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Introduction

This note has two purposes: the first is to give a somewhat different description of the

higher cycle class map defined by Bloch [3] for his higher Chow groups. The second is to

construct some extensions of motives related to elements of higher Chow groups and to

show that the extension classes of their ℓ-adic realisations can be computed using the cycle

map.

Slightly more precisely, let X be smooth and proper over a field k, and consider

the motivic cohomology Hj
M(X,Q(n)), one candidate for which is CHn(X, 2n− j) ⊗Q.

Conjecturally there should be a category of mixed motivesMMk and a spectral sequence

Eij
2 = Exti

MMk
(Q(−n), hj(X))⇒ Hi+j

M (X,Q(n))

There should also be a morphism from this spectral sequence to the Hochschild-Serre

spectral sequence of continuous ℓ-adic cohomology [6]:

Eij
2 = Exti

Gal(k̄/k)(Qℓ(−n), Hj(X,Qℓ))⇒ Hi+j
cont(X,Qℓ(n))

which on the E2 terms is the realisation functor, and on the abutment is the Chern class

map.

Here we exhibit a fragment of this structure. Assume that k is of characteristic zero so

as to be able to use the category of mixed motives constructed unconditionally by Jannsen

in [7] (see also [4]), and that X is projective. Then for j 6= 2n we construct “geometrically”

a map

Hj
M(X,Q(n))→ Ext1MMk

(Q(−n), hj−1(X)). (0.1)

The cycle class carries Hj
M(X,Q(n)) into the subspace

ker[Hj
cont(X,Qℓ(n))→ Hj(X,Qℓ(n))]

(since for j 6= 2n the right hand group has no Galois invariants). Therefore composing

with the edge homomorphism of the Hochschild-Serre spectral sequence one obtains a map

Hj
M(X,Q(n))→ H1

cont(k, Hj−1(X,Qℓ(n))) = Ext1Gal(k̄/k)(Qℓ(−n), Hj−1(X,Qℓ))).

(0.2)

We show that the Galois extension class (0.2) is the image under the realisation functor of

the “geometric” extension class (0.1).
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The analogous construction for j = 2n was done in §9 of [7]. Indeed, H2n
M(X,Q(n)) is

the Chow group CHn(X)⊗Q, and to each cycle there is associated a morphism of motives

Q(−n)→ h2n(X). The kernel of this assignment is CHn(X)0⊗Q, the group of classes of

cycles homologically equivalent to zero. The cohomology of the complement of the support

of a cycle gives rise to an extension of Q(−n) by h2n−1(X), and Jannsen shows that the

extension class of its ℓ-adic realisation is given by the composite of the cycle class and the

edge homomorphism of the Hochschild-Serre spectral sequence.

The construction of extensions given here was sketched in the appendix to [5], but

without using simplicial schemes. The work originated in an earlier, unpublished (but

see [7], Appendix C3) construction of extensions coming from the K-cohomology group

H1(X,K2) (essentially the case of H3
M(X,Q(2))). That the cycle map can be described

as in §1 is probably known to some experts (see for example the penultimate paragraph of

[2]), but there is no proof of the compatibility in the literature.

The author would like to thank Bloch and Jannsen for stimulating discussions. Part of

this research was carried out while the author was visiting the Institute for Advanced

Study, Princeton in 1989–90; he would like to thank the Institute for its kind hospitality.

This research was partially supported by NSF grant DMS–8610730.

Notations and conventions.

0.1. In what follows X will be a smooth and projective scheme over a field k of charac-

teristic zero which is of finite type over Q. As usual we write k̄ for the algebraic closure

of k and X for X ⊗ k̄.

0.2. We use the notation [p, q] for the set of strictly increasing maps α : {0, 1, . . . , p} →

{0, 1, . . . , q}, which we usually write as increasing sequences (α0<α1< . . .<αp).

0.3. Recall [2] the definition of the algebraic “simplex”

∆q = {(x0, . . . , xq) ∈ Aq+1 |
∑

xi = 1}.

