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0. Introduction

Let I be a subgroup of SL,(Z) of finite index. It is well-known that if I' is a
congruence subgroup, then cusp forms on I' enjoy many arithmetic properties.
For example, the cusp form of weight 12 on I'=SL,(Z)

A(2)=q [ 1—¢")**= Y (n)-q",

nzl n21

where g =exp 2niz, has the multiplicative property, first proved by Mordell

t(np)=1(n)-t(p) —p*"-(n/p) (0.1)

and satisfies Ramanujan’s conjecture
lt(p) =2p''/2 0.2)

as was proved by Deligne ([D1], [D3]).

The proofs of these properties rely on the fact that the numbers t(n) are the
eigenvalues of the Hecke operators T, acting on the (one-dimensional) space of
cusp forms of weight 12. For subgroups I' which are not congruence sub-
groups, the Hecke operators do not exist (as the double cosets

0 - . :
r. (n 1)-1" cGL,(Q) are not, in general, finite unions of single cosets). Nev-

ertheless, computations by Atkin and Swinnerton-Dyer [A-SwD] suggest that
certain p-adic analogues of (0.1), (0.2) should hold for cusp forms on non-
congruence subgroups. For forms of weight 2, their predictions have been
confirmed ([A-SwD], [C], [Di], [H], [K2]). In this article we treat the case of
forms of arbitrary even weight >2. The methods also apply to forms of odd
weight >3, with minor modifications, and to non-cusp forms; see 5.10 below.
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We now state our results in the simplest possible case. Assume that I' is
defined over Q (in the sense of 5.1 below), and that the space of cusp forms of
even weight w>2 is one-dimensional. Then a non-zero form may be chosen
with Fourier expansion (where u is the width of the cusp io0)

Y, a(n)-exp(2rinz/p)

nx1
in such a way that for a certain M =1 we have

k™ a(n)eZ[1/M]
where keC, k*eZ[1/M]*.

Theorem. For almost all primes p there is an integer A,, with |A | <2p™~""2,
such that for all n=1,

ord,(a(np)—A,-a(n)+p*~*-a(n/p)) Z(ord, n+1)(w—1). (0.3)

(Since the coefficients a(n) are not rational, some care is needed in the in-
terpretation of the left hand expression; see 5.4 below, and §5.2 of [A-SwD].)

We also identify the numbers {4} with the traces of Frobenius elements in
a two-dimensional l-adic representation of Gal(Q/Q), constructed according to
the procedure of [D1], and give some description of the finite set of excep-
tional primes. For a full statement of results, see 5.2, 5.4 and 5.6 below.

For an example of the above theorem, we may take I'=TI,,,, the unique
subgroup of SL,(Z) of index 9 with a cusp of width 7 at ico and inequivalent
cusps of width 1 at +2. The space of cusp forms of weight w=4 on I is then
one-dimensional; this case is described in [A-SwD]. (It is interesting to note
that for this example computations suggest another interpretation for the
integers A,; they appear to be the eigenvalues of {7,} on a certain cusp form
of weight 4 on the congruence subgroup I, (14).)

To illustrate the nature of our proof, we sketch the analogue for forms of
weight two (see [K2] for a detailed account of this case, and applications). As
Atkin and Swinnerton-Dyer had already observed, the above theorem then
amounts to the following:

Let E be an elliptic curve over Z ,, and w a regular differential on E/Z,. Let t
be a uniformiser along the zero section of E. Then if w has the expansion

w= Y a(n)-t""'.dt,

n21
the congruences (0.3) hold, with A,=1+p —|E(F).
We may view w as an element of the de Rham cohomology
Hyr(E/Z,):=H'(E, Qy7 ) (0.4)
and its power series expansion as an element of the “local” cohomology

Z,[t]-dt

H},R(E/zp)=m.

(0.5)
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According to the principles of crystalline cohomology, acting functorially on
cach of these groups there is an operator F, whose characteristic polynomial
on the first is T2 —A,T+p, and whose action on the second can be calculated
as the action of any lifting of Frobenius - for example, the map t+t”. Thus

(F?—A, F+p)(} a(n)-t"~"-dt)
=Y a(m)p* et — A, pr 4 ptn ) de
ed(Z,[1])

from which we recover (0.3) with a power of p missing; to supply it, consider,
instead of the de Rham complex, the complex

p-Og—~ Qé/z,, 0.6)

whose cohomology also has a crystalline interpretation (as the crystalline
cohomology of the sheaf Zpgp 5 , see [B-O] 7.23).

A cusp form of weight >2 can be regarded as a differential form on the
modular curve, with coefficients in a line bundle. We are therefore led to
consider a de Rham cohomology group with non-constant coefficients, anal-
ogous to the Eichler-Shimura parabolic cohomology [Sh] and Deligne’s l-adic
theory [D1]. The system of coefficients is constructed from the cohomology of
the universal elliptic curve, and the analogue of the description (0.5) of the
“local” cohomology is provided by the theory of the Tate curve, and in
particular the explicit calculations of [K 1], Appendix.

The reader will observe that, in contrast to the case of weight 2 (when the
“axioms” consist only of a curve, a marked point on it, and a uniformising
parameter), in the general case the modular properties of the situation are fully
exploited (cf. also 2.13.ii below); in particular, the choice of uniformising
parameter is critical. On the other hand, the modular curves themselves which
occur can be more or less arbitrary; indeed, by the theorem of Belyi [Be], any
(projective, nonsingular, irreducible) curve over Q can be realised (in many
ways) as a quotient I'\ $* for some subgroup I' £SL,(Z) of finite index.

In order to compare the constants 4, with Deligne’s [-adic representation,
we require a mild generalisation of the Monsky trace formula [M]; this is to
be published separately, together with some other facts used here [S].

We now mention some points not raised in the main body of the text.

1) We have assumed throughout that I' is defined over Q. However this is
primarily a notational convenience, and analogous results hold when Q is
replaced by an arbitrary algebraic number field. The interested reader will be
able to carry out the necessary modifications.

i) It is reasonable to suppose that there is a direct connection between the
groups L,(N,Z,) of §2, 3 and the formal groups introduced by Oda [O]. (In
fact, Oda’s theory was the starting point for the present work).

As should be clear to the reader, we are indebted to the work of Deligne,
Dwork, and Katz, amongst others. The author is very grateful to Professors
Deligne and Katz for valuable conversations, and to Dr. Birch for drawing the
problem to his attention, and for continual encouragement. He wishes to thank
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the referee, whose suggestions led to a number of improvements to the paper.
This work was begun while the author was receiving support from the SERC,
and he also benefited from the hospitality of the IHES in 1982; to these
organisations he extends his gratitude.

1. Notations and conventions

If X is a scheme, and N is a non-zero integer, we write

Qy for Q%
X[1/N] for X x SpecZ[1/N].

SpecZ

If X is smooth over S, and Z< X is a smooth S-divisor, we write Qy,s(log Z) for
the (locally free) sheaf of relative differentials with at worst logarithmic poles
along Z.

If A is a group (or group scheme), and N is an integer, yA denotes the
kernel of multiplication by N on A.

