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Chapter 1

Lebesgue spaces

This chapter is devoted to the derivation of fundamental properties of Lebesgue spaces LP(R?).
After recalling classical inequalities (Holder, Minkowski and Young), we introduce the complex
interpolation method which is a powerful tool to derive estimates. We then give a self con-
tained proof of the critical Hardy-Littlewood-Sobolev estimates which are essential for many
applications in mathematical physics and are a first intrusion into harmonic analysis methods.

1.1 Banach space structure and duality

In this section, we briefly recall basis classical properties of Lebesgue spaces in a general
measured topological space (X, O, ). Classical references on Lebesgue spaces are [3], [17] et

[34].

1.1.1 Banach space structure

Let us recall the definition of Lebesgue spaces.

Definition 1.1.1. Let (X, pu) be a measured topological space. If 1 < p < +oo then LP =
LP(X, ) is the space of equivalence classes (for the p almost everywhere equality) of borelian
functions f on X with values in R ou C such that |f|P is integrable. We let

i1 2 ([, If(x)lpdu(x));

If p = +o0, we define L*(X,pn) as the set of equivalence classes for borelian functions f
on X such that the set of X >0 satisfying p({z € X / |f(z)| > A}) > 0 is bounded. We let

def
£l < sup{x >0/ u({z € X/ |f(@)] > A}) > 0}-
The following Theorem is fundamental and relies on the construction of the measure.

Theoreme 1.1.1 (Banach space structure). (LP(X, ), |- |lzr) is a Banach space.

The vectorial space structure follows for 1 < p < oo from

£ (@) +g(@)I” <227 (@)F + lg(@) ).

The rest of the proof (see e.g. [5, 34| for détails) relies essentially on Holder’s inequality.
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d
Lemma 1.1.1 (Holder’s inequality). Let p € [1,4+o00]. Let p’ def Ll be the conjuguate

exponent (with the rule 1/0 = 0o ). Then

Vige P x L, |[fgllr < fllzellgll Lo

Proof of Lemma 1.1.1. Tt is obvious if p is 1 or co. In the other cases, the concavity of the
log function ensures that for (a,b) € R* x R% and 6 € [0,1],

Ologa+ (1 —0)logb < log(fa + (1 — 0)b).

Exponentiating yields
a’b' =% < fa + (1 - ). (1.1)

By homogeneity, we may without loss of generality assume || f|z» = [|g||;,» = 1. Applying the
above inequality with 0 = 1/p, a = |f(x)|? et b= |g(z)|P" yields

f@Ia@] = (F@PHg@P)7 < 7@l + (1= gl

which integration with respect to p concludes the proof. O

Remark. Holder implies that || - ||zr is @ norm. Indeed,

[f(@) +g@)lP = [f(2)+g(@)]f(x) +g(z)P~
[F@)]1f(z) + g(@) P~ + lg(@)] [ f(2) + g(a) [P~

Since f + g belongs to L?, |f + g|P~! belongs to L?', and from Hélder:

IN

_1
P

[ 1@+ gt@)lPauta) < (1l -+l [ 1760+ g()Pdutz)
We conclude that || -||z» satisfies the triangle inequality (known as Minkowski’s inequality) :

If+glle < || fllze + [lg]lze-

The proof that (LP, || - ||zr) is complete is then very similar to the ones of Theorems 3.2.4 p.
81 and 3.3.2 p 87 of [3], and is detailed in [34].

The following variant of Holder are very useful, the proof is left to the reader.
Corollary 1.1.1 (Holder type inequalities). There holds:
(i) let 1 <p,q<o0, 0<6<1, then

1 6 1-0
r < 9 1-6 ith —=—+ ——-;
I fllor < HfHLPHfHLq wi rp g

(ii) let 1 <py,--- ,pN,r < 00 then

N N 1 N 1
ITT Al < TT0filese with =37
i=1 i=1 =1

The separability of LP for p < 400 relies on classical density arguments, see [34].
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Proposition 1.1.1 (Separability). For 1 < p < +oco, for every borelian set A of R? and
measure (i absolutely continuous with respect to the Lebesque measure, the space LP(A, ) is
separable. Moreover, simple functions ' are dense in LP(A, ), and so is the set of continuous
functions with compact support in the closure of A.

Let us insist that the result if false for p = 400, and the limit cases p € {1, +o0} should
always be treated with caution.

1.2 Complex interpolation

We present in this section a technical tool, elementary but very powerful, known as complex
interpolation. We will give application of the method when proving Strichartz estimates for
the free Schrodinger equation. Other related methods of real interpolation can be found in

[33].

1.2.1 Riesz-Thorin interpolation Theorem
The main result of complex interpolation is the following:

Theoreme 1.2.1 (Riesz-Thorin). Let 1 < po,p1,q0,q1 < oo. Let (X,pu) et (Y,v) be two
measured space. Let T be a linear operator from LPO(X,u) + LPY(X,u) into LY (Y,v) +
L1 (Y,v), which is bounded from LPO(X, u) into LP(Y,v) and from LP*(X,pn) into L9 (Y, v).
Assume that there exists 6 €]0,1] such that
1 1-6 6 1 1-6 6

= +— et —-= + —,
p Po b1 q qo a1

then T is also bounded from LP(X,pu) into LI(Y,v) with

1-6 0
1l ey < NTUS v, ooy | W g g
The proof relies on the maximum principle for holomorphic functions.

Lemma 1.2.1 (Phragmen-Lindelof). Let F be a function of the complex variable which is
continuous and bounded in the band

d
S :ef{x—i—iy/xe 0,1], y € R}
and holomorphic in the interior of S. Let

My =sup |F(iy)| and M; =sup|F(1+ iy)|.
yeR yeR
Then
V(w,y) € 0,1] xR, [F(z+iy)| < My~ " M.

Proof of Lemma 1.2.1. By possibly perturbing F' by a constant which can be chosen arbitrarily
small, we may assume that My, M7 are non negative. Let G(z) = Mé_lezF(z), then G
has the same properties of F' and is bounded by 1 on the boundary of S. We need to prove
that G is bounded by 1 on all S. Let the sequence (Gj,)p>1 defined on S by

Gu(2) = G(2) exp<22n_ 1)-

lie finite linear combination of characteristic function of mesureable disjoint sets of finite measure
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Since G is bounded on S, (G,,)nen converges pointwise to G on S, hence we need only prove
that G,, is bounded by 1 for n large enough. For all n € N, G,, is continuous bounded on
the whole rectangle {x +iy/0 < z <1, |y| < N}, holomorphic inside this rectangle. The
maximum principle ensures that G, attains its maximum on the boundary of the rectangle.
Since G is bounded on S and |G, (2)| < |G(2)|exp(—y?/n), we conclude that if N has been
chosen large enough then |G,,| does not exceed 1 on the boundary of the rectangle, and hence
is bounded by 1 on the whole rectangle. Letting N — +o0, we conclude that G,, is bounded
on the whole band S. 0

Proof of Theorem 1.2.1. By duality (Lemma 2.2.4), we equivalently need to prove

/YT(f)ng

From Proposition 1.1.1, we need only prove the result when f and g are simple functions
(at least when p and ¢’ are finite), and we may therefore assume that

P q
f:Zalej and g:Zblek
j=1

k=1

Vf € LM(X,p), Vg € LY (Y,v), < MM fllellgl - (1.2)

where the coefficients a; et by are all non zero and the sets A; and By, are p-mesurables. Up to
renormalization, we may assume | f||z» = ||g||,+ = 1. Let z € S as in the Phragmen-Lindel6f
Lemma, let

a; (l/z"'i/)
Z| LiaP i1, and gz—Z‘ el b

then fy = f, gop = g and for given x, the functions z — f.(z) and z — T(g.)(x) are holo-
morphic in the interior of S and continuous bounded in S. Using the Theorem of holomorphic
dependance below the integral, we conclude that F' defined on S by

F@=Lﬂm%w

satisfies the assumptions of the Phragmen-Lindel6f Lemma. More precisely, Vi € R,

lielleo = IFIZ =1, Ifrsiello = IFIZ" =1
and ' ”

lgitl Ly = N9ll70" =1 Ngrsall o = lgll} " = 1.
We conclude using Holder, the above estimates and our assumption on 7

| (it)] < NT(fi)llpoo llgitll oy < Mol fitll Lro = Mo,
F(1+it)] < (|T(frvi)lza lgreill, o < M|l fiyilloe = M.
L%

The Phragmen-Lindel6f implies
Vo+iy € S, |F(z +iy)| < My~ "M{.

Noticing that F'(6) is the lhs of (1.2) concludes the proof. O



1.2.2 Extension to space-time Lebesgue spaces

We extend the above results to space time Lebesgue spaces, the proof is elementary and left
to the reader. These functional spaces play a distinguished role in the study of linear and non
linear wave equations as we shall see when studying the Schrédinger equation in chapter 5.

Let E be a Banach space, (X, u) a measured topological space and p € [1,4+00]. We define
LP(X; E) as the equivalence set of measurable functions f from X to E such that

e ( [ 1@l du(fc)>p < o0,

Proposition 1.1.1 still holds in the folllowing form, (see for example the appendix of [13]).

Theoreme 1.2.2 (Space time Lebesgue spaces). (LP(X; E),| - |r»(x;E)) is a Banach space.
Moreover, if p is finite, then there exists an isomorphism from the topological dual of LP(X; E)
onto L¥ (X; E').

We will use the space time Lebesgue spaces only when X is an interval I of R and F is a
Lebesgue space of RY. The corresponding space will be denoted LP(I; L¢(R%)). Riesz-Thorin
becomes the following:

Theoreme 1.2.3 (Riesz-Thorin for space time Lebesgue spaces). Let 1 < mq, m1, po, P1, 90, q1,70,71 <
oo. Let T' be a linear operator from L™0(I; LPO) + L™ (I; LP') onto L9%(I; L")+ L9 (I;L™),

which is bounded from L™(I; LP°) into L% (I;L™) and from L™ (I;LP') into LI (I;L™).

Then V0 € [0,1], T is also bounded from L™ (I; LP¢) into L% (I; L") with

1 1-¢ 6 1 1-6 6 1 1-6 6 1 1-6 6
— = +—, —= +—, —= +—, —= +—

me mo m1 Po Pbo b1 qe qo q1 To o 1

and moreover

—0 0
HTHE(L"LG (I;LP6);L9 (I;L70)) < HTHIK(Lmo (I;LPo);L90 (I;L70)) HTH[:(LWH (I;LP1); L9 (T;L71))"

1.3 Convolution estimates

We present here the classical convolution estimates which appear in many physical models
and various analysis problems. It is also a central tool for Fourier analysis. We extend the
classical Young inequalities to the Hardy-Littlewood-Sobolev inequalities which allows for the
treatment of the singular kernels of mathematical physics. The proof relies onto the atomic
decomposition of LP space which is another intrusion into harmonic analysis techniques.

1.3.1 Convolution estimates

Definition 1.3.1 (Convolution). Let ¢ € C.(R%) and f € L{ (R%), then

loc
oxf@) = [ ola 1))y (1.3
R
The standard convolution estimate is Young’s inequality.
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Lemma (Inégalité de Young). Let (p,q,7) € [1,00]3 with
1

1 1
-+ =1+, (1.4)
p q r

then the bilinear convolution map (1.3) extends uniquely as a bilinear continuous map with

V(f,9) e LPx LY, frge L et |[[fxglr <|flzellgllze- (1.5)

Proof of Lemma 1.3.1. Tt suffices to prove (1.5) for (f,g) € C. x C., and then the extension
claim follows by extending the obtained continuous bilinear form on the dense subset C. x C,
of LP x LY. The proof we propose uses only Holder, but we could as well rely on complex
interpolation (see exercice 1.3). The case r = +oo is Holder, assume now that r is finite, and
observe that we may without loss of generality assume f,g > 0 and || f||z» = ||g|[ze = 1. Then

Vo €]0, 1],
(f *9)(x / £ = 9)g W) 0 — y)g () dy.

Holder implies: Vs > 1, V6 €]0, 1],

sror@ < ([ e ndrwa) ([ 00w e wa)”

We choose 6 and s such that #s = p and 0s’ = ¢q. Using (1.4), we obtain

1 1
L (G R ((h20) (1.6)
r—+1 T r

We conclude

r

(f *9)"( (/ [P —vy) (y)dy>:(Adfg(w—y)gq(y)dy)S/-

a:g and Bzzz-
p

q

Let

Since r > max{p, ¢}, both « and f are bigger or equal to 1. Using Holder with « (resp. ()
and the probability fP(x —y)dy (resp. g%(y) dy), we obtain

(f*g)"( (/ Pz —1y)gl(y)d y)r(;‘+s}[3>_

By definition of 6, s, a et 3,
1 1 D rq T 1 1
r{—+—5)=r + = -+—-] =1L
(sa s’ﬂ) (p(r—i—l)qr q(r—i—l)pr) r+1 <q p)

(fxg)"(z) < (S > g%) ().

and the claim follows by integration. O

Hence



Remark 1.3.1. Convolution extend to sequences : let (an)nez, (bn)nez, we define a*b by

a*bn_E amnm—g anmm

MmEZ meZ

For p € [1,00[, let ¢P be the set of sequences (an)ncz such that

@ dmereler (Zranrp)

neZ
and £ be the set of bounded sequences. Then the above proof ensures: ¥(p,q,r) € [1,00]?
satisfying (1.4) and (a,b) € P x {1, there holds

axbel" et |laxbler < |allew|be-

The weakness of Young’ inequality is that it cannot address the case of singular convolution
kernels. For example, the Coulomb potential created by a distribution of mass (p(z),z € R3)

is given by 2
1

V=-_
47| x| P

but the kernel ﬁ does not belong to any LP(R3) space. Howeve, the following holds.

Theorem (Hardy-Littlewood-Sobolev inequality). Let o €]0,d[ et (p,r) €]1,00[% such that

1 1
— 4+ — 1_|_7. (17)
P r

Qe

Then
VEeLPRY, 117 fllor@ay < Crpll fll oo ay-

This result is a special case of more general convolution estimates which precise Young’s
inequality.

Definition 1.3.2 (weal LY space). Let q € [1,+0o0|, then the weak LY space noted LY, is the
set of fonctions g on R? Lebesque mesurable such that

lglte, & sup X7 | {lg] > A} |< o

Remark. L9 C L, since

A H{lgl > A} I< / lg(x)|dx < [|g||T- (1.8)
lg|>A
However,
el (19)
—— € Ly .
||

but does not belong to any LP.

We may now state the precised convolution estimates which together with (1.9) immediately
imply Hardy-Littlewood-Sobolev.

Zaprés normalisation des constantes physiques.



Theoreme 1.3.1 (Precised convolution estimates). Let (p,q,r) €]1,00[* satisfiying (1.4). Then
there exists C' such that for all (f,g) € LP(R?) x LL(RY), there holds

If *gllr < Clifllellgllzy,-

Remark 1.3.2. The standard proof of Hardy-Littlewood-Sobolev relies on the mazximal function
(see exercice 1.5) but does not allow one to obtain Theorem 1.3.1. Some exponents of the Hardy-
Littlewood-Sobolev can also be recovered through Sobolev embedding Theorems, see exercice 4.20.

The end of this chapter is devoted to the proof of Theorem 1.3.1 which requires the intro-
duction of the atomic decomposition of LP spaces.

1.3.2 Atomic decomposition of LP spaces

We call atomic decomposition of a function f € LP (with 1 < p < +00) a characterization
given by the following proposition

Proposition 1.3.1. Let (X, u) be a measured space and 1 < p < 4+o00. For all f € LP positive,
there exists a sequence (cp)rez and a sequence of positive bounded functions (fi)rez (called
atoms) with support two by two disjoints such that

F=> che

keZ
with
p(Supp fi) < 281 (1.10)
| fillz= < 277, (1.11)
SIFIE < S <2071, (112)
kEZ

Proof of Proposition 1.3.1. We need only treat p = 1. Indeed, f € LP iff |f|P € L' and

1Az = APl

Let then f € L! positive. Let E) def {f > A}. The function A — p(F)) is non increasing on

R, and converges to 0 at infinity (from (1.8)). For k € Z, let

def . def def _
A 48 mf{)\ Ju(Ey) < 2"?}, o RN and £ o1, crann

The sequence (Ag)rez is non increasing and converges to 0 as k tends to +oo. Moreover, since
By = U)\>Ak+1 E\, we have p(Ey,,,) < 287! and hence (1.10) is satisfied. Clearly || fg/|r <

2-F Express
Z Cr = Z 2k>\k = Z/ 2]61]0,)%[()\) d.
0

kEZ kEZ ke
From Fubini,
o
ZCkz/ < > 2’“)@.
keZ 0 Nk /x>
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By definition of (Ax)rez, A < A implies u(FEy) > 2* and hence
chg/ /\< > 2k>d)\§2/ w({f > A}) dX.
ke O Nkyok<u(By) 0

Using Fubbini again

/OOOM(EA)d/\:/OOO/Xl{f>)\}du(x)d)\:/){(/Df(x)d)\) du(z) = ||| 1.

To conclude the proof of (1.12), we notice that since the supports of the functions (fx)kez
are two by two disjoints, there holds:

£l = el fill o

keZ
Now (1.10) and (1.11) imply
Ifellzr <2 pour tout k€ Z,
and the left inequality in (1.12) is proved. O

Proof of Theorem 1.3.1. Let (f,g) € LP x L? as in the assumptions of the Theorem, and let
h € L. We may without loss of generality assume that these functions are positive with

1llee = llgllzg = Al = 1. Let

Iam ™ [ fgte =~ phia) dedy.

Let C; def {z e R?, 27 < g(z) < 271}, then
I(f.g,h) < 23 2Ii(fh) with (1.13)
JEZ
def
i [ e - ) dedy, (1.14)
R4 x R4

Since HgHLchc =1, we have ||1¢;||rs < 2775 for all s € [1,00]. We now apply Young’s inequality

with p, ¢ and r and obtain that I;(f, h) < 27J. This is not sufficient to prove the convergence
of the series ) 271;(f, h). We therefore introduce the atomic decomposition

f:ZCkfk et h:dehk

keZ keZ

given by Proposition 1.3.1. We have

Li(f,h) = chdflj(fka he).

k0

The gain with this new (apparently more complicated) decomposition is that the atoms fi
and hy all belong to Lebesgue spaces. We may therefore play with the full range of Young and
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Holder inequalities to bound each term of the sum. Let (a,b) € [1,00]? such that b < a/, then
for all (k,¢) € Z2,

. 1 1 1
Li(fiohe) < illelhell ol o with = 42 =14

Hence .
Li(frr he) < 2799C=55) | fill o | el -

Using Proposition 1.3.1, we obtain
2 I;(fr, he) < oi1(i=2r i) ok (35) gt(3-2)
The condition (1.4) on (p,q,r) implies
915 fios he) < QU+ (5-3) glia+0(3-) (1.15)

Let ¢ def %(% — %) Since ¢ > 1, the condition (1.4) implies that p < r, and hence & > 0.
Choose then a and b such that

1 1 1 1
S92 gesg(jg+ k) et - déf—, — 2esg(jg +4)
a p b

with sgn =1 if n >0, and sgn = —1 if n < 0. By noticing that b < a’, the estimate (1.15)
becomes thanks to the triange inequality

VI (frohe) < 9 2eligtkl=2eljgtt] < o—cligtkl—eligt+t|—elk—L]
Using now remark 1.3.1, we conclude

ik —e gl —e o C el C
I(f,0.h) < 3 cpdg2-cliothl—cliattl-ele—t] < ;chdﬂ elk—t] < 2o le (o)l
7kt k.t

Since 1’ < p’, we have a fortiori,

| Q

I(£,9,h) < S ll(ew)lle Il (o)l

[\

In view of the properties of (¢;) and (dy) given by Proposition 1.3.1, we conclude that there
exists C' > 0 such that I(f,g,h) < C for all positive functions f € LP, g € L? and h € L
with norm 1, and Theorem 1.3.1 is proved. O

1.4 Exercices

Exercice 1.1 (Cavalieri’s principle). Let p € [1,4+00] and p a borelian measure.

(7) Show that for all Borelian function f, there holds

1712 =p /0 N (|f] > A) dA (1.16)
12



(i) Show more generally that if ® : Rt — RT is C! non decreasing with ®(0) = 0, then
+oo ,
[ots@ndu) = [ @001 > 2 ax

Exercice 1.2 (Schur’s Lemma). Let K € R and k : R x RY — R be a locally integrable
function with pp = € R¢ and pp y € R¢,

[ ea)ldy <K and [ Gyl de’ < K.
R4 Rd

Given f integrable on RY, we define Tf(z) = Jra k(z,y) f(y) dy.
(i) Show that the linear map T is continuous from L!'(R?) to L'(R%).

(ii) Let p € [1,+0c]. Show that T extends uniquely as a linear map from LP(R%) to LP(R?)
and
vf e PR, (ITfllr < K| fllLe-

Hint: use a similar approach like for the proof of Young or use the Riesz-Thorin inter-
polation theorem.

Exercice 1.3. Propose an elementary proof of Young using the Riesz-Thorin interpolation
theorem.

Exercice 1.4. Let T be a linear defined on the set C. of continuous functions with compact
support, and with value into the set of measurable functions. We assume that T commutes
with translations ie for h € R? and f € C,,

T(f o) = (T(f))oh

(7) Show that for all f € C. and p € [1,00], there holds

1
lim [|f + fomplle = 27| f]lLe.
h—o00

(7) Conclude that if 7' can be extended as a bounded operator from LP to L7, then neces-
sarily ¢ > p.

Exercice 1.5 (Maximal function and Hardy-Littlewood-Sobolev inequality). Given
f a Borelian function on R, we let ||fHL} = supy-g A 1(Ex) where p is the Lebesgue measure,

and E) := {|f| > A\}. We associate to f the maximal funtion M f defined on R by
1 T+r
M f(z) := sup o [f ()l dy.

r>0 21 Jop

(i) (a) Let (Ij)jeq1, py be a family of open intervals of R. Show that there exists a sub
family (Ijk)lce{l,--~ ¢} of two by two disjoints intervals such that

é/x(ljk) = M<;€O1 Ijk) > ;%JQ Ij>'

Hint : argue by induction after ordering the I; by decreasing order.
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(b) Let A >0 and K C E\(Mf) compact.

i. Show that K can be covered by a finite number of intervals I; with
| f@yde >z
i

ii. Conclude that A u(K) < 3| f]| 1.

(c) Show that
Vf € L'R), Mgy < 3]/l

(d) Generalize to higher dimension d > 2 by defining the maximal function through

1

(i) Let f >0, f e LP for p €]|l,400[. Let o €]0,1[. We recall

+o0
I = [ W (ds > 3) ax
(a) Show that | M f||ree < ||fllzee-
(b) Show that VA > 0,
{Mf>NCc{Mf>(1—a)A} avec f*:=(f— A)1p>ra)-
(c) Show that there exists C independant of d such that

C

p({Mf > (1 —-a)}) < m”f)\HLl-

(d) Conclude that there exists C' such that for all p €]1,+oc] and f € LP, there holds

p
Ll

1
[Mfllr < Cv

(e) What about p=1 7

(iii) Let us now fix a €]0,d[ and 1 < p,q < +oo with 1+1/q = 1/p+a/d. Given f € CZ°(R?),
z€R? and R > 0, let

T1f($)=/I<RMdy et Tgf(q:):/ fe=y) .

|yl wi>r |Y*

We note Tf :=T1f + 1o f.
(a) Check that there exists C' > 0 such that for all x € RY,
Al

(b) By decomposing f|y‘<R in Yy 22, f2*(’“+1)R<\y|§2*kR7 show that

(5~

Tof(z)] < CR™»
Ve e RY Ty f(z)] < CRTOM f(x).

(c) Conclude that there exists C' > 0 (independant of f) such that

Vo € RY, [T f(x)] < C(M f()/|| £ 1,*"
and obtain the Hardy-Littlewood-Sobolev inequality.
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Chapter 2

Functional analysis

We present in this chapter basic elements of functional analysis in Hilbert and Banach spaces.
The key concept is compactness in infinite dimension which is a central tool throughout this
series of lectures. We assume that the reader is familiar with the basic concepts of Hilbertian
analysis (projection onto a closed convex set, Riesz representation Theorem, existence of a
Hilbertian basis and Parseval identity in the separable case). We refer to [3, 4, 9, 18] for
an overview of these notions. A more systematic study of Banach spaces can be found in
[5, 33, 36].

2.1 Compactness in Banach spaces

We recall in this section the notion of compactness in metric and Banach spaces.

2.1.1 Compactness in a metric space

Compactness is a central tool in mathematical physics to derive the existence of a limit for
sequences involving an infinite dimensional space. Let us recall the abstract notion of com-
pactness in a topological space.

Definition 2.1.1 (Compact set). A topological separated space (X,O) is said to be compact
if one can extract from every covering of X by open sets a finite covering.

In metric spaces, the Bolzano-Weierstrass Theorem yields the sequential characterization
of compact sets.

Theorem (Bolzano-Weierstrass). A metric space (X,d) is compact iff every sequence of X
admits a converging subsequence in X .

In finite dimension, a set is compact iff it is bounded and closed. This result is false in
infinite dimension.

Theoreme 2.1.1 (Riesz). Let E be a vectorial space, then E is finite dimensional iff the unit
ball of E is compact.

The correct conclusion is that compactness for the strong norm topology is too much to
ask: one must weaken the topology to recover a large set of compact sets.
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2.1.2 Compact operators

A bounded operator is a continuous linear operator between normed vector spaces. We now
define the class of compact operators.

Definition 2.1.2 (Compact operator). Let E,F be two Banach spaces. A bounded operator
u € L(E; F) is compact iff the image by u of the unit ball of E it has compact closure in F'.

Remark 2.1.1. By linearity, u(A) is a compact of F for every bounded set of E. In practice,
we often use the following characterization.

Lemma 2.1.1 (Sequential formulation of compactness). Let E, F' be two Banach spaces. Then
u € L(E; F) is compact iff for every bounded sequence (xyn)nen of E, we can extract a subse-
quence such that u(ry,)) converges in F.

Proof of Lemma 2.1.1. Assume that v is compact and let a bounded sequence x,, of E, M def

sup,, |zn|lz. Then w(z,) € u(Bg(0, M)) which closure is compact. Hence we can extract
(w(zp(n)))nen converging sequence in F. Let now A a bounded set of E and y, € u(A), then
there exists z, € u(A) with

1
Hyn - ZnHF < —-
n
By assumption, we can extract Zg(n) converging sequence and then Yo (n) is also convergent. [
Example. A finite rank operator, that is an operator which image is finite dimensional, is

always compact.

A canonical way to produce compact operators is the following.

Proposition 2.1.1 (Compact operators define a closed set). Let E, F' be two Banach spaces.
Then the set of compact operators is a closed subset of L(E; F). Equivalently, a uniform limit
of compact operators is compact.

Proof of Proposition 2.1.1. The following proof is canonical of compactness methods and relies
on the diagonal extraction argument. Let w be the uniform limit of a sequence of compact
operators u, ie

Ve >0, IN(e) tel que Vn > N(e), Ve € E, |un(z)—u(z)|r <elz|g. (2.1)

Let (2P)pen be a bounded sequence of E with ||zP||g < 1. Since ug is compact, we may
extract from (ug(2?))pen a subsequence (ug(x?®))) ey which converges in F. By induction,
we construct for all n > 0 extractions ¢g, - - , ¢, -+ such that (un(x¢0°“'°¢7L(p)))peN converges
in F'. We then consider the diagonal sequence defined by

¢(n) = doo -0 pn(n)

which satisfies by construction

Vn € N, <un(x¢(p))) y converges in F. (2.2)
pE

Let us now show that the sequence (u(a:¢(p)))p oy s @ Cauchy sequence in F' which concludes
the proof. Indeed, let € > 0 and N = N(g) such that (2.1) holds, then
@) ~ u(a?®)|| 5
< ||u(x¢(p’)) _ uN(xfb(p’))HF+||UN(x¢(p’)) _ uN(x¢(p))||F+||uN(x¢(p)) _ u(xcb(p))HF
< 2+ ‘|’LLN(1’¢(I)/)) _ UN(xd)(p))HF < 3¢

A

for p,p’ > P(e) large enough by (2.2) applied to n = N(e). O
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2.2 Weak convergence

The weak topology will allow to us to obtain more compact sets, which is the key to derive
the existence of limits in infinite dimension. We present first this notion in separable Hilbert
spaces which are the simplest examples of infinite dimensional Banach spaces, and then we
briefly present its generalization to Banach spaces. We refer to [5, 9, 36] for a more systematic
presentation.

2.2.1 Weak convergence in separable Hilbert spaces

Let (H,(+]-)) be a separable (i.e. which admits a dense countable set) Hilbert space. The
scalar product is a sesquilinear form which is anti-linear for the second coordinate. Let us
recall that a separable Hilbert space always admits a Hilbertian basis (e;);en-

Proposition 2.2.1 (Hilberatian basis and Parseval identity). Let H be a separable Hilbert
space. Then there exists a Hilbertian basis (e;)i>o0 such that

“+00 “+00
x:ZmieiEH — Z]:):i\2<—|—oo,
i=0 i=0

and there holds the Parseval identity: :

+oo
|2]|? = Z 22 avee x; = (x]e;).
i=0
More generally,
Vo, o' € H, (x,2') = Z(x, ei) (', e;) (2.3)

>0
The weak topology is defined as follows.

Definition 2.2.1 (Weak topology). Let (x")nen a sequence of elements of H. Let x € H,
then x™ weakly converges to = iff

Vh € H, le (z"h) = (x|h).
We note x™ — x.

Proposition 2.2.2 (Properties of weak convergence). Let (2")peny and (y™)nen be two se-
quences of elements of H and x,y deux two elements of H. Then:
(i) Strong convergence implies weak convergence:

== 2" — 2.
(ii) Boundedness
" =2 = (")nen s bounded and ||z|| < liminf |[z"]. (2.4)
(11i) Weak strong convergence:

2" =z and y" —y= lim (z"|y") = (z|y). (2.5)
n—o0
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Proof of Proposition 2.2.2. (i) follows from Cauchy-Schwarz:
Vh e H, |(z"h) — (z|h)| < ||h] ||z — 2] = 0 as n — 4o0.

(ii) is a direct consequence of the Banach-Steinhaus theorem : let E, F' be two Banach spaces
and u, € L(E,F) such that

Ve € E, sup |lun(2)||r < +oo,
n

then there exists C' > 0 such that
vn, |unllzer) < C-

Applying this to the sequence of linear forms wu,(h) = (z, h) and noticing that |u,||zgc) =
|z || vields the claim. Moreover

lz" — 2] = l|2" | - 2(z, 2") + ||2]]* = ||]2"* — 2(z, 2" — @) — ||z* (2.6)

and hence
z))* < lz"))* - 2(z, 2" — )

which taking the liminf yields and using (x,z"™ — ) — 0 yields:
|z"] < liminf ||z".
For (iii):
[@"y") — (ly)| < 1@ —2ly") [+ |(zy" — )| < =" =z g™ [ + [(=]y" — )l

and since (2.4) ensures that (y"),en is bounded:

[(@"y") — (zly)| < (Sug ly™[1) 2" — 2] + |(z|y" = y)| = 0 when n — +o0.
ne

O

Ezample. A Hilbertian basis (e;)i>0 is the canonical example of a sequence which converges
weakly
e; —0 as i — 400

but not strongly for the norm. Indeed,

+oo
z= (zle)es, Y |wil® < +oo
=0 =0

implies x; = (x,e;) — 0. But since the sequence is orthonormal,
2 2 2 S
llex — ;17 = lleil|” + [le; || = 2 for i # j,
it is not a Cauchy sequence for the norm.
Weak convergence can be characterized in terms of coordinates in the Hilbertian basis.

Lemma 2.2.1 (Coordinate characterization of weak convergence). Let (z)n>0 be a sequence
of H which coordinate x! = (x",e;) in a Hilbertian basis (e;)i>o. Then

2" =2 e (Vi>0, lm z} =z

n
Jm > and sgp”x | < +o0).
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Proof of Lemma 2.2.1. The = implication follows from the definition and (2.4). Conversely,
let h € H and pick € > 0. Then by quadratic convergence of 3., |hi|*, Cauchy Schwarz and
the boundedness of x™: B

N
N

xihi| < x| h;l? < esupllz™|]? <e.
> Jahl > Jay] Z\l _an 1° <

i>1(e) i>1(e) i>1(e

Hence there exists I(e) such that

Vn > 1, Z |zl hi| < e.
i>1(e

Moreover for any J:
J J
>l = tim S letl < sup oI

and hence letting J — 400

+o0

Z |20 < 400

i=1

def —+o00 OO

which ensures that 2°° = } /=7 27°e; € H. We then estimate similarily

> Jathi <e.

i>1(g)

Hence for all n > 1 using (2.3):

I(e)—1 400
(" — 2, h)| = (af —2)hi+ Y (af -
=0 i=I(e)
I(e)—1 +00 I(e)-1
< Z o — il + Y (af + Dbl S D laf —aflhil +¢
i=I(¢) i=0

and by the convergence of the I(g) first coordinates
|{(z" — 2 h)| Se for n> N(e) large enough.
O]

We may also quantify the lack of strong convergence through the uniform control of high
frequencies.

Lemma 2.2.2 (Default of strong convergence). Let ™ — x in H. Let (e;);en an Hilbertian
basis and x' = (2"|e;). The following conditions are equivalent:

(i) Uniform control of high frequencies:

Ve >0, 3I(e) such that ¥n € N, Z l2?|? < e. (2.7)
i>1(e)
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(ii) Convergence of the norm: ||z"| — ||z||% quand n — 4o0.
(iii) Strong convergence: x™ — x quand n — +oo.

