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Background from Groups, Rings and Modules (summary)

1 Rings

1.1. In this course, unless stated to the contrary, ‘ring’ means a commutative ring with unit. In
detail, such a ring is a set R equipped with binary operations + (addition) and × (multiplication), and
distinguished elements 0, 1 ∈ R satisfying the axioms:

(i) (R,+) is a commutative group with identity 0 (so for all x ∈ R, 0 + x = x);

(ii) The operation × is commutative, associative, and for all x ∈ R, 1× x = x;

(iii) [Distributive law] For all x, y, z ∈ R, x× (y + z) = (x× y) + (x× z).

A consequence of (iii) is that x× 0 = 0 (by taking z = 0). The multiplication sign × is usually omitted
or replaced by a dot; one writes x · y or simply xy instead of x× y.

1.2 Some examples of rings: Z (integers), Q (rational numbers), R (real numbers), C (complex
numbers), Z[i] = {a + bi | a, b ∈ Z} (Gaussian integers), Z/nZ for n ≥ 1 (integers mod n), polynomial
rings (see §3 below).

1.3. A zero ring is any ring with just one element 0, so 1 = 0 in this ring. (Notice that if n = 1 then
Z/nZ is a zero ring.) If R is any nonzero ring then 1 6= 0 in R. (Proof: suppose that 0 = 1. Then for
any x ∈ R, x = 1 · x = 0 · x = 0, so R = {0}.)

1.4. Let R be a nonzero ring. We say R is an integral domain (or simply a domain) if it has no zero
divisors; i.e if xy = 0 implies x = 0 or y = 0. It is a field if every nonzero element has an inverse under
multiplication; i.e. if whenever x 6= 0 there exists x−1 ∈ R with xx−1 = 1. The nonzero elements of a
field then form a group under multiplication.

1.5. A field is automatically an integral domain: if xy = 0 and x 6= 0, then y = x−1xy = 0. Of the
examples given above, Q, R and C are fields, Z and Z[i] are integral domains which are not fields. If
n = p is prime, then Z/pZ is a field (also denoted Fp). If n is not prime then Z/nZ is not an integral
domain.

1.6. If R is any ring we write R∗ for the set of invertible elements (or units) of R. It is a group under
multiplication. For example, Z∗ = {±1}. If F is a field then F ∗ = F \ {0}.

2 Homomorphisms and ideals

2.1. By a ring homomorphism we shall always mean a mapping φ : R→ S between two rings such that:

(i) for every x, y ∈ R, φ(x+ y) = φ(x) + φ(y) and φ(xy) = φ(x)φ(y); and

(ii) φ(1) = 1.

Associated to a homomorphism φ : R→ S are:

• its kernel, defined as: ker(φ) = {x ∈ R | φ(x) = 0} ⊂ R
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• its image, defined as: im(φ) = {φ(x) | x ∈ R} ⊂ S.

The homomorphism φ is injective iff ker(φ) = 0, and is surjective iff im(φ) = S. The image of φ is a
subring of S.

2.2 Definition. An ideal of a ring R is a subset I ⊂ R satisfying:

(i) I is a subgroup of R under addition;

(ii) for every x ∈ R and y ∈ I, xy ∈ I.

2.3 Examples. In any ring R, R and {0} are ideals. Let R be any ring and a ∈ R. Write (a) or aR
for the subset {ax | x ∈ R}. Then (a) is an ideal of R. This is called the ideal generated by a. Any ideal
of this form is said to be principal. In particular, the ideals R = (1) and {0} = (0) are principal.

2.4 Proposition. A ring R is a field iff it is nonzero and its only ideals are (0) and R.

Proof. Let R be a field, and I ⊂ R a nonzero ideal. Let x ∈ I with x 6= 0; then x−1 ∈ R and so
1 = x−1x ∈ I, hence I = R. Conversely, let R be a ring with no ideals other than (0) and R. Let x ∈ R
with x 6= 0. Then (x) is a nonzero ideal of R, hence (x) = R, which implies that xy = 1 for some y ∈ R.
Therefore R is a field.

2.5 Proposition. Let φ : R→ S be a homomorphism. Then ker(φ) is an ideal of R. Moreover ker(φ) 6= R
unless S is a zero ring.