For a locally free sheaf & on a scheme X, and an integer k, we write

®*& if k>0;
E*:={ 0y if k=0; and
Hom( @40, if k<.

Z,QRCQ,Z, F, have their usual meanings. Qp denotes an algebraic
closure of Q,, and Q3 the maximal unramified subfield. The ordinal function
on Q, is normalised with ord,(p)=1, and

Z,:= {_erp: ord,(x) 20}
2 =7, N Q.

If A is a ring (commutative, with 1), A* denotes the group of units of A.

$ denotes the Poincaré upper half-plane, and $* the “compactified” half-
plane $UP(Q). The running variable on § is denoted 7, except in the
introduction, when it is denoted z.

Except in the introduction, we follow the convention of [D1], by which the
weight of a modular form is an integer k+2. Unless stated to the contrary, it is
always assumed that k>0 (we do not consider here forms of weight 2, in order
to simplify the exposition).

I'(N) is the subgroup {geSLz(Z): g= (; (1)
image in PSL,(Z).

In this paper the notion of an action of a group scheme is often employed.
To avoid confusion, recall:

if G/S is a group scheme, and X is an S-scheme, an action of G on X is a
morphism

)(modN)} and +I'(N) is its
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n:GxX->X
s

satisfying certain compatibilities;
if & is an Oy-module, an action of G on & is an isomorphism

x: 8 —— pr¥é,
where pr,: Gx X — X is the second projection, subject to certain compatibi-
s

lities; similarly for a complex of @y-modules with Og-linear differential, an étale
sheaf on X, etc.;

if X=S=Spec W(F)), and (M, F) is an F-crystal on § (so that F: 6*M — M,
where o is the Frobenius endomorph1sm of S), and G/S is finite étale, an action
of G on (M,F) is equivalent to giving, for each geG(W(F ), a W(F) -linear
endomorphism g of M ®W(F) commuting with the natural ¢-linear extension
of F, and satisfying various compatlbllmes

= denotes equality or canonical isomorphism.

= denotes that the right hand expression is the definition of the left hand
one.

2. Algebraic theory

In 2.1-2.5 we review, mostly without proof, well-known properties of modular
curves. For proofs, we refer to [D2], [D-R], and [K1].

2.1. Let N be a positive integer. We denote by X(N) the coarse moduli scheme
associated to the functor Fy on Z[1/N]-schemes S:

isomorphism classes of generalised elliptic curves E/S,

__Jwhose geometric fibres are smooth or Néron N-gons,

vS)= together with an isomorphism a: yE—— py X Z/N of
determinant one

(cf. [D-R], V.4.4). X(N) is smooth and proper over Z[1/N], and its geometric
fibres are connected curves. The open subscheme Y(N), classifying smooth E/S,
is the complement of a closed subscheme Z(N), which is finite and étale over
Z[1/N].

If N =1, the modular invariant j defines isomorphisms ([D-R] VI.1.1)

X(1)—=>PL,  Y(1)—>AL. (2.11)

If (E/S, x)eFy(S) is as above, and geSL(uy x Z/N)(S), then (E/S, g o x)e Fy(S); this
defines an action (on the left) of

Gy=SL(uy xZ/N) (2.1.2)
on X(N), which takes Z(N) to itself; the subgroup {+ 1} = G, acts trivially, and
G\ X(N)~X(1)[1/N]. (2.1.3)
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Let C/Z[1/N] denote the standard Néron N-gon ([D-R] IL.1.1), so that C*®
=G, xZ/N. The canonical isomorphism ([D-R] I1.1.18)

NC—>uy xZ/N

defines a section oo of X(N) over Z[1/N]. The stabiliser of oo in Gy is the
subgroup scheme

+ UNgz{i ((1) 1;) ueHom(Z/N, Mn)}

whence
Z(N)~Gy/+ Uy

(cf. [D-R] VL5.1). In the sequel we shall generally consider behaviour only at
the component oo of Z(N), the other components being obtainable from o by
translation by Gy.

2.2. Let Tate(q)/Z[q''] denote the Tate curve with N sides ([D-R] VIL1.16).
The canonical level N structure on Tate(q) ([D-R] VII1.16.4) defines a mor-
phism

V: SpecZ[1/N]1[¢*"*] — X(N) (2.2.1)

identifying Ry=Z[1/N][¢"/"] with the formal completion of X(N) along co.
Denote by ¥, the induced morphism

Yo: Spec Ry[g~']— Y(N). (2.2.2)

The complex manifold X(N)(C) is isomorphic to the quotient space I'(N)\ H*;
the I'(N)-equivalence classes of cusps correspond to Z(N)(C), and the cusp i
to the point oo.. The morphism  then identifies ¢'/" with the local parameter
exp(2wit/N) on '(N)\ H* at ico.

2.3. Assume from now on that N=3. Then X(N) represents the functor Fy;
there 1s a “universal generalised elliptic curve”

E

unijv

J
W

e

with zero section e. The group Gy acts on E
We have the invertible sheaf

over its action on X(N).

univ
reg

%Ol _
o=e*Qp xm=S2EE xan

([D-R] 11.1.6; [D2] §1) and a canonical generator w for Y*w (denoted dx/x in
[D-R] VII.1.16.2, and w,,, in [K1] Appendix 1).

Let us provisionally write & for the relative de Rham cohomology of the
restriction of E_; to Y(N):

—R! g
¢=R f*Qf“(Y(N))/Y(N)'

The exact sequence (the Hodge filtration)

univ

0-0lyy €0 yy—0 (2.3.1)
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is auto-dual with respect to the cup-product on &, and we have the Gauss-
Manin connection

V.é& —»éf’@Qim. (2.3.2)
Gy acts on @ and &, compatibly with (2.3.1) and (2.3.2).
24. By [K1], A.1.3 et seq., we have

YEE=Ry[q™ '] - w®Ry[q7']-¢ (24.1)
where

¢=V (q%) (w), and V&=0.

We may therefore specify an extension of & to a Gy-sheaf on X(N), which we
now call &, by stipulating at oo that {w, £} extends to a basis of y/*é&.
Since {w, () =1, we have an exact sequence of 0 y,-modules

0-»w—-E->0"1-0 (24.2)
extending (2.3.1), and (2.3.2) extends to a connection with logarithmic poles
V: & - Q@ log Z(N)). (2.4.3)
This gives rise to an isomorphism
?—> O} (log Z(N))
by forming the composite
0: 08 5 ER@Q (108 Z(N) — 0~ ' @2y, (log Z(N)). (2.4.4)
([K1] A.1.3.17; [D-R] V14.5.2)

2.5. If A is a Z[1/N]-algebra (or even module), the module of cusp forms of
level N and weight k+2€Z is

Si+2(N, A):=H(X(N), 0*®Qn,®A).
The g-expansion map

Sis o(N, A)—— g""Ry®A
w w (2.5.1)
o f

is defined by
» d
V(=1 o .quw*(wk@)g;(N)@A).
The g-expansion principle ([D-R] VIL3.9; [K1] 1.6.1) affirms that this map is

injective, and that if A< A, and feS,, ,(N, 4'), then f belongs to S, ,(N, A) if
and only if the coefficients of f are in A. Standard base-changing techniques
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show that for every k=0 the modules S, , ,(N, A) are free, and
Sei 2N, A)=S8,, ,(N,Z[1/N])® A. (2.5.2)

