Extensions of motives and higher Chow groups
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Introduction

This note has two purposes: the first is to give a somewhat different description of the
higher cycle class map defined by Bloch [3] for his higher Chow groups. The second is to
construct some extensions of motives related to elements of higher Chow groups and to
show that the extension classes of their /-adic realisations can be computed using the cycle
map.

Slightly more precisely, let X be smooth and proper over a field k£, and consider
the motivic cohomology Hf\/[(X, Q(n)), one candidate for which is CH™(X,2n — j) ® Q.
Conjecturally there should be a category of mixed motives MM} and a spectral sequence

Ey = Extiyu, (Q(=n), Y (X)) = Hiy/ (X, Q(n))

There should also be a morphism from this spectral sequence to the Hochschild-Serre
spectral sequence of continuous f-adic cohomology [6]:

By = Bxtiyi/p (Qe(—n), H (X, Qp)) = Hegi (X, Qe(n))

which on the E5 terms is the realisation functor, and on the abutment is the Chern class
map.

Here we exhibit a fragment of this structure. Assume that k is of characteristic zero so
as to be able to use the category of mixed motives constructed unconditionally by Jannsen
in [7] (see also [4]), and that X is projective. Then for j # 2n we construct “geometrically”
a map

H), (X, Q(n)) — BExtlyu, (Q(—n), /(X)) (0.1)

The cycle class carries H ﬂ\/[ (X,Q(n)) into the subspace

ker[H?, .. (X, Qe(n)) — HI (X, Qu(n))]

(since for j # 2n the right hand group has no Galois invariants). Therefore composing
with the edge homomorphism of the Hochschild-Serre spectral sequence one obtains a map

Hj (X, Q(n)) = Hegn (ks H (X, Qu(n))) = Exteyyy g (Qe(—n), H 71X, Qu))).
(0.2)
We show that the Galois extension class (0.2) is the image under the realisation functor of
the “geometric” extension class (0.1).



The analogous construction for j = 2n was done in §9 of [7]. Indeed, H3%(X, Q(n)) is
the Chow group CH"(X)® Q, and to each cycle there is associated a morphism of motives
Q(—n) — h?"(X). The kernel of this assignment is CH"(X)°? ® Q, the group of classes of
cycles homologically equivalent to zero. The cohomology of the complement of the support
of a cycle gives rise to an extension of Q(—n) by h?"~1(X), and Jannsen shows that the
extension class of its f-adic realisation is given by the composite of the cycle class and the
edge homomorphism of the Hochschild-Serre spectral sequence.

The construction of extensions given here was sketched in the appendix to [5], but
without using simplicial schemes. The work originated in an earlier, unpublished (but
see [7], Appendix C3) construction of extensions coming from the K-cohomology group
H'(X,K5) (essentially the case of H3,(X,Q(2))). That the cycle map can be described
as in §1 is probably known to some experts (see for example the penultimate paragraph of
[2]), but there is no proof of the compatibility in the literature.

The author would like to thank Bloch and Jannsen for stimulating discussions. Part of
this research was carried out while the author was visiting the Institute for Advanced
Study, Princeton in 1989-90; he would like to thank the Institute for its kind hospitality.
This research was partially supported by NSF grant DMS-8610730.

Notations and conventions.

0.1. In what follows X will be a smooth and projective scheme over a field k of charac-

teristic zero which is of finite type over Q. As usual we write k for the algebraic closure
of k and X for X ® k.

0.2. We use the notation [p, ¢] for the set of strictly increasing maps « : {0,1,...,p} —
{0,1,...,q}, which we usually write as increasing sequences (ap<a;<...<ay).

0.3. Recall [2] the definition of the algebraic “simplex”
A? = {(zg,...,z,) € AT |2, =1}

There are face maps 9; : A? — A9t given by 9;(to, ..., tq) = (to, ..., ti—1,0,t;, ..., t,), as
well as degeneracy maps o; : A9t — A9 Write OAY for the union of the codimension 1
faces of A?. View 0A? as a (strict) simplicial scheme

[qu] q—]. < [17q] q—2 . . [q_lvq] 0
1109 Ac=1 = 1109 A L1l A,
The j*8 face map (for 0 < j < p)
: —p-1_, 1, _
| |[p q] AI—P 1 I I[p— q] AI—P

maps the (ap<...<a,)™ copy of AY7P~! to the (ap<...&;...<ay,)™ copy of A?7P by
Ooj—j-

0.4. /-adic cohomology of schemes over non-algebraically closed fields always denotes con-
tinuous étale cohomology [6].



