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In the paper [Beilinson 1986], Beilinson defined the “Eisenstein symbol”, a universal
construction of elements in higher K-theory (motivic cohomology) of self products of ellip-
tic curves. This generalised a construction by Bloch of elements in K2 of an elliptic curve
[Bloch 1980]. A refinement of Beilinson’s Eisenstein symbol was given in [Deninger 1989].

The purpose of the present paper is to calculate the boundary of the Eisenstein symbol
at a place of bad reduction of the elliptic curve.

In the case of an elliptic curve over a number field, this gives a criterion for the
‘integrality’ of Eisenstein symbol elements, and thus generalises a formula found by Bloch
and Grayson [1986]. In the case of the universal elliptic curve, we obtain the boundary of
the Eisenstein symbol at the cusps. (In characteristic zero an equivalent result was proved
in [Beilinson 1986] by an analytic method.)

In our presentation the formula involves Bernoulli polynomials. These arise essentially
on account of their well-known distribution property — cf. 2.6 (i) below.

We now give a precise summary of our main result. Let E/F be an elliptic curve over
a field, and P ⊂ E a finite subgroup scheme of E defined over F . For any integer n≥ 1,
consider the Eisenstein symbol map, following the definition of [Deninger 1989, §8] :

En
P : Q[P ]◦ −→Hn+1

M (En,Q(n+1))sgn.

Here the following notations are used.

— Q[P ]◦ is the Q-vector space of Gal(F/F )-invariant functions β : P (F )→Q satisfying∑
x∈P (F )

β(x) = 0 (which we identify with divisors on E in the obvious way).

— Hi
M(−,Q(j))=K

(j)
2j−i(−) is motivic cohomology — cf. [Beilinson 1985, 2.2], [Schnei-

der 1988, §3], [Deninger, Scholl, §1].

— for a group scheme A, we identify An with the kernel of the sum-mapping Σ : An+1 →
A. This gives an action of the symmetric group Sn+1 on An.

— subscript ‘sgn’ denotes the image under the projector Πsgn = 1
(n+1)!

∑
σ∈Sn+1

sgn(σ).σ.

Now suppose F admits a non trivial discrete valuation v, and let O and k, be the valuation
ring and residue field of v, respectively. We shall assume that k is perfect. Let E/O be
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a minimal regular model of E, and E/k its special fibre at v. We make the following
additional assumptions :

i) E/k is a Néron N -gon (untwisted), for some N ≥ 1.

ii) P extends to a finite flat subgroup scheme P/O of the Néron model of E over O. (For
example, one could take P to be the N -torsion points of E, with N as in i.)

Write
◦
E for the connected component of the Néron model of E over O, and fix an isomor-

phism
◦
E/k

∼= Gm/k. This induces an orientation on E/k, i.e., a bijection between Z/NZ

and the set of components of E/k. The component corresponding to ν ∈Z/NZ will be de-
noted Cν . If β ∈Q[P ]0 and ν ∈Z/NZ then we write dβ(ν) for the degree of the restriction
of the flat extension of β to the component Cν .

The boundary map

∂n : Hn+1
M (En,Q(n+1))sgn −→Hn

M(
◦
En

/k,Q(n))sgn

arises from the localisation sequence of the pair (
◦
En

/O,
◦
En

/k). The target space is a one-

dimensional Q-vector space generated by Φn
n =Πsgn

(
y0∪· · ·∪yn

)
, where y0 =(y1 · · ·yn)−1,

and for 1≤ i≤n, yi is a coordinate on the ith copy of Gm/k (cf. 1.5 below).

The main result of this paper is :

Theorem.

∂n ◦En
P (β) =Cn

P,N

( ∑

ν∈Z/NZ

dβ(ν)Bn+2(〈
ν

N
〉)

)
.Φn

n,

where Cn
P,N is an explicit nonzero constant, Bk(X) is the m-th Bernoulli polynomial, and

0≤〈x〉< 1 is the representative of x∈Q/Z.

The case n=1 was found by Bloch and Grayson by a somewhat different method. The
reader will find applications in their paper, and in the case n=2 in [Mestre, Schappacher
1990, §§3.4, 3.5] — cf. section 6 below. In these applications F = Q and the theorem
is used to describe the obstruction to the Eisenstein symbols belonging to the ‘integral’
motivic cohomology Hn+1

M (En,Q(n+1))Z.

The formula of the theorem was discovered by the second author while studying the
work of Beilinson on modular curves [Beilinson 1986]. There En

P (which Beilinson denotes
E l
M) is constructed for the universal elliptic curve over the field of modular functions.

Beilinson’s main result concerning the symbol (Theorem 3.1.7 of loc. cit.) is equivalent to
7.4 below, but his proof is analytic, in contrast to our algebraic approach.

Acknowledgement. This paper was completed while both authors enjoyed the hospitality of the Institute for

Advanced Study, Princeton.
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1. The basic formula

We continue to use (and expand upon) the notation of the introduction.

1.1 The Eisenstein symbol. We recall the construction of the Eisenstein symbol map,
following [Deninger 1989, §8]. For an integer n≥ 1, let pi :En →E (1≤ i≤ n) denote the

projections, and p0 =−
n∑

i=1

pi. Write U =E−P , and define

Un′ =
⋂

0≤i≤n

p−1
i (U).

If we need to emphasize the dependence on P we write UP , etc.

For i= 0, . . . ,n, let βi ∈Q[P ]0, and choose functions fi ∈O(U)∗⊗Q with divisors βi.
We use the “symbol” notation {−, . . . ,−} for the cup product

∪ :⊗lH1
M(−,Q(1))−→H l

M(−,Q(l)).

Then there is a well-defined map

Θn
P :Q[P ]0

⊗n+1
−→ Hn+1

M (Un′,Q(n+1))P n

sgn(1.1.1)

given by

β0⊗·· ·⊗βn 7→ΠP n ◦ Πsgn {p∗0f0, . . . ,p
∗
nfn}.

Here ΠP n = 1

#P (F )n

∑
x∈P (F )n

T ∗
x is the projector onto the space of P (F )n-invariants. With

the special choices

(1.1.2) β1 = · · ·=βn =αP =
∑

x∈P (F )

(0)−(x),

it is the first step of the construction of the Eisenstein symbol map En
P , and other choices

of β1, . . . βn do not give rise to new elements of motivic cohomology. However we will
not make this substitution at once, in order to preserve the symmetry for the subsequent
calculation. Note that we are taking the invariants under translations by P (F ), rather
than the coinvariants considered in [Deninger 1989], in order to calculate explicitly.