2.6. Assume from now on that k is strictly positive. We define a complex of
sheaves Q°(&,) on X(N) as follows:

Q%8): =6, :=Sym*&
QUE): =P (E)+ERR (2.6.1)

S 8@ (log Z(N))
where

Vi 6~ 6,2 (log Z(N))
is the k™ symmetric power of V. Thus

Q.(évk)mm = k|Y(N)®Q;’(N)

and
k
V*QUE)= P &Ry (2.6.2)
r=20
1 v« 94 - dq
U*Q (gk)zq ‘W ._q_.RNG_)C__Dlw —"ér"é—'RN
with

Vk(wk—r. 5r)=(k _r)wk—r—l . ér-&—l d_qq_

The sheaves Q&) are locally free, and Q'(&,) is the smallest subcomplex of
Oxwy-modules and differential operators of &.® Qxx)(log Z(N)) which contains
6@ %y in degree i, for i=0, 1.
Define
L,(N, A):=H'(X(N), 2'(6)® A)

o (263)
L3N, A):=H (y32(8y)

where
¥4 Spec A[q""] - X(N)

is the natural extension of .
By construction, Q&) is a Gy-stable subcomplex of & & Q) x,(log Z(N)),
whence Gy acts on L,(N, A).

2.7. Theorem. Let A be a Z[1/N]-algebra in which k! is invertible.
i) There is an exact sequence of A-modules

0-S,,,(N,A)=>L,(N,A)-S,, ,(N,4)Y -0

(where v denotes A-dual), compatible with the action of G.
ii) There is an isomorphism

d k+1
LY(N,A)— coker ((qga) L g™ AN —— qi/NA[[ql/N]])_
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iii) i) and ii) are compatible with base-change A — A'.
iv) If feS,, ,(N, A), then its image in LY(N, A) is represented, in terms of the
isomorphism ii), by the class of its q-expansion f.

Proof. The Hodge filtration (2.4.2) on & defines a decreasing filtration
&, =FRag2Figg=2 - 2Fji, =0 (2.7.1)
on &, with associated graded parts
Griiagl6) = Fiag/Fiiiy =09, 0<i<k

such that . .
P (Fig) € it @ 2% ) (log Z(N)), 272)
a simple case of Griffiths transversality. We can accordingly define a filtration
F’ on the complex Q°(&,) by
F i(QO(évk))’ =K iildg(gk) (2.7.3)
F{(Q'(84)): = Q1 (8i) N Fiiag (6)® Lk wy(log Z(N)) o

which has
GrYQ'(&)=[o~*— 0]
Gri(Q'(8) =[0* > 0?"*~ 2@ Q} v (log Z(N))]
Gre*{(Q'(6)=[0— 0* @ Qi w)].

This follows easily from the description (2.6.2) of the complex Q'(6,). Here

0.=i(0®idyn-r-1), 1=<i<k. (2.7.4)
In fact, if
o« A€F . (&), aco, Aed,_,

(sections over some open subset of X(N)) we have
V(od- Dy=ia'~t- A-Vatol-V,_(4)
=ioa'~!'-1-Va  (mod Fyy,)

and so (2.7.4) is an immediate consequence of the definition (2.4.4) of 6. In
particular, the complexes

Gri(Q'(6))®4, 1<isk,

are acyclic, since 6 is an isomorphism and k! is invertible in A. Since the
sheaves Gri(Q/(&,)) are locally free,

Gri((8)® A=Gri(Q(E)® A).

Applying the spectral sequence for the derived functors of H® and the filtered
complex (Q(6,)® 4, F), we then get a long exact sequence:
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0->HY%X(N), 2(6)®A)—> HX(N), o *®A)

~ H(X(N), 0*®@Q} v, ®4) = L, (N, 4)—» H{(X(N), 0 *® )

= H'(X(N), 0*® ) ®4) > H*(X(N), 2'(6,)) 0.
Now H'(X(N), @ *®A4)~S,, (N, A)" is free, and o is ample, by [D-R]
VIL.3.4, and so H(X(N), o *®A) and its dual H'(X(N), 0*®Qy,®4) vanish,
giving i).

Now consider the spectral sequence for the cohomology of the filtered

complex (Y% Q(&,), F). It gives an exact sequence

0— H'(Y Q' (E)— ¥i(@™)
2, (@ @ QL ) — Ly (N, ) —0,

Let us calculate the homomorphism £ in terms of the basis {w, &} of y*(8).
Unravelling the spectral sequence, one sees that 2 fits into a commutative
diagram
Vi (@)= HGri( % Q&) —— H'(F'(y12'(60)
2 Y e
VO ®%w) = H'(F*(EQ()

where 6 is the connecting homomorphism in the long exact sequence of
cohomology for

0 FI(y%Q'(6)) > ¥5Q(6) > Gre( Q(6)) ~ 0
and ¢ is induced by the quasi-isomorphism

FE(Q(8) - Fr (U5 Q1(8)).
Let
a-Eeyr o, aedAlq'™M].

Then d(a- &) is the class in H'(F'(¥%Q°(&)) of
da dq
Via &)= L. 6.2
wWa- &) qdq ¢ q
Let

d\ , .
(—ag7) @-o'-2-eruse)
Then

—Ik d k+1 d
A R I

is an element of F¥*!(y*Q"(&))), and thus

S ligg) o

D(a- &)= 97
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This proves ii); the compatibility iii) is obvious from the definitions, and iv)
follows from the proof of ii) and the definition (2.5.1) of the g-expansion map.

2.8. Remarks. i) L,(N,A) is thus an algebraic de Rham analogue of the para-
bolic cohomology ([D1], [Sh]), the exact sequence i) being its “Hodge fil-
tration”. It has many expected properties (duality, comparison theorem when
A =C, Hecke operators, ...).

i) As is clear from the proof, the hypothesis that k! is invertible in A
cannot be removed. However, there is another candidate for L, for which the
theorem holds without this hypothesis, at any rate if A is Z-flat. To define it,

consider the 0y y-module I'*(€; w), which is the submodule of &®Q spanned
by local sections of the form

ai a,
X1 e X, by bs
e K SRR
al...al

where x;ew, y;e&, and > a;+ Y b;=k. Note that I ¥(&;w) is auto-dual (unlike
). i=1 j=1

If we form a complex Q(I'*(€;)) in a manner analogous to Q'(&,), then its
H' will have the desired property i) of the theorem.

2.9. We require a refinement of the preceding theorem, which we shall apply in
a slightly more general setting. We assume that we are given:
i) a normal, connected scheme X, together with a finite flat morphism

h: X - X(N)[1/M]

for some integers M, N with N =3, N|M, such that h is étale over Y(N);

i) a section o0': SpecZ[1/M]— X, such that h(w')=o0;

1ii) an action of a closed flat subgroup scheme G<Gy[1/M] on X, com-
patible with the action of Gy on X(N).

In what follows we shall simply write X(N) for X(N)[1/M], and likewise
for similar expressions.