There are face maps ∂i : ∆q →֒ ∆q+1 given by ∂i(t0, . . . , tq) = (t0, . . . , ti−1, 0, ti, . . . , tq), as

well as degeneracy maps σi : ∆q+1 → ∆q. Write ∂∆q for the union of the codimension 1

faces of ∆q. View ∂∆q as a (strict) simplicial scheme

∐[0,q]
∆q−1 ←←

∐[1,q]
∆q−2 · · ·

←...
←

∐[q−1,q]
∆0.

The jth face map (for 0 ≤ j ≤ p)
∐[p,q]

∆q−p−1 →
∐[p−1,q]

∆q−p

maps the (α0< . . .<αp)
th copy of ∆q−p−1 to the (α0< . . . α̂j . . .<αp)

th copy of ∆q−p by

∂αj−j .

0.4. ℓ-adic cohomology of schemes over non-algebraically closed fields always denotes con-

tinuous étale cohomology [6].
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1. The cycle map

1.1. Recall from [2] the definition of the cycle group zn(X, q): it is the free abelian group

generated by integral subschemes of ∆q ×X of codimension n, which meet each face (in

every dimension) properly. Then zn(X, •) is a simplicial abelian group with face and de-

generacy maps ∂∗
i , σ∗

i . The higher Chow groups CHn(X, q) are by definition the homotopy

groups of zn(X, •), or equivalently the homology groups of the complex

(zn(X, •),
∑

(−1)i∂∗
i )

By the normalisation theorem, they can be calculated from the complex (z̄n(X, ·), ∂∗
0)

where

z̄n(X, q) = {y ∈ zn(X, q) | ∂∗
i (y) = 0 for 1 ≤ i ≤ q}.

1.2. In terms of this it is possible to give a slightly different description of Bloch’s cycle

class map. Consider the strict augmented simplicial scheme ΣqX :

∆qX ←
∐[0,q]

∆q−1X)←←
∐[1,q]

∆q−2X · · ·
←...
←

∐[q−1,q]
∆0X.

Here the scheme
∐[p,q]

∆q−p−1X is regarded as living in degree p, with −1 ≤ p ≤ q − 1.

The face maps are the same as in 0.3 above.

1.3. Let H∗(−, n) be any cohomology theory satisfying the axioms of [3], §4. This means,

amongst other things, that there are functorial complexes K(n)• whose cohomology is

H∗(−, n). The cohomology of the simplicial scheme ΣqX is calculated by means of the

double complex

Eab
0 = Γ(∆q−aX, K(n)b)[a−1,q]

in which the second differential is dK(n) and the first is given as follows: if f : [a− 1, q]→

Γ(∆q−aX, K(n)b) then

(d′f)(α0< . . .<αa) =
a

∑

j=0

(−1)j∂∗
αj−jf(α0< . . . α̂j . . .<αa).

This gives rise to the spectral sequence

Eab
1 = Hb(∆q−aX, n)[a−1,q]⇒ Ha+b(ΣqX, n). (1.3.1)

Similarly, if Hsupp denotes cohomology with respect to the family of codimension n sub-

varieties which meet every face properly, there is a spectral sequence

•E
ab
1 = Hb

supp(∆q−aX, n)[a−1,q]⇒ Ha+b
supp(ΣqX, n). (1.3.2)
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1.4. By the homotopy axiom, the complex E•b
1 is isomorphic to the normalisation of the

complex

Hb(X, n)⊗ [Z→ Z[0,q] →
→ Z[1,q] . . .