The second step in the construction—only needed when n≥ 2—is the decomposition
of the target space of 1.1.1 into eigenspaces under the L−1-multiplication. This will be
discussed in section 4.

1.2 Varying P . Let P
j
→֒Q be (a closed immersion of) two finite subgroup schemes of E

defined over F . Then there are commutative diagrams :

(1.2.1)

Q[Q]0
⊗n+1 Θn

Q
−→ Hn+1

M (Un′

Q ,Q(n+1))Qn

sgnxj!

xres

Q[P ]0
⊗n+1 Θn

P−→ Hn+1
M (Un

P
′,Q(n+1))P n

sgn
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and

(1.2.2)

Q[Q]0 −→ Hn+1
M (Un′

Q ,Q(n+1))Qn

sgnxj!

x(Q:P )n×res

Q[P ]0 −→ Hn+1
M (Un

P
′,Q(n+1))P n

sgn

where j! is extension by zero, and the unlabelled horizontal arrows are the maps

β 7→Θn
Q(β⊗α⊗n

Q ) and β 7→Θn
P (β⊗α⊗n

P ) respectively.

Now let L ≥ 1 be an integer, and write P̃ = [×L]−1(P ) ⊂ E, Ũ = E − P̃ , etc. Write
π : P̃ →P for the projection. Multiplication by L induces a Galois covering

[×L] : Ũn′ −→Un′.

By Galois descent, this gives a homomorphism

[×L]∗ : Hn+1
M (Un′,Q(n+1))P n

−→Hn+1
M (Ũn′,Q(n+1))P̃ n

,

and we have two further commutative diagrams:

(1.2.3)

Q[P̃ ]0
⊗n+1 Θn

P̃−→ Hn+1
M (Ũn′

,Q(n+1))P̃ n

sgnxπ∗

x[×L]∗

Q[P ]0
⊗n+1 Θn

P−→ Hn+1
M (Un′,Q(n+1))P n

sgn

and

(1.2.4)

Q[P̃ ]0 −→ Hn+1
M (Ũn′

,Q(n+1))P̃ n

sgnxπ∗

x[×L]∗

Q[P ]0 −→ Hn+1
M (Un′,Q(n+1))P n

sgn

with the unlabelled maps in (1.2.4) being

β 7→Θn
P̃
(β⊗α⊗n

P̃
) and β 7→Θn

P (β⊗α⊗n
P ).

All of this is straightforward to prove by direct calculation from the formulae in [Deninger
1989, proof of 8.2].

1.3 Base change. Let F ′/F be a finite extension, v′ a discrete valuation of F ′, and v the
restriction of v′ to F . Assume that the residue field extension k′/k is separable. Then the
following square is commutative:

Hn+1
M (En

/F ′,Q(n+1))
∂v′

−→ Hn
M(

◦
E/k′ ,Q(n))

xresF ′/F

xe(v′/v)×resk′/k

Hn+1
M (En

/F ,Q(n+1))
∂v−→ Hn

M(
◦
E/k,Q(n))
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Here resF ′/F , resk′/k are the restriction homomorphisms, and e(v′/v) is the ramification
index. (Recall that we are assuming k to be perfect.)

In view of 1.2.1 and 1.3, we may now restrict to the following situation.

1.4 Assumptions.

— E/k is an untwisted Néron N -gon with N ≥ 3;

— P =µµµN ×Z/NZ⊂E(F ) is a level N structure on E;

— P/k gives the standard level N structure on (E/k)smooth =Gm×Z/NZ.

1.5 Write UN = E−P , and U1 for the complement of the zero section in
◦
E/O. Consider

the Galois covering∗:

Un′
N /k =

⋃
0≤i≤n

p−1
i ((Gm−µµµN )×Z/NZ)

y[×N ]

Un′
1 /k =

⋃
0≤i≤n

p−1
i (Gm−1)

which by Galois descent gives an isomorphism

(1.5.1) [×N ]∗ : H•
M(Un

1
′
/k,Q(∗)) ∼−→H•

M(Un
N

′
/k,Q(∗))P n

.

In the next section we shall prove the following basic formula for the composite of Θn
P with

the boundary map in motivic cohomology

∂v : H•
M(Un

N
′
/F ,Q(∗))P n

sgn −→H•−1
M (Un

N
′
/k,Q(∗−1))P n

sgn.

1.6 Proposition. ∂vΘ
n
P (⊗βi) =±

n+1

N2n+1

n∑

q=0

(
n

q

) ∑

1 6=ζ∈µµµN

ζd̂0(ζ) · · · d̂n(ζ)

(ζ−1)q+2
[×N ]∗Φn

q .

The meanings of the symbols are :

— di(ν) = dβi
(ν) =

∑
ζ∈µµµN

βi((ζ,ν)) for ν ∈Z/NZ;

— d̂i(ζ) =
∑

ν∈Z/NZ

ζνdi(ν) is the Fourier transform of di;

— Φn
q is the element of Hn

M(Un
1
′
/k,Q(n))sgn given as follows : let y= t−1 be the inverse of

the natural coordinate on Gm, and let yi = p∗i (y), for the n+1 projections p0, . . . ,pn :

∗ If char(k) dividesN then [×N ] is the composite of a Galois covering and a power of the
Frobenius mapping. As the Frobenius induces an automorphism on motivic cohomology,
[×N ]∗ is an isomorphism in this case also.
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Gn
m → Gm. Let Sn+1 be the symmetric group permuting the coordinates y0,. . . ,yn.

Then
Φn

q =Πsgn{y1, . . . ,yq,1−yq+1, . . . ,1−yn}.

1.7 Remark. Note in passing that for the special functions fi, i = 1, . . . , n with divisors
divfi =α as in 1.1.2, we have that di(ν) =N2δν,0−N , so that here we find for ζ 6= 1 that

d̂i(ζ) =N2.

We will see in section 4 that the proposition actually implies the theorem.

2. The calculation

2.1 We begin with some geometry on the arithmetic surface E/O. For the moment, we
need only assume that E/k is an untwisted Néron N -gon with N ≥ 3, and that P is a finite
subscheme of E whose flat extension P/O is contained in the smooth part of E/O. We
normalise the orientation of the special fibre E/k = ∪ν∈Z/NZCν and the coordinate tν on
Cν such that tν = 0, ∞ are the points of intersection of Cν with Cν−1, Cν+1 respectively.
(There is no ambiguity as N ≥ 3.)

Let f ∈O∗(U)⊗Q, and let a(ν) be the order of f along the νth component Cν of E/k.