By Abhyankar’s lemma ([SGA1] Exp. XIII§5) X is smooth over Z[1/M],
and Y=h"!(Y(N)) is the complement in X of a closed subscheme Z, finite and
étale over Z[1/M]; the morphism h is tamely ramified along Z, and the
completion of Oy along oo’ is of the form

R =Z[1/M][t], D-t'=q4'", (29.1)

for some DeZ[1/M]*, and some v=1, invertible in Z[1/M].

Denote by ¢ the associated morphism Spec R'— X, and by ¢/, the resultant
morphism Spec A[t]— X, for any Z[1/M]-algebra A.

More generally, the completion of @, along any component of Z is of the
form B[[u] for an étale integral Z[1/M]-algebra B, where u satisfies

.
v

K-u LN

=4 H KEB*a V':>.__].,

with v invertible in Z[1/M].
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Define
Sk+2(X’ A) =H0(X9 h* wk®9_}(®A)

for an integer k>0 and a Z[1/M]-algebra A. Then ' gives rise to the “t-
expansion map”
S X, A)——t-R®A
w w

f — f
such that
V(=1 w"-%qﬂzv- 7. w?

The proof of the g-expansion principle of §2.5 applies in this case, showing
that the t-expansion map is injective, and that if ASB, then S,,,(X, A)
=8+2(X,B)nt-R'®@A; furthermore, the formation of S, ,(X, A) is compat-
ible with base-change.

2.10. Since h is étale away from Z, and tamely ramified along it, we have
h* Qy v (log Z(N)) = Q% (log Z). (2.10.1)
(2.4.3) gives a connection with logarithmic poles
V: h*&—-h*ERQx(log Z)

with symmetric powers V,.
Define, for m=1,

g1,m‘=ﬁ—1(m' o)

i m:=Sym*(é, )

,m

where B is the surjection & » = . On X, we have

Fm-h* 8, ) <h* &, ,©Qk(og Z)

by virtue of the transversality (2.7.2). We may therefore define a complex 2,
of sheaves on X by

g’?,m:=m‘h*évk,m
2 mi=V(m-h* &, ) +h* &, @0
Thus 2, ,, is a subcomplex of h* Q'(&,), and
2, myy=[m-h* gk,mw—’h*gk,mw@‘z)l(]

k

@mr+1_wk—r_§r.Rl (120)
’*Qi ="=0
v 2 L .dt K . .
w tTR(B@m'w rér—t—R (l=1)
r=1
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with it
( k—r ér) (k ) k—r—1 €r+1 VNT (O§r<k)

Vk(ék) =0.

The restriction of 2, ,, to the formal completion of X along any other com-
ponent of Z admits a similar description, in view of the remarks in the
previous section, and those at the end of §2.1.

(We shall use later the complex 2, ,®Z,, for a prime p; it is the appropri-
ate generalisation of the complex (0.6), and provides an extra factor of p**! in
the modulus of the Atkin-Swinnerton-Dyer congruences.)

2.11. Let us examine the filtrations (2.7.1) and (2.7.3) applied to the complex
2..m- We clearly have

Grigag(h* &y ) =h* Gryy, (&) )
=m—t h* @k (0<ZiZk)
and thus
Gty (2 ) =[m**"- h* 0*—>0]
Gr}}(,@;,m)z[m""’“-h*w"‘”—;»m"“'“-h*w"‘z"’2®£)}((log2)] (1<i<k)
Gt (2, ) =[0—-h* 0" ®Q]

where ¢; is calculated as in (2.7.4). By (2.10.1), ¢;=h*J,, and as in the proof of
Theorem 2.7 the complexes

1
Gri(2, ) ®Z [k'] 2.11.1)

are acyclic, for 1<i<k. Moreover, if m is not a zero-divisor in A4, the con-
struction above commutes with the base-change Z[1/M]— A. We may there-
fore generalise the theorem as follows. Define

™LX, A):=H'(X, 2 ,®A)
MLX, A):=H (V' F 2 m);
there are natural transitive maps
mp (X, A)—»"L, (X, A) and ™MLY (X, A)—> "L (X, A)

if n|m. |

Write ¢ for the derivation q%:N— g- of A[[t].

2.12. Theorem. Let A be a Z[ ]-algebra, and let m be a positive integer

M - k!
which is not a zero-divisor in A.
1) There is an exact sequence

05, 5(X, A)>™L (X, A)>m*+1- S, , (X, A)¥ >0

compatible with the action of G.
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11) There is an isomorphism
mI2(X, A)—— coker(md)*': t- A[t]—t- A[t]).

iii) i) and ii) are compatible with base-change A— A’, and with the natural
transitive maps if n|m.

iv) If feS,, ,(X, A), then its image in ™L2(X, A) is represented by the class
of its t-expansion f.

2.13. Remarks. i) If X=X(N), m=1, and M =N, then ™L, (X, A) reduces to
L,(N, A).

i) The hypothesis that h, is étale is essential; if it is not satisfied, the
complexes (2.11.1) will have non-trivial H', and so the filtration 2.12.i) on L,
will have other graded parts than S, ,, and S, ,".

i) Write

T(X, A)=H'(X, h* 6,0%(log Z)®4)

and define similarly ™7, (X, 4), ™T,°(X, A). Under the hypotheses of 2.12 there
is then an exact sequence

0->M, (X, A)> T(X, )-8, ,(X, 4" >0 (2.13.1)

where
M, (X, A):=H°(X, 0**2® A)

is the module of holomorphic modular forms. There is a natural inclusion of
the sequence 2.12.i) in this sequence. If X =X(N) and A4 is a Q-algebra, this
inclusion is split by the Hecke algebra.

For general X, the theory of Eisenstein series provides a splitting if A=C;,
see also 5.10.ii) below for a p-adic splitting.

3. p-adic theory

3.1. Let N=3, and let p_be a prime with (p,2N)=1. Let ~ denote p-adic
completion, and write i, i/, for the uniformisations along oo

Spf Z,[g"¥] —*— X(N).
Y Vo
PPN
Spf Z, (")

For the notion of an F-crystal with logarithmic singularities, see [S].

3.2. Proposition. (£, V) is the underlying differential equation of an F-crystal on

P TN T
X (N) with logarithmic singularities along Z(N), whose restriction to Y(N) is the
crystalline H of the family

Euniv]Y(N)®Fp"" Y(N)@Fp
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Moreover, the F-crystal structure on i* & is given by

Fylw)=p-w; Fy&)=¢ (3.2.1)
where ¢ is the endomorphism of Spf Zpl[ql/N]] given by
¢*(a"M)=g"".
Proof. For (£,V) to define an F-crystal with logarithmic singularities, the
following data are required: for each open U _C_:)?(F), and each lifting ¢: U-U
of the absolute Frobenius of U®F,, satisfying
o*(SF) = F? (3.2.2)
(where £ is the ideal sheaf of Z/(N) in U), there is a horizontal homomorphism
F¢: ¢*é’slu—‘>(gg|u
which becomes an isomorphism when tensored with Q, satisfying certain
compatibilities.