1. The cycle map

1.1. Recall from [2] the definition of the cycle group 2" (X, q): it is the free abelian group
generated by integral subschemes of A? x X of codimension n, which meet each face (in
every dimension) properly. Then 2" (X, e) is a simplicial abelian group with face and de-
generacy maps 0], 0. The higher Chow groups CH™ (X, ¢q) are by definition the homotopy
groups of 2z (X, e), or equivalently the homology groups of the complex

(z"(X, ), ) (=1)'5)

By the normalisation theorem, they can be calculated from the complex (z2"(X,-),d;)
where
(X, q)={y€2"(X,q) |0 (y) =0 forl<i<gq}

1.2. In terms of this it is possible to give a slightly different description of Bloch’s cycle
class map. Consider the strict augmented simplicial scheme »9.X:

q [0,q] Ag—1 —171ld Ag—2y ... l[a—1,9] AO
AIX — 1] AT X)) ] A1 X il A" X.
H

Here the scheme ]_[[p’Q] AI7P=1X is regarded as living in degree p, with —1 < p < ¢ — 1.
The face maps are the same as in 0.3 above.

1.3. Let H*(—,n) be any cohomology theory satisfying the axioms of [3], §4. This means,
amongst other things, that there are functorial complexes K(n)® whose cohomology is
H*(—,n). The cohomology of the simplicial scheme ¥7X is calculated by means of the
double complex

B’ =T(AT°X, K(n)b)[“_l’q]

in which the second differential is dg,) and the first is given as follows: if f : [a —1,q] —
['(A972X, K (n)®) then

a

(d'f)lao<...<ag) =D (1Y _;flan<...d;...<ag).
§=0
This gives rise to the spectral sequence

B’ = HP(A97X n)lo= 4 = HOP (DX ). (1.3.1)

Similarly, if Hg,pp denotes cohomology with respect to the family of codimension n sub-
varieties which meet every face properly, there is a spectral sequence

JEY = HY o (ATTX p)lem b = HOED (S9X ). (1.3.2)

supp
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1.4. By the homotopy axiom, the complex E?’ is isomorphic to the normalisation of the
complex

N
H'(X,n)®[Z — 2% = zlbd 0 zla-td (1.4.1)
—

and so E$® = H?(X,n) if a = ¢ and zero otherwise. For the other spectral sequence, the
weak purity axiom implies that  E¢* = 0 for b < 2n. This yields an edge homomorphism

a,2n 2
.EQ - oEgo+ "

which we may compose with the morphism of spectral sequences (induced by Hgypp — H)

to get a map
0E372n — .Egg - Egg = HQTL—Q(X, TL) (141>

1.5. If y € 2"(X, q) has 9% (y) = 0 then its class cl, 4(y) € +EY*" is visibly killed by di,
hence maps to .Eg 2" In other words the composition of the cycle class map and (1.4.1)
defines a homomorphism

{y e z"(X,q) | 05(y) =0} — H*9(X,n). (1.5.1)

1.6. We compare this with Bloch’s map (for which we use the notation of [5], §2.8). It is
convenient to renumber the spectral sequences (1.3.1), (1.3.2) to become:

Ey ™' = HM(AX, n)lim0 bl = gamett (i)
By = HYypp (AX )00 = HESE (50X),

supp supp

(1.6.1)

In terms of this, the first differential on the original double complex
Ey ™" =T(AX, K(n)")la—o~1dl

is given by

<
|
Q

(d < .. <ag_a) =Y (=1)70% _ flao<...dj...<qqq)

Oéj—j

I
=

J
and similarly for the complexes with supports.

1.7. Bloch’s map is defined by a similar procedure as above, but using the double com-
plexes (truncated outside the range 0 < a < 2N for some N >> 0)

E;*" =T(A"X, K(n)®)

with first differential

a

d =Y (-1)o;.