Choose once and for all a uniformiser π of the valuation v, and let g(ν) =π−a(ν)f ∈F (E)∗.
Since ordCν

(π)= 1, the function g(ν) is regular outside of P and the Cµ with µ 6= ν; so its
restriction to Cν is an element of k(Cν)⊗Q which we also denote g(ν). Let D/O be the

flat extension of divf to E/O, and d(ν) =deg
(
D/O∩Cν

)
(cf. introduction).

Proposition 2.2.

(i) divg(ν) =(D/O∩Cν)−b(ν−1).(0)+b(ν).(∞), where b(ν) = a(ν+1)−a(ν);

(ii) d(ν) = b(ν−1)−b(ν).

Proof. (ii) follows from (i) as deg(divg(ν)) = 0. The only remaining non-trivial assertions
are the claimed multiplicities at tν = 0, ∞. To verify these, represent the completed local
ring at 0 as R = Ô[[u,v]]/(uv− π), where u = 0, v = 0 are local equations for Cν , Cν−1

respectively. Then the image of f in the field of quotients of R is of the form:

f =(unit)×ua(ν)va(ν−1) =(unit)×πa(ν)v−b(ν−1)

=(unit)×πa(ν−1)ub(ν−1)

Therefore the order of g(ν) at tν = 0 is −b(ν−1), and the order of G(ν−1) at tν−1 =∞ is
b(ν−1).

2.3 Now we continue under the assumptions of 1.4. Then g(ν) ∈ O∗(Gm −µµµN )⊗Q, and
we write

G(ν)(t) =
∏

ζ∈µµµN

g(ν)(ζt)= (const.)
(tN −1)d(ν)

tNb(ν−1)

=(const.)yNb(ν)(1−yN )d(ν)
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where y=1/t.

2.4 We apply the above with f = fi, 0≤ i≤n, with the obvious additional subscripts. To
calculate the boundary of Θn

P we need the following compatibility of the cup-product and
the boundary map (see [Loday 1976, 2.3] and [Grayson 1976]).

Let X/O be smooth, and ∂ :Hi
M(XF ,Q(j))→Hi−1

M (Xk,Q(j−1)) the boundary
map of the localisation sequence. For ξ ∈Hi

M(X,Q(j)), write ξF , ξk for its images
in Hi

M(XF ,Q(j)), Hi
M(Xk,Q(j)). Then for every ξ,

±(π∪ξF ) = ξk

(the sign depending only on (i, j)).

In particular, up to sign and torsion, the boundary maps in Milnor and Quillen K-theory
agree. This gives (up to sign) the following formula for the restriction of ∂{p∗0f0, . . . ,p

∗
nfn}

to the component Cν1
× . . .×Cνn

:

n∑

r=0

ar(νr) {g
(ν0)
0 (y0), . . . ,

̂
g
(νr)
r (yr), . . . , g

(νn)
n (yn)}

Here and elsewhere ν0 = −
∑n

i=1 νi. Applying the projector ΠP n—defined in 1.1.1—we
obtain

N−2n
∑

ννν∈(Z/NZ)n

n∑

r=0

ar(νr) {G
(ν0)
0 (y0), . . . ,

̂
G

(νr)
r (yr), . . . ,G

(νn)
n (yn)},

where ννν = (ν1, . . . , νn). Applying the inverse of the isomorphism (1.5.1) we write this as
the following element of Hn

M(Un
1
′
/k,Q(n)):

N−2n
∑

ννν∈(Z/NZ)n

n∑

r=0

ar(νr) {y
b0(ν0)
0 (1−y0)

d0(ν0), . . . (̂r) . . . ,ybn(νn)
n (1−yn)dn(νn)}.

We can expand this in terms of a sum over the symmetric group Sn+1 =Symm{0,1, . . . ,n}:

N−2n
∑

ννν∈(Z/NZ)n

n∑

q=0

∑

σ∈Sn+1

sgn(σ)

(n−q)!q!
aσ0(νσ0)bσ1(νσ1) · · ·bσq(νσq)

×dσ(q+1)(νσ(q+1)) · · ·dσn(νσn){yσ1, . . . ,yσq,1−yσ(q+1), . . . ,1−yσn}

and applying the projector Πsgn we obtain the following expression.

N−2n
n∑

q=0

1

(n−q)!q!

∑

ννν∈(Z/NZ)n

∑

σ∈Sn+1

aσ0(ν0)bσ1(ν1) · · ·bσq(νq)(2.2.1)

×dσ(q+1)(ν(q+1)) · · ·dσn(νn)Φn
q .

7



2.3 This last expression will be more palpable once it is rewritten in terms of Fourier
transforms. Recall that we are taking φ̂(ζ) =

∑
ν∈Z/NZ

ζνφ(ν). If φ(ν) = ψ(ν+ a)−ψ(ν),

then we have φ̂(ζ) = (ζ−a−1)ψ̂(ζ). In particular, by 2.1 :

d̂i(ζ) = (ζ−1)b̂i(ζ) =−ζ−1(ζ−1)2âi(ζ).

Furthermore d̂i(1) = b̂i(1) = 0. Therefore fixing q, 0 ≤ q ≤ n, we have the following
identities, valid for any σ ∈Sn+1:

−
1

N

∑

1 6=ζ∈µµµ

ζd̂0(ζ) · · · d̂n(ζ)

(ζ−1)q+2
=

1

N

∑

1 6=ζ∈µµµN

âσ0(ζ) b̂σ1 · · · b̂σq(ζ) · d̂σ(q+1)(ζ) · · · d̂σn(ζ)

=
∑

ννν∈(Z/NZ)n′

aσ0(ν0)bσ1(ν1) · · ·bσq(νq) ·dσ(q+1)(ν(q+1)) · · ·dσn(νn).

Consequently, expression 2.2.1 becomes (up to sign)

N−1−2n
n∑

q=0

(n+1)!

(n−q)!q!
Φn

q

∑

1 6=ζ∈µµµN

ζd̂0(ζ) · · · d̂n(ζ)

(ζ−1)q+2
.

This proves proposition 1.6.

2.5 Fourier transforms of Bernoulli polynomials. Recall the definition of the Bernoulli
polynomials Bk :

tetX

et−1
=

∞∑

k=0

Bk(X)
tk

k!
.