The F-crystal structure of @alﬁ) is a consequence of the main comparison
theorem of crystalline cohomology ([B-O] Ch. VII). As explained in §1.6 of

[S], it then suffices to find one neighbourhood U of Z/(F) in X/(]V), and one
lifting ¢ of Frobenius on U satisfying (3.2.2), for which the mapping

Fo: ¢*E1unvm—lunim
(given by the F-crystal structure of &@) extends to U.

NS
For this, let U be the complement of the supersingular points of X(N), and
recall the definition of the canonical lifting ¢ of Frobenius to U ([K1] Ch. 3;
the “Deligne-Tate mapping” in the terminology of [Dwl], [Dw2]). There is a
finite flat subgroup scheme (the canonical subgroup)
Hc pEunile
whose reduction modulo p is the kernel of Frobenius. If E' denotes the

quotient E,; |y by H, then there is a level N structure o’ on E’ given by the
commutative diagram

EunivIU ? l;:‘”
U ~ J ,
NEunile NE
~|a ~|a
v - v
py X ZIN —=— py x Z/N

where the lower horizontal arrow is the automorphism

¢ a)—(% a)
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of uy xZ/N. The morphism ¢ is then the classifying map for the curve with
level N structure (E'/U, «'). It maps o to itself, and locally at o is given by

(@M =g

— T
The ¢*-linear endomorphism F, of y4&=8QZ,(q""™) is described explicitly
in [K1] A.2.2; it has the form (32 1). Since {w, é} extends to a basis of J* &,
the action of F, extends across o, and by virtue of the action of Gy, across all

of m); and F¢®Q is an isomorphism, since the endomorphism “multiplica-
tion by p” on E__, (which induces multiplication by p on &) factors through ¢.

univ

3.3. Now assume that we have (X, h, o0) as in §2.9. For pt2M, it follows from
the above and §7.1 of [S] that h* & and its symmetric powers define F-crystals
on X with logarithmic singularities along Z. To calculate their form near o',

define y, by the conditions
v,€1+pZ,,  y,=DP"! (3.3.1)

(cf. (2.9.1)). The existence and uniqueness of y, are assured by Hensel’s lemma.

Then . ,
P*: tsy t

defines an extension of the endomorphism ¢ of 3.2 to Z,[t].

There are then canonical endomorphisms F of H!(X, @)) and
H'(J'*Q'(£,)). By the fundamental theorem of a proper morphism, the first of
these is L,(X,Z,); the second is L7 (X,Z ), and the action of F on it can be
calculated using the lifting ¢. If p>k, then from the description (3.2.1) of F,,
and the construction of the isomorphism

LY(X,Z,)— coker(*+1': t-Z [t]—t-Z,[t]),

we find
F(} a,t)=p**'y a,y;t"" (modImod*+). (3.3.2)

3.4. Proposition. Suppose that p>k+1. Then
F(S,.(X,Z)sp** ' L (X, Z).
Proof. For any lifting ¢ of Frobenius satisfying (3.2.2)
F(p*w)spé
and so, for the filtration (2.7.1) of &,, we have
Fy(¢* Fiiay ) S 6,

Let now xeH°(X, 0" ®Qx®Z,) = Si+2(X,Z,). Then if ¢, ¢’ are two liftings of
Frobenius to an open U< X, we have, in the notations of [S],

F(¢*x)ep*8,®Qx and L(d, d)(d* x)ep**' &,

(the second inclusion following from the formula (2.1.1) of [S] together with
the transversality (2.7.2) and the condition p>k+1). Thus the Cech cocycle
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representing F(x) is divisible by p**! in the group of 1-cochains, and so
F(x)ep**'L, (X, Z ) since the cochain groups in question are torsion-free.

3.5. It follows from the above and Theorem 2.12 that F takes PL,(X,Z,) into
itself. This is also a special case of § 7.3 of [S], where it is also shown that if x
is an element of WLY(X, Z,) which is in the image of ®'L,(X,Z,), then F(x) can
be calculated from the formula (3.3.2) applied to the description 2.12.ii) of
PI2(X,Z,).

The action of G on L,(X,Z,) commutes with F. Indeed, by §7.2 of [S], it
suffices to show that, if 4 is a finite étale Z -algebra, and if ¢,¢’ are two
liftings of Frobenius to an open subscheme of X ® A, satisfying go¢p=¢'og for
some geG(A), then goFy,=F,og on &. This holds over Y, by the functionality
of Frobenius acting on crystalline cohomology, and therefore over all of X as
Y is dense in it. We may therefore summarise our findings as follows.

3.6. Theorem. Let p be prime, with pYM, p>k+1. Then there is a canonical
endomorphism F of L(X,Z,), which takes PL(X,Z) into p**'L(X,Z)
cPL(X,Z,), and which commutes with the action of G. If p denotes the
canonical map

W/
p: WL (X, Zp)—-»(p)Lf(X, Zp)z(pa)kt"L i (:[[tz]] [D)

and if xePL(X,Z,), with

px)=> a,t" (mod Im(po)*+?)
then

p(Fx)=) p**'a,y;t"  (modIm(pd)+Y).

3.7. Remark. The statement that F commutes with the action of G means that
if geG(Z}"), then g commutes with the semilinear extension of F to L (X, )
=L (X, Z,)QZY’, cf. 4.4 below.

4. l-adic theory

In this section ! denotes a prime number; all cohomology is étale (I-adic) unless
otherwise indicated. We summarise some of the constructions of [D1], to

which, together with (3.7.1) of [D4], the reader is referred for further details.
As before, we assume N = 3.

4.1. Write E° for the restriction of E_;, to Y(N)[1/M[]; we have a diagram
E° yryng —2— X[1/1]
JIO / /

Y(N)[1/M]=—2— X(N)[1/M1]

o

SpecZ[1/MI].



66 A.J.Scholl

The Qpsheaf #:=Sym*(R'f? Q) is a smooth sheaf of rank k+1 on
Y(N)[1/M1], pure of weight k, and tamely ramified along Z(N)[1/MI]. The
Poincaré duality

A2 F, "5 Q1)
gives a perfect pairing

S x F—Q,(—k). 4.1.1)
The local monodromy of %, at Z(N) is unipotent, and so

h*]*%zj'* hr*g,-k

By the theory of the Tate curve, the restriction to Z(N)[1/M1] of j %, is the
constant sheaf Q,.

4.2. The sheaf R'c (h*j, %) is zero if i+ 1; and
%::R‘C*(h*j*%)

is a smooth Q,-sheaf on Z[1/M[], whose formation is compatible with arbi-
trary base-change, and which is pure of weight k+1. By the local duality
Dj, # =j,D %, and (4.1.1) there is a perfect pairing

W, x W, —»Q,(—k—1) (4.2.1)

which is alternating for k even, symmetric for k odd. Let #;(Q) denote the
Gal(Q/Q)-module associated to #,.

4.3. The subgroup scheme GG, acts on ¥#,, whence there is a Gal(Q/Q)-
equivariant action

G(Q) x #,(Q) - ¥,(Q).

The pairing (4.2.1) is invariant with respect to this action.