=0
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and the analogous complex o Ey with supports. Define morphisms Eq — Ep, «Ey — «Ep
by the formula

qg—a—1

fr Z (=D)lelf(a) where |a| = Z a;.
j=0

a€lg—a—1,q]

One checks easily that this map commutes with the differentials, hence gives morphisms
of spectral sequences E — E, oF — oE. It is then clear that the map (1.5.1) is the same
as Bloch’s map.

1.8. It follows that the map (1.5.1) factors through the quotient CH™ (X, q) (since Bloch’s
map does). We will indicate a direct proof of this in 3.6 below.

2. Construction of extensions in cohomology

2.1. We continue with the notation of the preceding section, but now assume that the
cohomology theory takes values in an abelian tensor category C, with unit object 1¢; and
that the cycle class of a subvariety ¥ C X of codimension p is a map 1¢ — Hf,p (X,p).
To distinguish this from the “absolute” cohomology theory we denote it henceforth by H
Then the higher cycle class is a map

Clp.q: CH"(X, q)— Hom(1c, H*" (X, n)).

A typical example is Hy (X, j) = HZ?(Y’ Z(7)) with C the category of Zy-modules with a
continuous action of Gal(k/k). Here the higher cycle class has finite image for ¢ > 0, since
H?"~9(X,Q(n)) has no Galois invariants except when ¢ = 0.

2.2. We now construct a map
Clg)]Z ker cl,, ,— BExtg(1e, H*" 971X, n)).

Let y € 2"(X, q) be a cycle with 9 (y) = 0 for 0 < i < ¢, and write Y = supp(y) C A?X.
Let Y; be the disjoint union of the intersections of Y with the codimension 7 faces of AYX,
and Yy = Y. Thus Y, is a closed simplicial subscheme of 39X. Consider the long exact
cohomology sequence

HY N (29X, n) — H7H(S9X,n) — H (29X - Y,,n) — HY (29X, n)
— H*" (29X, n).

2.3 Lemma. H} (39X,n) =0 fori < 2n.

Proof. As in 1.4 above, there is a spectral sequence
Ef* = HY ((£9X)4,n) = HY P (29X, n).
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Since by hypothesis Y, has codimension > n in (39X),, E{* = 0 for every a > 0 and
b < 2n by the purity axiom.

2.4. By definition, cl,, 4 is the adjoint of the composite
le ® CH™(X, q) — H3 (51X, n) — H2(S1X,n) ~> H* (X, n).
Therefore if ¢, 4(y) = 0 one obtains by pullback an extension in C

0 — H™YX1X,n) — H™ (X -Y,,n) — HP(EX,n) — H™(ZIX,n)

[ | [t |

0 — H™'(3X,n) — (%) o 1c — 0

whose class is by definition clgll,?](y).

2.5. Suppose that C has enough injectives, and that the cohomology groups H* can be
calculated from functorial complexes K (n)® € KT (C) which are bounded below. Then
there is a “Hochschild-Serre” spectral sequence

EY = Exth(1c, H (—,n)) = H™(—,n)

where the “absolute” cohomology groups H* are those of K(n)®* = RHome¢(1c, K(n)®).
(In the example of /-adic cohomology H* is H*(X,Z¢(n)).) In particular there is an edge
homomorphism

ker[H?"~9(X,n) — Hom(1¢, H*" (X, n))] — Ext(1e, H*" 77 1(X,n)) (2.5.1)

2.6 Proposition. Assume that ¢ > 0. The composite of the cycle class map cl,, ;: CH" (X, q) —
H?"=Y(X n) with the edge homomorphism (2.5.1) is equal to cl,(&zl.

Proof. The analogous result for ¢ = 0 is proved in [7]. Both that and the present case rely
on a compatibility in homological algebra:

2.7 Proposition (7] 9.4). Let ® : A — B be a left-exact functor between abelian
categories, and assume that A has enough injectives. Let 0 — A®* — B®* — C*® — 0 be
a short exact sequence of complexes in A which are bounded below. Then the following
diagram is commutative:

ker[RI®A® — ®HI(B®)] — ker[R‘®B® — ®H(B®)]
! N
ker[PHi(A®) — ®H'(B®)] R'®H~1(B*)
I /
RO® ker[H'(A®) — HY(B®)] —— R'®coker[H'"!(A®) — H*"}(B*)]
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Here the arrows of the form R‘®K® — ®H(K*®) are the edge homomorphisms in the
hypercohomology spectral sequence for R*®K*®. The only remaining non-obvious arrows
are those labelled o, which is the next edge homomorphism in the same spectral sequence,
and 7, which is the boundary map in the long exact cohomology sequence attached to the
short exact sequence

0— coker[H "1 (A®*) — H'"™Y(B*)]|—H"'(C*)— ker[H(A®) — H'(B*)]—0.
2.8. Apply this with A®, B®, C*® suitable injective resolutions of the complexes
RTy, (29X, K(n)), RI(X'X,K(n)), RI'(XIX -Y,, K(n)),

and 2.6 follows at once.

