TORIC GEOMETRY, SHEET I: MICHAELMAS 2019

- 1. Given a cone σ in $N_{\mathbb{R}}$ prove that the double dual $(\sigma^{\vee})^{\vee}$ is canonically identified with σ .
- 2. Consider the 3 cones in \mathbb{R}^2 given generated (1) by (0,1) and (1,1), (2) by (1,1), and (3) by (1,0) and (1,1). Draw the respective dual cones. These three cones assemble to form a fan. Check by hand in this case that the resulting variety is separated.
- 3. Give an explicit construction of the toric variety $\mathbb{P}^2 \times \mathbb{P}^1$ from a fan you should describe each affine toric open subsets, the gluing morphisms, and why the resulting toric variety is $\mathbb{P}^2 \times \mathbb{P}^1$.
- 4. Let σ be a cone in $N_{\mathbb{R}}$ and assume it is full dimensional, i.e. the span of σ is $N_{\mathbb{R}}$. Recall that by choosing generators for S_{σ} , we may regard U_{σ} as a subset of \mathbb{C}^{N} and endow it with the Euclidean topology, obtaining a topological space U_{σ}^{an} . Show that U_{σ}^{an} is contractible as a topological space.
- 5. Consider the fan Σ in \mathbb{R}^2 whose rays are generated by (1,0), (0,1) and (-1,-1) and which does not have any 2-dimensional cones. Describe the toric variety X_{Σ} explicitly. Calculate the Euler characteristic¹ of the topological space X_{Σ}^{an} .
- 6. Give an example of a toric variety X of dimension 3 (a toric threefold) and a point $x \in X$ such that the tangent space $T_x X$ at this point has dimension 4. Are there any restrictions on the dimension of the tangent space of a point on a toric threefold?
- 7. Let Σ and Σ' be fans in vector spaces $N_{\mathbb{R}}$ and $N'_{\mathbb{R}}$. Show that the product $\Sigma \times \Sigma'$ naturally has the structure of a fan in $N_{\mathbb{R}} \oplus N_{\mathbb{R}}$ and therefore defines a toric variety. Moreover, show that there is an isomorphism

$$X_{\Sigma \times \Sigma'} \cong X_{\Sigma} \times X_{\Sigma'},$$

so the construction of a toric variety from a fan commutes with products.

- 8. Let X be a toric variety with dense torus T. Recall that we partitioned the cocharacter lattice N of T based on the limits of one parameter subgroups of T inside X (this will turn out to be the fan attached to X). Give an example to show that this data does not uniquely determine X.
- 9. (Hirzebruch surfaces) Let Σ_r be the fan in \mathbb{R}^2 whose rays are given by

$$(1,0), (0,1), (-1,r), (0,-1)$$

for r a non-negative integer, and whose two-dimensional cones are spanned by adjacent pairs of vectors, i.e.

$$\langle (1,0), (0,1) \rangle, \langle (0,1), (-1,r) \rangle, \langle (-1,r), (0,-1) \rangle, \langle (0,-1), (1,0) \rangle$$

Dhruv Ranganathan, dr508@cam.ac.uk

¹If you are confused by this, first calculate the Euler characteristic of \mathbb{P}^2 by giving it a cell decomposition.

Show that $X_r = X_{\Sigma_r}$ admits a morphism to \mathbb{P}^1 such that every fiber is isomorphic to \mathbb{P}^1 , so X_r is a \mathbb{P}^1 -bundle over \mathbb{P}^1 . Show also that X_1 is not isomorphic to X_0 . 10. Give an example of a morphism of smooth toric varieties $X \to \mathbb{C}^2$ such that the fiber

- over (0,0) in \mathbb{C}^2 is singular.
- 11. In lecture, we claimed that the toric variety U_{σ} associated to a cone σ is smooth if and only if it is generated by a subset of a \mathbb{Z} -basis for N. Give a complete proof of this statement. Give an example to show that if σ is generated by a subset of a Q-basis then U_{σ} need not be smooth.
- 12. Recall that $\mathcal{O}_{\mathbb{P}^1}(1)$ is a line bundle on \mathbb{P}^1 whose fiber over a point is the line in \mathbb{C}^2 associated to that point. Prove that the total space of this bundle $Tot(\mathcal{O}_{\mathbb{P}^1}(1))$ is a 2-dimensional toric variety².
- (*) Prove that there is an open embedding of $Tot(\mathcal{O}_{\mathbb{P}^1}(1))$ into the Hirzebruch surface X_1 . We will see later that X_r are all compact so X_1 is a compactification of the total space of this bundle.

²If you feel you don't have enough background for this question, go look at the Wikipedia definition for a line bundle using local trivializations. Once you're done with that, you'll have enough background!