→...
→

Z[q−1,q]] (1.4.1)

and so Eab
2 = Hb(X, n) if a = q and zero otherwise. For the other spectral sequence, the

weak purity axiom implies that •E
ab
1 = 0 for b < 2n. This yields an edge homomorphism

•E
a,2n
2 → •E

a+2n
∞

which we may compose with the morphism of spectral sequences (induced by Hsupp → H)

to get a map

•E
0,2n
2 → •E

2n
∞ → E2n

∞ = H2n−q(X, n). (1.4.1)

1.5. If y ∈ z̄n(X, q) has ∂∗
0(y) = 0 then its class cln,q(y) ∈ •E

0,2n
1 is visibly killed by d1,

hence maps to •E
0,2n
2 . In other words the composition of the cycle class map and (1.4.1)

defines a homomorphism

{

y ∈ z̄n(X, q)
∣

∣ ∂∗
0(y) = 0

}

−→ H2n−q(X, n). (1.5.1)

1.6. We compare this with Bloch’s map (for which we use the notation of [5], §2.8). It is

convenient to renumber the spectral sequences (1.3.1), (1.3.2) to become:

E−a,b
1 = Hb(∆aX, n)[q−a−1,q]⇒ Hq−a+b(ΣqX)

•E
−a,b
1 = Hb

supp(∆
aX, n)[q−a−1,q]⇒ Hq−a+b

supp (ΣqX).
(1.6.1)

In terms of this, the first differential on the original double complex

E−a,b
0 = Γ(∆aX, K(n)b)[q−a−1,q]

is given by

(d′f)(α0< . . .<αq−a) =

q−a
∑

j=0

(−1)j∂∗
αj−jf(α0< . . . α̂j . . .<αq−a)

and similarly for the complexes with supports.

1.7. Bloch’s map is defined by a similar procedure as above, but using the double com-

plexes (truncated outside the range 0 ≤ a ≤ 2N for some N >> 0)

Ẽ−a,b
0 = Γ(∆aX, K(n)b)

with first differential

d̃′ =
a

∑

i=0

(−1)i∂∗
i .
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and the analogous complex •Ẽ0 with supports. Define morphisms E0 → Ẽ0, •E0 → •Ẽ0

by the formula

f 7→
∑

α∈[q−a−1,q]

(−1)|α|f(α) where |α| =

q−a−1
∑

j=0

αj .

One checks easily that this map commutes with the differentials, hence gives morphisms

of spectral sequences E → Ẽ, •E → •Ẽ. It is then clear that the map (1.5.1) is the same

as Bloch’s map.

1.8. It follows that the map (1.5.1) factors through the quotient CHn(X, q) (since Bloch’s

map does). We will indicate a direct proof of this in 3.6 below.

2. Construction of extensions in cohomology

2.1. We continue with the notation of the preceding section, but now assume that the

cohomology theory takes values in an abelian tensor category C, with unit object 1C ; and

that the cycle class of a subvariety Y ⊂ X of codimension p is a map 1C → H2p
Y (X, p).

To distinguish this from the “absolute” cohomology theory we denote it henceforth by H.

Then the higher cycle class is a map

cln,q : CHn(X, q)−→Hom(1C , H2n−q(X, n)).

A typical example is Hi
Y (X, j) = Hi

Y
(X,Zℓ(j)) with C the category of Zℓ-modules with a

continuous action of Gal(k̄/k). Here the higher cycle class has finite image for q > 0, since

H2n−q(X,Qℓ(n)) has no Galois invariants except when q = 0.

2.2. We now construct a map

cl(1)n,q: ker cln,q−→Ext1C(1C , H2n−q−1(X, n)).

Let y ∈ zn(X, q) be a cycle with ∂∗
i (y) = 0 for 0 ≤ i ≤ q, and write Y = supp(y) ⊂ ∆qX .

Let Yi be the disjoint union of the intersections of Y with the codimension i faces of ∆qX ,

and Y0 = Y . Thus Y• is a closed simplicial subscheme of ΣqX . Consider the long exact

cohomology sequence

H2n−1
Y•

(ΣqX, n)→ H2n−1(ΣqX, n)→ H2n−1(ΣqX − Y•, n)→ H2n
Y•

(ΣqX, n)

→ H2n(ΣqX, n).