Proof of Lemma 2.2.2. The fact are (i) and (i7) are equivalent follows from (2.6). (iii) implies

(i) is obvious. We now prove that (i) implies (i¢). Indeed, pick € > 0, then for I(e) large

enough, (2.7) and the convergence » ;- |22°|? < 400 ensure

O A e i
i>1(e)

Now on the I(¢) first coordinates we have z — x9° from Lemma 2.2.1, and hence for n > N (¢)
large enough:

+o00 () +o00
D e el b S S e Lt e S S L R e
i=0 i=0 i=I(e)+1
O
Ezxample. Lemma 2.2.2 allows us to recognize a typical compact set in infinite dimension: let
+o0 oo
(a;)ieny with Z |a;|? < 400, then the Hilbert’s cube {x =Y me;, |z < \ai|} is a convex
i=0 i=0

compact subset of H.

Now that the topology has been weakened, we recover the compactness of the unit ball.

Theoreme 2.2.1 (Weak compactness of the unit ball). Let H be a separable Hilbert space,
then the unit ball is weakly compact. Equivalently, let x™ be a bounded sequence of H , then we
can extract a weakly convergent subsequence.

Proof of Theorem 2.2.1. This a diagonal extraction procedure. Let M = sup, oy ||2"||, 2} =
(x"|e;), then i € N et n € N,

“+o00
Vin, [of? <3 Je2? < M
7=0

¢0(n))

and hence all sequences (z]"),en are bounded. For i = 0, we may extract (x
gent in C:

neN conver-

lim xgo(n)
n—4o0o

We build by induction on m ¢, -+ , ¢, such that

=z5° as n — +oo.

gfooodm(n) — (yoooedm)g ) 4 290 a5 p — 4o0.
The diagonal extraction ¢(n) = ¢g o --- o ¢,(n) satisfies by construction
vmeN, zfM 22 as n — +oo. (2.8)

Since the coordinates of the bounded sequence (m¢("))n21 all converge, it is a weakly converging
sequence by Lemma 2.2.1. O
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2.2.2 Adjoint operator

Let us recall the notion of adjoint in a Hilbert space which is a direct application of Riesz’
representation Theorem.

Definition (Adjunction). Let T' € L£(H1,H2). There exists a unique T* € L(Ha, Ha) such
that

V(z,y) € Hi x Ha, (T(@)|y), = (@|T"(Y))ne-
T* is the adjoint of T" and satisfies

1T £(rai11) = NT || £(215742)-

Remark 2.2.1. The adjoint can be defined in a more general case, [5, 36]. In the chapter 5,
we will use the case when the bounded operator T : H — B is defined form H Hilbert onto B
Banach. Letting B’ be the topological dual of B de B, ie the set of continuous forms on B,
we notice that for ' € B', the map"
J— def —
v (@, T(@)) s 2 (T (x))
is a continuous linear form on H. From Riesz representation Theorem, there exists T*(x') € H
such that B
(o, T(z))pxp = (x| T*(2")y forall z€H.

An important consequence of the existence of the adjoint is the equivalence of strongly
continuous and weakly continuous linear maps.

Definition 2.2.2. A linear map T : Hi — Ha is said to be weakly continuous faiblement
continue iff (z, =z = T(x,) = T(z)).

Proposition 2.2.3 (Weak continuity is equivalent to strong continuity). A linear map T €
L(H1,H2) is continuous iff it is weakly continuous.

Proof of Proposition 2.2.3. Let T € L(H1,Hs) linear continuous and z, — x in H;. Then
Vy € Ho,

(T(@n) [ Y)#z = @ [ T (YD) —nstoo (€ [ T (W), = (T(@) | Y)1,

and hence T is weakly continuous. Conversely, let T weakly continuous. If 7" is not strongly
continuous, then 7" in unbounded and hence there exists z,, € H1 with ||z,||%, = 1 such that

| T (z5) |2, = +00 as n — +oo. (2.9)

By weak compactness of the unit ball, we may extract (z4(,))neny and x € Hy with 4,y — ,
and hence by assumption T'(z4(,)) — T(x). Proposition 2.2.2 implies that (T'(z4(n)))nen is
bounded in #Hgz which contradicts (2.9). O

Remark 2.2.2. We will systematically use the following corollary in the sequel. Let two
Hilbert spaces Hi, Hy, Hy C Ha, such that the embedding Id : (H1,|| - ||2,) — (Ho, || - |l2,) is
continuous, then

"=z in Hi=>2" =2 in Ho.

Lwhere the conjuguate is to maintain coherence with respect to the above definition of the adjoint in a
Hilbert space.
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2.2.3 Compact operator in the Hilbertian setting

Weak convergence is a powerful tool to characterize compact operators between Hilbert spaces:
they are exactly the bounded operators which transform weakly convergent series into strongly
convergent series.

Proposition 2.2.4 (Characterization of compactness through weak convergence). Let T €
L(H1,Ha), then T is compact iff

n

" =z in Hy=T(z,) = T(z) in Ho. (2.10)
Remark 2.2.3. By linearity, it suffices to check (2.10) with x> = 0.

Proof of Proposition 2.2.4. = If T is compact, let ™ — 2 in H;p, then T is continuous,
hence weakly continuous, and hence T'(x,,) — T'(x) in Ha. z™ is weakly convergent and hence
bounded in A1, and since T is compact, we conclude that we may extract T'(z?) strongly
convergent in Ho, hence weakly convergent and hence by uniqueness of the weak limit

T(z*™) = T(z) in Ha.

Hence the sequence T'(z™) takes value in a compact set of Hg, and the only accumulation
point is T'(z), and hence
T(z") = T(x) in Ha.

< Let (zp)nen be a bounded sequence of H;, then we can extract 2% weakly convergent in
#H, and hence T(x?™) is strongly convergent in Hy by assumption, and hence T is compact.
O

Lemma 2.2.3 (Compactness and adjoint). Let T € L(H1,Hz), then T is compact iff T* is
compact.

Proof of Lemma 2.2.53. If T is compact, let y, — y in Hy. Since T* is continuous and
hence weakly continuous, there holds 7%(y,) — T%(y) in H;. Hence since T is compact:
T(T*(yn)) — T(T*(y)) in Ha. Moreover

17w, = (T ) [ T*n))a = Wn | T(T () D1 = @ | T(T*@))r = 1T W)3,

since y, — y and T(T"(yn)) = T(T*(y)). Hence [T*(yn)lls, — IT"(y)ll, and T (yn) —
T*(y), which ensures by Proposition 2.2.2 that T*(y,) — T%(y) and T* is compact by Propo-
sition 2.2.4. The converse claim follows from (7%)* =T. O

Finally, we complete Proposition 2.1.1 by showing that all compact operator is the uniform
limit of a sequence of finite rank operators.

Proposition (Uniform approximation of compact operators). A bounded operator T : Hy —
Ho is compact iff it is the uniform limit of a sequence of finite rank operators.

Proof of Proposition 2.2.3. A finite rank operator is compact, and the uniform limit of a se-

quence of compact operators is compact by Proposition 2.1.1. Conversely, let T : H1 — Ha

compact. Let K def T(B(0,1)) be a compact of Ho. Let m > 1 and €, = 1, we may extract

from the covering K C Uyek B(y, &) a finite covering . Let (y")1<;j<n(m) be the center of the

corresponding balls of radius &,,. The set F,, def Vect(y7, ... ,yJTV”(m)) is a finite dimensional
vector space, hence closed and convex. Let P,, be the projection onto F},, then

22



and hence
Ve € B(0,1), ||T(x) — PnoT(x)||u, <éem

and hence T is the uniform limit of the sequence of finite rank operators P, o T. O

2.2.4 Weak* convergence in Banach spaces

We conclude this chapter by a brief presentation of weak* convergence in Banach spaces which
application to LP is very useful in non linear problems.

Definition 2.2.3 (Weak* convergence). Let E be a C or R Banach space, let E' be its
topological dual. We say that a sequence f, € E' converges weakly* to f € E' iff

Vo € E, (fn,2)prxe = (f,7)prxE-
We note f, — f faible *.
Weak * convergence has properties very similar to weak convergence in Hilbert spaces.

Proposition 2.2.5 (Properties of weak™* convergence). Let (x,)nen be sequence of the Banach
space E and (fn)nen a sequence of E'. Let x € E and f € E'. Then:

(i) fo—=f = (fa)nen is bounded and | f||p <liminf ||f,| g ;
(i) limpy—sioo ||fro — fller =0 = frn — f weak™

(iii) xn, — x and fr, = f faible * = lim, 00 (fn, Tn)Erxe = (f, )/ xE-

Proof of Proposition 2.2.5. Point (i) follows from Banach-Steinhaus. Point (ii) follows from
the definition of the norm:

[(fn—f, ) xel < |fa— flelzle.
For point (iii), we write
|(fn = [, 2)Erxel + | (fn, 20 — 2) B/ < E|
|(fn — fr ) mrxel + | fullErl|l2n — 2] B

The first term converges to 0 by assumption, and since f, weakly convergent is bounded,
(Il fnll B )nen is bounded, and the conclusion follows. Ul

|{(frsTn)Erxe — (f, 7)prxE] <
<

We then recover the weak* compactness of the unit ball in a Banach space.

Theoreme 2.2.2 (Weak* compactness of the unit ball). Let E be a separable Banach space,
then every bounded sequence of E' admits a weakly* converging subsequence.

Proof of Theorem 2.2.2. Since E is separable, there exists a dense countable family (e;);en-
Let (fn)nen be a sequence of E' bounded by M. As in the Hilbertian case, we diagonally
extract a subsequence (fyn))nen such that for all j € N, the sequence (fym)(€j))nen is
convergent. By linearity, the convergence holds on the vectorial space V' spanned by the e;,
and the limit function defined is a linear form on V. By assumption, the set {e;, j € N} is
dense in F, and so is V. Since f,, is bounded, the limit f is also bounded and hence f € V'.
Since V is dense, we conclude that f uniquely extends as a linear form on E. It remains to
prove that Vo € E, limy oo (fy(n)(*))neny = f(z). Indeed, let z € E and € > 0. By density
of Vin E, Jy € E with ||lz — y||g < e, and then:

| fomy (@) = F@)] < | fmy (@) = Fiotm) @]+ | Fiomy () = F@)| + 1f (y) = F (@)l

and since (fy(n))nen et f are M-Lipschitz, the conclusion follows. O
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2.2.5 Duality and weak compactness in LP

We now apply the above concept to LP spaces. We start with the following dual characteriza-
tion 2 of LP functions.

Lemma 2.2.4 (Dual characterization of LP). Let (X, i) be a measured space with p o -finie3,
let f be a measurable function and let p € [1,+00]. Then

fel’ s sup /\f x)|dp(z) < oo, (2.11)

lgll, <1 %

and moreover if f € LP,

[fllzr = sup

lgll  pr <1

/mmmmw
X
def

Proof of Lemma 2.2.4. Assume that f isnon zero pu p.p. Given A > 0, let F), = ({|f] > )\})
We start with p = +00. Fix A > 0 such that M(E,\) > 0. Let gg € L', go > 0 and supported
in E), and with integral 1. Let

()
(@)%

/Xf(w)g(fv) dp(x) = /X | (@)lgo(x) du(z) = /\/Xgo dp(z) = A

which shows that the quantity (2.11) is infinite if f is not in L*°, and

/ﬂmmw@
X

if f isin L°°. The converse inequality is obvious, and the case p = 400 is proved.
Let now 1 < p < 400, and consider an increasing sequence (X, ),en with finite measure which
union is X. Let

g(x) =

if f(x)#0, et g(x)=0 otherwise.

Then

[fllze = sup
lgll 2 <1

@) (@)t ,
I =1x.nqif1<nt f> - gn(z) = ol )|an||2£;l if fo(x)#0 and gn(z) =0 otherwise.

Then f, € L' N L>® C L? and

P plpld
nmm|w|/m () =

The definitions of f, and g, ensures

/ﬂm%wgmmwmz/n g () da(a (/m|%»ymy
X
= [ fullze

Zwhich in setting of a general Banach space is a consequence of the Hahn-Banach Theorem, cf [5].
3i.e. there exist an increasing sequence of borelian sets (X, )nen with finite measure which union is X
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and hecne

/X!fn(w)\”du(w)ﬁ <”g /<1/ fx)g )>p.

If the rhs is finite, the monotone convergence Theorem applied to the nondecreasing sequence

(|fn ’p)nEN yields
/ f(@)g(@) duz))
X

fel? and | fller < sup
llgll pr <1

Then if f € LP, let g(z) = W, then

||9||ilp HfH / |f(z p R ldﬂ( )=1 et | flzrr :/Xf(:r)g(x)du(a:),

and the claim is proved. O
A fundamental corollary is the computation of the dual of LP.

Theoreme 2.2.3 (Riesz representation Theorem). Let 1 < p < 400 and p’ be the conjuguate

Hélder exponent. Assume that p on X is o-finite. Let ¢ a continuous linear form on LP.
Then 3w € LF' such that

VieI?, (0. f) ¥ o(f) = /X uf du(2).

and |||l (zry = [lullp - Equivalently, the map T : uw— T, defined for all u € L? and f € LP
by Tu(f) = [x fudu(z) is an isomorphism from L¥ onto (Lp)/.

Proof of Theorem 2.2.3. We established in Lemma 2.2.4 that T : u — T, is an isometry of
L* onto (LP)". The surjectivity is non trivial and relies on geometric properties of the LP norm
(Clarkson’s inequality), see [5]. O

Remark. The reader familiar with distribution theory knows that Theorem 2.2.3 is false for

p = 4o00: the Dirac mass
def

(60, f) = f(0)

is the canonical example of continuous linear form on C(R?, |||/ ) which cannot be identified
with a locally integrable function u. Hence the topological dual of L is strictly bigger than
L': L' C (L)

Riesz representation Theorem implies that for for 1 < p < +o0, L? is a dual : LP ~ (LP),

and is reflexive:
(LP)" ~ LP.

Hence LP is a reflexive separable Banach space in this case, and an immediate consequence of
Theorem 2.2.2 is the weak™* compactness of the unit ball.

Corollary 2.2.1 (Weak compactness of the unit ball). Let 1 < p < 400 and (fn)nen @
bounded sequence of LP(A, ) with A borélian of R? and u absolutely continuous with respect
to the Lebesgue measure. Then there exists a subsequence (fy(n))nen and f € LP(A, u) such
that

voe (.t [ f@ae)dut) = [ f@g) duto)

n—-+0o
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Remark 2.2.4. Since any linear form on the separable space L'(A,p) can be identified to
a function L*°(A,u), Theorem 2.2.2 ensures that the above result remains true for p = 400
even though L (A, u) is not separable. It is however completely false for p =1 (see exercice
2.9).

2.3 Exercices

Exercice 2.1. Let (X, d) be a complete metric space. Show that a subset A of X has compact
closure iff

N
Ve > 0, dN € N*, El(xj)lngN € AN/ AC U B(xj,e).
Jj=1

Exercice 2.2 (Continuation Theorem).

(i) Let (X,d), (Y,9) be two metric space, A a dense set of X and f a uniformly continuous
map from (A,d) to (Y,d). Show that if Y is complete, then there exists a continuous
map f from (X,d) into (Y,0) such that fij4 = f, and f is uniformly continuous.

(i) Let E, F be two normed vector spaces, V' a dense vectorial subset of E and L a linear
map from V into F'. Assume that F is complete. Show that there exists a continuous
linear map L from E to F' such that Ly = L.

Exercice 2.3. Let H1, Ho Hibert spaces with Hilbertian basis (ey,)nen, (fn)nen, respectively.
Let (en)nen a sequence of complex numbers converging to 0.

(7) Show that there exists a unique T € L(H1,H2) with

Vn e N, T(e,) = enfn.

(#4) Show that T is compact.

Exercice 2.4. Let a sequence of functions (f,)nen in C([0,1]; R) which converges uniformly
to f on [0,1]. Let z € [0,1] and =, — =. Show that

folan) = ().
Show that f,(x) = sin(nz) does not admit any converging subsequence in C([0, 1], || - ||ze)-
Exercice 2.5. Let (X, d) be compact metric space. Let C%(X;K) (with K =R ou C) which

are Holderian with index « €]0,1] from X into K. Let the norm

[ flla = sup |f(z)| + sup 1f(@) = F)l,
oeX @yexz  d@,y)*
zFy
(i) Show (Oa(X; K)7 H : Ha) is a Banach space.

(7) Show that for all «, the embedding of C*(X;K) into the Banach space of continuous
functions from X in K is compact.

(77) Show that given (f,)nen a bounded sequence of C%(X;K), there exists f in C¥(X; K)
and a subsequence with fy,,) — f in (CY(X;K),| - |lo for all o’ €]0,al.
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Exercice 2.6. Let H be an infinite dimensional separable Hilbert space. Find two sequences
(Zn)nen and (yn)nen of elements of H such that

Tp =T, Yo =y et lim (zpfyn) # (2]y).

n—-+o0o

Exercice 2.7. Let ‘H be a Hilbert space (non necessarily separable). Show that every bounded
sequence of H admits a weakly convergent subsequence.

Exercice 2.8. Let H be a separable Hilbert space. Let A be a closed convex subset of .
Let ¢ : A — R be a continuous convex function which limjg_ 4o ¢(2) = +00. Show that ¢
is lower bounded and attains its infimum.

Exercice 2.9. Let ¢ € C2°(R) with integral 1. For n > 1, we let ¢, (z) = np(nx).

(i) Show that the sequence (n)n>1 is bounded in L', and compute the limit [, ¢, f dz for
f € L™, which vanishes p.p. in a neighborhood of the origin.

(7i) Does the sequence weakly converge in L' ?

Exercice 2.10 (Compactness of the convolution). Let k € L?(R?) and Ty(f) = k* f. Show
that T} is compact as a linear bounded map from L?(R?) into L?(|z| < 1).
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Chapter 3

A brief overview of Distributions

We present in this chapter a brief overview of the theory of Distributions which is due to
Laurent Schwartz, and which generalizes the notion of function. The key point is the notion of
weak derivative which is extremely useful for the study of linear and nonlinear PDE’s, and the
notion of tempered distributions which allows us to define the continuous Fourier transform of
a priori rough objects. A reference book on the subject is [17].

In this chapter, all functions can be considered either real or complex valued. Given a
multiindex o = (a1, ...,aq) € N¢ and ¢ € C®(R?), we define

lal =1+ -+ aq

9°¢ = 9 ... 9216,

3.1 Test functions and regularization
3.1.1 Test functions
We introduce the space D(RY) of test functions.

Definition 3.1.1 (Support of a function). Let ¢ € C(R?), we define

Supp(¢) = {z, ¢(z) # 0}.

Definition 3.1.2 (Test functions). Let 0 be an open subset of R. We let C.(Q) be the set
of continuous functions on Q0 which support is a compact subset of Q. We let D(2) be the set
of C* functions on 0 which support is a compact subset of €.

Remark 3.1.1. D(Q) is obviously non empty. For example a C*> function with support the
unit ball is given by

_ 6_1*”11“2 for Jz|]| < 1
=10 for fall 2 1. .

and since €0 contains a ball, the claim follows.
An element of D(€2) has always its support strictly included in €2 in the following sense.

Lemma 3.1.1 (Strict inclusion of the support). Let Q be an open subset of R? and K C
compact. Then there exists ¢ € D(Q) with 0 < ¢ <1 and ¢ =1 on an open neighborhood of
K.
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Proof of Lemma 3.1.1. Yo € K, 3ry > 0 such that B(z,r;) C Q. Let ¢ be given by (3.1)
and x.(y) = 2e§< ) then Suppx, C B(z,72), Xz > 0 and xg(z) = 2. Let U, = {y €

Q, xz(y) > 1}, then (UI)xGK is a covering of K compact, and hence K C Uy, U---UU,,,.
The function f = >"" | x4, satisfies

feC®R,Ry)
Supp(f) C Q
f>1on V=U,U--UU,,.

Let I € C>*(R,[0,1]) with
0 for <0
1 for z>1"

then ¢ = I o f yields the claim. O

I(z) = I'>0

3.1.2 Regularization by convolution

Definition 3.1.3 (Ll (2)). Let © be an open subset of RY. We define Li (Q) as the set of
Lebesgue measurable functions on  which integral over any K C 2 compact is finite.

We recall the definition of the convolution operation: let ¢ € C.(R%) and f € Li

then
o fx / oz — )

which from Lemma 1.3.1 can be extended to all (f,g) € LP x L1.

(R7),

loc

Lemma 3.1.2 (Regularity). Let ¢ € D(RY) and f € Ll _(RY), then ¢ * f(z) € C°(R?) with
(o f) = (0%¢) % f.
Proof of Lemma 8.1.2. Let K = Supp¢ C {|z| < R}. Let xo € R?, then
dz—y)fly) #0=>2 -y K=yl <|z|+ R

Hence for |z — xg] < 1,

o f(a /qsx— y)dy = /y|<|xo|+m1¢(x‘y>f(y)dy

and the C*° regularity with the computation of the derivative follow from Lebesgue’s Theorem
of derivability below the integral. O

Lemma 3.1.3 (Control of the support). Let f € C.(R%), g € C(R?), then

Supp(f x g) C Suppf + Suppg = {z + ¥, (z,y) € Suppf x Suppg}.

Proof. Let x € R? with f % g(x = Jga f(x —y)g(y)dy # O then there exists y € R? with
f(x—y)#0 and g(y) # 0 and hence xr =z —y+y € Suppf + Suppg implies

Supp(f xg) = {z, f=*g(z)# 0} C Suppf + Suppg.

We now claim that A compact and B closed implies A + B closed which yields the claim.
Indeed, let z, € A+ B be a converging sequence, then z, = a,+b, — z and by compactness of
A ag(y) — a implies by,) — z—a =b € B since B is closed, and hence z = a+b € A+B. U
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Definition 3.1.4 (Regularizing sequence). We call reqularizing sequence a family ({:)e>o with

¢. € D(RY)

Supp(e C {|~75‘ < Ts}a lim. 7. =0
>0

fRd Cedx = 1.

Remark 3.1.2. Given ¢ € D(R?) with ¢ > 0 and JgaCdx = 1, then ((z) = E%C (%) s a
reqularizing family.

Theoreme 3.1.1 (Density of D(RY) in C.(R?)). Let f € C.(RY) and (. a regularizing se-
quence, then (. x f € D(R?) and

lim [+ f = fllz = 0.
e—0

Proof of Theorem 3.1.1. Let Suppf C {|z|] < R}, then Supp(¢ = f) C Supplc + Suppf C
{|lz| < R+ ¢} and hence (. x f € D(RY). Then

|G fa) = fla)] =

< sup [f—y)—f(y)| =0 as e >0
ly|<re

y CW)(fx—y)— f(y)dy| < sup |[f(z—y)— f(y)l Ce(y)dy

ly|<re ly|<re

where we used that f is continuous and compactly supported, and hence uniformly continuous.
O

Theoreme 3.1.2 (Density of D(RY) in LP(R)). Let 1 < p < +o0o. Then D(R?) is dense in
LP(RY). Moreoever,

lim [|¢c % f — f|» = 0.
e—0

Proof of Theorem 3.1.2. Let (. be a regularizing sequence. Let f € LP(RY) and 1 > 0.
Since C.(R?) is dense in LP(R?), there exists ¢ € C.(RY) with |f — ¢|lr» < 1. Then by
Haussdorf-Young:

If =G flizw If = lle + ¢ = Cex BllLe + [+ (F — @) lze

<

S nt+llo—Cxolwr +If = dllrrllCellr < 20+ [[¢ — ¢ x @l < 3n

for e sufficiently small where we used that ¢ has compact support and Theorem 3.1.1. Now
1f = Cexdlle SIf = Cx fllee + I1(f = &) *Cellzr < 2

using Haussdorff-Young again, and the density claim follows since (. x ¢ € D(RY). O

Remark 3.1.3. Using Lemma 3.1.1, one can extend Theorem 3.1.1 and Theorem 3.1.2 to the

case of 0 open subset of R% with C* boundary.

3.2 The space D'(Q2)

3.2.1 Definition and extension of functions

Let Q be an open subset of R?. Distributions are defined as the dual of D(Q) for a suitable
Frechet type topology on D(R?).
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Definition 3.2.1 (Convergence of test functions). Let Q be an open subset of R%. A sequence
on € D(Q) is said to converge to ¢ € D(Q) iff there exists K C Q compact with

Vn, Suppo, C K
Va € N, limy 400 [|0%0n — 0%6| oo (i) = 0.
We define the dual associated to this topology as follows.
Definition 3.2.2 (Distributions D'(2)). Let Q be an open subset of R%. A distribution T on

Q is a R or C linear form on D(Q) which satisifies the following continuity property: VK C Q
compact, 3Cx > 0, Ipx € N such that V¢ € D(Q) with Suppy C K,

(T, ¢)| < Cx max [|0%G| poo (k-
la|<pk

If the integer px can be chosen independently of K, then the smallest such p is called the
order of T. We let D'(Q2) be the set of distributions on €.

The link between the above dual definitions and the Frechet space topology is:
Lemma 3.2.1 (Sequential continuity of 7). Let Q be an open subset of R?. Let T € D'(€).

Then
¢n — ¢ n D(Q) = lim <T7 ¢n>D’,D = <T7 ¢>D’,'D'

n—-+00

Proof of Lemma 3.2.1 . By definition, there exists K C ) compact with Supp¢, C K, and
hence by continuity of T':

‘(T, (bn — ¢>D’,D’ < Cg m<ax Haa(¢n — ¢)HL°°(K) — 0 as n — +oo.
A|SPK

laj<p
O
We associate to f € LL () its distribution
T dorp = [ Fa)o()da. (3.2)
Q

We claim that this map is injective, which allows us to identify T'(f) and f and view distri-
butions as a strict generalization of locally integrable functions.

Theoreme 3.2.1 (Injection of Li (Q) into D'()). The linear map f — T(f) from Li (Q)
to D'(Q) is injective.

Proof of Theorem 3.2.1. Let Q be an open subset of R? and f € LL () such that

loc

Vo € D(Q), (T(f), 0)pp = /ﬂ f(2)(x)dz = 0.

Let xeQ and r > 0 such that B(wo,2r) C Q. Let F(x) = lp(,on)f(®) and ¢ be a
regularizing sequence, then from Theorem 3.1.2:

lim HCE * F — F||L1(Rd) = 0.
e—0

Let x € B(xg,7), we compute for € > 0 small enough

G Fl@)= [ P)te iy = [

R4 B(z0,2r)

F0)G:(a =y = [ F)6e(o =9y =0

since (z —y) € Supp( implies |z —y| < 7. < 1. Hence F =0 p.p in B(zp,2r) and f =0 p.p
in « € B(zg,r). The conclusion now easily follows. O]
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Remark 3.2.1. The above map is not surjective. The Dirac mass defined for xo € R® by

<5$07 ¢>'D’,D = ¢(x0)
is an element of D'(R?) which is not of the form Ty for some f € L] (R9).

loc

3.2.2 Convergence of distributions
The convergence in the sense of distributions is a sequential convergence.
Definition 3.2.3 (Convergence in D'(Q2)). Let  be an open subset of R?. We say that
T, =T in D(Q)
uf
Vo € D(Q), lim (T’ ¢n)prp = (T, ¢)p D

n—-+o00

The classical Banach-Steinhaus Theorem for Banach spaces extends to Frechet spaces and
gives the following uniform boundedness principle.

Proposition 3.2.1 (Banach Steinhaus for D'(Q2)). Let Q be an open subset of R?. Let K C
compact. Let (Ty)n>0 € D'(Q) such that

V¢ € D(?), Suppp C K = (T, ¢)prp converges as n — oo.
Then Jpr € N, 3Ck > 0 such that
Vé € D(Q), Suppp C K = [(Tn, ¢)p,p| < Ck.

This automatically implies (like for linear maps between Banach spaces) that the limit of
a sequence of distributions is a distribution.

Corollary 3.2.1 (The limit of a sequence of distributions is a distribution). Let Q be an open
subset of R:. Let (T,)n>0 € D'(Q) such that

Vo € D(Q), (T, ¢)prp converges as n — oo.
Then the linear form

(T,¢)prp= lim (T, 0)p D

n—-+oo

is an element of D'(Q).

3.2.3 Operations on distributions

We now define a number of canonical operations on distributions. The most important one is
the notion of derivative in the sense of distributions.

Definition 3.2.4 (Derivation in D'(Q)). Let Q be an open subset of RY. Let T € D'(Q) and
j€{l,...,d}, we define the partial derivative of T along z; by

<6:EjT7 ¢>'D’,D = _<T7 amj ¢>D’,’D'
More generally, given o € N¢, we define
(0°T, ¢)pr.p = (=1)1*NT, 8*¢)p 1.
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The fact that the above formula defines an element of D'(Q) is a straightforward conse-
quence of the continuity condition. We claim that the derivation in D'(2) coincides with the
standard notion of partial derivatives for C! functions.

Lemma 3.2.2 (Derivation in D’ for smooth functions). Let  be an open subset of RY. Let
f €CHQ) and T(f) be the associated distribution given by (3.2), then

0., Ty = T(0, f)-

Proof of Lemma 3.2.2. We may without loss of generality assume j = 1. Let ¢ € D(2), then
by definition

ale f) ( a?lf D’D__ T(f $1¢ D’D_ a:1f) >

/f O e — [ 0, @) /axl i,

The function g(x) = ¢(z)f(z) is C'(Q) and has compact support in . Hence Suppg C
[a1,b1] X -+ X [ag,bg] and

b1 bg
/ Or,9(x d:z;—/ &Dlg(:nl,...,a:d)dzz;l...da:d.

b2 bd
h(z1) = / / g(x1, ..., xq)dxy .. . drg,
az aq

then the support property ensures h(aj;) = h(b;) = 0 and hence integrating by parts:

Let

b1
/ Op,9(x)dx = / h'(x1)dxy = h(b1) — h(a1) = 0,
Q a

1

and the claim is proved. ]

Derivation is a continuous operation for the topology of D'(2).

Lemma 3.2.3 (Continuity of derivation). Let Q be an open subset of R%. Let (T},)n>1 € D'(Q2)
with T,, = T in D'(Q), then Vi € {1,...,d}, 0y, Ty, — 0z, T in D'(Q).

Proof of Lemma 3.2.3. Let ¢ € D(2), then by definition
(02, Tn; 9)prp = — (T, O, O)p D) D — —(T,01,0) D1 .0 = (02, T, ®)pr D
L]

The fundamental weakness of the theory is that we cannot take the product of two distribu-
tions (we can through a para product but this relies in a much more refined Fourier analysis).
Multiplication by a C*> solution is however canonically defined.

Definition 3.2.5 (Multiplication by a C* solution). Let a € C®(Q) and T € D'(Q), then
the product aT is defined by

V(b € D(Q)7 <GT, ¢>D’,'D = <T7 a¢>'D’,'D
and oT € D'(Q).

The proof that aT € D'(Q) is a simple consequence of Leibniz rule and left to the reader.
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3.3 The Fourier tranform on the Schwartz space

The continuous Fourier transform
FIE) = | fla)e ™ da (33)

is a fundamental tool for the study of linear and nonlinear waves. We aim at propagating it
to distributions, but this requires a restricted class of test functions. Indeed, D’ (Rd) is not
stable by F, but the Schwartz class defined below will be. We introduce the notation for

a=(a,...,aq) € N

a o ag
X —5[71 ...{L‘d.

3.3.1 The Schwartz class

Definition 3.3.1 (Schwartz class). We let S(R?) be the class of functions ¢ € C*®(R?) for
which all derivatives decay faster than any polynomial:

WeN, N@)= 3 2%l < +oc.
lal,|BI<p

Definition 3.3.2 (Polynomial growth). We say that f € C>®(R%) has polynomial growth iff

f(x)
()"

A natural topology on § is defined as follows.

dneN, | |Loe < 00.

Definition 3.3.3 (Converging sequences in S). We say ¢, — ¢ in S iff
Vp €N, nll)rfoo Ny(¢pn — @) =0.

The density of D(RY) in S follows from a straightforward localization argument.
Lemma 3.3.1 (Density of D(R?) in S). V¢ € S, I¢, € D(R?) such that ¢, — ¢ in S.

This implies in particular using Theorem 3.1.2 that S is dense in L? (Rd), 1 <p<+oo.
We now state the basis stability properties of the Schwartz class.

Proposition 3.3.1. Let ¢ € S, then
(i) Va e N4, 99 € S.
(i) Let f € C™ such that all its derivatives have polynomial growth, then f¢ € S.

(iii) Let 1 < q¢ < +o0, then S C L9; more precisely, let (o, ) € N x N® with |a| < p,
1Bl < p, then

1-1 1
12207l La S (Np())' ™% (Npra1(4))7 - (3.4)
Proof of Proposition 8.3.1. The first two points are a straightforward consequence of the defi-

nition of the N, semi norm and the Leibniz rule. We focus onto (3.4). The case p = 400 is
obvious, and we let 1 < p < 400 and estimate:

/ () |7dx e
Rd

)7 / [$(a)ldz < [|6]5= 1) 6l /R ()t

< (No(@)* ! Nyga (o)

IN

35



which yields

Q=

18llze S (No(@)' ™+ (Nar1(6))
and immediately implies (3.4). O

3.3.2 The Fourier transform on S

We now study the Fourier transform (3.3) on S.
Lemma 3.3.2. Let ¢ € S, then

(i) Fo €S with
W EN, Ny(Fo) < CpNyrari(6); (3.5)

(i) F(Ox;¢) = i&;F ¢ and O¢; F = F(—iz;9);
(iii) Let a € RY and 7,¢(x) = ¢p(x — a), then F(1,)(&) = e 2 F(¢)(£).