Thus, for example,

B0(X) = 1, B1(X) =X−
1

2
, B2(X) =X2−X+

1

6

B3(X) =X3−
3

2
X2 +

1

2
X, B4(X) =X4−2X3 +X2−

1

30

Define, for ζ ∈µµµN , B̂k,N (ζ) =
∑

ν∈Z/NZ

Bk(〈 ν
N
〉)ζν . Then it follows from the definition

of the Bk that
∞∑

k=0

B̂k,N (ζ)
tk

k!
=

t

et−1

N−1∑

ν=0

(ζet/N )ν =
t

(ζet/N −1)
.

Substitute u= et/N and define

B̃k(ζ) :=N1−kB̂k,N (ζ) = k
(
u
d

du

)k−1 1

ζu−1
|u=1.

¿From this it is elementary to deduce the following proposition the first part of which is a
convenient reformulation of the distribution property of the Bernoulli polynomials.
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2.6 Proposition. (i) For every integer L≥ 1,

∑

ηL=ζ

B̃k(η) =Lk B̃k(ζ).

(ii) For all k ≥ j ≥ 2, there exist rational numbers aj,k independent of N such that
ak,k =(−1)k−1/k! and

ζ

(ζ−1)k
=

k∑

j=2

aj,kB̃j(ζ).

For instance, one has

ζ

(ζ−1)2
=−

1

2
B̃2(ζ)

ζ

(ζ−1)3
=

1

4
B̃2(ζ)+

1

6
B̃3(ζ)

ζ

(ζ−1)4
=−

1

6
B̃2(ζ)−

1

6
B̃3(ζ)−

1

24
B̃4(ζ)

3. The case n=1 over a number field

We are now already in a position to verify the theorem in the case n= 1 [Bloch, Grayson
1986]. In fact we will prove a more general result. We first describe the situation in terms
of K-theory to make apparent the relation with loc. cit .

Let E be an elliptic curve over a number field F . Consider the localisation sequence:

0 → H2
M(E,Q(2)) → H2

M(F (E),Q(2))
T
−→

∐
ξ∈|E|F (ξ)∗

‖ ‖
K2(E)⊗Q K2(F (E))⊗Q

Here |E| is the set of closed points of E, and the sequence is exact on the left as K2 of a
number field is torsion. The boundary map T is the “tame symbol”.

Let fj , gj ∈F (E)∗ be a finite collection of rational functions on E such that
∑
j
{fj , gj}∈

kerT . Then
∑
j

{fj , gj} defines an element of H2
M(E/F ,Q(2)) =K2(E/F )⊗Q.

Now let v be a finite place of F , with residue field k, at which E has split multiplicative
reduction with special fibre a Néron N -gon. We intend to calculate its image under the
boundary map

∂ :K2(E)⊗Q−→K ′
1(E/k)⊗Q.

First note :—

K ′
1(E/k)⊗Q∼=H1

M(
◦
E/k,Q(1))∼=Q.
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In fact, since k is finite, the localisation sequence gives a short exact sequence

0 → K ′
1(E/k)⊗Q → K1(E

smooth
/k )⊗Q → K0(E

sing
/k )⊗Q

‖ ‖∐
ν∈Z/NZ

Q · tν
δ

−→ Q[Z/NZ]

with δ(tν) = (ν)−(ν−1). Then the restriction

K1(E
smooth
/k )⊗Q→K1(

◦
E/k)⊗Q=H1

M(
◦
E/k,Q(1)) = k(Gm)∗⊗Q · t0

induces an isomorphism on the image of K ′
1(E/k)⊗Q.

For the calculation we only need the following hypothesis on fj, f
′
j :

The closure of the support of the divisors of fj, f
′
j is contained in the smooth

part of E/O.

Then, since k is finite, the reduction modulo v of this support is contained in µµµM ×Z/NZ

for some M ; so by passing to a ramified extension F ′/F and using 1.3 we may, and do,
assume M =N . The first part of the calculation of §2 then gives (up to sign) :

∂
(∑

j

{fj,f
′
j}

)
=

2

N3

∑

1 6=ζ∈µµµN

[×N ]∗
[

ζ

(ζ−1)2
Φ1

0 +
ζ

(ζ−1)3
Φ1

1

] ∑

j

d̂j(ζ) d̂
′
j(ζ)

where dj(ν), d
′
j(ν) are the degrees of the restriction to Cν of the closures of the divisors

of fj , f
′
j . Using the examples following 2.6 and the relation

Φ1
0 =

1

2

∑

σ∈Sn+1

sgn(σ){1−yσ1}=
1

2

{1−y1
1−y0

}
=

1

2
{y1}=

1

2
Φ1

1

(cf. 5.2 below), we obtain a formula involving only B3 and Φ1
1. (It is no accident that B̃2

drops out in this way — see section 4 below.) Using B3

(
〈−ν

N 〉
)
=−B3

(
〈 ν

N 〉
)

and the fact
that [×N ]∗Φ1

1 =NΦ1
1, this gives :

3.2 Proposition. ∂
(∑

j

{fj ,f
′
j}

)
=±

1

3N

∑

µ,ν∈Z/NZ

∑

j

dj(µ)d′j(ν−µ) B3

(
〈
ν

N
〉
)
· Φ1

1.

In the special case where all f ′
j have the standard divisor this proposition simplifies

in view of 1.7 and due to the fact that
∑

µdj(µ) = 0.

3.3 Corollary. Let
∑

j{fj , g}∈ kerT with divg=
∑

x∈P

(0)−(x). Then

∂
(∑

j

{fj , g}
)
=±

N

3

∑

ν∈Z/NZ

∑

j

dj(ν) B3

(
〈
ν

N
〉
)
· Φ1

1.

10



3.4 We should remark that if v is a place of F at which the reduction of E is not split
multiplicative, then K ′

1(E/k)⊗Q = 0. Thus the restriction to the case where E/k is an
untwisted Néron polygon does not miss any interesting cases.

3.5 Now let O momentarily denote the (global) ring of integers of F . We have the exact
sequence

(torsion)−→K2(E/O)−→K2(E/F )
∂=

∐
∂v

−→
∐

v

K ′
1(E/kv

)−→·· ·

The fact noted in 3.4, that the target of ∂v is torsion unless v is a place of split multiplica-
tive reduction for E is in accordance with relative versions of Beilinson’s conjectures—cf.
[Deligne 1985], [Ramakrishnan 1989]. In fact, we have

dimQK
′
1(E/kv

)⊗Q=ords=0Lv(E,s)

where the L-function of E/F is written L(E/F, s) =
∏
v
Lv(E,s)

−1. But even if the re-

duction at v is split multiplicative, the tame symbol may nonetheless be trivial on the
elements of K2(E/F ) we considered here. In fact, if E/kv

is a Néron polygon with one or

two sides, then for rational functions fj ,f
′
j with reduced divisors supported in Esmooth

/k , we

always have ∂
(∑

j{fj,f
′
j}

)
=0 because B3(1−x) =−B3(x).

