
Part III: Differential geometry (Michaelmas 2010)

Some facts from multilinear algebra

Let V be a vector space over R. Assume, for simplicity, that V has finite dimension n say.

1. If W is another real finite-dimensional vector space then the tensor product V ⊗W may
be defined as the real vector space consisting of all formal linear combinations of elements
v ⊗ w (for v ∈ V , w ∈W ), with the relations

(av)⊗ w = v ⊗ (aw) = a(v ⊗ w),

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, and v ⊗ (w1 + w2) = v ⊗ w1 + u⊗ w2,

for all a ∈ R; v, v1, v2 ∈ V ; w,w1, w2 ∈W . If {vi} and {wj} are bases of V,W then {vi⊗wj}
is a basis of V ⊗W and thus dim(V ⊗W ) = dimV dimW . For example, Rm ⊗ Rn ∼= Rmn.
Consider the dual space V ∗ of linear functions V → R, and similarly W ∗, (V ⊗ W )∗.
Assigning to each v∗ ⊗ w∗ ∈ V ∗ ⊗W ∗ the linear function on V ⊗W determined by

vi ⊗ wj ∈ V ⊗W 7→ v∗(vi)w
∗(wj) ∈ R

defines a natural isomorphism of vector spaces V ∗ ⊗W ∗ ∼= (V ⊗W )∗.
Assigning to a bilinear form ψ on V ×W the linear function

v ⊗ w ∈ V ⊗W → ψ(v, w) ∈ R

defines a natural isomorphism between the vector space of all bilinear forms on V ×W and
the dual space (V ⊗W )∗. Recall from linear algebra that the space of bilinear forms on V ×U
may be naturally identified with the space L(V,U∗) of linear maps V → U∗. Putting U∗ = W
and noting the above relations, one obtains a natural linear isomorphism

L(V,W ) ∼= V ∗ ⊗W.

In the special case W = R this recovers the definition of dual vector space V ∗.

2. Again let v1, . . . , vn be a basis of V . Then the dual space V ∗ of linear functions V → R
can be given the dual basis λ1, . . . , λn, defined by the property

λj(vj) = δij .

Here δij is the ‘Kronecker delta’, δij = 1 if i = j and is 0 otherwise. The p-th exterior power
ΛpV ∗ of V ∗ (p ≥ 0) is the vector space of all the functions h : V × . . .×V → R, such that h is

(1) multilinear: h(u1, . . . , aui + bu′i, . . . , up) = ah(u1, . . . , ui, . . . , up) + bh(u1, . . . , u
′
i, . . . , up);

(i.e. linear in each argument) and

(2) antisymmetric: ∀i < j ∈ {1, 2, . . . , n}, swapping the ith and jth vector changes the sign

h(u1, . . . , ui−1, ui, ui+1, . . . , uj−1, uj , uj+1, . . . , un) =

− h(u1, . . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . , un).

It follows that for 1 ≤ p ≤ n, dim ΛpV ∗ =
(
n
p

)
, a basis may be given by {λi1 ∧ . . .∧λip : λij ∈

V ∗, 1 ≤ i1 < . . . < ip ≤ n}. Also ΛpV ∗ = {0} when p > n. One formally defines Λ0V ∗ = R.



The exterior product (or wedge product) is a bilinear map

(λ, µ) ∈ ΛpV ∗ × ΛqV ∗ → λ ∧ µ ∈ Λp+qV ∗.

determined for the basis vectors λi ∈ V ∗, and inductively on p, q, by

(λi1∧. . .∧λip)∧(λip+1∧. . .∧λip+q)(u1, . . . , up+q) = det(λij (uk)), (uk ∈ V, j, k = 1, . . . , p+q).

(and extended by linearity). It follows, in particular, that the ∧ is associative (λ ∧ µ) ∧ ν =
λ ∧ (µ ∧ ν), and µ ∧ λ = (−1)pqλ ∧ µ (λ ∈ ΛpV ∗, µ ∈ ΛqV ∗).
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