(iv) F(¢xv) = (Fo)(Fy).
Proof of Lemma 8.3.2. Since ¢ € S C L', the fact that F¢ € C'(RY) follows from Lebesgue’s
Theorem of derivability below the integral sign, and

O, F(0)(E) = 0 ( » f(x)e‘”{dw) = /R F@)g, (e ) do = —i [ f@)rje i

= —iF(z;d)(E).
An elementary induction argument using that (¢ € S) = (Vp € N, (z)P¢ € L') ensures that
Fp € C®(RY). We compute integrating by parts in R using the decay of ¢ at oo:

F(02,90)(&) = /Rd €Dy, ¢ (w)dr = /Rd_l dwz...dxd/R@m(ﬁ(x)ei’“"'fdarl

= —/ diﬁz---dﬂ?d/@ml (e_ixf) bday :/ dxz...da:d/i&gbe_wfdxl
Rd-1 Rd-1

= &7 (¢)(S)-
Then
F(rat)(€) = / e p(x — a)dr = / e TG (@) dr = e EF () (6)-
Ra R4
It remains to prove (3.5). We compute thanks to the above formulas:
EDPF(B)| = [€0...€510% .. 9l F(g)| = | .. aF (xfl b .¢)‘
- [r(ren)

and hence using (3.4):
620" F (o)l = | F (0%(="9))|| _ <|

LOO

(@79)|| | S Npran1(9)

and (3.5) is proved. Finally, by Fubbini:

Fowi©) = [ ([oto-numan)e=tar= [ ([ ot puta) et
= /Rd by)e e (/Rd oz — y)e_i(x_y)fdx) = | P(y)e ¥ ( » <Z5(z)e_iz'5dz)
HEFUE)

O]
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The amazing and fundamental feature of the Fourier transform is that it is almost an
involution.

Proposition 3.3.2 (Inversion formula). The Fourier transform is a C-linear isomorphism of

S with
1

on)? /]R €TEB()de. (3.6)

Moreover, F,F~' are continuous on S in the sense that

FH9)(z) =

VpEN, VoS, Ny(F(9))+ Np(FH(9)) < CpNprar1(0). (3.7)
Remark 3.3.1. It is often more convenient to reexpress (3.6) as
FF¢=(2n)"p, ¢(x)=¢(—x). (3.8)
In order to prove Proposition 3.3.2, we need the following lemma.

Lemma 3.3.3 (Fourier transform of Gaussians). Let A € My(R), A = A* > 0. Let the

gaussian
1 _(ATla)e

G S ———
A=) (2m)d det Ae

then Ga € S(RY) with
_(A9)-¢
F(GaA)(§) =e 2.
After diagonalizing A in an orthonormal basis, the proof reduces to the one dimensional
computation which is straightforward.

(3.9)

Proof of Proposition 3.53.2. Let € > 0 and apply (3.9) with A = % to obtain
_l=

1 - el¢|? 1 : elg|? 1 e Tz
Ge(x) = / €T3 :/ "5 ¢ =
e(z) 2m)d Jga 3 Eg (Z?W)d R ¢ (v2m)d 5%

and hence the sequence (G:)c>0 is almost a regularizing sequence (up to the compact support
property). Then by Fubbini

1 . cl¢)?
[ Gela=otns= [ [ e oaeay
1 clel?

= o o (Lot = gy [ oo

(2717)d /R ) ECTF(p)(€)dE ase — 0

by Lebesgue’s dominated convergence Theorem. On the other hand, using the regularizing
sequence structure and changing variables in the integral:

|lz—y|?
1 e 2 1 El
Ge(xr — dy = / dy = /6_2 x —ez)dz
R 6( y)¢(y) y (\/%)d R 8% d)(y) y (ﬁ)d RA QS( \/>)
El
Jpae 2 dz
=———0(x) =¢(z) as € =0
a0 =0
by Lebesgue’s dominated convergence Theorem again, and (3.6) is proved. O
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The fundamental Corollary of (3.6) is Plancherel’s formula.
Corollary 3.3.1 (Plancherel’s formula). Let (¢,v) € S X S, then

o . -
/Rd ¢(x)Y(z)dx = @ o Fo(&)Fo(€)de.

In particular, F as an isomorphism of S extends uniquely to a continuous isomorphism of

L*(RY).

Proof of Corollary 3.3.1. We compute from (3.6) and Fubbini:

T
- o /Rd<Rd¢<)_”§dm>” / Fo(O)FOE)de.

Taking ¢ = ¢ ensures that F is L? continuous on S which is a dense subset of the Banach
space L?, and the extension claim follows. ]

3.4 Tempered distributions

We do not know how to define the Fourier transform of a general element of D’(R?), not even

of L (R?). But there is a natural dual for S on which F is canonically defined.

3.4.1 Definition of &'

Definition 3.4.1 (Tempered distributions). A linear form T on S is a tempered distribution
iff 3p € N, 3C), > 0 such that

VeS8, [T,9)s.s| S CplNp(9). (3.10)

We note 8" the set of tempered distributions.

Ezample. Let 1 <p < +o0, %%—%/: 1, f € LP(R?) and ¢ € S, then

(I, ] = ‘/ F () ()

and hence LP C §’. Any function with polynomial growth also defines a tempered distribution.
On the other hand it is easily see that f(x) = e” is not an element of S’(R), the growth is too
important at +oo.

S e lI0ll o < CNpryara(9)

The following stability properties are straightforward consequences of the continuity prop-
erty.

Lemma 3.4.1 (Operations on S). Let T € &', then
(i) Va e N, 9°T € S;
(ii) for all f with polynomial growth, fT € S.

Convergence in &' is defined as follows.
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Definition 3.4.2 (Convergence in 8"). We say a sequence T,, = T in S’ iff

Vpe8, lim (Th,d)ss=(T,d)s s

n—-+o0o

It is easily seen that the derivation and multiplication operation by a function f with
polynomial growth are continuous with respect to the above topology:

0T, = 0*T in &

N 1 /
T, —T in §= FT,— T in S

3.4.2 The Fourier transform on &’
We will define it by duality starting with the following simple observation.
Lemma 3.4.2 (Duality formulation). Let ¢,1 € S, then
(Fo,v)s.s = (0, F)ss-
Proof of Lemma 3.4.2. We compute from Fubbini:

Foss = [ Fowis= [ ([ swevay) v

= ot ([ v i) = [ sromas = 6. F0)ss
O
Definition 3.4.3 (Fourier transform on S’). Let T € 8’ we define its Fourier transform by
VoeS, (FT,d)ss = (T, Fd)s.s (3.11)
and FT € §'.

Note that the fact that FT € S’ follows directly from (3.7), (3.10). The following structural
properties of F on & are a direct consequence of the corresponding properties on & and the
dual formula (3.11).

Lemma 3.4.3 (Properties of F on §"). The following holds:
(i) Let T €S, then F(0,,T) = i&§;FT and F(x;T) = i0g; FT';
(i) T, =T in S implies FT,, = FT in S';
(iii) For ¢ € S, let ¢(x) = ¢(—x), and for T € S', let (T, ®)s1.s = (T, ®)s'.s. Then F is
an isomorphism if S’ with

1

(%)dﬁ. (3.12)

VT eS', Flr=

Proof of Lemma 3.4.3. . The first two claims are obvious from the definitions. We prove (3.12)
which is equivalent to

FFT = (2n)?T.
Indeed from (3.8):

(FFT, ¢)s1,s = (T, FF)s.s = (T, (2m) ) s s = ((2m)T, ¢) s s.
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3.5 Exercices
Exercice 3.1. Division by z in D'(R).
(i) Solve T =0 in D'(R). More generally, solve 2™T =0, m € N, in D'(R).
(77) Given S € D'(R), solve 2T = S in D'(R).
Exercice 3.2. ODE in D'(R).
(i) Let T € D'(R) with 77 =0 in D(R). Show that T is a constant.
(7) Solve T" —T = ¢ in D'(R).
Exercice 3.3. Limit of distributions.

1 ow that the linear form on given by (pv (=), = lim._o == dx belongs
) Show that the lincar f D(R) given b 1 I ofoe 22 dz bel
to D’. -

(7)) Given € > 0, let the complex valued function f.(x) = compute lim._,o f- in D'(R).

1
T+ie
Exercice 3.4. Derivative and translations. Let ¢ € D(R), h € R, we define the translation

operation by m,¢(x) = ¢(x + h). Let T € D'(R), we define the translation operation by
<ThT7 ¢>D’,D = (T, T,h¢>D/7D. Show that

. ThT_T / . /
lim &~ =T D' (R).
i in D'(R)

Exercice 3.5. Computing derivatives in D’(R?).

(i) Let the Heaviside function be H(x) = 145¢. Let H(x1,...,xn) = H(x1)...H(zy) and
a = (1,...1). Show that 0*H = ;.

(i4) Show that the linear form on D(R?) given by (T,¢)pp = [ ¢(x,2)dz defines an
element of D'(R?). Compute 9,7 + 9,T .

Exercice 3.6 ( Distributions with support a singleton). Let 7" € D'(R) with finite order p € N
such that

V¢ € D(R\{0}), (T.¢)pp =0,
we want to show that T'=Y"F ¢, d:ﬂ 595 0.

(i) Let x € D(R) with x(x) =1 for |z <1 and Supp(x) C [-2,2]. Let x.(z) = x (%£).
Let ¢ € D(R), show that (T, ¢)p p = (T, x®)p',D

(79) Assume Z;f =0 for 0 <4 <p. Show that lim._,o(T, xc¢)p,p = 0 and conclude.

(iii) Extend the result to D'(R?).
Exercice 3.7. Fundamental solution of the Laplacian.

(i) Let ¢ € C”(Rd) with radial symmetry (ie ¢(z) = ¢(r) with r = Zf , 22.) Show that
Ag = dr2 + d_lﬁ'

r dr
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1) Let xx € and define
(i) L R and defi

|z i d > 3,
Ea(x) = { In |z] if d = 2.

Show that Fy € C°(R4\{0}) with AE; =0 in D'(R4\{0}).
(iii) Let ¢ € D(R?). Show that (AFEg, ¢) = lim,_,o+ Jjo)se Bald da.

(iv) Let d = 2,3. By transforming the above integral using Green’s formula, compute AE,
in D'(RY).

Exercice 3.8. Let 1 < p < 2. Show that the Fourier transform sends LP onto v .
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Chapter 4

Sobolev spaces

Sobolev spaces provide a natural functional setting to study the equations of mathematical
physics. We shall treat in details in the forthcoming lectures two applications: variational
methods with applications to the existence and stability of solitary waves, and the resolution
of a Cauchy problem for a non linear dispersive equation.

In this chaper, we first present Sobolev spaces H*(R?) wich are build on L? and hence
display a Hilbertian structure. We then study Sobolev injection theorems which are a spec-
tacular application of frequency localization techniques using Fourier analysis. We shall give
at the end of the chapter a brief overview of LP based Sobolev spaces which are Banach spaces.

In all the chapter, the key word is compactness of the Sobolev embeddings.

4.1 Sobolev spaces H*(RY)

We introduce Sobolev spaces H*(R?) through Fourier analysis. The case of a general domain
Q C R? is briefly discussed at the end of the chapter.

4.1.1 Hilbertian structure
Definition (Sobolev space H*(R%)). Let s € R. We say that a tempered distribution u €
S'(RY) belongs to the Sobolev space H*(RY) iff

i€ L*(RY (1+[¢[%)" dg).

We then let

1

fullas = ([ 0+ P ae) (4.)

If u e S, then @ € &', and since (1 + |£[?)® has polynomial growth, (1 + |¢]?)%u € S'.
Being in H* thus means that this distribution is also in L? and we observe the following
elementary lemma.

Lemma 4.1.1 (Characterization of L2(R?%) in D'(R%)). A distribution T € D'(R?) belongs to
L*(RY) iff
3C >0 such that Y6 € D), (T, 6)pr.p| < Cll] 2 (42)
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Proof of Lemma 4.1.1. If T = T(f) with f €€ L*(R?), then this is Cauchy Schwarz:

(TSl = | [ Hro(edaa] < 11sl0ln,

Conversely, (4.2) means that the linear form L(¢) = (T, ¢)p p is continuous on D(R?) which
is a dense subset of L?, and hence it can be uniquely extended to L?. But then by Riesz
representation Theorem on the Hilbert space L?, there exists f € L? such that

VgeL? L(g) = Rdf(f’?)g(ﬂﬁ)dx

and hence in particular
V6 € D). L(e) = (To)pip = [ 1@)ola)ds = (T(1). 0

and hence T = T(f) € L?. O

We will systematically use in the sequel the japanese bracket :

def
(€)= Vi+ieP
Proposition 4.1.1. Let s € R, then (H®,(:|-)gs) with

(o) [ (€T de

1s a Hilbert space.

Proof of Proposition 4.1.1. The vectorial space structure and the fact that (4.1.1) satisfies the
axiom of a scalar product is straightforward. We focus onto completeness. Let u, € H® be a
Cauchy sequence, then the sequence (y)ney is a Cauchy sequence in L?(R%; (€)2% d¢) which
is complete, and hence there exists u € L?(R?; (£)2% d¢) with

lim ||ﬁn - ﬂHLQ(Rd;@}QS de) =0. (43)

n—oo

Hence (Up)neny — @ in &', Let uw = F~'%. Since F is an isomorphism on &', u, — v in &'
and also in H® from (4.3). O

Remark. We are using nothing more than the fact that F is an isometry from H*® into L?(R?; ()23 d¢).

The Sobolev scale measure the decay of the Fourier transform of «, and hence the regularity
of w. The link with classical derivation is the following.

Proposition 4.1.2 (Integer Sobolev spaces). Let m € N, then H™(RY) coincides with the
vectorial space of L? functions which derivative of order at most m in the sense of distributions

belong to L?. Moreover,
i def
lulgm = [ l0°ull?,
|| <m

is a Hilbertian norm on H™ which is equivalent to || - || gm .

44



Proof of Proposition 4.1.2. We have
ﬂuH%m :Zu\u)Hm with u\v Hm = Z / “u(x)0v(x) dx
|a|<m

and hence the norm is derived from a scalar product. Moreover, there exists a constant C
such that

VeeR:, ¢ DT Pl <t <o Y jgel. (4.4)

laf<m laf<m

Observe that (i)of Lemma 3.4.3 ensures:
Vae Nt 9% e [? < ¢u e L2

Hence
uw€ H™ <= V]a| <m, 0% € L*

and (4.4) ensures the equivalence of the norms since F is up to a constant an L? isometry. [
Proposition 4.1.3 (Sobolev ladder). Let s € R.

(i) D(R?) is dense in H*(RY).

(ii) let s <t, then H' C H® and there holds the interpolation inequality:

V0 € [0,1], [lull gossa-op < [leoflGpsfull - (4.5)

(iii) Multiplication by ¢ € S is a bounded operator on H*.

Remark. Observe that (i) ensures that we could have defined H*(R%) as the smallest Hilbert
space complete for the norm (4.1) containing D(R?).

Proof of Proposition 4.1.3. For (i), let u € H® such that V¢ € D(RY), (¢|u)gs = 0. Then

vo € DRY), | 4(€)(€)u(E) de = 0.

Since (£)*u(¢) € L? and the Fourier transform and the multiplication by (£)* are isomorphisms
on &, this implies

Vo e SR, [ GO ae)de =0
and hence by density of S in L?:
Vo € L2(RY), /¢ SU(E)dé =0
yields (€)5a(€) = 0. This yields (i) using the V' = (V1)L = {0} = H in the Hilbert space

H=H".
(ii) follows from Holder:

oo = [ (O REP) (1RO e
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(iii) is slightly more delicate and is the price to pay for having a definition on the Fourier side!
From classical density arguments, we need only prove that

From (iii) of Lemma 3.3.2 and (3.6):

i = (2m) G,

and hence we need to bound the L2 norm of the function:
U€) = (1+£%)2 /Rd |P(§ = )| x [w(n)| dn.

Let 11(§) = {n/ 2| —n| < [n[} and L(§) = {n/ 2| —n| > [n[}, then

UE) = Ui(§)+Uz(§) with
Ui = (©° / (€ — )| x [a(n)] dn.
I (€

Observe that for n € I;(§):
1 3
—In| < < —=In|.
5l < Il < 5l

We conclude that for all s, there exists C such that for all (£,n) such that n € I;(£), there
holds

(&)* < Cln)*.
Hence

01 <€ [ 1B = mltn) )] dn.
Since ¢ belongs to S, in particular @ belongs to L'. Hence from Young
ULz < Cll@llp llwl s

We now treat Us. For n € I5(§), there holds |n| < 2|¢ —n|. Hence

Up(§) < (& B¢ = m)|(m)* (m)* @) dny < 0/ 1B(& = (€ = n)? (m)*| ()| dn.
12(¢) R

Since @ belongs to S, there exists C' such that
PO < Cg) 2

and hence

0() <€ [ (€=~ o))

Hence ||Uz||r2 < C||lu||gs, and (iii) is proved. O

but there will much more advantages!
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4.1.2 The dual of H*®

Since H® is a Hilbert space, it is isomporphic to its topological dual (H*®)" via the H® scalar
product, this is Riesz representation Theorem. We now revisit this identification using the
"pivot" space LZ.

Proposition 4.1.4 (Dual of H®). Let s € R and f € S’ such that f € L} (RY). Then
fe H? iff
def
My E sup |(f, @hsixs| < oo

pEeS
loll s <1

Moreover, for f € H™°, the linear form Ly defined on S by L¢(p) = (f,¢)s'xs can be
uniquely extended as linear continuous form on H® and

I fll-s = @m)% sup  |(f.@)srxs| = @) sup | (fr ) g—srms]-
peS peH?®
lollze <1 ol zre <1

Finally, the map f — (2m)4(f, - Yy-sxm= is an isometric isomorphism from H~* into (H®)'.
Proof of Proposition 4.1.4. Let f € H%. Observe that for ¢ € S,
(. P)srxs = 2m) U Bhsrxs.
Since S and &’ are stable by multplication by (-)**,
(£, P)srxs = 2m) " H() T F () Phsixs-

Since (-)~*° fe L?, Cauchy-Schwarz and the definition of the Sobolev norm ensure:

[(f,Plsrxs| = (2m)~° /<§>Sf(§) (©)°(€) de| < 2m) " f s lollars
and hence
@m)® sup  |(f.0)sixs| < I fller—s-
peS
llell zs <1

Hence Ly defined in the statement of the Proposition can be uniquely extended as a linear
continuous form on H?® with same norm and restriction on S. Hence

sup |<f7 90>H*S><HS = sup ‘<f7 90>5’><S‘ < (27r)7dHfHH*S'
peH?® peS
lellzs <1 llollms <1

Let now ¢ be defined by L
. def (6)7FF(6)
T P

then ¢ € H® with norm 1, and

(@) -sxcrrs = (2m) | fll s

Hence the linear form (2m)4(f, - ) g—sx = is of norm exactly || f||g—s-
The proof is concluded by showing that the previously defined map is surjective. Let a linear
form L continuous on H?, we are reduced to the case s = 0 by letting

def .
M(p) = L((D)™p) pour ¢ € L%
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where (D)™* is the fractional derivation operator

F{D)™"p) = {)"Fp. (4.6)

Clearly M is a continuous linear form on L? with norm ||L||(z+) . Hence from Riesz, there
exists g € L? such that ¢ € L2,

M) = [gpds

Hence
Vo € 8, L({D)*p) = ((D)°, (D) *¢) 5/ s

—S

Since multiplication by (D)~* is an isomorphism in S (voir exercice 4.2), we conclude

L(v) = <<D>sg,¢>5,xs for all ¢ € S.

Since g € L?, the function (D)®g isin H~*%. By density, we conclude that L = ({D)*g, ) gr—s x prs-
Finally, assume f € &' satisfies f € L} and My is finite. Then for all K > 0, the fonction

loc

fr=F1! [(1B(O,K)f] is in H—*. Since for all ¢ € H?, ]-“_1(13(071()@) € H®, we easily check

1fxcll s < My

Using the definition of the H~° norm and the monotone convergence Theroem, we conclude
that f € H™° with norm at most M. O

4.2 The Sobolev injection Theorem

We prove in this chapter the Sobolev injection Theorem. There are two classical proofs of this
result?: Nirenberg’s proof of integration by parts on the space side, see Theorem 4.4.2; and
Chemin’s proof using a real space interpolation method on the Fourier side. Both have their
own interest and in many ways say different things with various applications to geometrical
and physical problems.

4.2.1 Sobolev injection

Theoreme 4.2.1 (Sobolev injection in R%). Let s > 0.

(i) If s > % then H*(RY) embeds continuously into the space of continuous functions which
decay to zero as |x| — +00.

(ii) If 0 < s < %, let the critical exponent p. be given by

d d 2d
s+ Il e = 2, 00|, 4
s+ 3 o i.e. p d—QSE[ +o0] (4.7)

then for all p € [2,p.], H*(RY) embeds continuously into LP(RY):

3Cps >0 such that Vf € H'R?), || fllioma) < Cpsl

Fll s (ay- (4.8)

(iii) For s =%, H*(R?) embeds continuously into LP(RY) for all 2 < p < +o0.

2on top of Sobolev’s proof which is long and delicate, [37].
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In fact, we shall need a more precise estimate than (4.8) which is the heart of the analysis.

Lemma 4.2.1 (Homogeneous Sobolev injection). Let 0 < s < %l and p. be given by (4.7).
Then there exists Cs > 0 such that :

V€ DRY, 1]l ety < Collfll ey (4.9)

where the homogeneous Sobolev semi-norm is defined by:

11 2 ([ 1R )

Remark (The importance of dimension). Lets = 1, we conclude that H'(R) distributions are
in fact continuous functions, H'(R?) distributions belong to all LP(R?) with 2 < p < +o0,
and in dimension 3, Theorem 4.2.1 ensures that H!(R?) distributions gain the integrability
HY(R3) ¢ L(R3) which is a priori completely non trivial. More precisely, by Plancherel

1l = IV Fl 2,

and hence (4.9) yields
Ve DR, |flzsms) < CUVSll2ms)-

Remark (Scaling invariant homegeneous estimate). A key feature when comparing (4.9) and
(4.8) is that (4.9) is scale invariant. In fact, the value of the critical exponent (4.7) can be

computed by letting the group of dilations act. Let f € D(R?) and define the scaled function

Ia(z) def f(Az) for A > 0 then :

_d
Vp e [1,+o0], [[fallee = A7 || fllze

and

1 1
. 3 - S 3 4.,
([1er1hera)’ = (32 [1lgifoor i) =ateisl.
Both quantities || - ||z» and || - || ;. scale similarily (and may therefore be compared) iff their
scaling match ie —s + % = % ie. p=pec.

Proof of Theorem 4.2.1. Assume (4.9) which is proved hereafter. We distinguish three cases.
case s > 4. Then (-)~% € L?(R?) and hence by Cauchy-Schwarz:

il < (107 ds)% (/ <§>Zslﬁ(§)2d€)§ < Cllull.

We conclude from Fourier inversion formula that u is bounded an continuous (by dominated
convergence) and tends to zero as |x| — +oo (Riemann-Lebesgue which is trivial for u € D(R?)
by integration by parts, and then follows by density).

case 0 < s < %. Lemma 4.2.1 ensures that H* C LP¢ continuously. But by definition H* C L?
continuously, and hence by Holder, H* C L? for all p € [2,p].

case s> 2. Let 2 < p < +oo thenaz%—% satisfies 0 < 0 < 4 = s and p.(0) = p and
hence by the previous step H*(R?) c H°(R?) C LP(R?) continuously. O
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We now turn to the heart of the matter which is the proof of Lemma 4.2.1. The difficulty
is of course to understand how the Fourier transform can yield control in an LP space when
2 < p < 400. The proof we present relies on the real interpolation method which goes beyond
the scope of these series of lectures but which is an illustration of the strength of Fourier
base localization techniques and the splitting in high and low frequencies for the analysis of
functions.

Proof of Lemma 4.2.1. Assume without loss of generality that ||f||;. = 1. Pick A > 0 and
split the function f in low and high frequencies:

f=fia+foa with f1a4= f_l(lB(o,A)f) et faa= f_l(ch(OﬁA) f). (4.10)

Since the Fourier transform of f; 4 has compact support, the function f; 4 is bounded and
more precisely:

A

[fralle < (27T)_d||171,\AHL1§(27T)_d/( €17 (€11 F ()] dg

)

IN

en ([ mQWQ < Gt fll (4.11)
B(0,A)
The triangle inequality ensures that for all A > 0,

{71 > Ay C{lfr.al > A/2} U{[f2,a] > A/2},

and hence (4.11) ensures:

%
e () = fna- 2o

We conclude by (1.16):
0o - A
I £115 < ; A | 2,4, >3 d.

High frequencies are now controlled using the Bienaymé-Tchebychev inequality in L?:

by 4 2 2
H’f2,A,\| > 2}‘ _/ ldx < / |f2")‘\g(x)| da < 4Hf?’:§HL2.
{If2,4,1>3} {If2,4,1>3}

|mmS@A N3 fon, |22 dA. (4.12)

Hence

We recall Plancherel

enlfenlie= [ If€)Pdg
{|€]1>Ax}

which injected into (4.12) yields

N <40 [ 100, igean (W OIFE P dear
+ X

Now by definition of A

€] > Ay = X < Ce oo, ¢
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and hence Fubini ensures
dy| £)|P Ce p—3 Trey 2 4p p—2
enifl, < v [ ([ e 1For e < oy [ g
rRe \Jo p—2 R4
d(p —2)
p

d(p—2)
p

|F(€)? de.

Since 2s = , the estimate (4.9) is proved. O

4.2.2 Corollaries of Sobolev injections

We give two elementary but very useful corollaries of the Sobolev injection Theorem.

Theoreme 4.2.2 (Dual Sobolev injection). Let p €]1,2], then LP(R?) embeds continuously

into H=5(R?) with s = d/p — d/2.

Proof of Theorem 4.2.2. By density, we need only show that there exists C' > 0 such that
Vue S, |u|lg-s < Cllullre- (4.13)

By Proposition 4.1.4,

lull s = (27)¢ sup / wpds
p€eS
lell s <1

and hence by Holder,

[ull - < 2m)* sup  fullze ]l -
p€eS
llell s <1

Since d/p’ = d/2 — s, the above Sobolev injections ensure that there exists C' > 0 such that
Vo eS8, el <Cllollms,

and the claim is proved. ]

Remark. Since Lemma 4.2.1 involves only the homogeneous Sobolev norms, we may replace
lull g—s by [|ullz—-s in (4.13). This allows us to recover some of the exponents of the Hardy-
Littlewood-Sobolev inequality, see exercice 4.20.
A second corollary are the celebrated Gagliardo-Nirenberg interpolation inequalities which
are everywhere in the study of non linear problems.
Corollary 4.2.1 (Gagliardo-Nirenberg interpolation estimate). Let
. oo for d=1,2,
2=\ 2 for d>3
d—2 = 9.
If 2 < p < 2% then
Y ‘ d(p —2
Vu e HY(RY), |ull» < CHuH}2 |Vul|]. with o= % (4.14)
Remark. 2* is the universal notation for the homogeneous Sobolev injection H'(R%) ¢ L*" (R%)
in dimension d > 3. See Lemma 4.4.1 for the generalization to the non Hilbertian setting.

Proof of 4.2.1. The estimate (4.9) yields
[ullr < Cllull 4o

Since 2 < p < 2* ensures o € [0, 1] and arguing like for the proof of (4.5) with [£| instead of
(€), we obtain

o
and the claim follows. O

lull o < Nl 27l
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4.3 Compactness of Sobolev embeddings

We are now in position to collect the fruits of the previous chapters and prove the local in
space compactness of the Sobolev injection which is the celebrated Rellich Theorem. This is
an absolutely fundamental tool for the study of linear and non linear physical models.

4.3.1 Ascoli-Arzela Theorem

Let us start with recalling a classical compactness result for sequences of continuous functions:
the Ascoli-Arzela Theorem.

Theoreme 4.3.1 (Ascoli-Arzela theorem). Let d,p > 1 and Br = {x € R¢, ||z|| < R}. Let
(fn)nen be a bounded sequence of continuous maps from Bpr into RP i.e.

Sup || full oo () < +00-
n>1

Assume that (fn)nen is uniformly equicontinuous :
Ve >0, 3n>0 such that Yn e N, (||lz -yl <n=|fn(z)— fu(v)| <e). (4.15)
Then there exists f € C(Bgr;RP) and a subsequence (fy(m))nen such that
Jom) — [ uniformly on Br.

Remark. In other words, the subset of uniformly equicontinuous functions in the unit ball of
the Banach space C(Bpr;RP) is relatively compact in C(Bg;RP). It is easily seem that (4.15)
is in fact necessary and sufficient. The equicontinuity assumption (4.15) should be thought
of as a weak form of a derivative bound: if sup,ey ||V fallj@,) < +00, then (4.15) holds.
The typical obstruction to the convergence of subsequences is the presence of high oscillations
fn(x) =sin(nz) (see exo 2.4).

Broof of 4.3.1. This is a diagonal extraction argument. Let m > 1 and &, = - The ball

— m
Bpr is compact, hence we can extract from Br C |J g B(z,em) a finite covering. Let

zeB
(:El(-m)hgig]v(m) such that

Let m = 1, then the N(1) sequences (fn(xgl))>

hence there exists an extraction ¢1(n) such that

oy 1 <4 < N(1) are bounded in RP, and

V1 <i< N(1), f¢1(n)(:vl(-1)) — fl(i)o as n — 400.
By induction on m, we construct subsequences ¢1, - - - , ¢, such that:

VI<i<N(m), foromopmn) (azgm)) — fi(,?o) when n — +oo.
The diagonal map ¢(n) def ¢10...¢,(n) satisfies by construction

Vi<m, V1<i< N(m), fom) (xgm)) — fl(z) as n — +o0. (4.16)
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We now claim that (fy(n))nen is a Cauchy sequence in the Banach space (C(Bg;RP),|| - |[ze)
which concludes the proof. Indeed, let € > 0 and n = n(e) given by (4.15). Let m = m(e)
such that e, < 7. Let © € Bg, then 3i € [1, N(m)] such that ||z — .Z‘Em)H < n and hence by
(4.15), for all n > 1,

IN

| o) (@) = fom) (@)
1F sy @) = Faim) @D+ 1 o0y @™ = Lo @™+ [ o) @™ = Fam @)

2 + || F o) (@™) = Fam (™).

IN

But the sequence (fy(,) (l‘gm)))neN is convergent in RP and hence a Cauchy sequence, and
hence for all n,p > P(e) large enough:

VI <i < N(m), |[fopm(@™) = Fom@™)] <e.

We conclude B
Vn,p > P(e), Yz € Br, [[fom)(®) = fop (@) < 3¢,

and the claim is proved. ]

4.3.2 Compactness of the convolution

The convolution operation is the canonical compact operator since it naturally gains derivti-
aves. We give below one compactness result which follows from Ascoli, we refer to exo 2.10.

Proposition 4.3.1 (Compactness of the convolution). Soit d > 1, 1 < p < +oc0 et Br =
{x e RY ||z|| < R}. Let ¢ € S(RY) and Ty(f) = * f, then

Ty : (LPRY), || | o)) = (C(BR;R), |- [l poo ()

is compact. In other words, let (f,)nen be a bounded sequence in LP(RY), then we can extract
a subsequence (fyn))nen such that (1 % fym))nen converge uniformly in Br.

Proof of Proposition 4.3.1. Let (fn)nen be a bounded sequence in LP(R?). Let us show that
Y * fr, € CH(R?) and satisfies the assumptions of Theorem 4.3.1. Fix n € N and assume p
finite. Then D(R?) is dense in LP(R?) and hence there exist f,,, € D(R?) with f,,, — f, in
LP(RY) as 1 to 0. Then ¢ * fn, € S(R?) from Lemma 3.1.2 and by Young

[t x fr — w*fn,nHLw(Rd) <|fn— fn,nHLP(Rd)’WHL#(Rd) —0 as n—0.

Hence 1 % f, is the uniform limit of a sequence of continuous functions and is therefore
continuous. Using

Oi(Y* fam) = 0ih x fuy

ensures similarily that 1« f, is C'. If p = 400, the same holds by deriving directly below the
integral. Forl < p < +00, we moreover obtain the uniform bounds

19 % frll ooy < NNl 1 ey 1 fll Lo ety < €
IV (& fu)ll oo ray = VY * frll oo way < IV 1o ey L frll Lo ety < €.

Hence the sequence (¥ * fy)nen is uniformly bounded and equicontinous on Bpg, and the
conclusion follows from Theorem 4.3.1. O
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4.3.3 Local compactness of the Sobolev embedding

We now turn to the local compactness in space of Sobolev embeddings: Rellich’s Theorem.
Locality is in space.

Definition 4.3.1 (LfoC convergence). Let 1 < p < 400 and Q be an open subset RY. We say
that a sequence (fn)nen € LY. (Q) converges to f in LY () iff

loc loc

VK compact de Q, f, — f in LP(K). (4.17)

Theoreme 4.3.2 (Local compactness of the H® Sobolev injection). Let d > 1, s >0 and

2d d
pe= 1 T5 Jor s <3,
¢ +00 otherwise.

Then the embedding

H*RY) — L

loc

(R?) is compact for all 1< p < pe.

In other words, let (fu)nen bounded in H*(RY), then there exists f € H5(RY) and a subse-
quence (fo(n))nen such that:

Jom)y — f  dans H?*(RY),
fomy = f dans L} (RY) V1 <p<p..

If s > % then the convergence is unifom on any compact set of R%.
Proof of Theorem 4.3.2. The key to the proof is the fact that the map
1d : (H* R, ]| - [l zy) = L* B |- l23,) (4.18)

with Bpg def {z € R?, ||z|| < R} is the uniform limit of convolution operators satisfiying the

assumptions of Proposition 4.3.1.

step 1 Compactness. Fix ¢ € C°(RY) positive with

C(az):{ L pour [zl <1, / C(w)de = 1, (4.19)
Rd

0 pour |z] >2

and let the regularizing sequence:

of 1
C(x) d:f; (g) e>0. (4.20)
Let
Ta(f) = CE * f7

then from Theorem 3.1.2
Vf e L2(RY), T.(f) — f dans L*(RY) quand e — 0.