3.6 Remark. When the divisors of fj , f
′
j are supported in torsion points, proposition

3.2 implies the formula of [Bloch, Grayson 1986, p.88]—cf. [Mestre, Schappacher 1990,
1.5.1]. But there are also examples of elements

∑
j{fj , f

′
j} ∈ kerT when the support

of the divisors of fj , f
′
j contains points of infinite order. The first such example, on a

curve with complex multiplication, was found by R. Ross (1990 Rutgers Thesis). Recently
Jan Nekovář, modifying successfully an earlier attempt by one of the authors (NS), wrote
down a one-parameter family of elliptic curves on which non-trivial such elements can be
constructed. Some curves in this family have places v with non-trivial K ′

1(E/kv
)⊗Q. They

provide concrete applications of the general statement 3.2. But we do not go into this here.

11



4. The weight decomposition.

4.1 The remaining step in the construction of the Eisenstein symbol is the “weight decom-
position” of H•

M(Un
N

′
/F ,Q(∗))P n

sgn under the “L−1”-multiplication. Recall [Deninger 1989,

§8] that if L> 1, and P̃ = [×L]−1P as in 1.2 above, the endomorphism L is defined by the
commutativity of the diagram:

(4.1.1)

H•
M(Un′,Q(∗))P n

sgn

j∗

→֒ H•
M(Ũn′,Q(∗))P n

sgn −→→ H•
M(Ũn′,Q(∗))P̃ n

sgn

L

x≀ [×L]∗

H•
M(Un′,Q(∗))P n

sgn

where j∗ is induced by the inclusion j : Ũn′ →֒ Un′. On the image of H•
M(En,Q(∗))sgn

(which is invariant under Pn), L coincides with [×L]∗−1, and is simply multiplication by
L−n.

4.2 Theorem. [Beilinson 1986], [Deninger 1989]. H•
M(Un′,Q(∗))P n

sgn decomposes into

eigenspaces on which L acts as multiplication by L−n−i, 0 ≤ i ≤ n− 1; and the inclu-
sion Un′ →֒ En induces an isomorphism of H•

M(En,Q(∗))sgn with the L−n-eigenspace of
H•

M(Un′,Q(∗))P n

sgn.

The definition of the Eisenstein symbol is now as follows: let α=
∑

x∈P (0)−(x). Then
En

P (β) is the projection of Θn
P (β⊗α⊗n) into the L−n eigenspace, viewed as an element of

Hn+1
M (En,Q(n+1)) under the isomorphism of theorem 4.2.

Let us give a slightly different proof of theorem 4.2. Recall that

Un′ =
{
(x1, . . . ,xn)∈En

∣∣ for all 0≤ i≤n, xi /∈P
}
,

where x0 =−x1− . . .−xn. We define, for 0≤ q≤n,

Y n
q =

{
(x1, . . . ,xn)∈En

∣∣ at least q of the xi’s are in P
}
;

◦
Y n

q =
{
(x1, . . . ,xn)∈En

∣∣ exactly q of the xi’s are in P
}
.

Then Un′ =
◦
Y n

0 , En−Un′ =Y n
1 and

(4.2.1)
◦
Y n

1
∼−→U (n−1)′×{0, . . . ,n}×P.

Moreover we have a decomposition En =
∐

0≤q≤n

◦
Y n

q of En into locally closed subsets which

are invariant under the action of Sn+1 · P
n. This group acts transitively on the set of

components of
◦
Y n

q with isotropy subgroup (Sn+1−q×Sq) ·P
n−q. Notice that the subgroup

Sq acts trivially on the component

{
(x1, . . . ,xn)∈En

∣∣x0, . . . ,xn−q−1 /∈P, xn−q = . . .=xn =0
}

12



from which it follows that if q≥ 2 then

H•
M(

◦
Y n

q ,Q(∗))P n

sgn =0.

Then by the long exact sequences of motivic cohomology, we deduce that

H•
M(En,Q(∗))sgn =H•

M(En,Q(∗))P n

sgn =H•
M(

◦
Y n

0 ∪
◦
Y n

1 ,Q(∗))P n

sgn.

Moreover, by 4.2.1,

H•
M(

◦
Y n

1 ,Q(∗))P n

sgnn+1

∼−→H•
M(U (n−1)′,Q(∗))P n−1

sgnn
.

We therefore have a long exact sequence:

H•−2
M (U (n−1)′,Q(∗−1))P n−1

sgnn

δ
−→H•

M(En,Q(∗))P n

sgnn+1

−→H•
M(Un′,Q(∗))P n

sgnn+1
−→H•−1

M (U (n−1)′,Q(∗−1))P n−1

sgnn
−→ . . .(4.2.2)

By 4.2.1 the localisation sequence is compatible with the family of endomorphisms which
are L on the middle two terms and L−2L on the outside ones. By simultaneous induction
it follows that:

(4.2.3) The boundary maps δ are zero.

(4.2.4) The eigenvalues of L on H•
M(Un′,Q(∗))P n

sgnn+1
are L−n−i, for 0≤ i≤n−1, and the

corresponding eigenspaces are isomorphic to H•−i
M (En−i,Q(∗− i))sgnn−i+1

.

4.3 One would like a similar statement with E replaced by Gm and P by µµµN . The exact
sequence analogous to 4.2.2 still holds. For us the only case of interest is •= ∗=n. Then
δ vanishes, since the space

Hn
M(Gn

m/k,Q(n))sgn

is one-dimensional, spanned by the symbol {y1, . . . ,yn}. Hence it will certainly inject into
Hn

M(k(Gn
m),Q(n))sgn =KM

n (k(y1, . . . , yn))⊗Q. Therefore the long exact sequence splits
into short exact sequences, and by a similar induction argument we see that Hn

M((Gm −
µµµN )n′,Q(n))P n

sgn has dimension n, spanned by Φn
1 ,. . . ,Φn

n. (In particular, there is a non
trivial relation between Φn

0 , . . . ,Φ
n
n — cf. section 5.) However there is no canonical de-

composition as it is easy to see that the analogue of L acts by the scalar L−n, for every
L≥ 1.

4.4 In order to decompose Θn
P according to the weights of L, we must therefore calculate

En
P explicitly. Write ΩP for the composite

ΩP = [×L]∗ ◦L :H•
M(Un′,Q(∗))→H•

M(Ũn′,Q(∗)).