Let p be a prime which does not divide 2M. Then the representation %;(Q)
of Gal(Q/Q)_is unramified at p. Choose a prime p of Q over p, and let Frob,
=0, 'eGal(Q/Q) be a geometric Frobenius element at p. The choice of p
defines isomorphisms

GQ) —>G(F,), #(Q > #(F,)
taking Frob, to the geometric Frobenius F,.
4.4. Proposition.
det(1—TF,: #;(F,)%)=det(1 —-TF: L(X,Z,)%eZ[T].

Proof. The coefficients of the polynomial on the left-hand side are algebraic
integers. The l-adic Frobenius F, is an automorphism of “/Vk(l_?p), and the p-adic
Frobenius F is injective on L, (X, Z)) (cf. Theorem 5.2 of [S]). Therefore 4.4 is
equivalent to the statement: for every s> 1

Tr(Fy*: W(F)O)=Tr(F~*: L,(X,Q,)%)eQ.
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By the pairing (4.2.1) we may rewrite this as

Tr(Fy: #i(F)9)=p** " Tr(F~*: L,(X,Q,)%)eQ.

1 .
Using the projector +C Y g, we see that 4.4 is a consequence of:

For all s=1 and every geG(l_?p)= G(Zy)"),
Tr(Ejeg™': #(F)=p** " Tr(F®id) *og: L, (X,Qp)eZ. (4.4.1)
Here F®id denotes the linear extension of F to

L(X, Q) = Ly(X, Z,)®Q"

First consider the case g=1. The left hand member of (4.4.1) can be calculated
by the Lefchetz fixed point theorem in l-adic cohomology ([SGA441] Rapport
3.2), since _ B

#.(F,)=H' (X®F,, h*j, #)

and the H® and H? of h*j_%, are zero. The local terms are of two sorts:
for each xe Y(F,), where g=p°, there is a term

Tr(F,: (h*j, #))=Tr(F,;: Sym* H'(E,,,®F,, Q))eZ (4.4.2)

where E, ,, is the fibre of E;, — X(N) at h(x);

for each xeZ(F)), the contribution from the local invariants is Tr(F,: Q)
=1.
By Theorem 5.2 of [S], and the vanishing of H(X, Q°(8,)) for i+ 1 (cf. the

proof of 2.7 above), the right hand member of (4.4.1) is the sum of terms:
for xeY(F),

univ

P Tr(F,*: Sym* &,®Q)=q" Tr(F~*: Sym* H ; (E, .,/ W(F ) ®Q)

which is the same as (4.4.2);
for xeZ(F),

Tr(p** F5: (Sym*& /Im 2 )® Q)

where #_: Sym*&,_— Sym* &, is the residue map.
Since

k
Sym‘€,= @ W(F ) o* " &
r=0

and
@x(wk—r. ér)_:(k_r)_wk—r——l .€r+1

the cokernel of %, is one-dimensional, spanned by o*, and so this local
contribution is 1, as F(w)=p-w. Thus (4.4.1) holds.
When 1+ geG(Fp), we resort to the usual twisting argument, as follows:
There are twisted forms X®, X(N)® of X, X(N) over R=W(F), where
g=7p®, such that _
X®(F)={xeX(F): x?=g(x)}.
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X(N)® has a similar property, and may be defined in a modular fashion as
follows. Let V®/R denote the twisted form of py x Z/N over R, defined by the
l-cocycle Gal(Q};/R®Q)— Gy whose value on the Frobenius is g. Then
X(N)® represents the functor on R-schemes S
“isomorphism classes of generalised elliptic curves E/S, whose geometric
fibres are smooth or N-gons, together with an isomorphism a: yE—— V®
of determinant one”.
There is a universal curve E®, — X(N)®, and objects £®, £® w,® [® .

univ

constructed in the same way as &, %, etc. We then have
Tr(Fjog~": #{(F,)=Tr(F,: #;9(F,)
The method described in the case g=1 then shows that
Tr(F,: ')flf,c“i’(ﬁ‘q))=q"+1 Tr(F'~: [P(X,R)®Q) (4.4.3)

where F’ is the canonical Frobenius endomorphism of (X, R). If ¢ denotes
the canonical lifting of the p-power Frobenius of I—?‘p to Z7', then F’ is o-linear
(and so F'® is linear).

Now Oy, (or rather its pullback to X®Z7’) can be identified with

{beO0x®Z}": g*(1d®o°)(b)=b}
and similarly for E®. Thus
LY(X,R®Q)={xeL,(X,Q%): g (id®0c*)(x)=x}. (4.4.4)
If F®o is the semilinear extension of F to
L(X,Q7)=L(X,Z,)®Q}

then (4.4.4) identifies F' with the restriction of F®a to [P(X,R®Q). Thus if
xe[®(X,R®Q)
F=3(x)=(F®o0)~*(x)

=(F®0)*oge(ild®0c’)(x)
=go(F®0)™*(id®0°)(x)
=g°(F®id)™*(x)

and so the right hand members of (4.4.1) and (4.4.3) are equal, as required.

5. Atkin-Swinnerton-Dyer Congruences

5.1. Let I' be a subgroup of PSL,(Z) of finite index, and let u denote the width
of the cusp ioo, so that

ofsy D 1)

For k=0, write S, ,(I') for the space of holomorphic cusp forms on I" of (even)
weight k+2.
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Consider the compactified quotient space I'\ $*, and the canonical map

r\$* - IT(1)\H*.
We will say that I' is defined over Q if there exist

i) a nonsingular projective curve V/Q;
ii) a finite morphism n: V >Ry ;
iii) a point ee¥(Q); and
1v) an isomorphism

E: N\ H*—V(C)
such that Z(ioo)=e, and the diagram

I\9* —— IF(H)\H*

nc

V(C) —— PYC)

commutes (where here j is the usual modular invariant of level 1).

Remark. We do not assert the uniqueness of such a system (¥, , e, E).
From now on we assume that I' is defined over Q, and fix a quadruple
(V. m, e, Z) as above. As in the rest of the paper, we restrict to the case k>0.

5.2. Proposition. For some M=1 and y_eC, with y* =CeZ[1/M]*, there
exists, for each k, a basis of the space S,,,(I') comprised of forms f with
Fourier expansion

f=Y a(n)-exp2rint/p) (5.2.1)

nz1
such that b(n):=v"_-a(n)eZ[1/M].

Proof. a) We first assume: I' < +I'(N) for some N =3, and = factors
V—" P
% / (5.2.2)
X(N)q
such that heo Z is the quotient map

M\$* - [(N)\$H*. (5.2.3)

Let M be divisible by N, and write X for the normalisation of X(N)[1/M] in
V. Then X4=V, and hq, extends to a finite morphism

h: X - X(N)[1/M];

e extends to a section oo’ of X over Z[1/M], such that oo =ho 0".
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Since N =3, the covering (5.2.3) is unramified away from the cusps, whence
hg is étale over Y(N)y. Then for suitably chosen M 21, h will be étale over
Y(N)[1/M]. We fix such an M.

We are now in the situation of 2.9, and may therefore choose a uniformiser
t along oo’ with

D-t'=q'™, DeZ[1/M]*

where v=u/N. The uniformisation = of X(C) identifies ¢t with

Voo €XP27it/p)
for some y,eC with y) =D.