Let s < %. We claim the uniform statement:

sup || Tof = fllp2rey = 0 quand € — 0 pour 0<s< (4.21)

£l ks <1
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Assume (4.21) which is proved below, then VR > 0, the map defined in (4.18) is the uniform
limit of the sequence T:. By Proposition 4.3.1, foall € > 0 , T: is compact from (LQ(Hgl), I| -
I22(ray) into C(BR, ||| p,)) and hence a fortiori from (H*(RY), || - || £+ (ray) into L*(BRg, || -
||L2(§R))' Hence

Id : (H*(RY), || - | s (Ra)) — L*(Bgr,| - I12(By)) est compacte (4.22)

as the uniform limit of compact operator in view of Proposition 2.1.1.
Proof of (4.21). We compute

~ ~ ~

C(6) = C(€) et (Tf — P)(€) = (1 —C(e€) f(€)

and hence by Plancherel:

en)! [ ) - fPe = [ (Rp-FRae= [ n-CTeoPIfORE @42)

1= {(e9)?
< HfHQHS(Rd) :;lﬂgz [@)281 .
Since ¢ € § implies EG S and
(0) = /R C)dr =1 (4.24)

we easily conclude 2 using s > 0,

- [u (9P

— 0 when ¢ —0
2s ’
£eRd <§> ]

and (4.21) is proved.

step 2 Strong convergence in L{’OC. Let now (fn)nen be a bounded sequence in H®. By weak
compactness of the unit ball of H*(R?), there exists f € H*(R?) and an extraction 1(n) such
that

fomy = f in H5(RY). (4.25)

Letting R = m, we construct by induction on m > 1 using (4.22) extractions ¢, -+, dm, -+ ,
such that
Vm > 1, fpopiomopm(n) — [ i LZ(Bm) as m — +o0.

The fact that the local strong limit is necessarily given by f follows from the uniqueness of
the limit in the sense of distributions. The sequence (fg(n))nen Where

¢p(n) =vodio---ody(n)
hence satisfies by construction

fomy = f dans HS(RY), fyy — f in L (RY), (4.26)

loc

and hence using Holder on a given compact of R%:

fomy = f in LP (R?) pour 1<p<2.

Scut in |¢] < \% and [¢] > %
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Let 2<p<p:. and 0 < o <1 with

\
| R

let K be a compact of R?. Holder and Sobolev (4.8) and the convergence (4.26) yield:

1foem) = Floray < sy = Pl 22001 fom) = Flindine)
Collfotmy = FI 20y (N fsim ey + 1 1)
2Cp(sup | fullz)" I fom = FlG2) = 0 quand = +oc.

IA

IN

The same proof applies for s > g, once proved that

d
sup || Tof — fllpeoey = 0 when € — 0 for s> 3 (4.27)

£l s <1

Theorem 4.3.2 is essentially optimal in the following sense.

(i) Sobolev in never compact on LP(R?). The continuous injection H*(R?) c LP(RY) is never
compact due to the action of the translation invariance group. Let

fn(x) = f(x —20), |2n| = +00

for a given non zero profile f, then f, — 0 in H® but Vp > 1, ||fullzr = ||fllzr and hence
the sequence does not strongly converge in LP. This type of default of compactness can be
avoided using symmetry assumptions, see Proposition 7.1.1. The description of the default
of compactness of the Sobolev injection H'(R?) C LP(R?) is the heart of concentration-
compactness techniques, see chapter 9.

d

loc(R )

is never compact due to the action of the group of dilations. Indeed, let f € C°(R%) non zero
with support in By, let (Ay)neny — 0 as n — +oo and consider

Falz) AT f< )

Then Suppf, C By and is bounded from direct check in H*, but

(i3) Critical Sobolev is never compact. The critical continuous embedding H*(RY) C LP*

= g1 (5 ) = 1 i DR

and hence does not admit any strongly converging subsequence in LP¢(By).

4.3.4 The case of a bounded domain

Simple consequences of the previous section apply to study Sobolev spaces on a bounded
domain as well.
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Definition 4.3.2 (H}(Q), H71(Q)). Let Q be an open subset of RY. We define HE(Q) as the
closure of D(Q) for the H'(RY) norm The space H~Y(Q) is its topological dual, or equivalently
the space of distributions u € D'(Q) such that

def
lullz-1@@) =  sup  [{u,¢)| < co.
peD(Q)
||99||H1<Rd)§1

Recall that Proposition 4.1.3 ensures that H'(R%) is the closure of D(R?) for the H!(R%)
norm, and hence H}(Q) can be identified as a closed vectorial subset of H'(R%). Hence the
decomposition

HY(R?) = Hy(Q) @ (Hy ()
We conclude that H&(Q) equipped with the scalar product

(u,v)r—>/ﬂuvdx+ Z /Q(?juc?jvdx

1<j<d

is a Hilbert space. If €2 is bounded, the injection H&(Q) C H'(R?) being continuous, Theorem
4.3.2 with Remark 4.2.2 yields:

Theorem (Kato-Rellich). Let Q be a bounded open set of R?.
(i) For d =1, the injection H}(Q) < C(2) is compact.
(i) For d =2 and 2 < p < +00, the injection H}(Q)) — LP(Q) is compact.

(iii) For d > 3, let
. def 2d
2 = —— €]2
) €]2, +o0|
be the critical exponent. Then for all p € [1,2*], the space H&(Q) embeds continuously
into LP(Q2) with compact embedding if p < 2*.

Remark. One can show that more generally, the embedding of Hg(Q) into L?(Q) (or LP(12)
with p < 2%) is compact as soon as 2 has finite measure (exercice 4.12).
Remark. By duality, we also obtain that the embedding of LP(Q) into H () is compact if
2d
P> a3rq
The following fundamental result ensures that the homogeneous Sobolev norm is a norm
on Hi () which is the weak form of the "zero boundary" condition on the frontier of €.

Theoreme 4.3.3 (Poincaré inequality). Let Q be a bounded open set of R%. Then there exists
A1(92) > 0 such that:

Vu € HY(9), [Vullaay > M)l (428)
where
d
IVul2ay = S 10ul22 0.
=1

Remark. A\ (2) > 0 is the first eigenvalue of the Laplace operator with Dirichlet (ie zero)
boundary condition. The estimate (4.28) is a first example of spectral gap estimate 4. The
dependance of A;(€2) on the domain  is a subtle geometric problem (shape optimization)
which is not completely understood.

4We refer to G. Allaire [1], Chap. 7, for more examples.
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Proof of Theorem 4.3.3. We give two proofs: a quantitative one, and a qualitative one (see
exercice 4.12 for more applications) which is a first intrusion into variational methods.
Quantitative proof. Since Q is bounded, Q CJ0, R[xR%~! for some R large enough. Let
u € D(C]0, R[xRI1), then

1 ou
w(xy, - ,xq) = o — (Y1, w2, -, xq) dy1.

and hence from Cauchy Schwarz:

2 R gu 2
”U,(ﬂfl,"' 7'Id)| SR/ 67(?/1,»@2,"‘ 7'Id) d?/l
0 Y1
Since Supp u CJ0, R[xR9~!, integration in z; yields:
R ou 2
/ ‘u Iy, - ':Ud)|2d$1 < RQ/ 8 (3/1,532, ,.’L'd) d?/l
0 Y1
and then integrating with respect to the d — 1 remaining variables,
9 ou 2
lu(zy, -, zq)Pde < R* | |=—(y1, @2, ,2q)| dyrdas--- dag
Rd a | 0y1
< R’ ||31U||L2(Q)-

Since D(Q) is dense in H(Q), (4.28) is proved.
Qualitative proof. Let

o IVl
' werrf @\ [ul2ag

Assume by contradiction that A;(€2) = 0. Then there exists a sequence (uy)n>1 with

* 1
Vn € N7, ||unHL2(Q) =1 and ”Vun||L2(Q) < ﬁ

Since (un)nen is bounded in H'(2), we extract from Kato-Rellich (ug(n))nen and u € Hj(Q)
with
Up(n) — U in HY(Q) and Ugp(n) — u in L*(Q).

The weak convergence in Hg(€2) implies convergence inD'(Q), and hence Vug,) — Vu in
L?(2) from which by lower semi continuity of the L? norm when passing to the weak limit:

/ \Vul|? de < liglinf/ |V, |* de = 0.

Hence u € H}(f) is a constant and this implies u = 0. On the other hand, by strong L?(2)

convergence:
2 B F 2 _
/Q]u| dx _ngI—&I-loo/Q|u¢(n)| dr =1,

and a contradiction follows. O

The following corollay follows directly from (4.28).
Corollary 4.3.1. Let Q be a bounded subset of R?, then

Z /8u6vdx

1<5<d

is a scalar product on H} () which defines a norm equivalent to the one of Definition 4.5.2.
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4.4 The Sobolev space W"?(R?)

Sobolev spaces H*(R?) are built on L?(R%) which makes the Fourier transform techniques
particularily useful. For appication to nonlinear problems, the more general W#P(R%) scale
based on LP(R?) with 1 < p < 400 is useful. To simplify the exposition, we restrict to integer
derivatives k € N. Let us stress that the general theory is the one of Besov spaces which
study relies on the Litllewood-Paley decomposition of functions, see for example |2, 31]. One
important feature of the exposition below is to provide another proof of the Sobolev injection
Theorem based solely on integration by parts due to L. Nirenberg.

4.4.1 Definition and Banach space structure

Definition (Sobolev space W*P(R%)). Letl < p < 4+oc0 and k € N*. We let WH*P(R?) be
the set of functions f € LP(RY) such that

Va € N with |af <k, 0°f € LP(RY).

Theoreme 4.4.1. Let 1 < p < +oo and k € N*. Then (WEP(RY), | - lwr.p(ray) s a Banach
space for the norm:

oo = | 3 10°F12, e
la|<k
Moreover, D(R?) is dense in WrP(R?).

Proof of Theorem 4.4.1. The normed vectorial space structure follows Minkowski’s inequality.
Let (fn)nen be a Cauchy sequence in W*?(R9). Then for all |a| < k, (0% f,)nen is a Cauchy
sequence in LP(RY), hence it converges to some ¢g®. Let g be the limit of (f,)nen in LP, then
fn — g in D'(R?) and hence 9°f,, — 0%g in D'(R?) which by uniqueness of the limit in the
sense of distributions forces ¢® = 9%f. Hence 0%(fy)nen converges to g in W*P(R?). The
density of D(RY) in W*P follows from Theorem 3.1.2. O

4.4.2 Sobolev injections

We now establigh the L? analogue of Theorem 4.2.1 and we consider for the sake of simplicity
integer derivatives only.

Theoreme 4.4.2 (Injection de Sobolev). Let d > 1, k€ N* and 1 <p < +0c0.

(i) Ifp>% orp=d=k=1 then WrP(R?) embeds continuously into the space (Co(R?), |-
| Lo (ray) of continuous functions on Re which tend to 0 at infinity.

(i) If 1 <p< %, let p. be the critical exponent

—k+g:i .. Pe= pd

—— €lp, +ool.
D De d—kp ] |

Then for all p < q < p., WFP(R?) embeds continuously into LI(R?).

(ii) If p = % > 1 and d > 2 then for all p < q < +oo, WFP(R?) embed continuously into
LY(R%).
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Like for Theorem 4.2.1, the heart of the proof is the scale invariant homogeneous Sobolev
estimate.

Lemma 4.4.1 (Homogeneous WP injection). Let d > 1.

(i) If 1 <p<d and p* is given by

d d d
14+ —-=— e p*:LE}p,+m[
pop d—p
then
Ve WY RY, [|fllpe e < Coll VS || ogeey: (4.29)

(ii) If p>d and a =1 — g, then there holds the uniform Hélder bound:

Ve WYP(RY), Y(z,y) € R*, |f(z) — f(y)| < Cpa

=yl IVflpra  (4.30)

Proof of (4.4.1). We follow [5]°. By density it suffices to prove the claim for f € D.
step 1 Case p=1 and d > 2. Let € R? and denote

T; = (.7}1,... ,:Ul-_l,aci_,_l,...,xd), 1< <d.
d
Let (g1,...,94) € D(R¥1) and g(z) = ng(ifz) Let us show by induction on d that
=1
d
91l 21 ey < H gill a1 (ma-1y- (4.31)
i=1

This is straightforward for d = 2. We assume d and prove d + 1. Let us freeze 411 € R. Let
x = (2 2441), @' = (21, -+ ,24), then Holder with respect to the Lebesgue measure in Ri/
yields:

d—1
d d
/\g(x)’dwl < Nga+1ll paay (/ (g1 -gd)($/7$d+1)’dldx/> :

d d
We then apply the induction claim to |g1|%1,...,|gq|? T and hence

d d d
d d a—1
/\(91 —9a) (@) 7T da’ < T MgiC war )| T || pa-rmay = [ | 19: (s Ta11) | Lagpa-1):
i=1 =1

We have obtained for all fixed z441:

d
/|g($/a$d+1)\ dz’ < [|gasall para H 9i (-, za+1) | Lama-—1y-
1=1

We now integrate on z441. Each function z411 > [|gi(, Tat1) || pae—1y for 1 < i < d belongs
to L4(R) avec

gisarllgagan| .. = lgillzaay,

L4(R)

Sanother approach is proposed in exercice 4.19.
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d
1
and hence using Hoélder again with Z 7= 1 yields

=1
d+1
/w mmeﬂmmmijHmmwumﬂ TT 191G 2a0) g
=1

step 2 Case p < d and d > 2. If p = 1 the estimate (4.29) follows from an integration by
parts: for all 1 <17 <d:

|f(z)] = '/_iaif(l'lw-,%1,t,$i+1,~--»$d)dt'

IA

~  def
fl(l'l) :e / |8Zf(1‘1, ey xifl,t,l‘prl, ey IL‘d)’ dt,
R
and hence
d
< s@)
=1

We conclude from (4.31):

/’f |- 1d$<HHszL1 Rd-1) — HHafHLl (Rd)

and hence
d

é
11, st gy < 1_11 10: 11 g (4.32)

and (4.29) is proved for p =1 and d > 2.
If 1<p<d, wefixet>1and f €D and apply (4.32) to f|f|!"!. Using Hélder:

=

It gy < nJﬂwv%ﬂﬂw<q{HwM@mmmmmm]
1
< Cpllfl 0y Rd)Hna@-szp(Rd). (4.33)
=1
The choice J J
_ —1 * - 3 (4 .
t= g P e r_l—p(t 1)=p

for which ¢ > 1 (since p < d) ensures:

d 1
1y < Co LTI gty < Coll VL.

=1

The estimate (4.29) is thus proved for f € D(R?), and the general case f € WHP(R9) follows
by density.

61



step 3 Case p > d. By density we need only treat the case f € D. The estimate (4.30) is
obvious in dimension d = 1 since by Holder:

[f(x) = f(y)l =

(O] < Jo = o7 |l
The proof is more subtle in dimension d > 2. Let r > 0 and Q = [—r,7]?, then

t 1
Ve, |f(x)— f(0) = /Ox-Vf(t:c)dt‘gr/O IV f(tx)| dt. (4.34)

— 1
fQ—M/Qf(l‘)dl‘

Then integrating (4.34) for z € @ and using Fubini, a change of variables and Holder:

fo— f(0)] < |Q|/ /\meyd:cdt |Q‘/ td/ |V f(z)|dx dt

Let TQ be the average of f on @

< @ | 1¥1lrms QL o [
2r td 2d/p 0
< Cp,dr pvaHLP(Rd)
where we used
i, —d= _d > —1.
p p

By translation invariance, we conclude that for all cube @Q of size 2r:

— _d
Vo e Q, |fo— F@)] < Cpar' PVl Loy,

and hence
V(z,y) € Q°, |f(x) = fy) < |f(x) = fol +1fo—fly)| <C ,drligufoLP(Rd)-

Since two points (z,y) € R?? always belong to such a cube with r = 2|z — y|, (4.30) is
proved. ]

Proof of Theorem 4.4.2. We detail the proof for £ = 1. The claim for £ > 2 follows directly
by induction on k.

(i) Case p > d. By (4.30), every function f € W1P(R?) with p > d is Hélderian, and hence
continuous. Moreover, if z € R and Q = Hcllzl[q:i — 1, z; + 1], then there exists y € @
such that ©:

1
101 < g7 L 1718z < Gl isias
and hence by (4.30):

[f (@) < 1f(y)] + Cpa

This proves that f is bounded and the uniform convergence norm is bounded by the
WLP norm. Since D(R?) is dense in WP and the uniform convergence preserves the
limit at infinity, we conclude that f € Co.

IV flzrmay < Cpa

| fllwp(may-

SRaisonner par I’absurde.
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(i’) Case p=d = 1. For f € D(RY),
s@l< [ Irla
and the claim follows by density

(ii) Case d > 2 and 1 < p < d with p < p*. This follows directly from (4.29) and Holder.

(i) Cas p=d >1. Let f € D(R?), then by (4.33): Vt > 1,
t=1 1
t t

gy = Opallf Nl gy 1V Fl Lo ey

< Cpt [l e ey + 1V ey (4.35)

171,

where we used Young ab < %ap + Z%b”/~ The choice
pPt—1)=p ie t=p=d

ensures

Il 2 < Call fllwrera):
LA-T (Rd)

We then iterate the process and apply (4.35) to the sequence (t; = d+ j);>1 which goes
to +o00 as j — 4o00.

O]

Remark. This new injection Theorem allows one to compare the H* and WP ladders, see
exercice 4.18.

4.4.3 Local compactness of the Sobolev embedding

Theoreme 4.4.3 (Local compactness of the W1P(R?) injection). Let d > 1, p>1 et

+o00 otherwise.

d
p*:{ dpfp for p<d

Then for all 1 < q < p* the embedding WP (RY) — L?OC(Rd) iscompact.

Equivalently, for all sequence (fn)nen bounded in WIP(R®), there exists f € WHP(RY)
and a subsequence (fo(n))nen such that:

fomy = f dans LI (RT), V1<q<p* (4.36)

loc
For p > d, the convergence is uniform on any compact set of RY.

Proof of Theorem 4.4.5. Let (fn)nen be a bounded sequence of W1P(RY) and R > 0. Let us
show that we can extract

foty = f dans LUBg), V1<q<p, (4.37)
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with moreover uniform convergence if p > d.

— For p > d, the uniform Hoélder estimate (4.30) implies that the family (f,)n>1 is equicon-
tinuous on Bpg, and (4.37) follows from Ascoli.

—1If p<d,let ¢ < p*, let (. be a regularizing sequence. Assume

sup ¢ * f — fllzp@ay = 0 quand e — 0. (4.38)

”fllwl,p(Rd)Sl

Then Id : WHP(R?) — LP(BRg) is the uniform limit of the maps f +— (.xf which by Proposition
4.3.1 are compact from LP(R?) — C(Bg) and hence a fortiori from W1P(R%) — LP(Bg).
Hence Id : W'P(RY) — LP(Bg) is compact by Proposition 2.1.1. The convergence (4.36) in
L C(Rd) follows by diagonal extraction on R,, = m like for the proof of Theorem 4.3.2, and
then in L?OC(Rd) for 1 < ¢ < p* by Hdlder on a fixed compact set for 1 < ¢ < p and the
Sobolev injections for p < g < p*. The proof for p > d is similar and left to the reader.

Proof of (4.38) for 1 < p < d. Changing variable and using (4.19):

p

/| e = 1)y

p
<

G f2) = f(@)]" =

» CW)(f(z—ey) = fy) dy

< G y 2!f(w—€y)—f(y)\pdy- (4.39)
y|<

Let h € RY. Forp € D(R?), we compute:

p

1 1
lo(z + h) — (@) = / heViplo +th)dt| < B | (Voo + ) d

0

and hence changing variable x +— x + th,

[ iete s n) = ptopar < [0 [ [Vote - ohyPdeds < I0PIVOIR
We conclude
vF e W@, YheRL [ (@ k)= @ do < WP s oy

We inject this estimate into (4.39) and obtain:

[ers@-s@rar < 6 [ ([ 1= sPs)as < GlePIt
and (4.38) is proved. O

4.4.4 The case of a bounded domain

Like for H', the WP extends naturally onto a domain.

Definition 4.4.1. Let Q be an open subset of R and 1 < p < co. The space Wol’p(Q) is the
closure of D(Y) for the norm || - [[y1p(ra)-

By construction Wol’p(Q) is closed subspace of WP(R%) for the norm || - [ w1p(ray and
hence a Banach space. The Sobolev injections of Theorem 4.4.2 yield :
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Theorem (Kato-Rellich in W'P(Q)). Let Q be a bounded set of R,
(i) For p > d, the embedding Wol’p(Q) — C(Q) is compact.
(ii) For p=d and 1 < g < 400, the embedding Wol’p(Q) — L9(§2) is compact.

(iii) For 1 <p < d, let the critical exponent

then for allq € [1,p*], Wol’p(Q) embeds continuously intp L1(Q) with compact injection
for 1 < gq<p*.

We can also recover a Poincaré inequality for p = 2 which proof of is similar to the one of
Theorem 4.3.3

Theoreme 4.4.4 (Poincaré inequality). Let Q be an open subset of R et 1 < p < 4o0.
Then there exists C(p,Q) such that

Ve W), |1flle@ < Co IV IlLee-

4.5 Exercices

Exercice 4.1. Show that for all s € R, § embeds continuously into H® H?®.

Exercice 4.2. Show that for all s, the multiplication by (-)® sends continuously § into itself.
Same question with the operator (D)* defined by (4.6). Generalize to S'.

Exercice 4.3. We say that a distribution v € D’ (Rd) has compact support if there exists
K C R? compact such that V¢ € D(RNK), (u,¢)pp = 0. Show that if u € D'(R?) has
compact support, there exists s € R such that v € H®.

Exercice 4.4. Show that the constante 1 does not belong to any H?.

Exercice 4.5. Show that the Dirac mass dp belongs to H=27 for all £ > 0, nut §p €¢ H™%.
Generalize to the derivatives of dj.

Exercice 4.6. Let s < d/2, show that D(R?\ {0}) is dense in H*.
Hint: study the orthogonal of D(R\ {0}) and use the preceding exercice.

Exercice 4.7. Let R = Y0, 2;0,,.
(i) Compute R|- |72

(ii) Show that for all f € D(R?\ {0})

F@P [ f@RA@)  d [ @)
/Rd 2?2 P faa T Jap d“z/ a2

(#ii) For d > 3, prove the Hardy inequality

2 3
Vf e HY(RY), </Rd ‘f’gjy dx) S%HWHLL (4.40)
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(7v) Is it true in dimension d = 27

Exercice 4.8 (Limit cases of Sobolev injections). (i) Show that Hg(Rd) does not embed
continuously into L>(R9).

(i) In which Sobolev spaces does L'(R?) embed continuously?

(iii) Let d > 3, show that H'(RY) does not embed continuously into LP(R?) for p > 2d/(d —
2).

(iv) For d =2, give an example of an H'! function which is not bounded.

Exercice 4.9. Let r €]0,1[. Show that H gt (R%) is continuously embedded into the Holder
space C"(RY) defined in exercice 2.5.

Exercice 4.10. Let s > % Show that there exists C' > 0 such that
s (md 1-4L o
Vu € H¥(R?), |lullpe < Cllull,2 > [Jull %,

Exercice 4.11. Let s > 0 and © be a bounded open set of R?. Show that there exists
As(2) > 0 such that

VQO € D(Q)a H()OHQ s(R4) > AS(Q)HSDH%Q(Q)
Exercice 4.12. Let Q be a open set of R? of finite measure.

(i) Show that the embedding H} () into L?*(Q) is compact.
Hint: use the Fourier transform to realize that if (g,)nen is bounded in H}(€2), then
(gn)nen is bounded in the set of continuous functions which go to 0 as |z| — +00.

(i) Prove that the Poincaré inequality still holds for this kind of domain.

(7i) Show that
Vu € H'(Q), |lu—1a| 2 < C|Vul 2

wher u is the average of u on €.

Exercice 4.13. Let s €]0,1[. Show that there exists C' > 0 such that

u(z +y) — u(z)]

2
e dady < Clul

Vu €S, ClHu||2-S§/

R xRd

Exercice 4.14. Lety € S(RY) and s € [0,1]. Let the homogeneous Fourier multiplier

T1e def

|D|*v = |€|*v. Let the commutator

S df S S
Agv = |D|*,x] == |D|*(xv) — x|D|*v.

(i) Let v € S(RY), compute A,v in the form of an integral operator on 3.
(i) Using Plancherel, show that Ay is bounded on LZ2.

(7i) Give another proof of (iii) of Proposition 4.1.3.

Exercice 4.15. Let u and v in S(RY).

66



g in terms of u and v. Let

/ u(€ —n)v(n) dn

2E—n|<|n|

/, (€ — m)ol) dn
L <lg=nl<In]

(i) Compute Husz e

2
Jl _ /<€>23+2td df,

J2 — /<£>28+2t—d

2
dg

with (£) := /14 [¢|%.

% q d
(7i) Assume s < §-

(a) Show that there exists C' = C(s,d) such that

Cllullms(€)2,

IN

vé € RY, / (e — )| d
2|&—n|<n|

~ d_g
vn € RY, [u(¢ —n)| d¢ < Cllullas(n)z=".
2[€—n|<|n|

(b) Show that there exits C' = C’(s,d) such that
Ji < O'lullFs o] Fe.

(iii) We pick (s,t) € R? and assume s + ¢ > 0. Show that there eixst C” = C”(d, s,t) such
that
J2 < C"[[ullzps vl -

(iv) Assume s < %, t< % and s+t > 0. Show that the multiplication operation (u,v) — uv

1. . . _4d
extends as a bilinear continuous map from H*® x H? into H*Tt 2.

Exercice 4.16. The trace map. We define the trace map from S(R?) to S(R4"!) by
Tu(z") = u(0,2), = (xg,...,24).

(i) Show that for all u € S(R?) and ¢ € RI~1,
AU = 5 [ At
o Jp Vo1 1

(1) Show that for s > 1/2, 3C(s) > 0 such that Vu € S(R?),
||7—UHH5*1/2(]Rd*1) < CHUHHS(Rd)‘

Hint: use the previous question to derive the estimate

FuE)* < ( / ja( %czfl) < /R <5>—25d&>

and express [ (€)"2*d&; in terms of (¢') (where we noted & = (&1,¢)).

(#ii) Let s > 1/2. Show that the trace application extends uniquely as a continuous map
from H*(R%) onto H* V/2(R-1),
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(iv) Let s > 1/2 and g € H*"Y/2(R41). Define

<€/>2(s—1/2)
(€)%

Show that v € H*(R?) and v(0,z') = Cg(z') for some constant C # 0. Conclude that
the above trace map is surjective.

9(¢) =39(¢&)

Exercice 4.17. [Sobolev space in a cube] Let L2,.(R%) be the set of functions u : R? — C

per

which are 277Z¢ periodic and such that the restriction of u to Qg d:ef]O, 2r[? belongs to L%(Qq).

We let H).(RY) the set of u € L2,.(R?) such that Vu € L2 (R%). We equip L2, (R?) and
Hz}er(]Rd) with the Hilbertian norms:

def 1 def 1
iz, =\ e Ilzi0n and g, & \/W(uunimd) +IVulag,) -

For k € Z%, we let ey(z) def ikl2) and we define the discrete Fourier coefficients of u by

def 1 —i(k|z)
up = (27r)d/de u(x) dx.

(¢) Compute [uflzz  and [lullgy =~ in terms of wy.
(i) Let Ty : w30 5 <, ke
(a) Show that s (T},)nen converges to the map Id in L(H}.,; L2..).

(b) Conclude that the embedding H;er(Rd) into L2,,.(R%) is compact.

per

Exercice 4.18. Let 1 < p < d. We define the critical Sobolev exponent by fsc+% =-1+ g-

(i) For p > 2, show that Vs > s., H*(RY) « W1P(R9).
(ii) For 1 <p <2, show that Vs < s., WHP(RY) — H*(R?).

Exercice 4.19. We propose a proof of Sobolev injection in dimension d > 2 as a consequence
of the Hardy-Littlewood-Sobolev inequality.

(i) Show that there exists C' > 0 such that for all f € C>°(R?%) and z € R,

Vil

< ——ay.
f@l <0 [

Hint : notice that if f is supported in the ball B(0, R) then for all a w € S¥~! the unit
sphere, there holds

R
$0) == [ s

(i) Conclude that if d < p < oo then W1P(R?) continuously embed into the space Co(R?)
of continuous functions on R% which go to 0 at infinity.

(#i) For 1 < p < d, give a new proof of the critical Sobolev injection (4.29).
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Exercice 4.20. Let d = 3.

(i) Let ¢(x) = \71| Show that ¢ is a homogeneous function of degre —2 with spherical
symmetry. Show that
~ c
(&) = 3
€17

for some ¢ € R*.
Hint: we recall that a distribution with support a singleton is a finite sum of Dirac masses
(exercice 3.6).

(i) Recover using Theorem 4.2.2 the special case of the Hardy-Littlewood-Sobolev inequality:

1
Hm *fHLG(R3) N ||f”Lg(R3)-
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Chapter 5

Scattering for the free Schrodinger
semi group In R4

This chapter is devoted to the study of a central phenomenon in wave dynamics: scattering,

that is the spreading of the energy of wave packets over all space. We shall restrict the
exposition to the linear Schrodinger equation

0. Au=0

{ 10pt + A . (t,2) eRx R, w(t,z) € C. (5.1)

U|t:0 = Uup

The spreading of the wave packet is due to the structure of the wave packet during the evolu-
tion: the speed of propagation in space of a wave packet localized at the frequency ¢ € R? is
an increasing fonction of |¢| as indicated by the dispersion relation ! Hence the wave packet
decomposes into elementary wave packets which travel at different speeds depending on their
frequency: this is scattering.

The physical phenomenon is clear, but its actual translation into useful tools to the study
the propagation, in particular for the study of nonlinear problems, has long been a challenge,
especially for Schrodinger like models which produce infinite speed of propagation and little
smoothing regularity. The pioneering works of R. Strichartz [38]| at the end of the 1970’s de-
voted to abstract harmonic analysis problems (restriction Theorems in Fourier analysis) have
paved the way to the discovery of a new functional framework which has been developped for
more than thirty years, and lead nowadays to breathrough results in the description of the
long time behaviour of linear and non linear waves. The starting point is the series of works
on the Cauchy problem for the nonlinear Schrédinger equation by Ginibre and Velo [16] which
we will review in the next chapter.

Our aim in this chapter is to prove the celebrated Strichartz estimates and other dispersive
properties of the flow in connection to the pseudo conformal symmetry.

5.1 The Schrédinger semi group in R?

We study in this section the linear flow (5.1) for an initial data ug € H*(R?).

!computed by looking for a monochromatic wave (t,z) — e (€=« which through (5.1) yields w = |€]*.

71



5.1.1 Representation formulas

The linear flow (5.1) is explicitely solvable in Fourier. In all the section, w or Fu is the Fourier
transform in the space variables only, ¢ is seen as a parameter.

Lemma (Representation formula). Let ug € S(R?), then the unique solution u € C'(R; S(R%))
to (5.1) is given by

ult,”) = S(t)ug = Sy +ug = F e "l Gy (€)) (5.2)
with ) )
vVt e R*, S, def y ei% and Sp dzeféo.
(4mit)2

Proof of Lemma 5.1.1. Let u € C*(R; S(R?)) solution to (5.1), then taking the Fourier trans-
form in x of (5.1) yields

d ~ - -
Y(t,€) € R x RY, zgu(t,f) — €%at, &) =0, u(0,&) = ug(¢),
which is explicitely integrated as
V(t,€) € R x RY it €) = e e g (¢),

and (5.2) is proved. The representation formula in space is a direct consequence of the com-
putation of the Fourier transform of Gaussians which is proved below. O

Lemma 5.1.1. Let z € C which R(z) > 0, then

]_-<€—z|-\2> (€) = <Z) %6_ Iif

z

I

_d
2

ef , _d

with? z72 = |z 2eig? for z =|z|e? and 0 € [~7/2,7/2].

Proof of Lemma 5.1.1. For all ¢ € R%, the functions

2 TG _le?

—q — 2

z— e @021 gy ot 2 (—) e 4z
Rd z

are holomorphic on D = {z € C,R(z) > 0}. The classical formula of Fourier transform for
Gaussians ensures that these two functions coincide of the half real line {z = = > 0}, and
hence on D. Let ¢t # 0 and consider a sequence (z,)neny of D converging to it. Thanks to
Lebesgue dominated convergence theorem, for all ¢ € S, there holds

lim e_Z"ngZ)(J:)dx:/ e_iﬂr‘ng(a:)dﬂs and

n—o0 R4 Rd

i (5) [ eBega=(3) [ o

d 2

5 _lél
F <e*2n|'|2> — <1 ) 26_4zn ,
Zn

2choice of the determination of the complex logarithm.

Since
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we can write using the definiton of the Fourier transform for distributions (cf 4, 17]),

~

(et ) = (P By = lim [ e lPE(a)dr = lim [ el P () (€) de

n—-+o0o n——+00
7\ 2 [ 7\ 2 l¢|?
— 1 _ T 4zp d — — T 4it d
Jm (5) [eBaga=(5) [ Faode
which yields the expected equality for z = it. O

Sovling the homogeneous problem (5.1) allows one to solve the inhomogeneous problem.

Lemma (Duhamel formula). Let ug € S(R?) and f € C(R;S(RY)), then the solution to
u € CY(R; S(RY)) of the inhomogeneous problem

Ujt=0 = U0 '
1s given by Duhamel representation formula
¢
u(t) = S(t)ug — z/ St—t)f(t)dt. (5.4)
0
Proof of Lemma 5.1.1. In Fourier, u is a solution iff
d N =~ N N
VEER, i u(t€) — [¢u(t,€) = F(t.€), u(0,€) = o (&) (55)
which is integrated explicitely as
t
it §) = e M (€) — i / e ORER € d
0
and (5.4) follows through inverse Fourier transform. O

5.1.2 The Schrédinger semi group on R?

Observe that the representation formula (5.2) makes sense for ug € H*(R?) and even ug €
S'(R%). The following Definition-Proposition is therefore an immediate consequence of (5.2)
and Plancherel.

Proposition (Semi-group on H*(R%)). Let s € R, we define for ug € H*(R?) the Schridinger
semi group on H?® by

VtER, S(t)ug =S *ug=F (e M Gy). (5.6)

Then (S(t))ier is strongly continuous and unitary on H®, ie:

1.Regularity: ¢ — S(t)up € C(R; H®).

