

Correction to [1]

There is an error in the formulae of §3 of [1], in the case when x is a point where $j = 0$ or 1728 and $\kappa(x) \neq \mathbb{F}_p$. The formulae which need correction are (3.2) and the unnumbered formula for $j = 1728$, $e(x) = 2$ and $p \equiv 1 \pmod{4}$. (The case $\kappa(x) = \mathbb{F}_p$, which is the only case used in the computational example which was the object of the paper, is unaffected.) It is simplest just to rederive these formulae for all p , and not to bother to write the trace in terms of cubic or quartic residue symbols over finite fields.

We can rewrite the “generic j ” curve after a change of variables as

$$3y^2 = x^3 + 3x^2 + \frac{3x + 1}{1 - 12^{-3}j}.$$

Case $\pi(x) = 1728$, $e(x) = 2$.

Write $1 - 12^{-3}j = u\varpi^2$. In the genus 0 case with j -equations as in (2.3), u is the leading coefficient of the expansion of $(Q - 12^{-3}P)/Q$ about $t = t_0$.

After a change of variables the curve becomes

$$3\varpi y^2 = x^3 + 3u^{-1}x + \varpi(3x^2 + u^{-1})$$

so the local trace is

$$\sum_{-\frac{k}{2} \leq i \leq \frac{k}{2}} q^{k/2}(\alpha/\bar{\alpha})^i \quad (*)$$

as in §3.2, where $1 + q - \alpha - \bar{\alpha}$ is the number of \mathbb{F}_q -points on the curve

$$y^2 = x^3 + 3u^{-1}x.$$

Case $\pi(x) = 0$, $e(x) = 3$.

Write $1 - 12^{-3}j = 1 - u\varpi^3$. In terms of j -equations, u is the leading coefficient of $12^{-3}j = 12^{-3}P/Q$ about $t = t_0$.

This time the equation becomes

$$3\varpi y^2 = x^3 - 3\varpi u x + 2u$$

and so the local trace is given by formula $(*)$ applied to the curve

$$y^2 = x^3 + 2u.$$

References

[1] A. J. Scholl: *The ℓ -adic representations associated to a certain noncongruence subgroup*. J. für die reine und ang. Math. **392** (1988), 1–15