Standard GAGA arguments (cf. [D-R] VI1L.4.6, [K1] Al) now identify cusp
forms on I' with sections of w"®Q§(®C, giving a commutative diagram

GAGA

Sk+ Z(F)

Fourier
expansion

Cl¢'"™ ———7 Cli.

t=700q!"

Sk+2(X’ C)

t-expansion

From the “t-expansion principle” and the base-change isomorphism
Sk+ Z(XJ C)=Sk+2(X9 Z[l/M])®C

of 2.9, the proposition follows, taking C= D",
b) We now suppose only that I' is defined over Q. Choose N =3 such that

(N,))=1 and +TI(N)-T'=PSL,(Z).

Let A=I'n +T'(N). Then 4 satisfies the conditions (5.2.2) above. Indeed, let W
be the normalisation of the fibre product

Vx X(N)q. (524
Y

By the choice of N, there is a canonical isomorphism
AN\ H* —— W(C) (5.2.5)

which is compatible with =, with respect to the obvious maps.

The ramification degrees of the coverings V and X(N), of P§ at e and o
respectively are coprime (they are y and N), and there is therefore a unique
point ¢e W(Q) having e and oo as images.

As in a), we may choose M and a triple (X, h, ') with X,=W. Since the
width of the cusp ioo of 4 is Ny, the uniformiser ¢ along oo’ is identified under
(5.2.5) with

o' exp(2mit/N p)

where 6,€C, o4 =DeZ[1/M]*
The group scheme G, acts on the fibre product (5.2.4) via the second factor,
and therefore acts on X, covering its action on X(N). We have

ke 2(D)=8,,2(4)=5, (X, O =S5, , ,(X, Z[1/M])**®C.
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The t-expansion of an element of S, ,(I) is contained in C[¢], and since t¥
identifies with 5" exp(27it/u), the proposition follows, with y_ =¥ .

5.3. We associate to I and k a system of [-adic representations

pi: Gal(Q/Q)— GL,,(Q),

where d=dim S, , ,(I'), as follows. If I satisfies the conditions of a) above, p, is
the representation #,(Q) of 4.2. In the general case, we choose N as in b), and
p, is taken to be #;(Q)°~.

In any case, p, is unramified away from M/, and if Frob, is a (geometric)
Frobenius element for p 4 M, the characteristic polynomial of p,(Frob,) can be
written, by the results of §4, as

2d d
H,(T)=} A,p) - T**""=[[(T—a,)(T—p**"/a)eZ[T]

with |o;| =p*+ 1”2 We therefore have

Ayy_ ,=p*tV¥=n. 4 (0=r=2d)

5.3.1
A0=1’ A2d=p(k+1)d- ( )

With C as in the proposition, define, for primes pt M, constants y,el+pZ,
with yb=C?~', as in (3.3.1).

5.4. Theorem. Let f€S, ,(I') have Fourier expansion as in (5.2.1) above. Then if
PAM, p>k+1,
ord,(a(np®)+ 4;(P)a(np )+ ... + A4y (p)aln/p”~ ')+ A5,4(p) a(n/p?)
2(k+1)(ord,n+1)
for all n=1.

Here the left hand expression is interpreted as follows. Formally writing
a(n)=hb(n)- C~"*
(and writing A4, for A,(p) throughout) we have

2d 2d .
Aa(npi=Y A, C"P" T b(np")
r=0

r=0
2d
= C-"pk Z A, - Crwt-p? N, b(n pd—r).
r=0
Since ord ,(C)=0, we define

2d 24
ordp ( Z A,a(npd—r)) ==Ol'dp ( Z Ar, y;(l’d"l’d“')/(p“l). b(npd_,))
r=0 —0

r

with the usual convention that a(n)=b(n)=0 if n¢N.
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5.5. Remark. If d=1, the left hand expression is

ord,(a(np)— A(p)- a(n)+p*** a(n/p))

where H,(T)=T?—A(p)- T+p**". This is the first type of congruence orig-
inally discovered by Atkin and Swinnerton-Dyer.

5.6. Theorem. Suppose that p¥ M, p>k+1, and that H,(T) is ordinary, so that

d
H,(T)= __]—[l(T—ui) (T—p** fu;)

with u,€Q,, ord (u)=0.
Let {f,, ..., f;} be a basis for S, ,(I') as in Proposition 5.2, with

fi=Y an)-q"*=Y b,(n)-t", by(n)eZ[1/M].
Then for some matrix (B,;(p))eM,(Z,), and each n=1,
ord,(a,(np)— . Bi;(p)- a;(n)):=ord, (b,(n p)— 7, 3. B;;(p) - b;(n)
j __>:(k+1)(ordpn+1;;
and the eigenvalues of (B;;(p)) are the non-unit roots {p** /u}.

5.7. Proof of Theorems 5.4 and 5.6. a) We assume that the additional hy-
potheses (5.2.3) hold.

View the forms f,f; as elements of S, , ,(X,Z[1/M])=>S§,, ,(X,Z,) as in the
proof of 52. By 3.6 and 4.4, taking G=1, the image of f in PLY(X,Z,) is
annihilated by H,(F); this translates into the t-expansion condition

2d
Z c(n) = Z Ar( Z b(n) N p(k+1)(2d~r) . ,y;(1+p+...+p2d"‘1) X tnpz"")
r=0

nx1 nzli
elm(p 9)<+1.
Thus
2d
cm)="Y Ar_p(k+1)(2a_r),y;u—p‘“*')/(p—l).b(np—““)
= 2d
= ptk+1d ZA,-y;“"’_"/"’“”-b("/P') (5.7.1)
r=0

by (5.3.1). Since

., d k+1
Y c(n)-t"elm (pta)

we have c(n)e(np)**' Z, whence

2d
OA'_ . y;(l ~-p~"Mp-1), b(n/p’)e(n pl —d)k+1 Zp.
r=
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This gives no information if p? ¥n, so replacing n by p’n,

2d
Z Ar . y;(pd_pd-r)/(li~l) . b(n pd—r)e(n p)k+1 Zp
=0

r

which is Theorem 5.4.
Now suppose that H,(T) is ordinary. Since

F(Siy2(X, Z)=p* ' L(X,Z,)

we have
Lk(X,Zp)=Sk+2(X, Zp)(BU (5.7.2)

where U is F-stable, and F is invertible on U, with eigenvalues u,, ...,u,;. Then
F is divisible by p**' on the quotient L,(X,Z,)/U, and we may write

F(f)=p**! Z Cij‘fj (mod p**+' U)
where (C,) is invertible, with eigenvalues uy ', ...,u; '. Then
WL (X, Z)=S,,,X, Zp)®pk+ L.U.
Writing p for the map PL, - VLY, we have
p(P*+!- U)=0.
Indeed, it suffices to show that if

ueZ?¥ and get-Z,[t]

then
(F—u)gelm(p o)+ < gelm(poy+!