2.H? isometric: ||S(t)uo||gs = ||uol s -

3.Group property: V(t,t') € R2, S(t)S(t')ug = S(t + t')up and S(0) = Id.

4. Adjoint: S(t)* = S(—t) where the adjoint is with respect to the Hilbertian structure of H®.

Pointwise decay of the semi group follows directly from the representation formula (5.2).
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Proposition (Pointwise decay). Let t € R* and p € [2,+00], then S(t) is strongly continuous
from L¥ into LP and

. 1
vte R, |IS(H)uollrr < mllwllmu (5.7)
|[dmt|2 e P

Proof of Proposition 5.1.2. Let t # 0, it suffice by density to establish (5.7) for uy € S(R?),
but then Young and (5.2) ensure:

1S(@)uollzee < lluollp[|Sellze <

1
panE [[uolz1- (5.8)
Ttl2

On the other hand, since the semi group is L? isometric:
1S()uollz2 = lluol|L2-
Riesz-Thorin interpolation Theorem yields the claim. O

An immediate consequence of pointwise decay is the local decay of energy. Let ug € S(R?),
then since S(t) is unitary on L?, the total mass is conserved:

1S () uoll L2 = lluoll 2.

But the local in space mass is dissipated in time: let R > 0, then
2 d 2 Rd 2
. 1S (t)uo|” dz S RY|S()ug||fe < —|t|dHuoHL1 — 0 as [t| = +o0.
z|<R

We shall see, and this is a fundamental feature of dispersive problems, that the speed at which
the local mass is dissipated is directly connected to the reqularity of the data.

5.1.3 Weak solutions

The Schrodinger semi group (5.6) naturally extends to S, and then the equation (5.1) is
satisfied in the sense of Distributions, [17].

Definition 5.1.1 (Weak solution). We say that a distribution u € C(R;S'(RY)) is a weak
solution of the inhomogeneous problem (5.3) if for all v € CY(R; S(R?)), there holds

[l 8016 = 0100 ' = i ip(0)) + i), 0 + [ (1€, 00))
0 0

where (-,-) is the duality bracket of S’ and S.

Proposition 5.1.1 (The semi group produces weak solution). Let ug € S, then the distribu-

tion
S(t)ug = ]-"’1<e’”|§‘2ﬁ0) — Siwuo with Sy(w) = — (5.9)
(4mit)2

belongs to C*°(R;S’) and is a weak solution to (5.1).

Remark 5.1.1 (Infinite speed of propagation). The formula (5.9) shows an infinite speed of
propagation property. Indeed, let ug = 0y—¢ the Dirac mass at the origin, then (5.9) implies

Vi 7é 0, u(t) = St,

and hence u(t) does not vanish at all on R?, even though the data was concentrated at the
origin only.
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Proof of Proposition 5.1.1. Let u(t) = F~! (—eit‘5|2ﬂo(§)). For ¢ € C*(R;S), we note

t
L) % /0 (ult), Dp(t') — idhp(t) )
By definition of w, we have
t
L0 = [ (R0 Apte) — ioro(e)) de.
t
_ /0 (e (€), F1 (Aplt) — idup(t)) ) '
t
= - /0 (2m)~ (i (&), " (|6 B(¥, —€) +i0uB(t, —©)) ) dt'.

By definition of derivation in the sense of distributions:

Iy(t) = —(2m)~¢ <ao, / i (\£|2¢<t’, —&) +i0B(t, —E)) dt’> :

0

Since . o
o (e 1Pig(t, —€)) = e P (16t —€) + i (¥, —6) )
we obtain
t

/0 S_it/|£‘2 <|§|2¢(t,, _5) + iaﬂ@(t/, _£)> dt/ _ ie_it‘§|2$(t, _5) B 1{5(0’ _5)
Hence

L(t) = i(2m) “do,e " B¢, —€)) —i(2m) "N, B0, -€)),

= i(u(t), Flo(t)) — i(io, F1e(0)) = i(u(t), p(t)) — i{uo, »(0))

and the claim is proved ]

We may similarily extend the Duhamel formula which will be needed for the study of the
non linear problem.

Proposition 5.1.2 (Low regularity Duhamel formula). Let ug € L? and f€ L} (R;L?) then

loc

the free Schrédinger equation (5.3) has a unique weak solution u € C(R; L?) which is given by
the Duhamel formula (5.4). Moreover, the mass evolves according to:

t
VR, Jult)|2 = [luol +2%m/ / F(r2)ilr, z) da dr. (5.10)
0 JR4

Proof of Proposition 5.1.2. Assume first ug € S(R?) and f € C(R; S(RY)), then u € C'(R; S(RY))
and we may take @ as a test function in the definition of the weak formulation. We obtain
after division byi:

t t
w32 = |luoll32 +i/ / fudxdr — z/ / u(Au — i0yu) dx dr. (5.11)
0 JR4 0 JRd

We have —idyii + At = f and the result follows. To prove (5.10) for data ug € L? and

fe Llloc(R; L?), we regularize : using the convolution by an approximation of identity in ¢,
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we construct uf} € § with u) — w in L? and f* € & with f* — f in L (R;L?). Let

loc

u" € C1(R;S) be the solution associated to (uf, f*) by Duhamel, then for all (n,m) € N2,
i0p(u" —u™) + A(u" —u™) = " = " et (U —u")p—o = us —ug'-

Hence

t

I =) Ol < o = gz +| [ 17 = 772 e

and hence (u")nen converges strongly in C(R; L?). We may therefore pass to the limit in the
weak formulation and ensures that (5.10) is still valid for the limit u of this sequence. Finally,
uniqueness if obtained by remarking that if u € C(R; L?) is a solution to (5.1) with f =0 and

up = 0, then so is u™ def Xn *u with x,(t,x) def n'*dx(nt,nz) and x € C(RF?) of integral
1. We have u™ € C®(R; H*®) with H>(R?) dof Nser H*(RY). Passing in Fourier, we see that
a.s. in & € R the smooth function ¢ + u"™(t,&) satisfies the differential equation (5.5) with

source term and data 0, and hence u™ = 0. We conclude u = 0 by passing to the limit, and
hence u = 0. O

5.2 Strichartz space-time bounds

We give in this section a self contained proof of Strichartz estimates which yield an improved
regularity in space of u(t,-) provided a suitable averaging process in time. The corresponding
estimates are the corner stone to the resolution of the nonlinear Cauchy problem and the
derivation of the long time asymptotics of the flow. More precisely, we will transform the
pointwise in time estimate (5.7) into an averaged temporal bound of the type

1S(uollzary < Clluollre (5.12)
where

1
lull oy = (fR lu(t, )2, dt) " for 1< q< +oo
tHx

llullLoe r, = supyeg [[u(t, )|y for g = +o0

Remark 5.2.1 (Scale invariant estimate). The estimate (5.12) is scale invariant. Indeed, let
A € R*, and uy(x) = u(Ax) then an explicit computation ensures

S(t)U)\ = (S(AQt)u))\.

This implies immediately that it if (5.12) holds, then necessarily (q,r) must satisfy the com-
patibility relation:

2 d d

22, 5.13

q + r o2 ( )
Remark 5.2.2 (Gain of regularity). The estimate (5.12) is an improvement with respect to
Sobolev embeddings. Indeed, since the semi group is unitary on H?, then uy € H® implies
u(t) € H®. To obtain L™ control through Sobolev requires s = d/2 — d/r. The estimate (5.12)
shows that u(t) = S(t)ug € L" for a.e. t even if ug € L?>. Note that the gain of regularity is
a.e. in time and hence does not contradict the time reversibility of the flow.

Definition 5.2.1 (Admissible pair). We say (g,7) € [2,00]? is admissible if (5.13) holds and
(¢,r,d) # (2,00,2). We say that is strictly admissible if moreover® (q,7) # (2, £%)-

3these are the "endpoints"
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Theorem (Strichartz estimates). Let d > 1.
(i) Homogeneous case: for all admissible pair (q,r), there exists C such that for all ug €
L2(R%), the solution S(t)ug € C(R; L2(RY)) to the homogeneous problem

10su + Au =0,
(5.14)
Ujt=0 = U0,
satisfies
1S()uollLa(zyy < Clluol|p2- (5.15)

(71) Inomogeneous case: for every admissible pairs (q1,71), (q2,72), there exists C such that for
all f € L%(R; L"2(R%)), the unique solution v € C(R; L*(R%)) given by the Duhamel formula

to _
{ 10+ Au = f, (5.16)
Up=p =0
satisfies
Iz < Al o, (517)

Proof of Theorem 5.2. We treat the case of admissible pair only and refer to the seminal paper
of M. Keel and T. Tao [20] or [2] for the endpoint case

2d
(q,7) = (2, d—2> and d > 3.
By density, we may assume all functions are smooth and decaying at co.

step 1 The TT* lemma. Let us start with an abstract elementary lemma.
Lemma (T7T*). Let T € L(H,B) where H is Hilbert and B Banach, and let T* : B' — H
be the adjoint operator defined by:
(T*zly)u = (2, Ty) p'xB-
Then:
ITT | 2.3y = 1T Z030m) = 1T W7 3730y (5.18)

Remark 5.2.3. In other words, it is equivalent to show that T € L(H;B), T* € L(B'; H) or
TT* € L(B'; B), and then (5.18) holds.

Proof of Lemma 5.2. By characterization of the norm in a Hilbert space:

1Tzl = sup |[(T"z[y)n.
lyllz=1

Hence

IT* 2l = sup (@, Ty)pxpl <zl sup [Tyls <Tlcousllzls
lyllz=1 lyllr=1

and thus [T z(pr3) < Tl 233y Similarily |T| g5y < T 23 and then [|[TT*|| 25,5y <
I TNl c2; By I T* Nl £(Bri20) by composition. Using the Hilbertian structure again:

1T |3 = (T*z|T*2)y = (2, TT*2) prxi < |2l | TT* | £(pm)
and hence HT*H%(B,.H) < | TT*||z(pr;p) and (5.18) is proved. O
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step 2 Computing 7', T* and TT™*. Let (q,7) be strictly admissible. We apply the T7T™
lemma? to

H=L*RY), B=LYR;L(RY), B =LY R;L"(RY)

and
T :up — [t S(t)uo].

Observe that since S*(t) = S(—t)

0T = [ olt)S@ua dedt = [ (o(t.)/S(Ou)w it

_ /(( £)g(t, Yuo)3 dt = (/S dtuo>H

and hence the computation of the adjoint:
T : pr—> / S(—tYpt',)dt' et TT*:p+— [t — / St —t)e(t,) dt’].
R R

In particular, up to the domain of integration in time, T7T* f is very close to the Duhamel
term (5.4) assocated to the inhomogeneous equation (5.16).

step 3 Homogeneous estimate. The key idea is to estimate the norm of T7T™ instead of T,
using pointwise decay (5.7) as follows :
/\St—t 'l dt

1 1
S |l g = / g, a
R |t —t/]2Gr ) : R [t —t]q ’

70 s = | [ 6= ')

where we used the admissible pair relation:

d(1 1\ d ] 2\ 2
2\r r) 2 r)  q
We apply the one dimensional Hardy-Littlewood-Sobolev estimate in time: for 0 < 2/q < 1,

|

1 2
~ ||h”m avec 1+f 4+ =
LI 5 g

Hence v = ¢’ and

1
ITT gl 151 Hﬁﬁug@,-)m 23 Sl
t

and hence using the TT* Lemma:
TN Z ¢y = 1T N2 (5raey = ITT* | (i) < 00 (5.19)

which concludes the proof of the homogeneous estimate (5.15) in the case 2 < ¢ < oo. The
case ¢ = 0o is 7 = 2 and this is just conservation of mass for the free Schrodinger group.

4it suffice as usual to argue for Schwartz functions for which the definition of T and T* make perfect sense,
only the norms in which we estimate these terms matter.
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step 4 Inhomogeneous estimate. The proof of the inhomogeneous estimate (5.17) when
(q1,71) = (g2,72) = (q,r) is similar to step 3 since the formula (5.4) with uwp = 0 is TT*
with integration restricted to the interval [0,t]. Indeed, the solution v to the inhomogeneous
problem (5.16) satisfies

with

x(t,t') =

dof [(1 st 0<t' <t out<t <O,
0 otherwise.

Since x is bounded by 1, we can write

t
mmw@sémw4wwwmw

and hence as above pointwise decay and Hardy-Littlewood-Sobolev ensure

| 1
wm%ﬂv' e gHQHWumﬂ <l
0 |t —t|a * LY |t| 4 ‘e t e
Let us now prove
[vllzgerz < HfHL?;L;g- (5.20)

For this, the group structure of S(t) yields

o(t,) = —i /R NS (E— ) () dE = —iS(1) /R N AVS (=) F(E, ) di?
= —iS{t)T* (x(t,)f)

and hence using the L? bound for S(¢) and remarking that (5.19) (i.e. T : L? — L{(L2)
ensures T* : L{?(Ly?) — L?), we obtain for t € R for (gg,79) admissible,

lot, )z = 1T Ot ) ) ez S \Ix(tf)fllegL;g S HfHngL;g,

and (5.20) is proved.
The linear map U : f + v is bounded from L{?L* into L{°L2 N L L2, and hence using the

x
Riesz-Thorin interpolation Theorem generalized to space time Lebesgue (cf Theorem 1.2.3)

ensures that it also bounded from L{?L;? into L{* L7 for all admissible pair (q1,71), (g2,72)
with go < ¢1 < 4+00. The case g2 > ¢1 follows by duality. More precisely, assume

U is bounded from L;L? into LI L™ (5.21)
for all (q1,71) strictly admissible, then since U is also bounded from Lgll L;ll into LY L, we

obtain (5.17) for all strictly admmissible pair (gi,71), (g2,72) such that ¢ < ¢2 < 4+00. To
prove (5.21), we write (simple generalization of Lemma 2.2.4) :

/ vqu:vdt’.
RxRd

||U||L§“L;1 = sup
H¢||Lg/1L;/1§1
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By density, we may assume functions are smooth and decaying at infinity. Letting v = U f
and recalling the definition of U yields

/Rdevqbdxdt B /Rde/ S(t—1t) f(t) o(t) dt’ dt dx
= / / )F()o(t >)L2(Rd dt' dt
N /R< ()dt>dt’

with x defined above. By Cauchy-Schwarz, we conclude

[ [ vodsa] < [ USO80 )ageo T OO0 e

But T: L? — LELI implies T : LALY — L2, and hence for all ¢/ € R,

* / /
I )0y S I D0l < 19t

and hence since S(—t') is unitary on L2(R%),

R Rdwdxdt‘ S HfHLngWHngL;;-

This conclude the proof of Theorem 5.2 for strictly admissible pairs. O

Remark 5.2.4. The limit cases ¢ = 2 and r = 2d/(d — 2) with d > 3 are more delicate to
handle, we refer to [20] or [2] for a slightly different proof relies on an atomic decomposition
analogous to the one used in Chapter 1).

5.3 Local in space decay in weighted spaces

The pointwise decay estimate (5.8) is optimal in the sense of the norms used, but it does give
a very clear description of the dispersion mechanism. The spreading of the wave packet can
be seen directly for Schodinger using the pseudo conformal symmetry which requires data in

the virial space

> e  : que 12)- (5.22)

We shall admit the following elementary result ( see for example [7]) which follows by a
regularization argument :

Theoreme 5.3.1. S(t) is strongly continuous on X.

A fundamental algebraic fact is the existence of an explicit pseudo conformal symmetry for
the linear Schrodinger flow.

Proposition (Conformal invariance). Let v solve (5.1) then so does

1 t ;_lel®
u(t, z) 1 —v < , ’ ) ' 11+ (5.23)
(1468 \1+t 1+t

forall t # —1.
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Proof of Proposition 5.3. Let u solve (5.1), and consider the renormalization

1 ds 1 T

)\(t)gw(s,y) avec — = (D) et y= w (5.24)

u(t,xz) =

for some scaling factor A(t) > 0 to be determined. Let \; = %, we compute:

0 = (i0u + Au) (t,x) = 21 y (i@sw - z% [;iw +y- Vw} + Aw) (s,v).
A

2
We now map the above linear operator onto the harmonic oscillator as follows: let

b(s)|ul? A
w(s,y) = v(s,y)eﬂb i with b= —78,

then

bs + b?
i@sv—i—Av—l—( 1— >|y|2v:0. (5.25)

An explicit symmetry of the linear Schrodinger equation is therefore provided by the choice

X =—b
A Y
bs +b% =0, (5.26)
ds _ 1
dt = A%

To integrate (5.26), we compute

QI

AN oA A2 A

and hence

The choice ¢ = —1 (i.e. A(0) =1 and A\(0) = 1) gives
At) =1+t b(t)=—-A(t)=—-(1+1)

and hence choosing s(0) = 0:

this is (5.23). O

A spectacular consequence of (5.23) is the complete description in the physical space of
the dispersion of the wave packet.

Proposition (Dispersion in X). Let ug € ¥ and u the corresponding solution to (5.1) given
by Theorem 5.3.1. Then there exists u* € ¥ such that

v |tT% <“H) ;)
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Proof of Proposition 5.3. Let v be given by (5.23). Then v satisfies (5.1) and

t
s(t):mél as t — +oo.

By L? continuity of S(t), we conclude
v(s,y) = v(l,y) in L? as s— 1.

Let u*(y) d:efv(l,y) and y = x/(1 +t), we conclude

1 t T o T
< v( , )—u<7)‘ — 0 as t — +o0,
which using (5.23) implies (5.27). O

In other words, the spreading of the wave packet induced by the physical separation of
wave packets of different frequencies yields in physical space a profile that spreads in space at
a universal speed vitesse A(t) ~ t modulo an explicit quadratic oscillation. A corollary is an
improved decay estimate in weighted spaces.

Proposition (Local energy decay in weighted space). For s > 0, we define the operator
multiplicateur de Fourier |D|* by

S d S
F(DFv) ¥ e Fo.

Then for all u solving (5.1) in CY(R;S), there holds :

|zl H‘DP (uoeM)
H|D|s <ue—l4(1+t)> < CS

L2 (L+1)°

Proof of Proposition 5.3. Recall (5.23). Since v solves (5.1), the conservation of the norms
| - || s through the action of S(t) ensures

L2, (5.28)

s _ — d_g d_g s
1D 2A )2 = 12 ) e = X270zl g = A27°[|ID2]] 2

and hence
_i 2l 1 t 1
D|* e "30+0 = ——|||ID|Pv | —,- = D|®v (0, - .
o (w) | = g oo ()| = e oo 0.
It remains to replace v(0,-) by its value and the claim is proved. ]

Remark 5.3.1. Combining the above Proposition with the Gagliardo-Nirenberg estimate (see
exercice 4.10) :

d 1—4
1Ullz S NIPPUNIU 2 *

||

7i4(1+t), retrieves (5.7), but with a different norm on the data

applied with U = ue

Compared to (5.7), the estimate (5.28) expresses an improved local enegy decay for higher
Sobolev norms modulo the quadratic phase, but to the expense of higher control of the data.
The method presented here for the Schrodinger equation is a canonical application of Klain-
erman’s vector field method: decay in time is proved by writing down the conservation laws
for suitable transformations of the solution related to the symmetry group, and this method
has extremely deep ramifications in particular for the study of the quasilinear waves of general
relativity, see [8].
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5.4 Exercices

Exercice 5.1 (Dispersion for the free transport). Let the transport equation describing the
evolution of the microscopic density f(¢,z,v) € RT of free particules which are at = € R?
with the speed v € R? at time t € R :

{ of+v-Vuf=0,
fit=0 = Jo.

(i) Assume fo = fo(x,v) is differentiable, compute the solution to (7).

(T)

(#) If fo is moreover integrable, show that the total density is converved

/ f(t,z,v)dxdv = / fo(z,v) dx dv.
Rd x R4

RdxR4
(#ii) We define the macroscopic density p(t, z) fRd f(t,x,v) dv. Show the pointwise decay:

llp(t, ) lpee < |dH sup fo(+,v)||1  for all ¢ # 0.

|t

Exercice 5.2 (Wave equation). Let the free wave equation

Ou=20
(W) {

(u, Opu)p=0 = (uo,u1)

where 0 % 0? — A and where u = u(t,z) € R, (t,r) € R x R%

(i) For d =1 and (ug,u1) € C? x C', show that the C? solution is given by d’Alembert’s
formula:

u(t,x) = ;<uo(x +t) +uo(zr —t) + /Ht u1(y) dy).

r—t

(7) For d = 3, we recall that the solution is given by

u(t, z) = 4;(1 /S(x,t> wi (o) do + i(l/s(m) o (o) do>>

wher S(z,t) is the sphere of center z and radius ¢. Assume for simplicity up = 0, then

show:
[Vuillpr | [l

1 t2

[u(®)llz <

Exercice 5.3 (Oscillatory integrals). Let a € D(R) and ® a C? function such that for some
co > 0:
Vz € Supp a, ®"(z) > ¢p.

For t € R, we define the oscillatory integral
I(t) d—ef/ @) (1) da.
R
For t # 0, we define the differential operator £; acting on derivable functions b by

def 1 s /
Lib(x) = m(b(x) —i®' ()t (2)).
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(i) Using Ly, show that I(t) = I (t) + I2(t) with

Ii(t) d:ef/ewb(x)ma/(x) dr and

def elte@) - (P (2))° 9" ()
L(t) = /1+t@>’(m))2<1+1@ (x) —2zm)a(aﬂ) dx.

(#) Noticing that for = € Supp a,
1 1 " (z)
14+ t(P'(2))2 ~ co 1l +t(®'(x))?’
show that

m (1 1
L)< =—+3)—|ld .
12()] < 3 <00 ),t’é la'll L1 w)

(7i) Conclude that there exists Cp(cp) such that

Co
1B < —la[|z-
2>
(iv) Application : Consider the Airy equation
ou+ 93, u=0
with data ug integrable and with Fourier transform supported in
[~2,-1/2] U[1/2,2].
(a) Show that the L? norm is conserved. Write u(t) = k; x ug for a suitable function
k; and conclude )
[u(®)l[L < CJt[~2[Juol 1
Hint: use the fact that if ¢ is smooth with support in {3 < [£| < 3} and equal to
1 on {§ < ¢ <2}, then Ty = plo.
(b) What kind of LP~ L?" estimate do we obtain if 7 is supported in the set [—2), —/2]U
[A/2,2)] 7

Exercice 5.4 (A symmetry of the harmonic oscillator). We consider the cubic non linear
harmonic oscillator in dimension 2

i0pu 4 Au — |z2u + ulul? = 0.
(i) We define the renormalization

u(t, z) = tw(s,y)
IO
w(s,y) =e" 1 v(s,y)
—z ds _ 1
Y=o @& =~ 12"

Show that v(s,y) satisfies the same equation iff

b= 5.29
o () b - o2

where f = %.

(7)) Integrate the dynamical system (5.29) in time .
Hint: look for a conserved quantity and draw the phase portrait.

84



Chapter 6

Scattering and blow up for (NLS)

The aim of this chapter is to first solve locally in time the Cauchy problem associated to the
nonlinear Schrodinger equation

{ i@tu + Au + 5U|U‘p_1 = 07 (t’x) € [Oa T[XRd7 (6 1)

u(0,x) = ug(x),

where p > 1 and ¢ € {—1,1} dictates the nature of the nonlinearity: focusing for ¢ = 1,
defocusing for € = —1.

The nature of the problem is similar to the Cauchy-Lipshitz Theorem for ode: is the knowl-
edge of wug sufficient to ensure the existence and uniqueness of a maximal in time solution?
Then is this solution global, or on the contrary can it blow up in finite time? The approach
is indeed to reformulate (6.1) as an ode in a Banach space, the heart of the matter being the
choice of the Banach space.

In this chapter, we shall see how Strichartz estimates provide a well adapted functional set-
ting to solve the Cauchy problem. We will then derive classical fundamental results concerning
scattering in the defocusing case, and blow up in the focusing case.

6.1 The local Cauchy problem

The main result of this chapter is the resolution of (6.1) seen as an ode in the Sobolev space
H'. The choice of the H' space is dictated by the conservation laws as we shall see.

Theoreme 6.1.1 (Local Cauchy problem in the energy space). Let d > 1 et ug € H'(R?).
Assume

+oo si d=1,2
1<p<{ % si d>3. (6.2)

Then there exists a mazimal time T (ug) > 0 such that (6.1) admits a unique mazimal solution
u € C([0,T[; H'). Moreover, there erist two universal constants C,a > 0 independent of ug
such that

T(uo) = Clluoll 77

Finally, there holds the blow up criterion:

T < +o0= th/n% lu(t)|| g1 = +o0. (6.3)
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In other words, for not too strong nonlinearities (6.2), the Cauchy is well posed and sub-
critical in the energy space in the sense of (6.3). The local in time theory does not depend on
the nature (focusing or defocusing) of the non linearity.

The proof of the general Theorem 6.1.1 is given in [7]. In order to simplify the exposition
and extract the essence of the argument, we restrict the presentation to the model® case 2
d=2 et p=3,, see also Exercice 6.1 for a simplified proof for d = 1.

6.1.1 Picard contraction

The structure of the proof, due to Ginibre et Velo [16], is remarkably simple and robust: a
Picard fixed point in a suitable Banach space. Indeed, through Duhamel formula, the heart of
the proof is to exhibit a fixed point of the map

O (u)(t,z) = S(t)uo(x) + is/o S(t—s) (u(s,x)|u(s,x)\2) ds. (6.4)

The difficulty is to exhibit a function space where ® is a contraction. For example in dimension
d =2, H' isnot an algebra and hence u(t) € H' does not ensure a priori that u(t)|u(t)|> € H'.
Strichartz estimates as studied in chapter 5, will provide the needed gain of integrability with
respect to Sobolev estimates which will allow us to close the control of the nonlinear term.
To ease the presentation, we note

B =

T
def
follzges ([ lute g, ae)” por 750

More generally, for ££ Banach space, we let

1

. 1

def p
lullzz & = </0 HU(t)II%dt>

)
[Tw
i=1

Hoélder’s inequality implies:

.
< [T sl 2 o (6.5)
s L7 Ly

with

1 1 1 1

= 7'7 7:27'7 1§p7q7p]7q]§+oo
p j:lpJ q = q;

In dimension d = 2, the pairs
(00,2) et (3,6)

are admissible, and the space time Lebesgue norm
l[ull sy = max{|[ullpge r2, lull 3 1o } (6.6)
will play a fundamental role. More precisely, we introduce the space time Banach space:
def
Xr={u: |ullx, = [[ulls, + | Vulls, < +00} avec VE Vo= (0ry,--,00,)-
The key to the proof of Theorem 6.1.1 is:

Land physically relevant
Zet physiquement pertinent

86



Proposition 6.1.1 (® is a contraction in small time). There eixst universal constants Cy,Co >
1 such that for all ug € H', if

Cy

0<T<
HUOH?I’{l

and ET = {u e Xr: HUHXT < CQ”UOHH1}, (6.7)

then ® : By — Br is a strict contraction.

Proof of Proposition 6.1.1. Let us prove that ® is a strict contraction on By for T small
enough: L
dk <1 t.q. Y(u,v) € By x By, ||®(u) —®(v)|x, < k|lu—v|x,.

Indeed,

O(u)(t) — @(v)(t) = is/o S(t—s) (u(s,x)|u(s,x)]2 — v(s,x)|v(s,x)|2) ds,

and hence inhomogeneous Strichartz estimates and Holder (6.5) with (p,p1,p2) = (1,3,3/2)
and (q,q1,¢2) = (2,3,6) yield:

[8() ~2)ls, < luul® — vloPlloy e < N —v)(ul + 0Pl oy 22
2
S M= olgg (lel2g g + 10125 1o ) -

We now take one derivative of ®(u). Since S(t) and V commute,

(VO (u)) (t,z) = S(t)(Vuo(x)) —l—i/o S(t—s) [V(u(s, a;)\u(s,x)]Q)] ds,

and hence inhomogeneous Stricharts estimates and Holder (6.5) with (p, p1, p2,p3) = (1,3,3,3)
et (¢,q1,92,93) = (2,6,6,6) ensure:

V()= Vo), S IV (ulul?) = T (o]0l 2
S 19w = 0) (o) 2y 22+l = ol IVl + [Vl (ul + o) 2y 22
S IV =)z (Il g + 10125 16 )

i = vllz s (IVullzgzg + 1902320 ) (lullz e +llolzg 2o )

The fundamental observation is that both estimates are subcritical®, which will allow us to
show that @ is a contraction in Br for T' = T'(|jug||g1) small enough. Indeed, using the
Sobolev embedding Theorem for d = 2:

lulle < llull g Vp € [2, +oo].

Hence )
lullps ze < llullpsm S T3 ullpge (6.8)

and we obtain

2
J@(u) = ()57 S THu = vllgzs (Iullfe s + Nl ) -

3which in the general case is equivalent to assumption (6.2)
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and
IVe@w) - Vew)ls, < T3 (IV0 = vl e (luldzm + luldsm )
= vl (el + el ) (IVelzgzs + 1900500 ) )
Hence in fine the estimate for some universal constant ¢; > 0:
V(u,v) € Xr x Xr, [[@(u) = 2@)llx, < T3 (Julk, +llolk,) e —vlx,.  (6.9)

It remains to prove that ® sends Br into Br for T' small enough. Indeed, we apply (6.9)
with u, and v = 0. The homogeneous Strichartz estimate ensures

[2(0)[Ix7 = [[SE)uollxr < lluollar,
and hence there exists ¢g > 0 universal such that
2 3
Vu € X, [|®(u)]lx, < calluolla + T3 [ul %,

Choose
CQ = 202

in (6.7) and letug € Br, then
2
l@(@)lxy < 2 (luollm + 8T uolFn ) < 2elfuolln

as soon as

SC%T%HUOHQ 1 <1 ie. TZ <1)2. (6.10)
= ~ \8c3fluollF

For such a time T, the closed ball By is stable by ®, and hence using (6.9), ® is Lipschitz

on Bp with modulus

2 1 2
k<20T3C3||ugll?, <1 for T < <) .
2” ”H1 201C22HU0||§{1

This concludes the proof of Proposition 6.1.1. O

6.1.2 Proof of Theorem 6.1.1

We may now conclude the proof of Theorem 6.1.1.

step 1 Existence and regularity of a solution. Let ug € H', Cy,Cy given by Proposition 6.1.1
and

C
T= o,
2[|uollz
then Picard’s Theorem in the metric space (Br, ||l x,) ensures that ® admits a unique fixed
point u € By. We claim
u € C([0,T); HY). (6.11)

Indeed, let v € C([0,T); H'). Using the Fourier representation of the semi group, we have:
Sty € C([0,T]; H'),
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and hence using the Duhamel formula
u=®(u) =5(t)[up +icP1(u)(t)] with &1(u)(t) = /0 S(—s)(u(s)|u(s)|?) ds.

Hence we need only check:
w € Xp implies ®1(u) € C([0,T); H). (6.12)

But S(t) is isometric on L?, and hence using the continuous embedding H! C L% and Hélder:

@1 )E) - el = [ SEoueR @], < [ TPl ds

S = tllullfem S 1t —tllulk,

and similarily after applying one derivative in space:

IV @1 (u)(t) = V1 (u)(t))]l22 S/t ||v(u|“’2)(5)”L§d5§/t V() g llu(s)lIZg ds

2 2
S It =t Nullfee paIVull g e S 1t =215 lull%,.,

~

which concludes the proof of (6.12), and hence (6.11).

step 2 Uniqueness and blow up criterion. Let w be given by step 1 which is a solution
u € C([0,T); HY) of (6.1). Let v € C([0,T]; H') another solution. Let M denote a shared
bound for [|ul[zee g1 and |[v][ e 1. The assumptions ensure that v|v|? € LLL2 by Sobolev and
Holder, and hence Proposition 5.1.2 ensures

v=®(v).
But v € L¥H} C L3.LS by Sobolev. Hence by (6.8) and (6.8), for all Ty €]0, 77,

o= vllig e = 1900) = D), og S I ollzg, g (ol 1o + ol )

2 2
SN (T U||L§OLg (HUH%%%H; + ||U||%§%H;) S T5 M |lu— UHLSTOLg-

Hence there exists ¢ > 0 such that

Ju—ollig pg < gllu—vls g avee To dzefmin<ﬂjs,T)-
which implies u = v on [0,7p]. Since Ty depends only the H' bound a priori bound of the
solution on [0,7], we may iterate the argument starting at Tp, and obtain uniqueness on
[Ty, 2Tp], and so on, which yields uniqueness on [0, 7.
It remains to prove the blow up criterion (6.3). Let u € C([0,T[; H') be a maximal solution
with T' < +00. Assume by contradiction that there exists M > 0 finite such that

vt € [0, T [Jult)] g < M. (6.13)

Then by (6.7), for all ¢y € [0,T[, we may construct a solution to (6.1) with data wu(tg) at
t = to on a time interval of length CM 3 with C universal (see(6.10)). For ¢y such that
T —ty < CM~3, we obtain a new solution defined beyond T" which in light of the uniqueness
result coincides with u on [0,7[, and this contradicts the maximality of T'.
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6.2 Conservation laws and global existence

In this section, we aim at understanding under which conditions the local in time solutions
of the Cauchy problem provided by Theorem 6.1.1 exist for all times. Here the nature of the
singularity, focusing or defocusing, and the algebraic sturcture u|u[P~! of the non linearity,
will both play a fundamental role.

6.2.1 Symmetries and conservation laws

We describe in this section two fundamental structural facts: the existence of symmetries and
the existence of conservation laws, both being connected.