2.3 Lemma. Hi
Y•

(ΣqX, n) = 0 for i < 2n.

Proof. As in 1.4 above, there is a spectral sequence

Eab
1 = Hb

Ya
((ΣqX)a, n)⇒ Ha+b

Y•

(ΣqX, n).
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Since by hypothesis Ya has codimension ≥ n in (ΣqX)a, Eab
1 = 0 for every a ≥ 0 and

b < 2n by the purity axiom.

2.4. By definition, cln,q is the adjoint of the composite

1C ⊗ CHn(X, q)→ H2n
Y•

(ΣqX, n)→ H2n(ΣqX, n) ∼−→ H2n−q(X, n).

Therefore if cln,q(y) = 0 one obtains by pullback an extension in C

0 → H2n−1(ΣqX, n) → H2n−1(ΣqX − Y•, n) → H2n
Y•

(ΣqX, n) → H2n(ΣqX, n)

‖
x





x





cln,q(y)

x





0 → H2n−1(ΣqX, n) → (∗) → 1C → 0

whose class is by definition cl
(1)
n,q(y).

2.5. Suppose that C has enough injectives, and that the cohomology groups H∗ can be

calculated from functorial complexes K(n)• ∈ K+(C) which are bounded below. Then

there is a “Hochschild-Serre” spectral sequence

Eij
2 = Exti

C(1C , Hj(−, n))⇒ Hi+j(−, n)

where the “absolute” cohomology groups H∗ are those of K(n)• = RHomC(1C, K(n)•).

(In the example of ℓ-adic cohomology H∗ is H∗(X,Zℓ(n)).) In particular there is an edge

homomorphism

ker[H2n−q(X, n)→ Hom(1C , H2n−q(X, n))]→ Ext1C(1C, H2n−q−1(X, n)) (2.5.1)

2.6 Proposition. Assume that q > 0. The composite of the cycle class map cln,q: CHn(X, q)→

H2n−1(X, n) with the edge homomorphism (2.5.1) is equal to cl
(1)
n,q.

Proof. The analogous result for q = 0 is proved in [7]. Both that and the present case rely

on a compatibility in homological algebra:

2.7 Proposition ([7] 9.4). Let Φ : A → B be a left-exact functor between abelian

categories, and assume that A has enough injectives. Let 0 → A• → B• → C• → 0 be

a short exact sequence of complexes in A which are bounded below. Then the following

diagram is commutative:

ker[RiΦA• → ΦHi(B•)] −→ ker[RiΦB• → ΦHi(B•)]

↓ ցσ

ker[ΦHi(A•)→ ΦHi(B•)] R1ΦHi−1(B•)

‖ ւ

R0Φ ker[Hi(A•)→ Hi(B•)]
τ
−→ R1Φ coker[Hi−1(A•)→ Hi−1(B•)]
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Here the arrows of the form RiΦK• → ΦHi(K•) are the edge homomorphisms in the

hypercohomology spectral sequence for R∗ΦK•. The only remaining non-obvious arrows

are those labelled σ, which is the next edge homomorphism in the same spectral sequence,

and τ , which is the boundary map in the long exact cohomology sequence attached to the

short exact sequence

0−→ coker[Hi−1(A•)→ Hi−1(B•)]−→Hi−1(C•)−→ ker[Hi(A•)→ Hi(B•)]−→0.

2.8. Apply this with A•, B•, C• suitable injective resolutions of the complexes

RΓY•
(ΣqX, K(n)), RΓ(ΣqX, K(n)), RΓ(ΣqX − Y•, K(n)),

and 2.6 follows at once.