13



By 4.2 we have

(4.4.1) En
P (β) =

[
n−1∏

i=1

(L−n−L−n−i)−1
n−1

©
i=1

(
L−L−n−i

)
]
◦Θn

P (β⊗α⊗n).

Write P [j] =L−jP . We can rewrite the above expression as

(4.4.2)

[
n−1∏

i=1

(L−n−L−n−i)−1 [×Ln−1]∗
−1

◦
n−1

©
i=1

(
ΩP [i−1] −L−n−i[×L]∗

)
]
◦Θn

P (β⊗α⊗n).

Note that we may even extend the range of i to, say, i=n, making the operator explicitly
kill off one more eigenspace which we already know by 4.2 to be zero. We will do this
in the computation because it will painlessly suppress the Φn

2 -component in 1.6. (If we
did not do it, this component would have to be shown to cancel out because of relation
5.2—cf. the alternative proof we gave for proposition 3.2 which of course represents the
simplest case.)

4.5 Let us analyse formula 4.4.1 with a view to computing ∂n ◦En
P via 1.6. As indicated

we modify 4.4.1 by letting i run from 1 to n. This also replaces [×Ln−1]∗
−1

by [×Ln]∗
−1

in 4.4.2.

4.5.1 Expand

n

©
i=1

(
ΩP [i−1] −L−n−i[×L]∗

)
=

∑

I⊆{1,...,n}

(−1)|I|
n

©
i=1

ΛI,i =
∑

I

(−1)|I| ΛI ,

where |I| denotes the cardinality of I, and for each I ⊆ {1, . . . , n} and i ∈ {1, . . . , n}, we
define

ΛI,i =

{
ΩP [i−1] if i 6∈ I
L−n−i[×L]∗ if i∈ I.

For fixed I, we shall now compute

(4.5.2) [×LnN ]∗−1 ◦∂n◦ΛI ◦Θn
P (β⊗α⊗n).

By 1.2.2 we find that

ΩP [i−1] ◦Θn
P [i−1](β⊗α

⊗n) =Θn
P [i](j!β⊗j!α

⊗n)

and
[×L]∗ ◦Θn

P [i−1](β⊗α
⊗n) =Θn

P [i](π
∗β⊗π∗α⊗n).

Thus, writing

λI =
n

©
i=1

λI,i λI,i =

{
j! if i 6∈ I
π∗ if i∈ I,

14



1.6 allows us—neglecting signs—to transform 4.5.2 into

(4.5.3)
n+1

Ln(LnN)2n+1

n∑

q=0

(
n

q

)
Φn

q

∑

1 6=η∈µµµLnN

η

(η−1)q+2

(
d̂λIβ d̂

n
λIα

)
(η)

∏

i∈I

L−n−i.

Here the first factor of Ln in the denominator comes from 1.3. In fact, in order to apply
1.6 relative to the group of LnN -torsion we have to extend the base field to an extension
with ramification index Ln.

The following lemma is straightforward. (Notice however that we are using the no-

tation j! and π∗ in two different meanings : on functions d̂γ these operators refer to the
groups µµµN ,µµµLN ; on divisors the notation is relative to µµµN ×Z/NZ,µµµLN×Z/LNZ. In each
case, j is inclusion and π the natural projection.)

4.5.4 Lemma. For any γ ∈Q[P ]◦, we have

d̂j!γ =π∗d̂γ d̂π∗γ =L2 j!d̂γ.

This transforms 4.5.3 into

(4.5.5)
n+1

Ln(LnN)2n+1

n∑

q=0

(
n

q

)
Φn

q

∑

1 6=ζ∈µµµN

(
d̂β d̂

n
α

)
(ζ)

∏

i∈I

Ln+2−i
∑

ηL|I|
=ζ

η

(η−1)q+2
,

where I = {1, . . . ,n}−I. — Now apply 2.6 and get

(4.5.6)
n+1

Ln(LnN)2n+1

n∑

q=0

(
n

q

)
Φn

q

∑

1 6=ζ∈µµµN

(
d̂β d̂

n
α

)
(ζ)

q+2∑

j=2

aj,q+2B̃j(ζ)L
jn

∏

i∈I

Ln+2−i−j .

But observe that

∑

I⊆{1,...,n}

(−1)|I|
∏

i∈I

Ln+2−i−j =
n∏

i=1

(1−Ln+2−i−j) =

{
0 if 2≤ j≤n+1∏n

i=1(1−L
−i) if j=n+2

Thus taking the sum over all I ⊆{1, . . . ,n} in 4.5.6 and inserting this into 4.4.1, all powers
of L duly cancel, and we obtain :

∂n◦En
P (β) =±

n+1

(n+2)!N2n+1

∑

1 6=ζ∈µµµN

(
d̂β d̂

n
α B̃n+2

)
(ζ) [×N ]∗Φn

n.

Since [×N ]∗Φn
n =Nn Φn

n, the theorem now follows from 1.7 by a trivial computation. The
constant comes out to be Cn

P,N =±Nn (n+1)/(n+2)! in the case 1.4.
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5. A linear relation.

As observed in 4.3 above, there is a non-trivial relation between the elements Φn
q for

0 ≤ q ≤ n. We include it here even though the proof of the theorem we chose to present
does not rely on it—cf. the remark at the end of 4.4 above.

The relation is derived from the following identity in Milnor K-theory.

5.1 Lemma. In Milnor K-theory tensored with Z[1/2], we have
{1−x1x2 · · ·xm

1−x1
,
x1(1−x2)

1−x1
, . . . ,

xm−1(1−xm)

1−xm−1

}
=0.

Proof. By induction: assume true for m, and replace xm by xmxm+1. Then we get:

0=
{1−x1x2 · · ·xm

1−x1
,
x1(1−x2)

1−x1
, . . . ,

xm−2(1−xm−1)

1−xm−2
,
xm−1(1−xmxm+1)

1−xm−1

}

=
{1−x1x2 · · ·xm

1−x1
,
x1(1−x2)

1−x1
, . . . ,

xm−2(1−xm−1)

1−xm−2
,
1−xmxm+1

1−xm

}

+
{1−x1x2 · · ·xm

1−x1
,
x1(1−x2)

1−x1
, . . . ,

xm−2(1−xm−1)

1−xm−2
,
xm−1(1−xm)

1−xm−1

}

Now take the product with

−xm(1−xm+1)

1−xm
=1−

1−xmxm+1

1−xm

to obtain the desired formula.

