TORIC GEOMETRY, SHEET II: MICHAELMAS 2019

If you would like feedback on your work, you may turn in any two problems into my pigeon hole in the CMS before lunch on November 18.

- 1. Construct a fan Σ and a proper map to $\mathbb{R}_{\geq 0}$ such that for the associated toric morphism $X \to \mathbb{A}^1$ is proper, every nonzero fiber is isomorphic to \mathbb{P}^1 , and the zero fiber has exactly r irreducible components.
- 2. Let X be a product of projective spaces and let dim X = n. The dense torus $(\mathbb{C}^*)^n$ contains a compact real torus $(S^1)^n$ where the norm of each complex number to be 1. Describe the quotient space $X^{\mathrm{an}}/(S^1)^n$.
- 3. Consider the variety X obtained by taking \mathbb{P}^n and blowing up a single closed dimension k coordinate plane. Carefully describe the fan for this variety (the answer will certainly depend on k). Identify all the torus orbit closures of X.
- 4. On (C^{*})ⁿ, there is a map sending a tuple of nonzero complex numbers to the tuple of their reciprocals, and is known as the *Cremona transform*. Describe the self-map on the cocharacter lattice that induces this map. Does this map extend to the compactification Pⁿ?
- 5. Let X be the blowup of \mathbb{P}^2 at its three torus fixed points and let $\pi : X \to \mathbb{P}^2$ be the blowup morphism. Prove that the coordinatewise reciprocal map defined in the previous question extends to an endomorphism $\phi : X \to X$. Let ℓ be a line in \mathbb{P}^2 that does not pass through the coordinate points, and therefore is isomorphic to a unique subvariety in X. Give an explicit description of the subvariety of \mathbb{P}^2 obtained as $\pi \circ \phi \circ \pi^{-1}(\ell)$.
- 6. Construct a toric variety X with dense torus $T \cong (\mathbb{C}^*)^n$ with the following two properties: (1) the Cremona transform on T extends to a regular (i.e. well-defined) self-map on X, and (2) admits a toric birational morphism $X \to \mathbb{P}^n$.
- 7. The Picard group¹ of a smooth toric variety is always a finitely generated abelian group and the *Picard rank* of a toric variety X is the rank of its Picard group. Give examples to show that the Picard rank of toric surfaces can be unbounded, i.e. for any integer N there is a toric surface with Picard rank larger than N.
- 8. Prove or give a counterexample: the divisor class group of a toric variety is always torsion free.
- 9. Let σ be the 3-dimensional cone obtained as a cone over a square. Identify² the associated toric variety with the affine cone over $\mathbb{P}^1 \times \mathbb{P}^1$. Give a toric resolution of singularities

Dhruv Ranganathan, dr508@cam.ac.uk

 $^{^{1}}$ The Picard group was defined in lecture as the group of Cartier divisors up to rational equivalence. You may take as a given that it coincides with the class group for smooth toric varieties.

 $^{^{2}}$ You may need to look at the Wikipedia pages for Segre embedding and for affine cone.

 $\pi: X \to U_{\sigma}$ with the additional constraint that the morphism is an isomorphism in codimension 1. Practically, this is requiring that π is a bijection on torus orbits of dimension 2 and 3.

- 10. Prove or give a counterexample: For toric morphisms of toric varieties $X_1 \to Z$ and $X_2 \to Z$ the fiber product of schemes $X_1 \times_Z X_2$ is always a toric variety.
- 11. Given an arbitrary fan Σ in $N_{\mathbb{R}}$ prove that there exists a subdivision Σ of Σ such that every cone of $\widetilde{\Sigma}$ is generated by a subset of a vector space basis for $N_{\mathbb{R}}$ (i.e. is simplicial)³. (*) Prove the ultimate statement: there is a further refinement of $\widetilde{\Sigma}$ where every cone is generated by a lattice basis.
- 12. Give a toric morphism of toric varieties $f : X \to Y$ and a point $y \in Y$ such that the scheme theoretic fiber $X \times_Y \{y\}$ is non-reduced. (*) Can you give a combinatorial condition that guarantees that all scheme theoretic fibers of f are reduced?

³A more pretentious way of saying this is that X_{Σ} has a toric resolution of singularities by a smooth orbifold, or even more pretentiously, a smooth Deligne–Mumford stack.