Proposition 6.2.1 (Symmetries of(NLS)). Let u € C([0,T[; H') satisfiying
i0pu + Au + eululP~! = 0. (6.14)
Then the following functions are also solutions to (6.14) :
o Scaling: (t,z) s ArTu(N2t, Az), A > 0;
e Translation : (t,z) — u(t,z + xg), 2o € RY;
e Phase : (t,z) — u(t,r)e?, v € R;
e Galilean drift : (t,x) — u(t,z — 26t)e? =8 g c R,

Scale invariance plays a fundamental role in the classification of the (NLS) problems through
the computation of the scaling parameter.
Definition 6.2.1 (Scaling parameter). The scaling associated to (6.1) is the unique exponent

d 2
Se such that the dilation u(t,z) ~ ux(t, x) ef NP w(\%t, \x) leaves the homogeneous Sobolev
norm H?®¢ invariant:

lun(t, M grse = 1u(A?t, ) e -
Explicitely*,
d
_ . (6.15)

We say that (6.1) is H% critical.

Example. Let p=3. Then d =2 is s, = 0, problem is L? —critical Then d =1 is s, = —%,

the equation is L? —sub critical since the critical space H~3 is below L? in the Sobolev ladder.
Finally d = 3 is s, = %, the equation is H 3 critical, and L?-super critical. These three
cases correspond to three relevant physical situations with dramatic changes in the behaviour
of solutions (see Theorem 6.2.1)

Noether’s theorem ensures that symmetries imply conservation laws (see e.g. [22] ou [39)]).

Proposition 6.2.2 (Conservation lawe). Let ug € H' and u € C([0,T[; H') the solution to
(6.1). Then for all t € [0,T] :

(i) Conservation of mass:

/Rd lu(t, )| dz = /R o (2) 2 da. (6.16)

4elementary in Fourier
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(ii) Conservation of energy:

E(u(t)) d:efl/ |Vu(t,z)|* dr — c / lu(t, z) [Pt dex = E(ug). (6.17)
2 R4 p+1 Rd
(iii) Conservation of kinetic momentum? :
M) ¥ 1m ( Vu(t, z)ult, 7) dx) — M{(up). (6.18)
R4

The physical interpretation of these conservation laws are clear: conservation of the total
probability of presence for the mass, and the total kinetic momemtum for the moment. The
energy E(u) is the sum of the kinetic energy and the potential energy. For ¢ = 1, the minus
sign in the potential energy indicates a focusing nonlinearity which acts against the natural
spreading of the wave packet.

Proof of Proposition 6.2.2. The proof relies on a formal computation where all integrals are
defined on R%, and where one uses the integration by parts formula with vanishing boundary

term at |x| — 4o0:
/Vu-Vvdx——/Auvdw.

Let us assume to begin with that u is space time smooth and decaying at 4+oco in space, as
well as all its derivatives. Then for the mass:

th {/U (t,x |2d95} Re (/(%u u(t, ) dm) =Im (/i(?tu(t,a;)u(t,a;)dx>
=t ([ @ut culuP )t 0) utatde ) =t ([ 19ut, o) dr) <o

For the energy

;tE( ) = Re (/Vatu-de—e/atummp—ldx>

= —Re (/ Oru {Au + eu\u]p_l} dx) =—1Im </ i0pu [Au + Eu\u|p_1} dx>
= Im </ |Au + 5u]u|p_1|2dx> =0.
For the momentum, let j € {1,---,d},
d
dtM( u) = Im </ uud:z:—l—/8 u@mdw)
—2Im (/ 8tu8judx> =2Re (/ i@tuﬁ’judfv)

= —2Re (/(Au + 5u|u]p1)(3'j7,Ldm> =0

5 M(u) is a vector with components Im (fRd Oju(t, x)u(t, x) d:r) , 1<j5<d.
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where we used the integration by parts formula for functions null at +oo:

Re </Au8]uda:> = —Re Z/@kuajzkudx = 0.

k£

These three computations can be justified for u € C([0,T[; H') modulo a regularization argu-
ment, we refer to [7] for a complete exposition of the argument. O]

Remark 6.2.1. We may now reinterpret the constraint (6.2) on the size of p. Let s. be the
scaling parameter associated to(6.1):

Then (6.2) is equivalent to
Se < 1,

ie (6.1) is H' —sub-critical. Equivalently, (6.2) is

2d . *
p—|—1<ﬁ:2* where H' < L*  for d >3,

and hence the Sobolev embedding Theorem ensures that E(u) given by (6.17) is finite for
uw € H'. So are the other two conservation laws, and hence H' is the minimum regularity for
which the three conservation laws of (6.1) are well defined, hence the relevance of a Cauchy
theory in this energy space’.

6.2.2 Global existence

We are now in position to state the fundamental global existence Theorem.

Theoreme 6.2.1 (Global existence). Let d > 1 and p > 1 satisfiying (6.2). Let s. be the
scaling exponent given by (6.15). Assume one of the following two cases:

(i) Defocusing energy subcritical non linearity: € = —1 and s, < 1;
(i) Focusing mass subcritical non linearity: € =1 and s, < 0.

Then for all ug € H', the solution to the Cauchy problem (6.1) given by Theorem 6.1.1 is
global and bounded in H':

T =+o0 and sup ||u(t)| g < C(uop)
teR*

where C(ug) depends only on the initial data.

Proof of Theorem 6.2.1. Let ug € H' and u € C([0,T[; H') be the maximal solution to (6.1)
given by Theorem 6.1.1. Global existence follows from an a priori bound on |[u(t)|| g1 which
coupled to the blow up criterion (6.3) implies 7' = 4o00. The uniform control of the H' norm
is obvious in the defocusing case € = —1 since the mass is conserved and both terms in the

5But the Cauchy problem may be perfectly well posed in other spaces. Typically (6.1) for p=3 and d =2
has a well posed Cauchy problem in L?, see Exercice 6.2.
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energy (6.17) are under control. In the focusing case € = 1, the Gagliardo-Nirenberg inequality
of chapter 4 yields:

_ ) d d
lul| p+r < CHU\|1BUHVU||C£2 with — o+ 5= PEN

We inject this estimate into the conservation of the energy and lower bound:

1 1)(1—0) 1)o
E(ug) = E(u)Z*HWH%Q—CH |50 gy (3D

1 1 o 1o
> fuwup—cu of| B =) | D) (6.19)

where use the conservation of the L? norm in the last step. We now observe

dip—1)

< 2.
2

4
sc<OHp<1+&<:>(p+1)U:

Hence the function )
z— —x? — C|luo H(pH J1=0), (p+1)o

diverges to +0o as © — 400, and (6.19) implies

sup [[Vu(t)[|rz < C(uo),
tel0,T]

which using L? conservation yields the a priori bound on the H' norm. O

6.3 Scattering and blow up

In this section, we give a further qualitative description of the flow in the continuation of The-
orem 6.2.1. We will show that global existence for the energy subcritical defocusing NLS is in
fact scaterring, and that for the focusing problem, the global existence criterion s. < 0 is sharp.

Let us stress that there is no abstract general route map for the study of non linear problems.
Most known results rely on mononotonicity formulas’.

6.3.1 The virial identity

A fundamental monotonicity formula for (6.1) relies on the wirial identity which makes sense
in the virial space ¥ defined in (5.22).

Lemma (Virial identity). Let ug € ¥ and u € C([0,T[;X) the corresponding solution to (6.1)
giwen by Theorem 5.3.1. Then

ci/|£ﬂ|2|u(t,:n)|2 dr = 4Im (/x . Vuud:z:) (6.20)
1d _ _ o, _|d__d p+1
5 7 Im </x Vuudaz) —/|Vu] dr — ¢ [2 Py 1] /|u| dx. (6.21)

"like for Perelman’s proof of the Poincaré conjecture which heart is a monotonicity statement for the Ricci
flow of surfaces.
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Proof of Lemma 6.2.1. The proof follows by direct computation.

step 1 Pohozaev identity. We will need the celebrated Pohozaev indentity:

/Au (;lu +x- Vu) de = — / \Vu)? da. (6.22)

By density, we need only prove (6.22) for u € D(R?). Let

ux(z) def )\%u()\a:),

/]Vu,\lzda:—)\2/]Vu\2 dx.

Deriving this identity with respect to A and evaluating the result at A = 1 yields:

/Vu-V(Zu—I—:c-Vu) dxz/VuFdw.

Integrating by parts the left hand side yields (6.22). Observe that the same argument yields

/ upl? do = A5 / Wffde, g2,

d d d
Re/u(2u+ x - Vﬂ) u|72 dx = <2 — q) l|ul|,. (6.23)

step 2 Virial. Assuming u is space time and well decaying, we compute:

2dt/m lu(t, z)|? dz = Re (/ |z| 8tuudac> =Im </ |z| Zatuud:r)
= —Im </ |z|2(Au + 6uu|p_1)udx> =Im </ Vu - (|z|*Vu + 227) d:p>
= 2Im (/x-Vuudx)

and (6.20) is proved. Then:

then

and hence

%Im (/x : Vuuda;) =1Im (/x Vot + x - Vuf)md:c) (6.24)

:—Im</atu u) + x - Vu]da:) —21m</8tu[ U+ - Vu}d:c)
d 11 ]d
= 2Re i0u §u+:n-Vu dr |=2Re [Au+euluP] §u—|—33-Vu dx | -
We now use Pohozaev (6.22):
d d
—2Re</Au[2u+x-Vu]da;) = 2Re(/Vu-V[2u+x-Vu]dx)
= 2/]Vu|2 dx.



and the non linear is computed from (6.23):

—2Re </ cufulP~! [gu +z- Vu}) dor = —2¢ [ — ] /|u!p+1dx

and (6.21) is proved. The proof for u € C([0,T[; X) relies on classical but lenghty regularization
arguments, see e.g. [7]. O

There are two spectacular consequences of the virial identity which may seem addressing
completely different issues: finite time blow up for s, > 0 in the focusing case, scattering for
the energy sub critical defocusing (NLS).

6.3.2 Blow up for focusing (NLS)

In this section, we prove the celebrated blow up by virial for (6.1) which appeared in the
Russian litterature in the 1950’s.

Theorem (Finite time blow up). Let s. > 0 for the focusing (6.1) ¢ =1. Let
up € ¥ with Ey < 0. (6.25)
Then the corresponding solution uw € C([0,T[;X) to (6.1) blows up in finite time.

Remark 6.3.1. The assumptions of the Theorem are not empty. Let ¢ € D(R?) and ug = ad,
a> 0, then ug € ¥ and

a? s
E(ug) = D) / ’V¢\2 - p+1/|¢’p+1 <0

for all a > a(¢) large enough.

Remark 6.3.2. This result shows that the global existence criterion s, < 0 of Theorem 6.2.1
1s sharp. The model problem is the cubic two dimensional problem

iy 4 Au + ulul? =

which has been introduced in the 1950’s to model the focusing of a laser beam, and is the
limiting case s, = 0.

Proof of Theorem 6.3.2. Combining the virial identities (6.20), (6.21) with the conservation of
energy and the observation 2(p — 1)s. = (p — 1)d — 4 > 0, we obtain

1 d? 2 2 p+1
16 di2 |=’E\ |ul de— Vul* — & *—m |ul dx

-1)
= E(u)—f d(p /|up+1da:—E —(/\u|pJrl dx < Ejy.
2(p+1) p+1

The positive quantity [ |z|?|u(t, z)|?dx therefore lies below an inverted parabola with dominant
coefficient Fy < 0, and hence it must become non positive in finite time. Hence the solution
cannot exist for all times. O
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Let us stress that this kind of blow up result is very rare, and such questions for non linear
PDE’s are mostly open. The analogous problem for the Navier-Stokes equation describing the
evolution of a three dimensionl incompressible fluid is one of the Clay Millenium problems.

For (6.1), the blow up virial argument is spectacular by its simplicity and its robustness.
It not only proves that blow up happens, it exhibits an open region of phase space where
blow up occurs, ie Eg < 0. The virial algebra which was discovered in the study of nonlinear
optics (see [41]) is more universal than one could think, and was for example used to prove the
formation of shock in compressible fluid dynamics, [35]. The argument is however unstable by
perturbation of the equation, and gives no insight into the nature of the singularity. The aim
of this section was to give a glimpse at this class of problems which is the subject of an intense
research activity since the beginning of the new Millenium.

6.3.3 Scattering for defocusing (NLS)

We conclude this chapter by completing Theorem 6.2.1 in the defocusing case, and proving
that asympotically in time, solutions scatter ie behave like linear waves.

Proposition 6.3.1 (Scattering in ¥). Let ug € ¥ and u € C(R;X) be the global solution to
(6.1) given by Theorem 6.2.1 in the defocusing case € = —1 with 0 < s, < 1. Then Jujo € X
such that

Jm flu(t, ) = S(t)ueo| L2 = 0. (6.26)
Remark 6.3.3. Proposition 6.3.1 does not cover the values s, < 0 of Theorem 6.2.1. The
result remains true for p* <p <1+ % , but the proof is more complicated, and counterexamples
exist for p < p* where modified scattering is expected.

Proof of Proposition 6.3.1. For the sake of simplicity, we restrict the analysis ro d > 3. The
route map is similar for d =1, 2.

step 1 Pointwise decay. Let

def . 2 8t2 +1
F(t) = [ |zu+ 2itVu|*dr + |ulPT dx.
p+1

Then
F(t) = / |z|?|u|?dx — 4t Tm </x . Vuud:l}) + 82 E(uy)
and hence using the virial identities (6.20), (6.21) with ¢ = —1:

dF 4t

o=y / [uf? ™ de < 0. (6.27)

;1212 . :
Moreover, let v(t,x) = e~ 4 u(t,z), then a direct computation reveals

F(t) = 8t°E(v)
and hence by the monotonicity (6.27):
PE(v) < F(0) = lzuolfe ie. 4£7[[Vo(t)[72 < [lzuollZ2. (6.28)
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Let
==

We now transform the decay estimate (6.28) using the Gagliardo-Nirenberg inequality :

- . d d
VUH%2|’UH1LQQ with a = 5

[l - < eral

Hence using the conservation of mass:

Sl

C(uo)

d
T

lu(®)lzr = @) < Cluo)[To)] 2" <

[JfsY

t
which is the non linear analogue of the pointwise decay bound (5.7).

step 2 Controlling the Strichartz norm. To be continued.

6.4 Exercices
Exercice 6.1 (The Cauchy problem (6.1) in dimension d = 1).
(i) Let p € N\ {0,1}, uo € H'.

(a) Using only the L? isometry property of S(t) and the Sobolev injection H! — L,
show that (6.4) is a contraction on a well chosen ball of the space X7 = C([0,T]; H')
equipped with the norm || - || oo (jo,77;51) -

(b) Solve the local Cauchy problem (6.1.1) for d = 1.
(ii) We now assume p = 3 (for the sake of simplicity), and we pick ug € L.

(a) Show that there exists 7" > 0 such that (6.1) admits a unique solution in

Yr € (0, T); L3(R)) N L*([0, T); L (R)).

(b) Using chapter 5, show that the mass is conserved.

(c) Show that the maximal solution constructing from wug is global, and belongs to Yp
for all T > 0.

(d) Show that for such a solution w, for all 0 <ty < ¢,

t
lallza oz < Cluollze (1 i /t 2 dT),
0

and deduce that there holds for some universal constant C’:
1
el o ooy < C'lluoll (1 + 1 gl 2) for all ¢ 0.

Exercice 6.2 (The critical Cauchy problem). We consider the Cauchy problem (6.1) with
d=2, p=23 and uy € L? only.

(i) Show that (6.4) is contraction on a well chosen ball of Sy = C([0, T]; L?) N L3([0, T]; L°)
equipped with (6.6).
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(7)) Enounce a result of existence and uniqueness in Sy, and show that the mass is conserved
(6.16).

(7i) Are all solutions global? Which is the new blow up criterion replacing (6.3)?

(iv) We now assume that [Jugl|z2 is small.

(a) Show that global existence holds in the space Su def o (R*; L?) N L3(R*; LY).
+o0
(b) Let voo def z'a/ S(—7)(u(7)|u(r)|*) dr. Check that vs, € L? and compute u(t)—

0
S(t)vso-
(c) How can we choose us € L? so that lim ||u(t) — S(t)usol|z2 =0 ?
t——+o00
Exercice 6.3 (Local existence in H? for (6.1) cubic in dimension 2). We consider
(Se) i0u 4 Au + elul*u =0 dans R x R? ee{-1,1}

with data ug € H*(R?).
Let By = C([0,T]; H?) and uy, = S(t)ug. For u € Er, we let

vt € [0,T), ®(u)(t) = ur(t) +¢g/0 St — 7)((JulPu(r)) dr.

(i) Using Proposition 4.1.2 and Sobolev injections, show that H?(R?) is stable by product.

(#7) Show that ® is well defined from E7 into E7, and there exist two constants C1,Cy > 0
such that for all u,v in Bg,(ur,R),

1@ (u)~url B, < CLT(R*+||uoll32) and [|@(u)~@(v) |5, < CoT(R*+||uoll32) lu—vlle,.-

(i5i) Conclude that there exists ¢ > 0 and a time T > ¢/|lug||%2 such that ® has a fixed
point in Erp.

(iv) Conclude that there exists 7% > 0 such that (S.) with data ug € H? has a unique
maximal solution u € C([0, T*[; H%) N C([0, T*[; L?).

(v) In this question, we look for a blow up criterion.

(a) Prove the Gagliardo-Nirenberg estimate :
Vu € H*(R?), [[01ulga < 3||ull L~ [0 ull 2
(b) Prove the tame estimate :
V(u,v) € H? x H?, |luv||g= < Co(l|ullellvll g2 + o]l 2= [l 2)

for some universal constant Cj.

(c) Show that there exists C' > 0 universal such that for all solution u € Ep of (S¢):
Lo
vt € [0,T], [lu(®)llz> < luollm +C/O [wllzoo ]l 2> .
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(d) Conclude that T* < +oo implies fOT* |u(t)||2 dt = 400. For ¢ = —1, does this
allow to conclude 7™ = +o00?

(vi) Using Theorem 6.2.1, prove global existence in H? for ¢ = —1.

Exercice 6.4 (Cubic wave equation). We consider the Cauchy problem for the non linear
wave equation in dimension d = 3:

O2u — Au+eud =0, t,x) € I x R3,
(NLW?) { it (t,x)

uli=o = ug, Opuli—o = u1,

where I is an interval of R containing 0, ug : R> — R and u; : R3 — R are the data, and
e € {—1,1} The non linearity is defocusing for ¢ = 1, and focusing for ¢ = —1.

We also consider the linear wave equation

(W)

OZu— Au = f, (t,z) € I x R3,
uli=0 = ug, Opuli—o = u1,

with ug : R3 = R, u; :R* - R and f:IxR3 = R given.
(i) Let f =0, ug,u; € S(R?), show that the solution u to (W) is given by the formula:
u(t) =U*()y"+ U (t)y~
with F(U*(t)2)(€) = eI Fz(¢) and

o4 = 3 (Fu©) £ o Fu(©)

def

(7)) Show that the quantity vau(t)H%z(Rg,) = ||qu(t)H%2(R3) + ||3tu(t)|]%2(R3) is indepen-

dent of time.

(4i3) Let H'(R?) be the closure of S(R?) for the norm ||| ;1 def IVz||12. Explain briefly why

this set coincides with L5(IR?) functions which gradient is in L?(R?), and then show that
for all (ug,u1) € Hl(R3) x L?(R3), the linear wave (W) with f = 0 has a unique solution
u € C(R; HY(R3)) N CH(R; L?(R?)) (the second space just means dyu € C(R; L?(R?))).

(iv) In the general case f # 0, show that smooth decaying at infinity solutions of (W) satisfy:

1d

- 2 _
0w vlie = [ fouds

and then for all ¢ € R,

t
IVigu(®)llz2 < [[(Vuo, ur)lg> + ‘/0 /12 dr

with

def
(T, un)llz= € /I uoll3e + 13

Fpr ug € HY(R?), u; € L*(R3) and f € L} (R;L*(R?%)), we admit that this remains

loc

true and that the solution has the regularity C(R; H'(R?)) N C*(R; L*(R?)).
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(v) In this question, we solve the Cauchy problem for (NLW¢) with ug € H'(R?) and u; €
L?(R3). Let uz be the solution to (W) with f =0 and data (ug,u1). Let ®. : v +— w
with w solution to

{ 0Zw — Aw = —ev?
(U), at’w)’t:() = (0, 0)
We note X7 the Banach space C([0,T]; H*(R3)) N C'([0,T]; L*(R?)) and Br(R) the
closed ball of X1 with center 0 and radius R.

(a) Show that there exists C' > 0 such that
Vo € Br(R), [[®:(v)|lxy < [|(Vuo,u1)l| 2 + CTR?
and
¥(v,w) € Br(R) x Br(R), | ®-(v) — @(w)|x; < CTR*|Jv — w|x,.

(b) Show that there exists ¢ > 0 (independant of wp,u1) such that the map v
ur, + ®-(v) has a unique fixed point in B, (R) with

C

R =2||(Vug,u1)||p2 et To=
H( 0 1)HL 0 H(VUO,Ul)H%Q

(c) Conclude that (INLW?¢) has a unique solution in Xg,.
(d) Let T* be the maximal life time of this solution. Show that 7™ < oo implies

lim sup;_,p« [|Vezu(t)| 2 = +00, and then that there exists Cp > 0 such that

I\Viau(t)| 2z > for all ¢ e [0,T7[.

Co
VI*—1
(e) If u is a smooth solution of (NLW?¢) in the interval [0,7], show that

d €
(E) vt € [0.7), = (10l + IVaulle + S llullt: ) (2) = 0.

(f) We admit that uy € L*(R*) N H(R?) and u; € L?*(R3) imply that the maximal
solution constructed above satisfies (F). What can we conclude on the life time of
the solution in the defocusing case ?

Exercice 6.5 (Lower bound on the blow up speed). Let ug € H' and u € C([0,T[, H') the
solution to (6.1) given by Theorem 6.1.1. Let 0 < s, < 1 be the scaling parameter given by
(6.15). We assume T < +o00. Show that there exists C(ug) such that for all ¢ close enough

to T, there holds
C(uo)

IVu(t)l2 2 ———=—
(T —t) =
Hint: Pick to € [0, T and define v(7,z) = (A(to))%u(to + (M(t0))?7, A(tg)x) for a well chosen
Ato)-
Exercice 6.6 (Upper bound on the blow up speed). Let the focusing (NLS)

i0pu + Au + ululP~t =0

2
2(0. 2) = () , z€R? 3<p<hb.
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Let H} be the set of H' functions with radial symmetry, then the Cauchy problem is well posed

in H!. We pick ug € H! and assume that the solution blows up in finite time 0 < T < +o0.

The aim of this problem is to derive an upper bound on ||Vu(t)||;2 as ¢ T T'.

Integration by parts should be done without boundary terms (without justification). We let
2

S5e=1———

p—1
and Ejy be the energy of the data. We recall Holder:

Aly|)¥ 1 1
|;z;y’<p<|fl|> +( ;{D . 1< pp <400, ];+?:1, A>0. (6.29)

(i) Let x € C>*(R?) with spherical symmetry, prove the formulas:

1d 9

-2 =7 VUl

5 dr X|ul m (/ Vx Vuu) ,
liIm /VX'VUU :/X”]Vu|2 /AQX|u|2 - — — /A)<|u|7”+1
2dr p+1

(ii) Prove that for all u € H},

2
VR >0, |[ulfesm < SllelzlIVull .

i) Let R > 0, 1 € C®(R?) with spherical symmetry and
(i) e y y

|z|?
_ | & pour |z| <2 .
v(@) 0 pour |z|>3
Let .
_ _ P2 el
x(@) = vr(x) = B ().
show that

1
\%H/ ww+2/ u?
lz|>R R® Jop<|z|<3r

for some constants ¢(d, p),C(d,p) > 0 independant of R.

c(d,p)/Vu|2+2dt\s (/Vz/JR Vuu> < C(d,p)

(7v) Prove using (6.29) that:

d 1 1

with

(v) Integrate in time (6.30) and prove: Y0 < tg < ta < T,

/tz(t — )| Vu(t)||22dt < Clug, d [W B ,
2 u(t)]|72dt < C(uo,d,p) R + R(te — to)||Vu(to)| 2 + R*| .

to @
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(vi) Choose R = (T — to)l%a and conclude that for t close enough to 7T':

T
/<T—mwmmmﬁscwmww@—wﬁ@+@—mﬂwmmﬁ%

to

(vit) Show that for t close enough to T':

T 2a
| @ =01Vt < C(dpruo)(T - )7

to

(vizg) Conclude that there exists a sequence ¢, — T such that

IVt gz < S P t0)
(T - tn)m

(remark: this bound is sharp!).

(i) Open problem: prove any bound on blow up rate in the critical case p = 3!
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Chapter 7

Variational methods

Let us consider the non linear Schrédinger equation

i0pu + Au + eululP~t =0
u(t,z) € C

(t,z) € R x R?

u(0, ) = ug(z) € HY(RY).

(NLS) (7.1)

in dimension d > 1 and in the focusing case ¢ = 1. Given ug € H'(R?), we have proved the
existence of a unique maximal solution u € C([0,T[; H') with T = +occ if p < 1+ %- We
address the question: what does the solution look like as t — 4007

We know the answer in the linear case: solutions disperse to zero at speed which depends
on the structure in Fourier of the initial data. For the defocusing case € = —1 in the subcritical
regimes p < 2* —1, the non linear dynamics is asymptotically attracted by the linear dynamic,
and the non linear effect is described by the scattering map. The situation is completely dif-
ferent in the focusing case due to the existence of new solutions: solitons or solitary waves.
For (NLS), they take the form of time periodic wave packets u(t, ) = Q(x)e which therefore
do not decay in time. A general conjecture is that all solutions to (7.1) can be decomposed
asymptotically in time as trains of decoupled solitary waves coupled to a scattering radiation.

We aim in this chapter at developping various methods for the construction of solitary
waves. A classical problem which will guide us is the construction of time periodic solutions
to (7.1)

u(t, ) = Q(z)e

where the profile @) satisfies:

AQ - - =
oty 72

7.1 The variational approach

We introduce the variational setting to study (7.2) and the associated infinite dimensional
minimization problem.
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7.1.1 The space H!
Let d > 2 and consider the space H! which is the subset of functions of H'(R%;C) which
have radial symmetry ie
u(z) = u(Rx), YR € My(R) with R'R = Id,
or equivalently

d 1
2
u(z) =a(r) with r=|z| = ( E xf) and @ : RT — C.
i=1

This set coincides with the closure of the radially elements of D(R?) for the norm

+oo
2 = w2 & ()2 de = ¢ a2 + a2 =1 dr
fully = [ (V@) + Ju(@)P) do = o [ (0,02 + i) )

where ¢g is the area of the unit sphere of R?. It is therefore a closed subset of H'. In the
sequel , we systematically identify v : R? — C radial with its representant @ : Ry — C.

Lemma (Regularity and decay in H}!). Let d >2 and u € H}, then u belongs to the Hélder
space C%(]O + oo[; C) defined in exercice 2.5 and

d—1
[r 2 ulle S Vlullz2 ||Vl ze- (7.3)

Proof of Lemma 7.1.1. Let ¢ € C°(R%) radial. Then
2 e
¢“(r) = -2 o(1)¢' (1) dr

T

and hence by Cauchy-Schwarz,

+o0 1
P < [ S dr S 90l 6] e

and (7.3) is proved. Similarily for 0 < r; < ry < 400,

T2 1 1
o) = 6l = 2| [ ()| S~ ol (2 — )’
71 T]_ 2
where we used Cauchy-Schwarz in the first step. The lemma follows by density. O

The decay estimate (7.3) implies the compactness of the radial Sobolev embedding?:

Proposition 7.1.1 (Compactness of the embedding of H! into LP, 2 < p < p.). Let d > 2

and
def [ 400 for d=2,

be = { d%dz for d >3,

then for all 2 < p < pe, the embedding H} — LP is compact.

'Recall that this is false without the symmetry assumption due to the action of the group of translations.
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Proof of Proposition 7.1.1. Let u € H} and 2 < p < p., then (7.3) implies

d—1 -2
[ 2 1
[ulP dz < / ul* de S —m=a=y lully - (7.4)
/|I|ZR R(p 2)2(d 1)) RA R(P 2)2(d 1) H1
Let (un)neny bounded in H}(R?), then (7.4) implies that the sequence is LP tight:
Ve >0, dR>0, Vn>1, ||un||Lp(‘:L.|ZR) <e. (7.5)

Since by Theorem 4.3.2, there exists u € H'(R?) such that, up to a subsequence,
U, =~ uin H', and u, = u in LP(|z| < R), VR >0,

we conclude using (7.5),
U, — u dans LP(RY).

Since H} is closed and hence weakly closed, u € H}. O

Remark. The injection H! < L? is never compact due to the action of the dilation group:

d
un(r) = Adu(Ayr), Ay — 0

for some fixed profile u € C° non nul. One easily checks that u, — 0 in H' but |ju,|2 =
lu|| 72 # 0, and hence no subsequence converges in L?.

7.1.2 A compact minimization problem in H}

The compactness of the Sobolev embedding allows us to solve infinite dimensional minimization
problems.

Proposition 7.1.2 (Compact minimization). Let d > 2 and p > 1 satisfying

400 for d=1,2

For all M >0, let
An = {UEH% t.q. / ]u|p+1d9::M}‘
R4

Then the minimization problem
Iy = inf |ull3; (7.6)

uEAp

has a solution up; € Apy.

Proof of Proposition 7.1.2. Since we minimize a positive quantity, we may consider a minimiz-
ing sequence (up)nen of Aps such that

lunll37 = Tna > 0.

The sequence (uy,)nen is radial and bounded in H} , and hence by Proposition 7.1.1, (un)neN
converges strongly in LP*! up to a subsequence. Hence there exists u € H! such that :

up, = uw in LPTY and w, ~w in H'.
By lower semi continuity of the norm for the weak limit:

lull3 < lim i w3 = Ty

and by strong LP*! limit:

+1 : +1
ullih = tim a5, = .
Hence u € Ay and |lul|3;, < Ins, hence u attains the infimum. O
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7.2 Study of the minimizers

We now aim at classifying all the minimizers given by Proposition 7.1.2 and show in particular
that they provide radially symmetric solitonic profiles for (NLS).

7.2.1 Positivity of the minimizer

Lemma 7.2.1 (Positivity). If u € Ay minimizes (7.6), then so does |u].
This follows from the following convexity property of the Dirichlet functional

Lemma 7.2.2 (Convexity estimate for the gradient). Let u € H*(R?%; C), then |u| € H(R%;RY)
and

/ﬂvuﬁdx;i/ﬂvhqﬁdx (7.7)

Moreover, if u is continuous and {u # 0} is open and connex?, then the equality holds iff there
exists v € R such that u = |ule?.

Proof of Lemma 7.2.2. Decompose u in real and imaginary parts: v = f + ig. Then p.p>

fVfi+gVy
Viul = VP = T

Hence

SV f+gVgl?
/|V]u\|2dac = /’ f2 4 g2 | dz

= /M[fQIVf\2+g2IVg|2+2ngf-Vg] dx

Vf— fVgl?
Vf2d /v 2 g [ 19V = 1Vl dz,

which yields (7.7). Assume now |u| € H'(R% R}) with equality in (7.7). Then

pp. z€RY fVg=gVSf. (7.8)

Since f and g are continuous, our assumption ensures that AU B with A def YR\ {0})
def

and B'= g !}(R\ {0}) is open and connex. Let ¢ € D(B). Then
h=2c HY(RY) and Vh= Ve _ Egb,
g g

and we may compute:

/;ngdx = /fV(?) dx+/f¢z2gdx:/thd:U+/hfjgdx

— /thdl‘+/thdl‘:0

2which holds in particular if u does not vanish
3This formula can be justified by a regularization argument, see [26], p. 152.
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from (7.8). Since this all V¢ € D(B), we conclude

\Y <f> =0 in D'(B)

g

and hence / f/g is a constant in B. The same argument ensures g/f constant in A. Since
A U B is connex, we conclude that f and g are proportional and hence 3y € C such that
u = |ule. O

7.2.2 FEuler-Lagrange equations

We are thus left via Lemma 7.2.1 with the classification of the non negative minimizers u €
H} (R R*). The next step is the derivation of the Euler Lagrance equations which tranform
into a PDE the minimizing property.

Proposition 7.2.1 (Euler Lagrange equation). Let u > 0 minimizing (7.6), then I\ € R
such that

Au—u=—- P dans H ' (7.9)
Moreover: s
A= M. 1
v 0 (7.10)

Proof of Proposition 7.2.1. Let t € R and h € C°(R%R) radial, let u; = u -+ th. We renor-
malize uy:

et [Jull o

Uy = Ut

[t ots

so that v € Aps. This renormalization makes sense for ¢ small enough since u is not zero.
Let us show that ® : ¢ — |[vg]|3, is derivable at ¢ = 0. Since the infinum is attained at 0,
(7.9) will follow by writing ®'(0) = 0. Let us first compute

Ju-t thle = ule +2¢ [ uhdo +2n2:
and |V (u+th)|32 = || Vull32 + Qt/Vu -Vhdz + t%||Vh| 2.

Then
a4 el = [lul2 +2t/uhda:+(’)(t2), (7.11)

and by integration by parts,
IV (u+ th)l[72 = | VullZe — 26(Au, h) g + O(t). (7.12)

Next, to compute the order one term in the development of ||ut”1£;ri1, we start with the
following homogeneous estimate: forall ¢ > 2 :

11+ 2|7 — 1 —qz| < Cy(|2)* +|2]9), VzeR.

Chosing z = th/u, integrating and multiplying both terms of the identity by u? yields

‘/|ut|qu—/uqu—q/thuq_ldx §Cq<t2/h2uq_2dm+tq/|h|qd:c>-
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Let ¢ = p+ 1, we conclude by Hoélder since h is compactly supported:

/\ut|p+1 dz :/|u|p+1 dx + (p+ 1)t/hupdx+(’)(t2) as t— 0. (7.13)

Recall the definition of v;, we easily obtain combining (7.11), (7.12) and (7.13) :

2t
lvell 2 = (||u||12ql + 2t/uh dx — 2t(Au, h>H_1xH1> <1 i /u”hdx) + O(t?).