Apply this now with m=n and yi =xi. We get
{y0(1−y1)

1−y0
,
y1(1−y2)

1−y1
, . . . ,

yk(1−yk+1)

1−yk
, . . . ,

yn−1(1−yn)

1−yn−1

}
=0.

Expand this using bilinearity. If the (k + 1)st choice is yk or (1 − yk)−1, then for the
resulting term to be non-zero the kth choice must be yk−1 or (1−yk−1)

−1, and we obtain:
n∑

p=0

{ y0
1−y0

,
y1

1−y1
, . . . ,

yp−1

1−yp−1
,1−yp+1, . . . ,1−yn

}
=0.

Now apply Πsgn. Using the permutation (012 . . .p) the result can be written as

0 =

n∑

p=0

(−1)p
{ y1

1−y1
, . . . ,

yp

1−yp
,1−yp+1, . . . ,1−yn

}
sgn

=

n∑

p=0

p∑

q=0

(−1)q
∑

0≤i1<···<iq≤p

{
1−y1, . . . ,yi1 , . . . ,yiq

, . . . ,1−yp+1, . . . ,1−yn

}
sgn
.

Here the kth entry is yk for k= i1, . . . , iq and 1−yk for the remaining (n−q) values of k.
We conclude:

5.2 Proposition.

n∑

q=0

(−1)q

( n∑

p=q

(
p

q

))
Φn

q =0.
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6. The number field case

Let F be a number field, O its ring of integers, and let v denote finite places of F . The
subspace H•

M(En
/F ,Q(∗))Z of “integral” elements of H•

M(En
/F ,Q(∗)) is defined to be the

image of

H•
M(Ẽn

/O,Q(∗))−→H•
M(En

/F ,Q(∗)),

where Ẽn
/O → (E/O)n is a desingularisation of the n-fold power of a global regular minimal

model of E. (See 6.6 below.) By the long exact sequence for the pair Ẽn
/O,E

n
/F this space

of integral elements Hn+1
M (En

/F ,Q(n+1))Z equals the kernel of the boundary map

Hn+1
M (En

/F ,Q(n+1))−→
∐

all v

Hn+2
M,(v)(Ẽ

n
/O,Q(n+1)).

where subscript (v) denotes cohomology with support in the fibre at v.

6.1 Now let v be a place of F satisfying the assumptions 1.4. Write ǫ the projector onto
the subspace on which the group µµµn

2 ·Sn ·P
n acts as follows : every µµµ2 acts by −1, Sn acts

via the sign-character sgnn, and Pn acts trivially. We then have a commutative diagram :

Hn+1
M (En

/F ,Q(n+1))(ǫ) −→ Hn+2
M,(v)(Ẽ

n
/O,Q(n+1))(ǫ)⋂
↓ ≀

Hn+1
M (En

/F ,Q(n+1)) −→ Hn
M(

◦
En

/kv
,Q(n))

where the isomorphism is between one-dimensional Q-vector spaces. For this isomorphism
see [Scholl 1990], proof of 3.1.0(iii); the proof given there applies equally well in the present
situation.

6.2 In general, given any finite place v of F , there exists a finite extension F ′/F such
that, above v, E/F ′ has either good reduction or situation 6.1 applies. And in the good

reduction case one has that Hn
M(

◦
En

/kv
,Q(n)) = 0 : see [Soulé 1984, Thm. 3.(iii)].

6.3 Lemma. Let F ′/F be a finite extension. Then

coresF ′/FH
•
M(En

/F ′,Q(∗))Z =H•
M(En

/F ,Q(∗))Z.

This is proved by a slight variation of [Beilinson 1985, 2.4.2] — cf. [Schneider 1988,
p.13].

6.4 Finally, if v is a place where E has either additive and potentially multiplicative or

non split multiplicative reduction, then the target space Hn
M(

◦
En

/kv
,Q(n)) is zero if and

only if n is odd. This is seen from the Galois action on the generator t1 ∪ · · · ∪ tn of the
corresponding motivic cohomology over a suitable extension field.

We conclude :
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6.5 Proposition. Hn+1
M (En

/F ,Q(n+1))Z is the kernel of the boundary maps

Hn+1
M (En

/F ,Q(n+1))−→
∐

v

Hn
M(

◦
En

/kv
,Q(n)),

the product being over all (finite) places of F where E has split multiplicative reduction, if
n is odd; and over all (finite) places of F where E has potentially multiplicative reduction,
if n is even.

Our theorem then allows to calculate explicitly the integrality obstruction for elements
of Hn+1

M (En
/F ,Q(n+1)). This justifies in particular the computations of this obstruction

performed in [Mestre, Schappacher 1990].

6.6 Some words regarding the desingularisation Ẽn
/O are in order. (Note that in §2.2 of

[Mestre, Schappacher 1990], Ẽn
/O is incorrectly defined as the normalisation.)

If E has semistable reduction, then the singularities of E/O
n are products of ordinary

double points, and can be explicitly resolved [Deligne 1968, Lemme 5.4], [Scholl 1990, §2].
In general, the existence of a desingularisation seems open.

If one does not want to assume the existence of Ẽn
/O, one may choose F ′ as in 6.2 and

take the left hand side of 6.3 as the definition of H•
M(En

/F ,Q(∗))Z.

7. The modular case

7.0 In this section we show how our theorem gives a different proof of one of the main results
of [Beilinson, 1986]—Theorem 7.4 below. (In [Deninger, Scholl], this paper is summarised
in a language closer to ours.)

7.1 Let N be an integer ≥ 3, and let MN be the modular curve of level N , and FN

its function field. We consider E/FN , the universal elliptic curve with level N structure
α : E[N ] ∼−→ (Z/NZ)2. Taking P = (Z/NZ)2 (which we identify with the N -torsion
subgroup of E via α) we obtain the Eisenstein symbol map, which we write

En
N :Q[(Z/NZ)2]0 −→Hn+1

M (En,Q(n+1)).

7.2 Write M∞
N for the cusps of MN . Then as is well known, by regarding the cusps as

giving level N structures on the standard Néron N -gon, one has an identification of the
set of closed points:

|M∞
N | ∼−→GL2(Z/NZ)/

(∗ ∗
0 ±1

)

where 1∈GL2(Z/NZ) corresponds to the level N structure

Gm×Z/NZ⊃µµµN ×Z/NZ
∼−→ (Z/NZ)2

(ζa
N , b) 7→ (a,b)

defined over Q(ζN).
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7.3 The main theorem enables us to calculate the effect of the boundary map

∂ :Hn+1
M (En,Q(n+1))sgn −→Hn

M(Gm×M∞
N ,Q(n))sgn

∼−→Q[|M∞
N |]

on the image of the Eisenstein symbol. Notice that the first arrow depends on the choice of
orientation of the special fibre of the Néron model of E, so that as written the composite
map is not canonical. To make it canonical we replace the target by the space V (−)n

,
where

V ± =
{
f :GL2(Z/NZ)→Q

∣∣∣ f(g
(∗ ∗
0 1

)
) = f(g) =±f(−g)

}
.