2.6. Combining these two facts, one sees that any ring homomorphism φ : F → K between fields is
injective.

2.7. The converse is true: every ideal of R is the kernel of some suitable homomorphism. In fact, given
an ideal I ⊂ R, define an equivalence relation on R by

x ≡ y (mod I) ⇐⇒ x− y ∈ I.

Let R/I be the set of equivalence classes. If x ∈ R denote by x̄ ∈ R/I the equivalence class containing
x. The conditions (i) and (ii) in the definition 2.2 imply that:{

x ≡ x′ (mod I)

y ≡ y′ (mod I)

}
=⇒

{
x+ y ≡ x′ + y′ (mod I)

xy ≡ x′y′ (mod I)

}
(for the second identity, notice that x′y′ − xy = x′(y′ − y) + y(x′ − x) ∈ I). This means that we can
unambiguously define operations + and × on R/I by the formulae x̄ + ȳ = x+ y, x̄ × ȳ = xy, which
give R/I the structure of a ring, called the quotient ring of R by I. (This is just a generalisation of the
construction of Z/nZ.) The map

ψ : R→ R/I

x 7→ x̄

is then a homomorphism, whose kernel is I.

2.8. There is a bijection between the set of ideals of R/I and the set of ideals of R containing I; if
I ⊂ J ⊂ R then the corresponding ideal of R/I is J/I, and if J̄ ⊂ R/I is an ideal the corresponding ideal
of R is

ψ−1(J) = {x ∈ R | x̄ ∈ J̄}.
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2.9. An isomorphism of rings is a ring homomorphism φ : R → S such that there is a ring homomor-
phism ψ : S → R for which ψ ◦ φ = idR and φ ◦ ψ = idS . This is equivalent to requiring that φ be a
bijection. Isomorphisms are usually denoted

∼−→.

2.10 Theorem (First Isomorphism Theorem). Let φ : R → S be a ring homomorphism. Then there is
a unique isomorphism ψ : R/ ker(φ)

∼−→ im(φ) such that for every x ∈ R, φ(x) = ψ(x̄).

2.11. A ideal I ⊂ R is said to be prime if I 6= R and:

• whenever x, y ∈ R with xy ∈ I, at least one of x, y belongs to I

2.12 Proposition. An ideal I ⊂ R is prime iff R/I is an integral domain.

Proof. We have x ∈ I ⇐⇒ x̄ = 0. This shows that the definitions are equivalent.

2.13. An ideal I ⊂ R is maximal if R 6= I and there is no ideal J with I & J & R.

2.14 Proposition. An ideal I ⊂ R is maximal iff R/I is a field. (Hence maximal =⇒ prime.)

Proof. By 2.8, I is maximal iff the only ideals of R/I are R/I and (0), hence by 2.4 iff R/I is a field.

3 Polynomials and rational functions

3.1. Let R be a ring and n a positive integer. The polynomial ring in the variables X1, . . . , Xn is the
ring R[X1, . . . , Xn] whose elements are finite formal sums (for some N ∈ N = {0, 1, 2, . . . })∑

0≤i1,...,in≤N
ai1,...,inX

i1
1 · · ·X

in
n

where ai1,...,in ∈ R, and multiplication and addition are defined in the obvious way. If R is an integral
domain then so is R[X1, . . . , Xn], and in this case the units of R[X1, . . . , Xn] are just R∗ (this is not true
for general rings R).

3.2. If F is a field, then the field of rational functions over F is

F (X1, . . . , Xn) =

{
f

g

∣∣∣∣ f, g ∈ F [X1, . . . , Xn], g 6= 0

}
.

It is the field of fractions of F [X1, . . . , Xn].

3.3 Theorem. Let F be a field, F [X] the polynomial ring in one variable. Then:

(i) every ideal of F [X] is principal (i.e. F [X] is a UFD); and

(ii) if f ∈ F [X] is a nonzero polynomial, then (f) is prime ⇐⇒ (f) is maximal ⇐⇒ f is irreducible.

Proof. (i) Let I be a nonzero ideal of F [X]. Choose f ∈ I to be nonzero with minimal degree. Then I
claim that I = (f). Indeed, if g ∈ I then there exist q, r ∈ F [X] with g = qf + r and deg(r) < deg(f) (by
the division algorithm in F [X]). As I is an ideal, r = g − qf ∈ I, and as f was chosen to have minimal
degree among the nonzero elements of I, we must have r = 0, so that g = qf ∈ (f). (This argument
shows that F [X] is a Euclidean domain, hence a UFD.)