(F being defined on ¢ - Zp[t]] by the formula (3.3.2)); and if

g= Y d(n)-t"
nz1
then B
(F—u)gelm(po)<+?
implies

prrroynir - d(njp)—u-d(n)e(np)t' Z,

whence d(n)e(np)+! Z, as required.
Therefore F(f)—p**' Y C;;- fielm(pdy*** whence, writing (B;;)=(C;) ™,

Pt -3 By F(felmpay !
= p‘*'-b;(n)— Z B;- pE+t ?;/p ' bj(n/P)e(P n+! z,
= bi(np)—zBij -y5 - bin)e(@ n)k+1Zp

proving Theorem 5.6 in this case.
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5.8. Remark. Under the hypotheses of Theorem 5.6 we have (in an obvious
notation)
b(np)—v,-B-bm)=0 (mod(pn)**'Z)
and
C-b(m)—7;"-b(n/p)=0 (modn**'Z)
whence

b(np)—7vy- A-bm)+p** 1950+ P bn/p)=0  (mod(pn)+'Z,)

where A=B+p**!.C. If A is diagonalisable, we recover the second type of
congruence of Atkin and Swinnerton-Dyer.

5.9. End of proofs. b) We now make the necessary modifications for the general
case of 5.4 and 5.6. Choose N and X as in part b) of the proof of 5.2.
For 5.4 view f as an element of S, ,(X,Z,)%~. Its t-expansion is therefore

Y b(n/N)-t".

n=1
Define é,el+pZ by o4=DP-!; thus y,=0). Since H,(F) annihilates
L,(X,Z,)°~, we have in PLY(X,Z)

H ,(F)( Y b(n/N)-t)=0 (mod Im(pa)y*")
and as in a) "~
2d

Y A4, 7N bt Nl 2,

Writing N n for n gives the desired result.
For 5.6, we have
F(S;, 2(X, ZP)GN)CP"H. L(X,Z,)nL, (X,Z,)%~
k+1 k(X Z )GN
and so we may write
L(X,Z,)%=8,,,(X,Z)°"®U

and
PL(X,Z) =5, ., (X.Z,) " @p* " - U.

As above, the image of p**' U in PL(X,Z,) is trivial; the rest of the proof
then goes through just as for the general case of 5.4.

5.10. Remarks. i) We indicate, without proof, the generalisations of 5.4 and 5.6
to primes p4 M with 2<p<k+1. (See also § 7.3, 7.4 of [S].)

As explained in 2.8.ii), the complex Q°(&,) must be replaced by Q'(I'*(¢; w)).
Denote by J, the H' of this complex; it replaces L,. The exact sequence

08,2 S —>8,2" —0

holds without the hypothesis that k! be invertible. WL, is replaced by the
submodule
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<p)Jk(X, Zp)= v 1(p<k+ v ) Sk+ Z(X: Zp)v)

iy =inf{ord,‘, (f—:) jgi}

t-Z,[t]
Ck+1>  gk+ l(Zpl[t]I) :

where

and VLY by

(p)J’SO(X, Zp) —_-p

Theorems 5.4 and 5.4 then hold under the hypothesis p ¥ 2M, with
(k+1)(ord,n+1) replaced by (k+1)ord,n+<k+1).

i) We may apply these methods to give congruence properties of holo-
morphic forms which are not necessarily cusp forms. To simplify matters,
assume that I' is contained in +I'(N) for some N=3, and let s denote the
number of cusps of I. The notation being as in §4, write

Wi=R'c,(j,h'* F)
#(Q=H,(YRQ,h'* %)
and let H;,(T) be the characteristic polynomial of Frob, on #:(Q). Then

so that

H\(T)=H,(T)-G,(T)

where H,(T) is as above, and G,(T) is a polynomial of degree s, all of whose
zeroes are roots of unity. (Indeed, G,(T)~' is the zeta function of the zero-
dimensional variety Z/F,.) Write

2d+s

H,(T)= ZO A, T?a+5r

and let M, ,(I') denote the space of holomorphic modular forms of weight
k+2 on I', for an even integer k> 0.

Theorem. M, ,(I') is spanned by forms whose Fourier expansions are of the
form

f=Y an)-expQmint/p), yy"-a(neZ[1/M];

n=0

moreover, for any such form f, every n=1 and every prime p with p}t2M,
p>k+1,

ord,(a(np***)+ AL a(np** =)+ .. + Ay, aln/p) 2 (ord, n+1) (k +1).

The proof is analogous to 5.4; we replace P'L,, PLY by the groups VT, PT,*
discussed in 2.13.iii). There is an operator F on these groups, and on

Z,[1]
(oY "(Z,[e])

PTo(X, Z,)=
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it is given by the explicit formula (3.3.2). In the [l-adic representation of

Gal(Q/Q)
#*(Q):=H'(Y®Q, h"* #)=Hom(#,'(Q), Q(—k—1))

the geometric Frobenius element Frob, has characteristic polynomial
H¥(T)=H,(T)-p** G (T/p**"). (5.10.1)

The trace formulae show that H}(F) annihilates PT(X,Z »)» and the same local
calculation gives the congruences. (The passage from H¥* to H, occurs in the
course of this calculation; compare (5.7.1) above.)

There is also an analogue of 5.6; in addition, the “ordinary” case gives rise
to a p-adic splitting, analogous to the theory of Eisenstein series, as follows.
There is a commutative diagram with exact rows

0—— §,,,(X,Q) — Li(X,Q,)—§,,,(X, Q)" ——0

| |

00— Mk+ Z(X: Qp)___—’ T]'((Xa Qp) D Sk+ 2(Xa Qp)v —0.
If H,(T) is ordinary, the unit root subspace

U®Q,<L,(X,Q,)

splits both rows of this diagram, by (5.7.2). The eigenvalues of F on L,(X,Q,)
and T, (X, Q,)/L,(X,Q,) have different archimedean absolute values, whence
the action of F splits the second vertical arrow (the “weight” splitting). The
first vertical arrow therefore also has a canonical splitting:

M, 2(X,Q)=S,,,(X,Q)®Eis,, , ,(X)
where

Eis, 5, ,(X):={xeM,, ,(X,Q,): G,(F/P*"")(x)eU®Q,}.

Of course, when I' is a congruence subgroup Eis, , , ,(X) is simply the space
spanned by the Eisenstein series, since F commutes with the Hecke operators.
iii) It is clear that the principles of the proofs will apply equally well to
forms of odd weight =3 on a subgroup I' <SL,(Z) of finite index, not contain-
ing — 1. Indeed, if I'< +T'(N) for some N =3, and if there is a model V/Q for
+ I\ $H* as in (5.2.2), (5.2.3), then the arguments above carry through without
change. The general case is slightly more complicated; to use the method of
intersecting I’ with I'(N) for suitable N, the following hypothesis seems to be
required:
For some integer N=3 for which I'- I'(N)=SL,(Z), there is a model V/Q
for the Riemann surface +(I'NT(N)\H* as in 5.1, such that the j-mor-
phism n: V—Pg factors through X(N),, and such that there is an action of
Gy on ¥, which is compatible with its action on X(N), and with the action
of Gy(C)~T'/T nT'(N) on V(C).
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(Note that taking the fibre product of X(N) with a model for + '\ $* will not
give a suitable V, but rather a model for (+I'n + I(N)\H*.)

It would be desirable to have an alternative hypothesis which did not
involve the auxiliary integer N.
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