Then our theorem shows at once that the composite ∂ ◦ En
N is a nonzero multiple of the

GL2(Z/NZ)-equivariant map ωn
N :Q[(Z/NZ)2]0 →V (−)n

given by the formula:

(7.3.1) (ωn
Nφ)(g) =

∑

x∈(Z/NZ)2

φ(g ·x)Bn+2(〈
x2

N
〉).

Observe that this formula makes sense for any N ≥ 2.

7.4 Theorem. [Beilinson 1986, §3] The boundary map ∂ :Hn+1
M (En,Q(n+1))sgn →V (−)n

is an isomorphism on the image of the Eisenstein symbol.

This is an immediate consequence of (7.3.1) and the properties of the “horospherical
isomorphism” (see the paragraph after 3.1.6 in [Beilinson, 1986]). Since we were unable to
find a suitable reference for these properties, we give here a direct proof. It is in two steps.

7.5 Step I: For every N ≥ 2 and every n≥ 1 the map ωn
N is surjective.

Clearly one is free to tensor with C. We first show that any function supported on
(∗ ∗
0 ∗

)
is contained in the image. The subspace of V ± ⊗C composed of such functions

has for a basis the set of functions

fχ :

(
a b
c d

)
7→

{
0 if c 6=0
χ(d) if c=0

where χ : (Z/NZ)∗→C∗ runs over Dirichlet characters with χ(−1) =±1.

Define
φχ(x) =

∑

y∈(Z/NZ)∗

χ(y)−1e2πix2y/N .

Then

ωn
Nφχ :

(
a b
c d

)
7→





Nχ(d)
∑

x∈Z/NZ

w∈(Z/NZ)∗

χ(w)−1e2πiwx/NBn+2

(
〈
x

N
〉
)

if c=0

0 if c 6=0.
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Writing the values of the Bernoulli polynomial in terms of Dirichlet L-series and using the
character orthogonality relations, the last expression becomes

(7.5.1) −(n+2)Nϕ(N)χ(d)
∑

D| N
M

τ(χD)L(χD,−1−n)

(DM)n+1ϕ(DM)
.

Here M is the conductor of χ, for each D| N
M we have written χD for the character modulo

DM associated to χ, and τ(χD) denotes the Gauss sum

∑

x∈(Z/DMZ)∗

χD(x)−1e2πix/DM .

Rewriting 7.5.1 in terms of the primitive character χ1 modulo M , we finally obtain

ωn
Nφχ =

−(n+2)Nϕ(N)

Mn+1ϕ(M)

∏

p|N
(p,M)=1

(
pn+2−χ1(p)

−1

pn+1(p−1)

)
τ(χ1)L(χ1,−1−n) fχ.

As χ(−1) = (−1)n, the L-value is nonzero, as are the remaining factors. We therefore have
found a nonzero multiple of fχ in the image of ωn

N .

Now as a representation of GL2(Z/NZ), V ± is generated by the functions fχ. This
shows the surjectivity of ωn

N .

It follows that for every n≥ 1 the map

(ωn
N ,ω

n+1
N ) :Q[(Z/NZ)2]0 −→V +⊕V −

is surjective. Therefore the theorem will be a consequence of the next assertion.

7.6 Step II: If N ≥ 3 and n≥ 1 then

dim Im(En
N )+dim Im(En+1

N )≤dimV + +dimV −.

To prove this we consider (for the moment arbitrary) functions φ :Z2 →Q, and make
the convention that φ(x) = 0 whenever x∈Q2−Z2. For a squarefree integerD= p1 · · ·pk ≥ 1
define

(∆Dφ)(x) =
∑

E|D

(−1)κ(E)Enφ(x/E)

where κ(E) is the number of prime divisors of E. Now,

(7.6.1) ∆D =∆p1
◦ . . .◦∆pk

.

The operators ∆D have the properties:

(i) ∆D is injective for every D≥ 1;
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(ii) If (D,D′) = 1 then Im∆D ∩Im∆D′ =Im∆DD′ .

The first one of these follows from the elementary identity

(7.6.2) φ(x) =
∑

E|D∞

En(∆Dφ)(x/E).

To prove (ii), suppose that ∆Dφ=∆D′φ′. Then setting

ψ=
∑

E|D∞

Enφ′(x/E)

and using (7.6.2) one sees that ∆Dψ=φ′ and also ∆D′ψ=φ.

7.7 Now if D|N then ∆D induces an injective map

∆D,N :Q[(Z/
N

D
Z)2]0 −→Q[(Z/NZ)2]0

and from (1.2) and (7.6.1)

En
N ◦∆D,N =0 provided D> 1.

We have En
N (φ(−x)) = (−1)nEn

N (φ(x)). Moreover, let ∆n
D,N denote the composite of ∆D,N

with the projection onto the subspace of φ∈Q[(Z/NZ)2]0 satisfying φ(−x) = (−1)nφ(x).
Then dimIm∆n

D,N depends only on N , D and the parity of n; and

dimIm∆n
D,N +dimIm∆n+1

D,N =(N/D)2−1

for D> 1. The usual inclusion-exclusion argument then yields

dimIm(En
N )+dimIm(En+1

N )

≤
(
N2−1

)
−

∑

p]N

((N
p

)2

−1
)

+
∑

p,q]N

((N
pq

)2

−1
)
− . . .

=N2
∏

p]N

(
1−

1

p2

)

=#GL2(Z/NZ)/
(∗ ∗
0 1

)
=dimV + +dimV −.
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Birkhäuser

D. Ramakrishnan (1989), Regulators, Algebraic Cycles, and Values of L-functions, Con-
temporary Mathematics 83, 183–310

A.J. Scholl (1990), Motives for modular forms, Inventiones math. 100, 419–430

P. Schneider (1988), Introduction to the Beilinson conjectures; in: Rapoport, Schappacher,
Schneider (editors), Beilinson’s Conjectures on Special Values of L-Functions, Per-
spectives in Math. 4, Acad. Press 1988, 1–35
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