3. Construction of extensions of motives

3.1. To begin with recall that Jannsen [7] and Deligne [4] have defined the tensor category
MRy, of mized realisations. In [7] 6.11, it is shown how to define the (cohomological)
mixed realisations of simplicial schemes with smooth components, and the analogues with
supports. Denote these by h* (—). This is enough to apply the ideas of §2 to the mixed
realisation functor: there is an exact sequence

0 — AHZIX) — RPTUEIX —Y.) — hPR(RIX) — hP(ZIX)

I I
h2n—q—1(X) h2n—q<X)

and a higher cycle y € 2"(X, q) with 9fy = 0 for all i defines a map Q(—n) — h%}f(ZqX).
But as ¢ > 0 the image of the class of y in h?"~9(X) vanishes, so its pullback gives an
extension F,

0 — hr"I(XIX) — KTHZIX -Y,) — AP(RIX) — AP(ZX)

[ | [t |

0 — hli(ZiX) — E, -  Q(-n) — 0

in the category MR.

3.2. One possible definition of the categrory MM} of mized motives is the Tannakian
subcategory of MRy, generated by h'(V) for k-varieties V. Now h?""}(LIX —Y,) is
the same as h?""1(A9X — Yrel JA9X). Then the following simple result shows that
h*"~1(X1X —Y,), and therefore also E,, belong to MM:

3.3 Proposition ([8] 1.4). Let U be quasiprojective over k, and j:Z — U a closed
subset. Then there is for each i a mixed motive h*(U rel Z) over k whose realisations are
isomorphic to the relative cohomology groups of (U, Z).
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3.4. To show that the assignment y — E, factors through CH" (X, q), the results of §2
are not enough; one would need functorial complexes in the derived category of mixed
realisations. One way to get round this is to use the notion of MAH-complex introduced
in [7], 6.11.8. Alternatively the extensions may be split geometrically as follows.

3.5. Let z € z"(X,q + 1) with 93z = y.Write A9"1X for the strict simplicial scheme

th

whose r** component is the disjoint union of all codimension r + 1 faces of A9t'X which

are not contained in codimension 1 face 9y(A%X). Let C9T1 X be the augmented simplicial
scheme A9T1X « A9t1X. Let Z be the support of z, and Z, C C9T1 X the corresponding
simplicial subscheme. Explicitly, C9t1X is

ALY 100 Aex = [ Ac-1x LT e A
«— . e -~ .
Hence its mixed realisation is
R (CITIX) = h*(X) @ H*[Z — 219 — .. — Zle9] =0,

Therefore the boundary maps h'~1(C9™1 X — Z,) — h%,(C?T1X) are isomorphisms. The
cycle z therefore defines a map Q(—n) — h?"~1(C9T! — Z,). Restricting this with respect
to the inclusion L9X < CIT1X gives a map Q(—n) — h?"~1(X9X —Y,) which splits E,,.

3.6. Remark. Essentially the same argument as above shows that the cycle map (1.5.1)
vanishes on the cycle J;z.

3.7. In summary, we have defined a homomorphism

CH™X,q) — Extryag(Q(—n), k" 171(X))

Y = E,
such that the diagram
— By n—g—
CH"(X,q) it Extly u, (Q(—n), A2 ~171(X))

lcycle l@—adic realisation
n— edge n—a—1/%
Hgontq(X7 Qﬁ(n)> —g> EXtéal(E/k)(Qf(_n>7H2 1 1(X7Q£)>
commutes. The analogous statement will also hold if Q-cohomology over k is replaced by

rational cohomology over C or R, with its Hodge structure, and ¢-adic cohomology over
k by Beilinson-Deligne (absolute Hodge) cohomology [1].
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