nondegenerate alternating form on V;
(iv) k is odd, g = s0(V') for a nondegenerate symmetric form on V;
(v) k=17 and g is of type Gs.

The hypothesis (H2) enables us to eliminate the case (i) unless & = 2. Indeed,
the Hodge-Tate element zyr € Lie G then has exactly 2 eigenvalues, namely the
(integral) Hodge-Tate weights of p. Therefore for some a, b € Z, azyr + b is a
semisimple element of g with exactly 2 eigenvalues. However in the representation
Sym*~! of sl,, every non-zero semisimple element has k distinct eigenvalues.

This completes the proof of Theorem 2, since in that case, k is even and V' has
a g-invariant symplectic form, so we must be in case (iii).

In an earlier version of this paper we gave an ugly proof of the only case of
Proposition 4 needed here (k even, g C sp(V')), involving a detailed case-by-case
analysis of minuscule representations of g. Subsequently Laumon pointed out to
me that this was a special case of Katz’s result, whose proof also depends on a
(longer) case-by-case analysis. I am grateful to lan Grojnowski for suggesting a
short proof of Katz’s general result along the lines given in the next section.

3. LIE-THEORETIC PART

Assume g satisfies the hypotheses of Proposition 4. By the Jacobson-Morosov
theorem, there is a homomorphism A, : sl — g such

0 1
Ay (0 O)r—mr:.
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Write a, C g for the image of A\,, and

0 0 10
y—Aff(—1 0)’ h‘*’f(o —1)'

(In the terminology of [2], VIIL.11.1, (x, h,y) is an sly-triplet.)
We first observe:

Lemma 5. g is simple.

Proof. Suppose that g = g; X g with g; nonzero. As V is an irreducible g-module,
it factorises as a tensor product of irreducible g;-modules V;. But since x has
maximal rank, the restriction of V' to a, is an irreducible representation of sly, and
the tensor product of two non-trivial representations of sl is never irreducible, by

the Clebsch-Gordan formula. O

The triple (z, h,y) is a principal sly-triplet in s[(V'), since x has maximal rank,
and so is also a principal sly-triplet in g ([2] VIII.11.4). Let n be the rank of g
and 1 <ry <ry <---<r, be the exponents of its root system. Then one knows
([7], or see for example [2] VIII.11, exercise 11) that under the adjoint action of
a, ~ sly, g decomposes as the direct sum of the irreducible representations Sym?".

For the adjoint action of a, on s[(V') the exponents are {1,2,...,k — 1} and
one can write down the decomposition into irreducibles totally explicitly: consider
the matrix powers " € sl(V) for 1 < r < k — 1. Let U, be the a,-submodule
of s[(V') generated by z". Obviously ad(x)z" = 0, and since [h,z] = 2z one gets
ad(h)z” = 2rz”. Thus 2" is a highest weight vector in U,., which is isomorphic to
Sym? | and a basis for U, is given by {ad(y)’z" | 0 < i < 2r}. Thus

k—1
si(V) =EPU..
r=1

Therefore g = @@;_, U,,. In particular this proves part (i) of the following Lemma.

Lemma 6. (i) The ezponents of g are distinct and satisfy r; < k — 1.
(i) If r and s are exponents of g and r+s < k then r+s—1 is also an exponent

of g.

of (ii). As the Lie bracket g ® g — g is a,-equivariant and U, ~ Sym?®, by the
Clebsch-Gordan formula we see that if » > s then

[Ura Us] = @ Ut
teT

for some subset T C {t € Z | r —s <t <min(r+ s,k —1)}. If r+s € T then the
Lie bracket would give a non-zero pairing U, ® Us — U, s, which would necessarily
be non-zero on the tensor product of the highest weight vectors. But [z, z*] = 0,
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hence 7+ s ¢ T. On the other hand, since x* is a highest weight vector for Uy one
has ad(z) ad(y)z® = 2sz®, and therefore

(2", ad(y)x®] = z[2" !, ad(y)2®] + [z, ad(y)2®]a" ! = z[z" !, ad(y)2®] + 2s2" 571

and so by induction one obtains

[z, ad(y)2®] = 2rsz” 5L

Therefore [U,,Us] D Upys-1 if 7+ s < k. As g is a Lie subalgebra of sl(V), the
Lemma follows. U

So to finish the proof, it suffices to determine those simple Lie algebras which
admit a representation of dimension k£ and whose exponents satisfy the conditions
of Lemma 6. From standard tables (for example [2], Chapters IV and VIII) one
extracts the information contained in the table below.

g exponents of g least dimensions of representations
A, 1,2,3,....n n+1,nn+1)/2

B, 1,3,5,...,2n—1 2n+ 1, n(2n + 1)

Cn, 1,3,5,...,2n—1 2n, n(2n — 1)

D, 1,35, ....2n—3,n—1

Ee 1,4,5, 7,8, 11

E; 1,5,7,9, 11,13, 17

Eg 1,7,11,13,17,19, 23, 29

Fyo 1,57, 11

Gy 1,5 7, 14

From this one sees that the only cases satisfying the hypotheses of Lemma 6
are: A; with k arbitrary; A, with k =n+1; B, with &k = 2n+1; C,, with k = 2n;
and Gy with £ = 7, which are precisely those cases listed in Proposition 4.

The author would like to thank D. Blasius, G. Harder, and J-P. Serre for useful
discussions, G. Laumon for drawing his attention to [6], and especially 1. Gro-
jnowski for suggesting the proof of Proposition 4.
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