Hence. for ¢ close enough to 0,

O(t) = (0) + 2t (/(u — AP hdx — (Au, h>H1><H1> + O(tZ) with A d:ef IMM

We conclude that ® is derivable at 0 with derivative
®'(0) = —(Au —u+ AP h) -1y 1
and then
(At — w4+ AP, h) -1 1 =0 for all b € C°(RY) radial.

By density, we may extend the above equality to all h € H}, and conclude that (7.9) is satisfied
in the sense of the dual of H} only. Nevertheless, the distribution Au —wu+ AuP is radial, and
then decomposing any h € Cgo(Rd) as h = h, + g with h, radiale and g of zero average on
every sphere centered at the origin ensures

/(Au—u—l—)\up)hda::/(Au—u+)\up)hrdx:0,

and (7.9) in H~! = (H')*, by density. O

7.2.3 Regularity and uniqueness of the minimizers
We may now completely classify the family of minimizers. First observe that if u satisfies (7.9)
with A = A(M) > 0 from (7.10), then
1
v=Ar-1ly
satisfies
Av—v+0vP =0, v>0. (7.14)

We are therefore left with classifiying the H! positive solutions of (7.14). The equation (7.14)
is to be understood in the sense of distributions or in H~! since v € H}'. Let us start with
showing that v is in fact a smooth and hence a solution in the classical sense.

Lemma 7.2.3 (Regularity). The solution v to (7.14) belongs to C2(R%), tends to 0 at infinity,
and there exists a > 0 such that v is the unique solution on R™ of the Cauchy problem:

@ . d—1dv

dr? rodr (7.15)



Proof of Lemma 7.2.53. The regularity of v relies on a bootstrap argument using the smoothing
effect of the Laplace operator. For the sake of simplicity, let us restrict the proof to p = 3
and d = 2, the general case relies on similar arguments. Let us first show that v € H?(R?).
For this, observe that v € H!(R?) and the Sobolev embedding H'(R?) < L5(R?) ensures
v € L?(R?). Hence (7.14) yields (Id —A)v € L?, which through Plancherel ensures v € H?.
Next, we apply A to (7.14) and observe

(Id —A)Av = A(v?) = 60|Vo|? + 3v2Aw.

Since H%(R?) embeds into L>*(R?) and H'(R?) embeds into L*(R?), we conclude that the
right hand side belongs to L?. We conclude that Av € H?, and hence v € H*. Sobolev
injections then ensure that v and all its derivatives of order 1 and 2 are continuous and tend
to 0 at infinity. In particular, v € C?(R?). Since v is radial, computing the A in spherical

coordinates ensures )
d°v 1ldv
Vr>0, o420 s 7.16
" d’r2+7“dr v ( )

The C? regularity of v allows us to conclude
V'(r) =0 as r—0

and hence v satisfies (7.15) for some a > 0. Finally, the fact that the Cauchy problem (7.15)
is locally well posed follows by remarking

v d—1dv 1 d(d_ldv>

W—i_ r dr  ri-ldr

- dr
and hence we solve by fixed point inC*([0, R]), R = R(a) > 0 small enough, the corresponding
integral equation

v(r):a—i-/(]r(SZli /OSlef(v(T))dT> with f(v) = v — oP.

Since for a = 0, u = 0 is a solution and hence the unique solution, we conclude that a > 0
and the Lemma is proved. ]

We have therefore reduced the understanding of positive H;}' solutions of the PDE (7.14) to
the description of solutions to the one dimensional ODE , indexed by the shooting parameter
a. This is not a trivial problem and after the first proof of Kwong [24] in 1987, a simplified
canonical proof is proposed in MacLeod [28], see also the appendix of [39].

Theoreme 7.2.1 (Uniqueness in the sense of the dynamical systems). There erists a unique
a > 0 such that the corresponding solution v(r) to (7.15) satisfies

Vr >0, v(r)>0
and the boundary condition
v(r) = 0 when r — +o0. (7.17)

Moreover,

Vr >0, v(r)>0. (7.18)
We note Q(r) this solution: it is the ground state of (7.15).
Remark 7.2.1. Let us stress that the strict positivity (7.18) follows from Cauchy-Lipschits: if
Q(ro) = 0, then Q'(rg) = 0 since Q is positive, and hence @ = 0. Note also that Theorem

7.2.1 is trivial in dimension d =1 where all solutions can be computed explicitely (see exercice

7.1).
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7.2.4 Conclusion

Let us summarize. Let u € H! a minimizer of (7.6), then |u| is a positive minimizer by Lemma
7.2.1. Then by Proposition 7.2.1,

def | 1 . Iy
= Ar—1|y| with A=—>0
v P=1|u| wi

solves
Av—v+vP =0 v>0, veH.

Hence by Lemma 7.2.3, v is a strong positive solution of (7.15). Moreover, v € H;} implies
v(r) = 0 when r — 400
by (7.3), and hence Theorem 7.2.1 implies
v(r) = Q(r).

Hence |u| is continuous and does not vanish. Finally, u and |u| being both minimizers, we
are in the equality case of Lemma 7.2.2, and hence

u=|ule?, veR.
We have proved:

Proposition 7.2.2 (Classification of minimizers). Let M > 0 and

Anv = {u € H' with / lu[PF do = M},
R4

then the minimization problem

Iy = inf |ul
M U&MHUHW

1s attained exactly on the one parameter family
M 1
. p—1
(1) Q. vk
Iy

where @ is the unique ground state solution given by Theorem 7.2.1.

7.3 Exercices

Exercice 7.1 (Computing the ground state in dimension d =1). Let 1 < p < 400.
(i) Let a € R*. Show that there exists a unique maximal solution u € C!'(|Ry, Ro[;R) of
the non linear ODE:
Q' -Q+@r=0
Q(0) =a, Q'(0)=0.
(77) Compute a first integral (hint: multiply by Q).

(#i) Show that there exists at most one global solution @ which goes to 0 as +o0, and that
this solution satisfies

Vz >0, Q(z) >0 and Q'(z)<O0.
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(v) Change variables y = % and obtain the ground state formula
2
p+1

2 cosh? <(%)x>

Q(r) =

Exercice 7.2. Let V : R? — R continuous with lim, 400 V() = 0.
(i) Show that for all s > 0, the operator T : u — Vu is compact from H*(R%) into L?(R%).

(i) Let Epin be the energy of the ground state of the Schrodinger operator —A — V:
Ein S inf{E(u), ue H'RY), [ull g2 =1} ot E(u) < /R V2 dx—/Rd Vul? da.
Assume FE,,;, < 0. Show that E,,;, is attained :
Ju € HY(R?) tel que [ullp2ray =1 et E(u) = Emin,
and that every minimizing sequence converges strongly in H'(R%).

(iii) Conclude that there exists an eigenmode for —A —V: I\ < 0 and u € H'(R?) non zero
such that
—Au —Vu=Au, u(z)>0. (7.19)

(7v) Show that u belongs to all Sobolev spaces H®, and that it is a classical solution to (7.19).

(v) We now assume that V' > 0 for the rest of the exercice. Let p €]1,1+4/d[ and F be
the non linear functional defined by

F(u):;/Rqu(:z;)Fd:U—;/RdV(:Uﬂu( ) dw—/ () [P+ da.

Let the minimization problem for M > 0:

100 =t {0 [ o e =ar)

Show that
I <0.

(vi) Show that all minimizing sequences are bounded in H'(R9).
(vit) We assume that I(M) is a strictly dereasing function of M. Show that I(M) is attained.

(viti) Assume moreove V radial, conclude that there exists a non linear eigenmode: 3\ € R
and u € H'(R?) such that

—Au —Vu—uf =Au, u(zr)>0.

Exercice 7.3 (One dimensional Hardy inequality). We work on R and all functions are
considered real valued.
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(2)

(id)

Let

_ . u(@)]*
A_{UECC (R;R), /RHxdeq

inf / [ (x)|? dz = 0.
R

ucA

Show that

Hint: consider

def T . 1 for |z] <1
un() = X (E) with x(z) = { 0 pour| ]’m| > 2.

Show that there exists a universal constant ¢; > 0 such that

Ju(z)?

5 dx.

Vu € C°(R), u2(1)+/

z>1

2 1 !
/ u2dx:—/ u2<> dx
z>1 T z>1 T

2
2|zy| < % + Ay?, YA >0.

|/ ()% dz > cl/

z>1 X

Hint: integrate by parts in

and use

Show that there exists a universal constant ¢y > 0 such that

u? ()2 de > e 2/ |u(z)[? -
“”/m«'”’d“[“”/. d].

:E‘Sl 1 + 1’2

Conclude that there exists a universal constant c¢3 > 0 such that

u(x)

1+ 22 dx.

Vu € C2°(R), wu?(1) +/ [u'(2)|? da > 03/
R R
Fix ¢ € D(R) with

/ Y(z)dr #0 and Y(z) =0 for |z| > 1.
R

Let
u? ()

A¢:{u€C§O(R), /Rl+332 dr =1 and /Ru(:c)l/)(a:)dxzo}'

We want to prove:

o= jnf. /R o (@) dz > 0.

We argue by contradiction and assume I, = 0. Let u, € Ay with

SENS

/ ol ()2 dr <
R

Show that

liminf u2 (1) > 0.
n—-+0o
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(vi) Let x € C°(R) with

[ 1 for |z| <1

= <lz| <
x(z) {O for |z > 2 and x(z)>0 for 1<|z| <2

Let
vn(2) = X()un().

Show that (vy,)n>1 is bounded in H'(R) and there exists a subsequence

Vgn) — v dans H'(R)
Vpn) — v in L(|z| < 2).

(vii) Show that [ vipda = 0.
(vigg) Show that v(1) # 0.

(iz) Let A >0 and ya(z) = x (%). Show that

/XA|U/—’U;‘Zdl'—/XA‘U:I‘QCZZ‘—/XA‘U,‘de—Q/XAU/(U;L—U/)dl'.

Conclude that .
VO < A< 3 /XA]v’lzda: =0.

(z) Conclude the proof of (7.20).
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Chapter 8

More solitary waves

The varational approach developped in chapter 7 is a powerful tool but does not always apply:
the non linearity has no reason in general to be a gradient. We present in this chapter two
other powerful methods which have applications everywhere in mathematical physics: the
Lyapounov-Schmidt bifurcation argument, and the direct ODE approach.

8.1 The Lyapounov Schmidt bifurcation method

The Lyapounov Schmidt bifurcation argument is the canonical method to start bifurcation
branches and is at the heart of perturbation theory. We shall illustrate the method on an
elementary problem related to the harmonic oscillator, but the method goes very far beyond
and is probably the most powerful known tool to construct nonlinear objects and solitons.

8.1.1 The resolvent of the harmonic oscillator

Let us consider the harmonic oscillator operator
H=-Au+ 1+ |z[*)u

where we may without loss of generality assume that all functions are real valued. Let us
consider the virial space

Y ={ue HY(RY), zue L*(RY)}
which is a Hilbert space for the natural scalar product
(u, 02 = (u,0) g1 + (|2, 0) 2.
The solutions to the eigenvalue problem
Hu=Mu, uelX

correspond to the energy levels acquired by a quantum particle trapped by the |z|?> magnetic
field. The functional setting to study H is the following which adresses the resolvent of H .

Let us start with the following elementary observation which we will systematically use in
the sequel.
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Lemma 8.1.1. Let uw € ¥ and f € L? such that
Hu=f in D.
Then
Vv e X, /Vu -V + /(1 + |z|*)uv = /uf. (8.1)

Proof of Lemma 8.1.1. Let v € ¥, then since D is dense in 3, there exists ¢, € D such that
¢n — v in X. Hence

/Vu-Vv—l—/(l—l—|a:|2)uv—/uf:ngrjraoo [/VU-VQZJR—F/(l—i-|x|2)u¢n—/uf}

= ngrfoo(Hu - f7 gbn)D/,D = 0.

We start with the study of the resolvent of H .

Proposition 8.1.1 (Resolvent of the harmonic oscillator). For all f € L?(R?), there exists a
unique u € 3 such that
Hu=f in D'(R?). (8.2)

Moreover, the resolvent map T(f) = u is continuous from L? into ¥, injective, and compact
and self adjoint from L? into itself.

Proof of Proposition 8.1.1. The proof relies on the Lax Milgram approach.

step 1 Existence and continuity of the resolvent. Let f € L?(R?). Consider the linear form:
Li(v) = (f,v)r2,
then from Cauchy Schwarz
Vo e, (L) <|[flle2llvllzz < [[flle2llvlls,

and hence L; is continuous linear form on the Hilbert space X. Riesz representation Theorem
ensures that there exists a unique u = T'(f) € ¥ such that

Yo e, (u,v)s = L¢(v) =(f,v)L2. (8.3)
In particular for v = ¢ € D(R?):
(Fé)e = (o) = [ Vu-Vor [@+]aPyus
& (=Au+ 1 +[zP)u—f,0)p =0
and hence u € ¥ solves (8.2). Moreover applying (8.3) with v = u ensures

lull% = (fuyre < IFllzzlullze < I fleellulls = lulls < [1£]lz2-

We now claim that there exists a unique u € ¥ solution to (8.2). Indeed, by linearity, let
u € ¥ with Hu = 0 in D', then applying (8.1) with v = u and u = 0 yields ||u[% = 0 and
hence u = 0. This concludes the proof of the existence and continuity of the resolvent operator
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T as a linear map from L? into ¥, and its injectivity.

step 2 Self adjointness. Since T € (L% %) and ||ul|z2 < |Jul|s, we conclude that T' € (L?, L?).
We now claim that 7 is self adjoint as an endomorphism of L?. Indeed, let

Tu=f, Tv=g, (u,v)2x%, (f,g)€L?xL?

then from (8.3):
(Tu,vyr2 = (f,v)r2 = (u,v)n
(u, Tv)r2 = (Tv,u) 2 = (g,u) 12 = (u,v)x

and since we assumed a real Hilbertian structure!
(u,v)y = (u,v)y = (Tu,v)r2 = (u,Tv)2 = T =T.

step 3 Compactness. We now claim that 7 is a compact endormorphism of L?. Indeed, let
fn —0in L2, then u, = Tf, is bounded in ¥. Moreover T € £(L? %) and hence is weakly
continuous, Proposition 2.2.3, which ensures

U, =0 in ¥=u, =0 in H' (8.4)

where we applied Remark 2.2.2. Pick ¢ > 0. Since u, is bounded in X, there exists R(¢)

such that
C

1
Vn> 1. / unf? < = / 2 un? < g < <.
(#[>R(e) R*(€) Jiol=r(e) R2(e)

On the other hand from (8.4) and Rellich’s Theorem 4.3.2, we have

lim lu,|* = 0.
=00 J|z|<R(e)

We have proved
fn—0 in L?=Tf, -0 in L?

and hence T is compact as an endomorphism of L? by Proposition 2.2.4. O

Remark 8.1.1. Note that the above proof shows that the embedding ¥ C L? is compact.

8.1.2 Diagonalization of the harmonic oscillator

The spectral Theorem asserts that a self adjoint compact operator is diagonalizable in a Hilber-
tian basis.

Theoreme 8.1.1 (Spectral theorem). Let T be a self adjoint compact endomorphism of a
separable Hilbert space H , then T is diagonalizable in a Hilbertian basis of H .

In the case of the harmonic oscillator, eigenvalues and eigenvectors can in fact be computed
explicitely using the Hermite functions ¢, (x).

Proposition 8.1.2 (Diagonalization of H ). There exists an increasing sequence (A, € R% )p>0
with

lim A\, = +o0
n—o0

such that the Hermite functions (n)n>1 € ¥ is a Hilbertian basis of L? with

Yn >0, Hip = Aibn.

Lthe same can be proved for complex valued functions as well.
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Remark 8.1.2. Note that T, = 7’/{’—: and hence % — 0 is the sequence of eigenvalues of T
on L?.

Proof. The key step is the conjuguation formula:

u=eF o= Hu=e% (A +(d+1)+2A)v (8.5)
Av =2 V.

Indeed, we compute

_ﬁ

Vu=e 2 [—azv+ V]
2 a|av|2

A=e¢ "2 [—adv—az - Vo+Av—az - (—azv+ V) = e 2 [Av — 2az - Vv — dav + o?|z|*v]

and hence

Hu = e 2 [Av—2ax-Vv—daw+a®|z[*v + (14 2%)v]

12
alz| 2

— e 32 [—Av+2ax-Vv+(da+1)v+(1—042)33 v]

and hence a =1 yields (8.5). Let us give the proof of Proposition 8.1.2 in dimension d = 1.
The case d > 2 follows by splitting any u € ¥ in spherical harmonics.
For d = 1, the operator Hv is trivial to diagonalize using polynomials. Indeed,

- Hug =\
[ N o 0o )
)\0:27 ¢0:€_7'

N

Then since
Az™ = nz",

one easily constructs a polynomial P, = z" + Zz;é apx® such that

(H—-X\,)P, =0 for \, =2n+2,

and hence
Ap =20+ 2

H n:>\n ) «?
v v Y = Pre” 7.

The polynomial P, is the Hermite polynomial of degree n > 0 and 1%, is the associated
Hermite function. Note that the family 1, is orthogonal since v, is an eigenvector for T
which is self adjoint on H = L?, and moreover since by Stone Weierstrass polynomials are
dense in C(|z| < R) for any R, the family (¢,),>0 is total? in L? and hence it is up to
normalization a Hilbertian basis of L? in which T is diagonal, and hence H . O

8.1.3 Varational characterization of the first eigenvalue

We now characterize variationally the first eigenvalue and prove H— )\ has continuous resolvent
when restricted to the subspace of functions orthogonal to the first eigenvalue. The proof below
is canonical and can be applied to a large class of operators.

Zie the vectorial space of finite linear combinations of the 1), is dense in L?
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Proposition 8.1.3 (Variational characterization of the first eigenvalue). Let d > 1.
1. Variational characterization. The minimization problem

I=inf [[ull$, A={ueX,|ul,=1}
u€A

1$ attained exactly on
|22

I=d+1, uespan{ypg=e 2 }.

Moreover, I = \g where )%0 is the largest eigenvalue of T .

2. Resolvent of H — \g. There exists ¢ > 0 such that Vf € L? with (f,1)2 = 0, there erists
a unique u € X with (u,vo)r2 =0 such that (H — Xo)u = f and ||ulls < C||f||12-

Remark 8.1.3. The first statement implies that the first eigenvalue of T is simple which
1s a special case of the Krein-Rutman Theorem. For the second statement, observe that if
(H — Xo)u=f in D', then from (8.1) and (H — \o)tbo =0

JVu- Vo + [(1+4 |z[*)ugpo = Xo [utho + [ o f
SV - Vu+ [(1+ [z]*)hou = Ao [ You

and hence (f,vo)r2 = 0 is a necessary condition for the equation to be solvable in ¥. Propo-
sition 8.1.83 says that this condition is necessary and sufficient which is a special case of the
Fredholm alternative.

:/wofzo

Proof of Proposition 8.1.3. This follows from an elementary variational argument.

step 1 Compactness of the minimization problem. Consider the minimization problem

I=inf |lul}, A={ueX,|ulle=1}
ucA

Then I > 0 by definition and we may consider a minimizing sequence which is bounded in 3.
Recalling Remark 8.1.1, we have up to a subsequence

Up — U In
Up, — u in L2

and hence u € X, ||ul|z2 = limp— 400 ||un||f2 = 1 ensures u € A and
2 e 2
< =
lulls; < lim inf [jul|s = I

and hence u attains the infimum. Arguing verbatim like for the proof of (7.9), we conclude
that there exists p € R such that
Hu = puu €D

and then from (8.1):
= n [ 1P =p e n=1.

Note that I > 0 since otherwise u = 0 contradicts ||u|z2 = 1. Moreover by (7.7), |u| is also
a minimizer and thus we may without loss of generality assume u > 0 and u # 0.

2
_l=|

step 2 Uniqueness of the minimizer. Let now ¢(x) = e~ 2, then from (8.5):
Ho = (d+1)¢,
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and then using (8.1) and Hu = Tu, u > 0, ensures:

[V -Vu+ [(1+ |z*)pu= (d+1) [ pu B B B
‘fVu-qu—i—f(l—i—\x!z)QW—Ifuqﬁ ST—d+1)] [gu=0=>T=d+1
since ¢ > 0,u > 0 and u # 0. Hence 1, u are both minimizers, and hence using (7.7), so is

2 2
the function %;u with necessarily the same Dirichlet energy, and hence since it does not

vanish, we are in the equality case of Lemma 7.2.2 and hence u, 1y are proportional.

step 3 Computation of A\g. It remains to show that I = )\1—0 where )\io is the largest eigenvalue
of T'. Indeed, let T'py = %gﬁo with ||¢ollz2 = 1, then Hpo = Aogo and hence [|¢o[|% = Ao
implies A\g > I. On the other hand, Hvyg = Iyg implies Ty = % and hence % < /\io implies
I>MX.

step 4 Coercivity of H — Ag. Let us now consider the minimization problem

J=inf [[ul¥, B={ueX, |ullp2=1, (u,to)r>=1}.
ueB

A minimizing sequence is bounded in ¥ and hence up to a subsequence u, — w in ¥ and
Uy — u in L? which ensures

weB and |ul|:<J

and hence u attains the infimum. The Lagrange multiplier argument ensures that there exists
11, 2 € R such that

Hu = pyu + pgtpg in D',
Using (u, o)z = 0 and (8.1) yields us = 0 and hence u is a eigenvalue of H with p; = J, and

hence and eigenvalue of T'. Since (u,vp)r2 = 0 and the first eigenvalue is simple, necessarily
w1 =J > A1 > Ag. By linearity, we have proved that there exists ¢ > 0 such that

VueS with (u,v0)z2 =0, [uld > (e+Mo)llule. (8.6)

step 5 Resolvent of H— ). Let now f € L? with (f,1g)2 = 0, we consider the minimization
problem

K = Jreljfg [l = Xollull2e — (f,u)r2, C={ue€¥, (u,th)2=0}.

Then from (8.6). for v € C,

1
s = (Fu) e = ulls = 1fllz2llullze > elulls = [ £z

for some ¢ > 0, and hence K > —¢|f||2, > —oco and every minimizing sequence is bounded
in ¥. Hence up to a subsequence u, — u in ¥ and u, — u« in L?, and hence u € C' and
ensures

K= Tim_(upl$ = (f,un)r2 > [[ulld = (f,u) L2
n—-+o0o

and hence u attains the infimum. Lagrange multiplier yields Hu — Au — f =0 in D’ with
u € ¥. Uniqueness follows immediately from (8.6) and Proposition 8.1.3 is proved. O

120



8.1.4 The bifurcation branch

The explicit diagonalization of H yields the energy level of a quantum particle trapped in a
magnetic potential. The basic problem in the theory of perturbations is the following: say we
add a potential V(x) € L®(R?), and we pick a small £ > 0, how do we compute the first
eigenvalue of the deformed operator H. = H +eV? The general Lyapounov Schmidt argument
answers precisely this question, and the framework is extremely general.

Proposition 8.1.4 (Perturbation theory via Lyapounov Schmidt). Let V € L®(R?), then
there exists €9 > 0 such that for all |e| < g, there exists Ve € ¥ and A\. with |\ — Xo| S ¢
with
Hawa = )\Ewe-
Moreover,
(Vtho, to) 12
%0l 2

Proof of Proposition 8.1.4. Let us look for a solution to H 1. = A1) in the form

A=) +¢ + O(?). (8.7)

e = o + 1, Ae = Ao+ e
Then using Hyg = A\gtg:
Hetpe = Netbe & (H +€V)(tho +€1) = (Ao + €A1) (Yo + 1)

& e(Hipo + Vo) + £ Vipr = e(Aothr + Aiho) + €2 A1¢
= (H — )\o)% = ()\1 — V)i/)o + E()\l — V)T/Jl (8.8)

In order to invert the above equation in >, we need according to Proposition 8.1.3 to ensure
that the right hand side is orthogonal to 1y , and this is therefore a non linear constraint on
1. We argue as follows. Given any ¥ € 3, we define A\(11) by the condition

(V (Yo + e¥1), o) 2
(Yo + €91, v0) 12

which is well defined for |e| < &(||¢1]|z2) small enough. We then define

F(i1) = (M (¥1) = V)ho +e(Mi(¥1) — V)i

(M = V)o +e(M — V)1, o) 2 =0 & M(Y1) =

which satisfies
(P(n), o) 2 = 0, 5.9)

and (8.8) now becomes

(H = Xo)t1 = F(yp1) < ¢ = (H — Xo) ' F(¢n) (8.10)

where the resolvent is well defined by Proposition 8.1.3 and (8.9). Using (8.9), it is easily
shown that (8.10) is solved through Picard fixed point theorem for |e| < g9 small enough, the
details are left to the reader. The key here is the continuity of the resolvent. The conclusions
of Proposition 8.1.4 immediately follow. O

The above argument can be extended to any kind of perturbations, including non local,
non self adjoint and non linear ones, see for example Exercice 8.1. The key is to reduce the
analysis to a Picard fixed point Theorem, the heart of the matter being to understand the
continuity of the resolvent in suitable function spaces. Here we used only the L? bound, this
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may not be sufficient to study more complicated non linear problems, but a various different
kind of estimates can be derived for the resolvent. This is a classical scheme for non linear
analysis: derive linear estimates adapted to the structure of the non linear problem.

Let us also say that the above argument starts the branch of bifurcation for small €. One
may then ask what happens when we push the branch and let € grow: does the first eigenvalue
disappear, are other bifurcation branches createds, etc... This kind of question can become
very complicated and is very much studied from the physical, mathematical and numerical
point of views.

8.2 FEuler equations and new soliton solutions

We conclude this section by giving two examples attached to the Euler equation where com-
pletely different methods apply to produce non linear solitary waves. We shall in particular
emphasize that sometimes, non linear ODE’s may save the day.

8.2.1 The incompressible Euler equation: travelling wave vortices in two
dimension

8.2.2 The compressible Euler equation: implosion in three dimension
8.3 Exercices

Exercice 8.1 (Non linear bifurcation). Let H be the one dimensional harmonic oscillator
2

with bound state (Ao = 2,10(z) = e~ 2 ). We aim at solving the non linear equation
Hu — M = ulul?.
(i) Let u = ev, write the equation for €.

(i) Prove using a Lyapounov Schmidt bifurcation argument that there exist solutions to the
v equation which bifurcate from the ground state (Ag,%p). Compute the law for the
deformed non linear eigenvalue.

(7i) Can we apply this argument to find the soliton solutions to (7.2)7
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Chapter 9

Orbital stability of the ground state

We have obtained in chapter 7 the existence of H! solutions to

AQ - Q+QIQP =0

Q c Hl(Rd) (9'1)

in dimension d > 1 and for all p > 1 satisfying (6.2). Every solution to (9.1) induces a solitary
wave time periodic solution to (NLS) via the formula

u(t,z) = Q(x)e™.

A fundamental problem is stability: are these particular solutions stable by perturbation of
the initial data for (NLS)? In fact, as can been observed numerically, a generic solution to
(9.1) tends to be an unstable solution. But the ground state solution @ > 0 will turn out to
be stable in a suitable sense for not too strong nonlinearities and this will a consequence of its
variational characterization.

The aim of this chapter is to prove the so called orbital stability of the ground state solitary
wave for s. < 0 by following the steps of the seminal proof by Cazenave-Lions [6]. The heart
of the proof is Lions’ concentration-compactness Lemma, [27], which describes the lack of
compactness of the Sobolev embedding H' C L?, 2 < p < 2*.

9.1 Orbital stability of the solitary wave

We work in this chapter in R, d > 1, and for a nonlinearity s, < 0 ie 1 <p < 1+ %. We let
@ be the unique ground state solitary wave given by Theorem 7.2.1.

9.1.1 Trivial instabilities

Let ug € H! and u € C(]0, +oo[; H') be the corresponding global solution to (6.1) given by
Theorem 6.2.1. From the dynamical system point of view, the natural stability statement in
the energy space H' would be the following: for all € > 0, there exists §(¢) > 0 such that for
all ug € Hl,

luo — Qi < 6(e) = Sup lu(t, z) = Q(z)e” || <e. (9-2)

However for (6.1), the symmetry group through scaling and Galilean drifts generates trivial
instabilities which violate (9.2).
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Scaling instability. For A > 0, the solution to (6.1) with data

(uo)a() = /\%QO‘@ is u(t,z) = )\%Q(x\x)e“‘%.

We have
(o) — Qllgr SIA—1] =0 as A — 1.

def

But for t =ty = 2km/A2 with A} def (2k)/(2k + 1),

uy, (tg, ) = )\,’C’%IQ(/\kw) while Q(m)eit’“ = —Q(x).

Hence for all k large enough

sup fux, (t, ) - Q)e |l > Q-

Galilean kick. For 3 € R?, the solution to (6.1) with data
(uo)p(x) = Q@)™ is ug(t,x) = Q(z — 2Bt)e'>=F1).

It satisfies
[(uo)s — QI S 1B — 0 when g —0

but
VB e R\ {0}, Sup lug(t, x) — Q(x)e™ | g1 > (1Ql g

because of the decoupling in space of Q(z) et Q(z — St).

9.1.2 Orbital stability

The above instabilities simply mean that we shoud not try to control the distance of the
solution to the solitary wave picked by the data, but to the full manifold of solitary waves
generated by the symmetry group.

Theoreme 9.1.1 (Orbital stability of the ground state, [6]). Let d > 1 and 1 <p <1+ %-.
Then for all ¢ > 0, there exists d(¢) > 0 such that for all data uo € H' with

luo = QI < 6(e),

there exists two functions v : Rt — R and = : Rt — R? such that the solution u €
C([0,+oo[; HY) of (6.1) satisfies:

sup [|u(t, z) — Q(x — 2(£))e" || g <. (9.3)
>0

In other words, a data which is close to the ground state generates a solution which for all
time is close to the manifold of solitary waves, and it draws on it a curve through the modulation
parameters (y(t),z(t)). Theorem 9.1.1 is the starting point of a very active research area
with many remaining open problems in connection to asymptotic stability problems (does the
solution asymptotically converge as ¢ — 400 to a solitary wave?) and stability problems in
particular in fluid mechanics.
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9.1.3 Sharp variational characterization of the ground state

The rest of this chapter is devoted to the proof of Theorem 9.1.1. The fundamental observation
is that stability in the energy space does not rely on fine properties of the flow, but simply on
a variational characterization of the ground state based on the conserved invariants of (NLS),

here mass and energy. Theorem 9.1.1 is indeed a direct consequence of the following:

Theoreme 9.1.2 (Subcritical characterization of the ground state). Let d > 1 and s, =
% — p%l < 0. Let @ be the ground state profile of Theorem 7.2.1. Let M > 0. Then :

(i) The minimization problem
I(M)=inf{E(u): uweH" with ||ul|i.=M}
where E(u) is the energy functional is attained on the family
Q) (z — z0)e ", xg € R, ~peR

where

def def

Qaany(@) = (MM)TTQAM)z) avee A(M) = ( 1 )

Q1172

def

(9.4)

(ii) Every minimizing sequence is relatively compact in H' up to translation and phase shift:

let (un)neny € H' with
Hun||%2 — M and E(uy) — I(M),

then there exists (x,)neny € (RON, v € R and a subsequence ¢ : N — N such that:

u¢,(n)(‘ + l’d)(n))em — Q)\(M) in H'.

(9.5)

(9.6)

Remark. The assumption p < 1 —i—% is fundamental for this new characterization of ) which is
false for p > 1—&—%- . In this last case, the soliton is a saddle point, and it is dynamically unstable
by scattering and blow up: any neighborhood of the mass critical and super critical (NLS)
ground state contains data which either lead to forward global in time scattering solutions or

finite time blow up solutions.

Proof of Theorem 9.1.1 assuming Theorem 9.1.2. By contradiction: let ¢ > 0 and a sequence

(n)nen of solutions of (6.1) such that
|lun(0,2) — Qg — 0 as n — +oo,
and there exists (t,)neny With ¢, > 0 satisfying
Vg €RY, Yy eR, |fun(tn, ) — Q(x — x0)e™|| g1 > €.
By (9.7) and the continuity of the energy functional on H!,

E(un(0,2)) = B(Q) and [[un(0,2)[72 — [QII7:-

Let wy(x) = uy(ty, ), we conclude by the conservation of mass and energy that:

E(wy) = B(Q), |wallz = Q172
and hence by (9.6), we can find (24, )Jneny € (RY)N and v € R such that
We () (- + x(z,(n))ei'y —Q in H!
which contradicts (9.8).
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9.2 Minimization of the energy under a mass constraint
The rest of this chapter is devoted to the proof of Theorem 9.1.2.
9.2.1 Computing (M)

We first observe that I(M) is a homoegeneous function of M.
Lemma 9.2.1 (Calcul de I(M)). There holds

1—s¢
—oo < I(1) <0.
Proof of Lemma 9.2.1. We first claim.
I(M) > —oc. (9.10)
Indeed, from Gagliardo-Nirenberg:
o . d d
lullrer < ClIVuU|Zallul 27 with —o+ 5 = P
Hence for v € H' with [jul|?, = M,
1 dlp=1)  (p41)(1-0)
E(u) 2 5||Vulfe = ClIVul 27 M2 (9.11)
Since A o 0
p_
14— —= <2
p<l+ p 5 < 2,

. d(p—1)
the function z — %xQ —Cz™ 2

We now claim

is lower bounded on R, and (9.10) follows.

I(M) <0. (9.12)
Indeed, let uw € H' with |lul[2, = M. Fpr A > 0, let
ux(x) = A2u(Az),

then
luallz = llullz. = M

1 AP—1)sc
E(uy) = \? / |Vu|? do — / lu[P*1dz ) <0
2 Jra P R

for A > 0 small enough.
We now prove (9.9) using a different scaling:

and

ux(z) = )\P%lu(/\m)

which yields
4
lullFe = A7 72 = A7 lu]]7

and
E(uy) = X075 B(u).
Hence:
VM >0, YA>0, I(A72%M) = X273 1(M)
and taking \"2M =1 4 A = M%¢ yields (9.9). O
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9.2.2 Classification of minimizers

We assume in this section that the infimum is attained (which will be proved later), and we
classify the set of minimizers.