(ii) Suppose f is irreducible. Then let I be an ideal with (f) ⊂ I ⊂ F [X]. By (i), I = (g) is principal,
so f ∈ (g), which means f = gh for some h ∈ F [X]. As f is irreducible either g is constant, in which
case (g) = R, or h is constant, in which case (g) = (f). Therefore (f) is maximal.

If (f) is maximal then it is certainly prime, so it remains to show that if (f) is prime, f is irreducible.
Suppose not. Then f = gh for some nonzero polynomials g, h of degree less than deg(f). Then g, h /∈ (f)
but gh ∈ (f), hence (f) is not prime.
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3.4 Theorem (Gauss’s Lemma). Let R be a unique factorisation domain with field of fractions F . Let
f ∈ R[X], and assume that f is not divisible by any non-unit of R. Then f is irreducible in R[X] iff f
is irreducible in F [X].

(We’ll only need the case R = Z, F = Q, but the general case is no harder to prove.)

Proof. One direction is easy: suppose f is irreducible in F [X]. Then it has no nonconstant factors in
R[X] of degree less than deg(f). So by hypothesis it is irreducible in R[X].

For any polynomial f = a0 + a1X + · · ·+ anX
n ∈ R[X] \ {0}, define its content cont(f) to be the gcd

of {a0, . . . , an} (well-defined up to multiplication by a unit in R). If c = cont(f) then c−1f ∈ R[X] and
cont(c−1f) ∈ R∗. We prove:

If f , g ∈ R[X] then cont(fg) = cont(f) cont(g).

For this, first divide f and g by their contents, so that we may assume that cont(f) = cont(g) = 1. We
need to show that cont(fg) ∈ R∗. If not, there exists an irreducible π ∈ R with π| cont(fg). Let

f =

m∑
i=0

aiX
i, g =

n∑
j=0

bjX
j , fg =

m+n∑
k=0

ckX
k.

Thus we have

ck =
k∑

i=0

aibk−i.

As cont(f) = cont(g) = 1 not all the ai and not all the bj are divisible by π. Choose i and j minimal
such that π 6 | ai and π 6 | bj . Then π 6 | aibj , and in the formula for ci+j , every term is divisible by π except
for the term aibj . So π 6 | ci+j , a contradiction.

Now suppose f ∈ R[X] is reducible in F [X]. Then there exist nonconstant g, h ∈ F [X] with f = gh.
We can therefore write af = bg1h1 where a, b ∈ R \ {0} and g1, h1 ∈ R[X] with cont(g1) = cont(h1) = 1.
So cont(af) = cont(bg1h1) = b by what was just proved, and therefore a|b. So f = (b/a)g1h1 is reducible
in R[X].

3.5 Theorem (Eisenstein’s Criterion for Irreducibility). Let p be a prime number and f = Xn +
an−1X

n−1 + · · ·+ a1X + a0 ∈ Z[X] a monic polynomial of degree n ≥ 1 such that:

(i) Every ai is divisible by p;

(ii) a0 is not divisible by p2.

Then f is irreducible in Z[X] (hence in Q[X] by Gauss’s Lemma).

Proof. Suppose f = gh with g, h ∈ Z[X]. We may assume that g and h are monic of degrees m, n−m
respectively, where 0 < m < n. Write for reduction modulo p, and consider the “reduction modulo p”
homomorphism

Z[X]→ Fp[X]∑
biX

i 7→
∑

biX
i

Then ḡ and h̄ also have degrees m, n−m and ḡh̄ = f̄ = Xn (by hypothesis (i)). Since Fp[X] is a UFD
this forces ḡ = Xm, h̄ = Xn−m. Therefore g(0) ≡ h(0) ≡ 0 (mod p), hence a0 = f(0) = g(0)h(0) ≡ 0
(mod p2), contradicting (ii).

The argument just given proves the following more general statement: let R be a ring and I ⊂ R a
maximal ideal. Let f = Xn + an−1X

n−1 + · · ·+ a1X + a0 ∈ R[X] with all ai ∈ I and a0 /∈ I2. Then f is
irreducible in R[X].

3.6 Example. If p is prime, (Xp − 1)/(X − 1) = Xp−1 + · · · + X + 1 is irreducible in Q[X]. (Put
T = X − 1, so the polynomial becomes

∑p−1
i=0

(
p

i+1

)
T i which satisfies (i) and (ii).)
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