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Introduction to non linear Analysis
Example sheet n® 2 - Weak convergence and linear dispersion

Exercices to be done : 1-2-3.

Exercice 1 (A precised Gagliardo-Nirenberg inequality). Let d > 1. Let 2 < p < 2* with

400 for d=1,2

2= dQ—fZ for d > 3.

1. Let a sequence u, € H*(R?) with u,, — 0 in H*(R?), show that u, — 0 in LP(R?).

2. Let € HY(RY) and x,, € RY with lim,,_,  » |2,| = +00, let u,(z) = ¢(x — x,,). Show that u, — 0 in H'(RY)
as n — +00. Do we have u, — 0 in LP(R?) ?

3. Let u = (up)n>1 be a bounded sequence in H' and V(u) be the subset of all possible weak H' limit of the
translates of u, : V € V(u) iff there exists a subsequence ¢p(n) and x, € R? such that

Upny (- — ) =V in HY(RY).
Show that V(u) is a bounded subset of H'(R?). We therefore define

n(u) = sup [[V]g.
Vev(u)

4. Let f € H'(RY) and u,, = =7 f (£). Compute n(u). Show that u, has a limit in LP for 2 < p < 2*. Does u,
n 2
converge to 0 in L? ?

5. We now assume that
n(u) = 0.
Our aim is to show the compactness statement

up — 0 in LP for 2 <p<2*.

Let us fir x € S(RY) with

v |1 for €l <1 ~
and given R > 0, let
Xr(z) = R'x(Rz).
Let the low-high frequency splitting
(1) 4 @) ul) = Tvw
Up = Uy " + Uy 7y /(2\) e .

Let s be given by —s + % = %. Show that 0 < s < 1.
6. Show that there exists Cyqp > 0 such that

Cap,
Vn>1, YR>0, [ < 22

7. Show that there exists Cqp > 0 such that

2
1-3

Vn>1, VR>0, ||U5Ll)||LP < CapxllXr *unl "
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8. Show that
VR>0, lm |xg*uylre=0.
n—-+oo

9. Show that u, — 0 in LP(RY).

Exercice 2 (Cauchy problem for (NLS) in R). Let S(t) be the linear Schrédinger semi gmup on R. Show that there
exists ay, > 0 and Cp, > 0, such that the following holds : for all ug € H'(R), let T = W’ then the map

t
() (t,2) :S’(t)uo—I—/ S(t — ) (ulul(s, -))ds
0
is a contraction mapping i a suitable ball of the Banach space E = LfooT]H; equipped with the norm ||ul|lg =
sup; o, 1) l[ult, )|l

Exercice 3 (Dispersion for the free transport). Let the transport equation describing the evolution of the microscopic
density f(t,z,v) € RT of free particules which are at x € RY with the speed v € R? at time t € R :

8tf+v'vwfzo7
(T) { flt:O = f0~

1. Assume fo = fo(x,v) is differentiable, compute the solution to (T).

2. If fo is moreover integrable, show that the total density is converved

/ f(t,x,v)dedv = / folx,v) dx do.
Rd x R4

Rd xRd

3. We define the macroscopic density p(t, ) fRd f(t,z,v)dv. Show the pointwise decay :
1
lo(t, e < WH sup fo(-,v)||pr  for all t #0.

Exercice 4 (Wave equation). Let the free wave equation
Uu=20
(W)
(u, 3tu)|t=o = (uo,u1)
f82 A and where uw = u(t,z) € R, (t,z) € R x R4,
1. Ford=1 and (ug,u1) € C? x C1, show that the C? solution is given by d’Alembert’s formula :

where [

u(t,z) = ;<u0(x +1t)+up(zx —t) + /Ht u1(y) dy).

x—1

Do we have pointwise decay in time ?

2. For d = 3, we recall that the solution is given by

u(t,z) = 4;(1 /SW) w (o )da—&—i(l/s(z,t)uo(a)da))

wher S(x,t) is the sphere of center x and radius t. Assume for simplicity ug =0, then show :

[Vuillrr | flurllrs
It] t2

[u@r~ <C
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Exercice 5 (Oscillatory integrals). Let a € D(R) and ® a C? function such that for some co >0 :
Vz € Supp a, ®"(x) > co.

For t € R, we define the oscillatory integral

) % / @) o (z) da.
R

For t # 0, we define the differential operator L, acting on derivable functions b by

def 1 —i®' ()b (x
Lib(z) = W(b(x) ' (z)b'( ))-

1. Using Ly, show that 1(t) = I1(t) + I2(t) with

def zt<I> Z(I)/ )
a'(z)dz and
1+t (P/(x))?
g [ b (@) ()
/1—|—t<1>’ <1+ 19" (x) — 2i T+ 1@ (2))? )a(m)dw.
2. Noticing that for x € Supp a,
1 1 O (x)

1+ 6(D ()2 = co 1+ (P (2))2
show that ) )
T
Lt <=(=+3
20 <5 (5 +3) g Wl

3. Conclude that there exists Cy(co) such that

lla’l| -

Co
()] < —
|t

4. Application : Consider the Airy equation
o+ 02, u=0

with data ug integrable and with Fourier transform supported in
[—2,—-1/2]U[1/2,2].
(a) Show that the L? norm is conserved. Write u(t) = ky x ug for a suitable function k; and conclude
lu(®)| < Clt~% [luo] 1.

(b) What kind of LP~L?" estimate do we obtain if Ty is supported in the set [—2X, —A/2] U [\/2,2)] 2
Hint : use the fact that if ¢ is smooth with support in {1 < [£| < 3} and equal to 1 on {3 < [£] < 2}, then
Uy = gﬁﬂo