3. Construction of extensions of motives

3.1. To begin with recall that Jannsen [7] and Deligne [4] have defined the tensor category

MRk of mixed realisations. In [7] 6.11, it is shown how to define the (cohomological)

mixed realisations of simplicial schemes with smooth components, and the analogues with

supports. Denote these by h∗
−(−). This is enough to apply the ideas of §2 to the mixed

realisation functor: there is an exact sequence

0 → h2n−1(ΣqX) → h2n−1(ΣqX − Y•) → h2n
Y•

(ΣqX) → h2n(ΣqX)

‖ ‖

h2n−q−1(X) h2n−q(X)

and a higher cycle y ∈ zn(X, q) with ∂∗
i y = 0 for all i defines a map Q(−n)→ h2n

Y•

(ΣqX).

But as q > 0 the image of the class of y in h2n−q(X) vanishes, so its pullback gives an

extension Ey

0 → h2n−1(ΣqX) → h2n−1(ΣqX − Y•) → h2n
Y•

(ΣqX) → h2n(ΣqX)

‖
x





x





cln,q(y)

x





0 → h2n−1(ΣqX) → Ey → Q(−n) → 0

in the categoryMRk.

3.2. One possible definition of the categrory MMk of mixed motives is the Tannakian

subcategory of MRk generated by hi(V ) for k-varieties V . Now h2n−1(ΣqX − Y•) is

the same as h2n−1(∆qX − Y rel ∂∆qX). Then the following simple result shows that

h2n−1(ΣqX − Y•), and therefore also Ey, belong toMMk:

3.3 Proposition ([8] 1.4). Let U be quasiprojective over k, and j: Z →֒ U a closed

subset. Then there is for each i a mixed motive hi(U rel Z) over k whose realisations are

isomorphic to the relative cohomology groups of (U, Z).
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3.4. To show that the assignment y 7→ Ey factors through CHn(X, q), the results of §2

are not enough; one would need functorial complexes in the derived category of mixed

realisations. One way to get round this is to use the notion of MAH-complex introduced

in [7], 6.11.8. Alternatively the extensions may be split geometrically as follows.

3.5. Let z ∈ z̄n(X, q + 1) with ∂∗
0z = y.Write Λq+1X for the strict simplicial scheme

whose rth component is the disjoint union of all codimension r + 1 faces of ∆q+1X which

are not contained in codimension 1 face ∂0(∆
qX). Let Cq+1X be the augmented simplicial

scheme ∆q+1X ← Λq+1X . Let Z be the support of z, and Z• ⊂ Cq+1X the corresponding

simplicial subscheme. Explicitly, Cq+1X is

∆q+1X ←
∐[0,q]

∆qX ←←
∐[1,q]

∆q−1X . . .
←...
←

∐[q,q]
∆0.

Hence its mixed realisation is

h∗(Cq+1X) = h∗(X)⊗H∗[Z→ Z[0,q] → . . .→ Z[q,q]] = 0.

Therefore the boundary maps hi−1(Cq+1X − Z•) → hi
Z(Cq+1X) are isomorphisms. The

cycle z therefore defines a map Q(−n)→ h2n−1(Cq+1−Z•). Restricting this with respect

to the inclusion ΣqX →֒ Cq+1X gives a map Q(−n)→ h2n−1(ΣqX − Y•) which splits Ey.

3.6. Remark. Essentially the same argument as above shows that the cycle map (1.5.1)

vanishes on the cycle ∂∗
0z.

3.7. In summary, we have defined a homomorphism

CHn(X, q) → ExtMMk
(Q(−n), h2n−q−1(X))

y 7→ Ey

such that the diagram

CHn(X, q)
y 7→Ey

−→ Ext1MMk
(Q(−n), h2n−q−1(X))





y

cycle





y

ℓ−adic realisation

H2n−q
cont (X,Qℓ(n))

edge
−→ Ext1Gal(k̄/k)(Qℓ(−n), H2n−q−1(X,Qℓ))

commutes. The analogous statement will also hold if Qℓ-cohomology over k̄ is replaced by

rational cohomology over C or R, with its Hodge structure, and ℓ-adic cohomology over

k by Beilinson-Deligne (absolute Hodge) cohomology [1].
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