Lemma 9.2.2 (Euler-Lagrange for minimizers). Let u be a minimizer for I. Then:

(i) |u| is a minimizer and

/|V]uH2da::/|Vu]2dx. (9.13)
(ii) If u > 0 then there exists p € R such that:

Au +uP = pu. (9.14)

(iii) The Lagrange multiplier p does not depend on the minimizer and

p=p(M) > 0.

Proof of Lemma 9.2.2. The proof is similar to the one of Proposition 7.2.1 : if u is a minimizer,
then so is |u| by (7.7), and E(u) = E(Ju|) = I(M) implies [ |Vu|?>dz = [|V|u||*dz, and (i)
is proved.

Let u > 0 be a minimizer and h € C°(R?). Then (7.11), (7.12) and (7.13) give (with a slight
abuse of notations) :

d d )
ﬁE(u—l—th)“:O = —/ (Au+ uP)hdr and p (Hu—l—th\|L2)|t:0 = 2/Rd uhdz,

R4

and as in the proof of Proposition 7.2.1, this yields the existence of pu = p(u) such that u
satisfies (9.14). We now claim that p does not depend on w, which is a consequence of the
scale invariance of the minimization problem. Indeed, we multiply (9.14) by u and integrate

—/|Vu|2 da:+/up+1 dx:,u/u2d:n:,uM. (9.15)

We then multiply (9.14) by %u + x - Vu. Combining the Pohozaev identity (6.22) with (6.23)
forqg = p + 1, we obtain, rembering that u > 0:

d d d
0:—/|Vu]2d:c+/up ~u+z-Vu dxz—/]VuPdﬂC—i— o /up+1dw
2 2 p+1

and hence the second relation:

/|Vu2d3:: %/upﬂ dzx.

pM = <1 - M) /up"H dz. (9.16)

This implies with (9.15):

But by (9.16),

1 1
I(M) = E(u):2/|Vu|2dx—p+1/up+1daz
dip—1

d(p—1)
1 p—1) 1 -1
= -1 P+l g — 4 M
p—i—l( 4 )/u du p+1<1_d(p—1)>’u

2(p+1)
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and p depends only on M. We moreover observe that the right hand side is non positive: this
is obvious for d =1, and for d > 2:

d(p—1)
4 d+2 . =51
p<1+g<d_2 1mphes 1_dw<0
2(p+1)
Since I(M) < 0, we conclude p > 0. O

We are thus left with classifiying the positive H' solutions to
Au+uP = pu, p>0.

This is a highly non trivial problem which has been solved in the 80’s by Gidas, Ni, Nirenberg
[15]. This is one of the spectacular success of the analysis of non linear elliptic PDE’s from
the 80’s.

Theoreme 9.2.1 (Uniqueness of the ground state). Let u € H' be a solution to
Au—u+uP =0, u>0.
Then there exists xg € R such that u(z — xo) has spherical symmetry.

Let us stress that the link between positivity and symmetry is at first hand totally unclear,
and the proof relies on a very clever use of the maximum principle for the Laplace operator
and the moving hyperplane method which goes beyond the scope of these notes. We may now
complete the classification of minimizers.

Proposition 9.2.1 (Classification of minimizers). Let u be a minimizer of
I(M) =inf{F(u): u€H" with |u|p= M}
Then there exists (o, x0) € R X R? such that
u(z) = Qxony (T — xo)e 10
where Qxpy s given by (9.4).

Proof of Proposition 9.2.2. Let u be a minimizer, then so is v = |u| > 0. By Lemma 9.2.2, v
is a non trivial (since I(M) < 0) solution to

Av+P =, veH, v>0
with g = p(M) > 0. Then
1
2
AT

w =

x .
U(X> with A= /i (9.17)
satisfies
Aw—w+wP =0, we H', w>0.

Hence the combination of Theorem 7.2.1 and Theorem 9.2.1 ensure that w = Q(x — ) for
some g € R?. Coming back to (9.17), we obtain

Q172 = [lwl32 = N2 ||v][F> = A2 M.

Since @) does not vanish, we conclude by (9.13) and Lemma 7.2.2 that there exists v € R and
x1 € R% such that ‘ ‘
u = |ule” = Q) (x — z1)e".
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9.3 The H' relative compactness of minimizing sequences

We now turn to the heart of the description of minimizing sequences which will allow us to
conclude the proof of Theorem 9.1.2.
9.3.1 The lack of compactness of the Sobolev injection

Let (un)nen be a minimizing sequence for I(M):
lwnllze = M, E(un) — I(M).

Then (uy)nen is bounded in H! from (9.11). To show that one can extract a non trivial weak
limit which attains the infimun, we must establish strong convergence in LP*! N L?, which
is of course completely false for a generic bounded H' sequence. To overcome this difficulty,
we introduce the profile decomposition of the sequence w,, as introduced in [14] in the con-
tinuation of [27] which completely describes the lack of compactness of the Sobolev embedding.

Let us start with a definition.

Definition (Limiting weak set). Let v = (v,,)n>1 be a bounded sequence of H' functions. We
let V(v) be the set of all possible H' weak limits extracted from (v,),>; and its translates:

VeV(v) e vgm(+z,) =V in H' as n — +oo.
This is a bounded subset of H! and we denote

n(v) = sup [[V|g.
Vev(v)

We may now state the profile decomposition property.

Proposition (Profile decomposition). Let d > 1. Let v = (vy)n>1 be a bounded sequence in
HY(R?). Then there exists a subsequence still denoted (vy)n>1, a family (x9)j>1 of sequences
(:U%)nzl of points of R%, a sequence of profiles (V3);>1 bounded in H' and a family (v7);>1
of sequences of corrections vl € HY such that the following holds:

(i) Separation: for k # j,

. k_ g —
ngrfoo|xn x| = +o0. (9.18)

(ii) Decomposition in H': there holds the decomposition

¢
Uy = Z VI(-—al) + o (9.19)
j=1

with for every fized £ > 1:

; .
lvnll7z = 3251 VN7 + lopliZz + onostoo(1)

. 9.20
I0mlZe = Sy [9VII2s + [ V|22 + 0ns o) (6-20)

and the asymptotic vanishing in £:

lim n(v*) = 0. (9.21)

{—~+00
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(iii) Uniform splitting of the potential energy: let

2<p<?” (9.22)
then
lim limsup |[v’]/z» = 0 (9.23)
l—+00 n—oo

and there holds the no loss asymptotic splitting of the potential energy:

||’UTLH§,P = Zﬁ:l ||V]H§,P + efb (9.24)
limy_, | o limsup,, , , o el =0.

Remark 9.3.1. Beware of the fact that (9.21) is very different from limy_, | o limsup,, . ||[v5 || g1 =
0 which has no reason to hold in general as can be seen on the example of the vanishing sequence

vn = nlgtb (%), oes@.

It however holds in LP for 2 < p < 2*, (9.23), this is why a compactess process is at work.

In other words, up to an error which can be made arbitrarily small in in LP, smallness
being indexed by the parameter ¢, the sequence v,, constists of ¢ bubbles which move strictly
away from each other according to (9.18). The decomposition can be iterated ¢ — +oo with
smaller and smaller errors in LP and in the 7(v®) sense which provides an asymptotic no loss
estimate for the potential energy (9.23), (9.24) which is contained in the bubbles only.

Proof of Proposition 9.3.1. We closely follow [19]. We fix once and for all v = (v,)n>1 a
bounded sequence in H'.

step 1 Induction and H! bounds. We construct by induction on j a sequence V7 € V(v), a
family (27);>1 of sequence of R? such that (9.18) holds and a family (v7);>1 of sequences of

error vj, € H! such that, up to a subsequence, (9.19) holds with the uniform bound (9.21).

¢=1. If n(v) = 0, we can take VJ = 0 for all j. Otherwise, we pick a non trivial profile
V1 € V(v) such that

1
V'l > n(v) > 0.
Then by definition, there exists x! = (z1),>1 such that up to extraction of a subsequence:
vp(-+2t) =Vt in HY

and we set
1 1(. 1)
v, =vp =V (- —x,).

Since vl (-+zL) — 0 in H', we have as n — +oo0 and by translation invariance of the Lebesgue
measure in R?:

lonllZe = llon + V(= 2p)l72 = lloallze + 2R (vn, VI — 20 )) 2 + IV — ) 172
= lonllZe + IVHIZ2 + 2R (o (- +20), V) o = llonllZe + V172 + 0000 (1)

and similarily
IVonlZe = [IVvnll7z + IVVIZ2 + 0nspoo(1).
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This implies the bounds

limsup [[v} |31 < limsup [|o, |21
n——+o0o n—+oo

¢ = 2. We now write
Un = Vl( - ‘T}L) + Urlu

replace v by vl = (v,ll)nzl which is a bounded sequence in H', and iterate the process. If
n(v') = 0, we take V7 = 0 for all j > 2. Otherwise, we extract V2 # 0, x2, v2 as above.
The fundamental observation is that necessarily the sequences x!', 22 decouple ie

: 12| _
Jm = ap| = +oo.

Indeed, by contradiction, we could otherwise extract up to a subsequence
1 2 d
x, —xy — xo € R as n — +o0, (9.25)
but then since by construction

L(-+22) = V? in H!
1

v
vi(-+zk) =0 in H!

the relation

v (- +20)) = vp (- + (25 — ) + 7))

with (9.25) implies
Vi=0

which is a contradiction. Finally, we observe that by construction

vi(-+axL) =0 in H!
vi(-+22) =0 in H!

and
1

vy = V2( —ap) tun = vn (- +2p) = V(2 —2p) +op (- + ).
Since |z} — 22| — 400,
V(- 42l —22) =0 in H' as n— +oo

n

and hence
v2(-4xl) =0 in H' as n— 4oo.

This implies
2
vy = S2 402, S2= ZVj(- — ).
j=1

We compute the norms:

lvnll72 = 1157 + v3lI72 = IS2II72 + 2R(SE, v2) 2 + [I1S2][72
Vo7 = IVSE + Vuillz. = VST + 2R (VST Vi) . + IVSTIZ

The cross product vanishes at n — 400 using
vi(-+2)) =0 in H' as n— +oo, j=1,2
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which ensures

§R<V]( - x%,vfb>L2 = §R<Vy,v721( + :U%)>L2 —0 as n— 400
R <vvj(- s w,%>L2 =R <vvj, Vo (- + mi,,)>L2 ~0.
On the other hand, the decoupling lim,, 1 |z} — 22| = +00 ensures
ISalI7: = IV =) + V2 = 2p)l72 = IV = 2p) 72 + V(= a7)llzz + 0nsro(1)
= Ve + V272 + 0nssooq)
and similarily for the Dirichlet energy:
IVSaIE: = 1VV 2 + IV V2IIZ2 + 0nssocn)-
Hence

lvnll72 = IVHIZ2 + V272 + V71172 + 0nssoo (L)
IVonlze = IVVHIZ: + IVV2IZ2 + VU372 + onssoo(1)-

Induction on ¢. We now argue by induction on ¢ and use a diagonal extraction argument to
construct V¢, zf, v’ such that up to a subsequence, for all £ > 1,

vp =S4+l

Y, . i 9.26
Sﬁ = Zj:1 VI(- = an), ( )
the separation (9.18) holds, the weak limit
Vi<j<t v(-+2))—=0in H' as n— +oo (9.27)
holds and by construction ‘
n(vW) <2V g, =2 (9.28)
Fix ¢ > 1, then using (9.18) yields the asymptotic orthogonality:
¢ ~ j ‘ '
||S£||%2 = Zj£:1 V(. —»T%)”; - Zj:1 HVJ||%2 as n — +00 (9.29)
IVSE|2, — > i IVVI]2, as n — +oc.
We now develop the scalar product and use (9.27) to compute:
E .
lonllz2 = 1S5 + vnllze = ISal1Z2 + lonlZz + 0nosroo(1) = D IV 172 + ol 72 + 0nsroo(1)
j=1

and similarily for the Dirichelt energy, and (9.20) is proved. This implies letting n — +o00:

sup n—-+o0o

0
C> lm a2 =Y IV
j=1

and hence since this is true for all j:

400
SOV < 4o (9.30)
j=1
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This implies recalling (9.28):
n(v) <2QVI Y g —» 0 as j — +oo

and (9.21) is proved.

step 2 LP bounds. We now claim the asymptotic splitting of the kinetic energy (9.23), (9.24)
which follows from (9.21) and Sobolev embeddings. First observe from (9.20) the uniform
bound
Ve > 1, limsup ||v) | g < limsup ||v,]/ g < C (9.31)
n—-+0o n—-+oo

independent of ¢. Let us fix once and for all ¥ € S(R?) with

1 for || <1

O

and given R > 0, let
xr(z) = R¥(Rx). (9.32)

Then
§ 1 for || <R

GO =% (%) =] 0t 15 o
We now split in low and high frequencies

"

v —UEXR+UZ(1—XR)<:>U XR*UfL—I—((S—XR)*U

where ¢ is the Dirac mass at the origin. High frequencies are estimated using the homegeneous
Sobolev embbeding: let

d d
—-s+-=—-, 0<s<1
2 p

from (9.22), then

16 — xr) *vpll7s S 116 = XxR) *vhl%. S/ €0l [2(€)de = / 2 b (€)de
€I>R >R \5|
I
~  R2(1-s)"

and hence using (9.31)

C
. 02
VE>1, ligilig (6 = XxRr) * vy I7p < EEDR

Given e > 0, we may therefore find R = R(e) such that

Ve>1, limsup||(d — xr) % vpll7s <e.

n—-+o0o

This R = R(e) being now fixed, we estimate the low frequency part using Holder and Young:

2 —

_2 2
Ixg *vpllze S ||XR*UnHL2HXR*UK||L P < Il bl zllxm * o

2 1—
P S lvnllzelxs * vgl o

where used from (9.32):
VR >0, |Ixzllz = lIxllzr
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Hence from (9.31):

1—-2
limsup || x g * vh||r» < Climsup ||xg * vh||; -
n—+00 n—-+00

We now observe recalling the Definition 9.3.1 of the limiting weak set:

limsup [|xp * 05|z~ = sup limsup||(xr*vl)(@)llLe = sup limsup
n—-+4o0o (xn)n21 n—-+4o0o (xn)n21 n—-+4o00

[ etV

/ XR(Tn — Y)vn(y)dy
Rd

= sup limsup
(Zn)p>1 M—to0

/ XR(=y)vn(xy +y)dy’ < sup
R4 Vev(vt)

From Holder,

[ xel=V @] < D!V

and hence the bound:
limsup || xr * vaHLoo < C(R)n(ve).
n—-+4oo

R = R(e) has been fixed, so we now let £ — +oo and (9.21) yields (9.23). We are now in
position to conclude the proof of (9.24). Fix ¢ > 1 and recall (9.26):

Uy = S’f; + Uf;.
We first estimate from (9.29), (9.30) and Sobolev:
Ve > 1, limsup||Sh|3, <G, hrnsup 1S5)1%: < C (9.33)

n—-4o0o

with constant C > 1 independent of £. We now use the homogeneity estimate

4
Z% Z!aﬂp < Gyl ax P! (9.34)
j=1

J#q
to first estimate with Holder:

¢ ¢ 14
155 + wi 12, = 15805, — Noall7, | <

Cy [ [IStllobp= + 1ot st do
Rd
< Gy (It ISEIT" + Nob 5 16 e ) (9.35)

We now estimate using (9.34), (9.18) and an elementary density argument:

[EM ZHWII + 0nstoo(1)-

Let
e = |lonll7, Z VL,

we conclude using (9.33), (9.35), (9.23) that

Ve > 1, limsupleb| < C, hmsup [|vE || Lo
+

n—-4o00

and letting ¢ — 400 and using (9.23) concludes the proof of (9.24).
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The profile decomposition is the generalization of P.LL Lions’ concentration compactness
principle whihch arose for the very first time at the end of the 1970’s in non compact geometric
problems and led to the resolution of a series of classical variational problems in mathematical
physics, [27]. More recently, a new set of applications arose for the study of nonlinear dispersive
equations and the classification of minimal elements in the seminal works of Kenig, Merle [21],
which have designes a revolutionary route map for the study of global existence and scattering
for non linear dispersive PDE’s.

9.3.2 Compactness of minimizing sequences
Let us show how Proposition 9.3.1 allows us to conclude the proof of Theorem 9.1.2.
Let (un)neny be a minimizing sequence. Let us consider up to a subsequence the profile

decomposition of Proposition 9.3.1. The key is to show that for a minimizing sequence, the
profile decomposition must be trivial

VIi=0 for j>2. (9.36)
Indeed, by Proposition 9.3.1,
1 1 1 < . 1 K
E(uy) = 5\\%\\%2 - mHunHiﬂl = 2; IVVI |22 + Vo7 — p+1; VAN — ene

Y/
= E(V7) + [Voil3s +ene = D> E(VY) —eny
j=1 j=1
with

lim limsupe,, = 0.
£—+00 n—+oo

Letting n — 400 and then ¢ — 400 yields
+00 '
I(M) > > E(V).
j=1

Moreover,
L
M = Joal7z = D IV7 172 + o7z + 0nsroo(1)
j=1

and hence letting n — 400 and then ¢ — 400 yields

+oo ]
M = |V,
j=1

Let
Mj = [V7]g2 = ajM, 0<aj <1,

and recall (9.9):

1+ [sc]

|sel

I(M)=MP, g=

> 1,
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we obtain:

IM@zzHDAWQﬁifEG”)2§§IM@):IOMW5§?af
j=1 j=1 j=1

and hence since I(1) < 0:
+o0
B
PILVERE
j=1

On the other hand,

+oo ' +oo
M2 |V = MY
7=1 j=1

and hence the constraints

+oco
=105 <1

+ B
a1
OSOéjgl

which since 8 > 1 forces a; =1, oj =0 for j > 2, and (9.36) is proved. We conclude:

I(M) > E(V!)
V2, =anM =M

which since I(M) is the infimum forces

BE(V) =I1(M),
and V! attains the infimum. We have shown

lunllze = [VI72
and by strong LP*! convergence since V! attains the infimum

A A
and hence
Uy —VI—2) =0 in H.

We conclude using Proposition 9.2.1 that there exists (7o, 20) € R x R? such that

V= Qxny(z — x0)e™,

which concludes the proof of (9.6).

9.4 Exercices

Exercice 9.1 (Ground state of a gaseous star). We work in R3. To every positive function
u:R3 — RT, we associate its Poisson field

1
E, ¥vs, with ¢,

- * U,
47| x| "

The potential ¢, is a solution to

A¢y = u. (9.37)



(7) Show that
1
Eu(2)| < — :
u()] g

Prove that . ,
[Eullzz S llull 2 llwllfs-

(7) Compute E, in terms of @. Prove

[EBull e S Nlullze + [lull -

(iii) Let (un)nen be a bounded sequence in L' N L? such that
Uy, — u dans L2

Show using Plancherel that

Yo € C°(R?), /Eunqux — /Euqsdx.

Prove that
E,, — E, dans L°

(7v) We assume that u has spherical symmetry. Show the representation formula

Ey(r) = ¢u(r)e, = (:2 /0 ' 7’2u(7')d7> %'

Show that )
u
VR > 0, / |Ey|2dz < lllz:
le|>R R

(v) Let (un)nen be a bounded sequence in L' N L? of radially symmetric positive functions.
Show that we can extract (uy,(n))nen such that

uw(n) —u In L2

and

E — E, in L

Up(n)

(vi) Let M > 0 and

A(M):{u:R3»—>R+ with u € L*(R?) et / udq;:M}.
R3
Let
100 = t N[ o= [ iBPa .
ucA(M) | Jr3 R3
Show that

o0 < I(M) < 0.
(vit) Compute I(M) in terms of M and I(1).
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(viti) Let Apqq(M) be the set of radially symmetric elements u € A(M). Let

Lgg(M) = inf [/ lu|? dz —/ |Eu]2dx] :
u€A,qa(M) [ JRr3 R3
Show that I.,q4(M) is attained.
Exercice 9.2 (Kinetic model of stars). A galaxy is a cluster of 10'® stars. A statistic de-

scription is given by the distribution f(x,v) which is the density of stars which have the speed
v € R? at the point 2 € R?. The total number of stars at = € R? is therefore

pi0) = [ f)do,
veER3
and the total number of stars is
£l = [ f@oydodo= [ pp(o)de
R6 R3
The total kinetic energy of the galaxy is
1
Ein(f) == / | f(z,v) dz dv.
2 Jre

Last, stars are submitted only to the gravitational force, and the total potential energy is

L o)
Am Jgs [z —y|

Epot(f) = /R3 \V¢f(x)|2dx ol ¢f(x) = dy.

Given My, My > 0, we consider the minimization problem:

I(M;,My)= inf E
(M, My) reartd v (f)

which defines a stable galazy, where

A(My.My) = {f(wv’v) >0, |fllrwsy = M, |[fllremey = M2}

and

E(f):;/w |v|2fdxdv—/RS|V¢f(:c)|2d$.

(i) Let x € R3. By splitting |v| < R et |v| > R, show that

st £ 1%

(7)) Conclude by optimizing on R that

vo e B, lo@) 5 ([ 1oPs0 dv>; ([ 2@ d) .

(#ii) Prove using Holder:

3 4
prHL%(R[;) SJ H|U|2f‘|£1(R6)Hf”}}(Re)-

138



(iv) Prove using Holder:

2
6

1 5 2
- ; .
2 oy SN IEs eoLFs eoL ey

ol

(v) Show that
1
IVor(x)| S [z *Pf

and obtain the interpolation estimate
9 9 ik 5 2
[ V0@ da S NP A1 o)L ey 11

(vi) Show that
I(M1, MQ) > —00.

(vii) Using the scaling

T
i(zv)=f (X,/\v> , A>0
show that
I(Ml,MQ) < 0.

(viii) Using the scaling
W,/
Pl v) =35 f (X=M”> A >0,

show that .
I(My, M) = MfoI(l,l).

The compactness of the minimizing problem can be proved, but this requires more work...
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Chapter 10

Blow up: an introduction

Blow up mechanisms are in general poorly understood, but the subject has lead to a tremen-
dous activity in the last twenty years. The scenario leading to the formation of a singularity
may be complicated and the phenomenon appears under very different forms: shock waves,
turbulence, energy concentration on nonlinear structures, ... The celebrated problem of finite
time blow up for the incompressible Navier Stokes which are the basic equations of fluid me-
chanics is one of the Millenium Clay problem.

In this context, the singularity formation for the (NLS) focusing equation is a fantastic
model problem which comprehension has considerably advanced in the last fifteen years, in
direct connection with the mathematics developped in these notes.

As an introduction to blow up techniques, we present here the seminal pionnering work of
Merle (1992) of classification of the minimal blow up bubble for the mass critical (NLS). This
result has been a completely isolated point in the analysis of non linear PDEs until it became
in 2006 the corner stone of the revolutionary approach to global existence and scattering for
critical non linear dispersive equations known as the Kenig-Merle route map (2006) (see [32],
for references).

In order to simplify the exposition as much as possible, we focus in this chapter onto the
historical problem of non linear optics:
: 2 _
{ i0pu + Au~+ ulul® =0 (t.2) € R x R? (10.1)

Ujt=0 = U0,

which is L? critical in dimension d = 2 ie s, = 0.

10.1 Ciritical dynamics and minimal objects

We presented in chapter 7 a first variational characterization of the ground state solitary wave
to (6.1) for s, < 1, and hence in particular for (10.1). The stability analysis of chapter 9
however requires the stronger assumption s, < 0, and is false in the critical case s, = 0. In
this chapter, we will derive a dynamical characterization of the ground state solitary wave as
solution to (10.1): it is the smallest non linear object, ie the first solution (in term of mass)
which does not disperse in large times.
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10.1.1 Another variational characterization of ()

We derive in this section the variational characterization of the ground state solitary wave as an
extremizer for a Gagliardo-Niremberg interpolation inequality as discovered by M. Weinstein,
[40].

Proposition 10.1.1 (Best constant in Gagliardo-Nirenberg). Let

def ||Vl Zallull72

; . ue HY(R?)\{0}:
[[ull7a

J(u)

Then 2
inf Ju)=J(Q)= %

10.2
uwe H\{0} 2 (10.2)

and the infimum is attained exactly on the family
aoQ(Nox + 0)e avec (ag, Mo, To,Y0) € R* x R x R? x R.

Proof of Proposition 10.1.1. . This follows a now classical path.
step 1 Reduction to |lu|;2 = ||ul[r2 = 1. In dimension d = 2 and for p = 4, the Gagliardo-
Nirenberg inequality (4.14) is:
vue HY, uls S (IVull7eulZ..
Hence

J= inf J(u)>0. 10.3
it 7 1)

An explicit computation reveals
J(au(X)) = J(u), V(a,\) € R* xR,
and hence adjusting the parameters a, A\, we have

Va7 (10.4)

in
lull p2=1, lull L4=1
step 2 Compactness. Let u € H!, and consider its distribution function
def
i) [ > 8], >0,

We associate to u its symmetric rearrangement u* which is the unique non increasing spheri-
cally symmetric function such that

VE >0, pu(t) = pu(t).

The identity (1.16) ensures
Vp 21, |lu*fLe = llullr.

A non trivial fact which we shall admit is that this transformation makes the kinetic energy

decrease 1
/|Vu2dx2/]Vu*|2d:U.
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Hence given a minimizing sequence (up)nen with ||un|/z2 = |Junlpa = 1, we conclude that
vp = w), is minimizing with spherical symmetry. By lower semi continuity of the kinetic energy
(cf (2.4)) and compactness of the radial Sobolev embedding H; < L*, we extract (vy(,))nen
with v,,) — v in H' and :

J 2 |[Vole, lve =1 and [oflzz < 1.

If ||v||z2 < 1 then J(v) < J which contradicts the definition of J. Hence the infimum is
attained on v.

step 3 Classification of minimizers. If w is a minimizer, so is v = |u| by (7.7). We may
therefore first restrict the study to positive minimizers. We claim the existence of Lagrange
multipliers A,y such that

Av — v + pv® = 0. (10.5)
Arguing as in chapter 7, we fix h € C°(R?) and then, for t € R close enough to 0, we let
o def ai(v + th)(A¢-) with a; and Ay choisen so that

[oell2 =1 et logl[pa = 1.

A simple computation using ||v||z2 = ||v||f+ = 1 reveals:
[v + thilL lo+ thl| 2\ *
at — 72 d )\t = _— .
[v 4 thll7 [v 4 th]| s
Hence

IVuls = a2 / (Vo + th)) ()2 de

lv+thl[Z, 2 2 2
= o thlt, (|Vu(z)]? 4 2tVo(z) - Vh(z) + t*|Vh(z)|?) dz.
v+ th|],

Then using (7.11), (7.12) and (7.13) with p =3,

1+ 2t | vhdr

Hence
[Vvell2s = || Vo]22 + 2(|Vv”%2 /(v — 203 hdx — /Avhdx)t + O(t?).

This expression ensures that the map ¢ — [[Vu||7, is derivable close to 0, and since the
infimum is attained at 0, we conclude that (10.5) holds with

A= |Vol|:=J and p=2\

Since A and p are striclty positive, we may adjust the constants a,b > 0 so that w def av(b-)
satisfies:

Aw—w+w?=0, w>0, we H"\{0}.
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We conclude using Theorem 9.2.1 that there exists zg € R? such that w = Q(- —x0).
We now consider u general minimizer, then since @) does not vanish and w« is a minimizer, the

relation
/]Vu|2dx:/|V|u||2dx

yields u = |u|e? for v € R, and the classification is complete.
It remains to prove (10.2). We mulptiply the @ equation by @ + - VQ and compute using
the Pohozaev identity :

/|VQ\2d:U = ;/@4 dz ie. E(Q)=0. (10.6)

1
Hence J = J(Q) = 5[ QIZ- O

We will use the following equivalent formulation of Proposition 10.1.1.

Corollary 10.1.1 (Lower bound on the energy functional).

|Vul2, [1 ) Hur%ﬂ |
Q12

(10.7)

def 1 1
vue i, B Y [Ivul - el >

Moreover,
(E(u) =0 and |[ullr2 = [|Q12) & u(z) = AQ(Xoz + z0)e"”
for some (Ao, z0,70) € RY x R? x R.

Proof of Corollary 10.1.1. By Proposition 10.1.1:

_ IVullZelu] _ QI

2
vue H', J(u) 2> 0Q) =
l[ull74 2

which implies (10.7). If E(u) = 0 and ||ull2 = ||Q||z2, then J(u) = J(Q) and hence
u = agQ(Xox + x0)e"°. The constraint |jul|;2 = ||Q| 2 fixes the constant ag = ). O

In other words, the total energy controls the kinetic energy for functions with mass ||ul|z2 <
|QIlz2, and at the critical level of mass ||ul|z2 = ||Q||z2, the only (up to symmetries) zero
energy function is the ground state solitary wave.

10.1.2 Generalized orbital stability

An important corollary of this new variational characterization is the following generalization
of Proposition 9.1.2 to the mass critical case.

Proposition 10.1.2 (Mass critical oribital stability). Let (un)nen be a sequence in H' with

lunllze = 1@z, [Vunllrz = [[VQ||r2 and limsup E(uy) < 0. (10.8)
n—-+o0o

Then up to a subsequence, there exist (Tn)nen and (Yn)nen elements of respectively R? and
R such that
Un (- + 2)e™ — Q dans H'.
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Proof of Proposition 10.1.2. Let us apply the profile decomposition Proposition 9.3.1 to the
sequence u,. Up to subsequence, this yields

¢

¢
. ' ,
1QI1Z2 = llunllZz = Y IVIIZ2 + lopllZz + 0nssoo(1) = Y IV IF2 + 0nsoo(1)
j=1 j=1

and hence letting n — 400 and then ¢ — +o0:

+o00
1QIF: =D IVIl72 = Ve =1, [Vl < [|QlIL2- (10.9)
j=1
On the other hand,
¢ ' 14 l
E(u,) = ZE(V]) + Z ”VUfLH%2 + Op—stoo(1) + 5fz > ZE(VJ)2 + On—stoo(1) + 55;
j=1 j=1 j=1

and hence letting n — 400 and then ¢ — +o0o yields:

0>> E(V)).

J=1

We now invoque (10.9) and the sharp Gagliardo-Nirenberg inequality (10.7) which yield

| o [ IV,
Vi>1, E(V;)>|[VV77. [ 1- Q|12 20
L2

and hence necessarily
’ V;=0 for j>2
E(V1) <0, [Vl < [|Ql|ze-

If V! =0, we conclude that up to a subsequence,
U, — 0 In L
and then using (10.8)

1 1 vQl3
Blua) = 319l — 5 [ fualtde > 0 s o

which contradicts (10.8). Hence V! = 0 from which using (10.1.1):
V= XQ(Noz + x0)e.

Moreover
Up(-+ ) =V in H!
up(-+2) =Vt in L4
and E(u,) — 0 (because Vn, E(u,) > 0) force

E(un) = E(V') = 0= |[Vunl> = [VQI7> = [IVV!Z2
and hence Ao =1, and
Up(-+ 1) = V= Q(z + x0)e” in H!

by strong convergence of the norms, and the Proposition is proved. O

145



10.1.3 Minimality of the solitary wave

The variational characterization as a Gagliardo-Nirenberg extremizer implies its dynamical
unstability: it is the smallest non scattering element.

Proposition 10.1.3 (Q is minimal). Let ug € H' avec

luollzz < [|Ql|L2- (10.10)

Then the corresponding solution to (10.1) is global in time +oo and disperses as t — +oo:
Juioo in H' such that

Btooll g2 = 0. (10.11)

lim |ju— €’
t—=+o0
Proof of Proposition 10.1.3. Glopal existence follows from the Cauchy theory, and scattering
from the pseudo conformal symmetry.

step 1 Global existence. We observe that (10.7) applied u(t) combined with the conservation
of mass and energy implies a uniform bound on the kinetic energy, and the blow up criterion
(6.3) yields u € C([0, +00), H').

step 2 Scattering. We give the proof for uy € ¥. The proof for ug € H' only is considerably
more complicated. The pseudo conformal invariance (5.23) is still a symmetry of the non linear
problem in the L?-critical case. Let then

1 t €T zﬁ
u(t,x) = v , e'10+D
14t 14+¢2 14t

which solves (10.1) with

. t
vt # =1 o)z = llut, e <IQllzz  with T'= 7——.

Hence v is global solution to (10.1) which satisfies
o(T,X) = v(1,X) in H' when T — 1,

and (10.11) follows from an explicit computation.

10.2 Dynamical classification of the solitary wave

We conclude this chapter by a new class of theorem which lie within the class of rigidity
theorems?. We aim at transforming the variational characterization of the solitary wave (the
smallest H' solution in L? with zero energy) into a dynamical classification of the solitary
wave: it is up to symmetries the unique solution to (NLS) with mass ||Q||;2 which does not
disperse. This should be thought of in the following way: being the first and minimal non
trivial solution of the non linear flow is a very rigid property and forces a very particular non
linear stucture to emerge, here the solitary wave. Should the problem not admit such very
special solutions, then there can be no such minimal first non scattering solution, and hence
all solutions must disperse and scatter: this is the Kenig Merle route map [21]. The heart of
the proof is the classification of minimal elements.

2See [32] for an elementary introduction.
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10.2.1 The minimal blow up bubble

The global existence criterion (10.10) is optimal in the following two ways: first the solitary
wave u(t,z) = Q(z)e® is global and non dispersive with minimal mass ||u(t,-)||z2 = ||Q||12;
second there exists a blow up solution with minimal mass [|Q| ;2. Indeed, the conformal
invariance (5.23) being still a symmetry of the non linear flow in the mass critical case, and

exchanging the roles of and ¢ and T = %th’ we obtain

1 T X X2
T,X) = 1
o(T, X) 1—T“<1—T’1—T>6

Applied to the solitary wave u(t,z) = Q(x)e produces the explicit solution

2
S(t,z) = LQ < a > e imi i (10.12)

which emerges from the data at time 0:
2

5(0,2) = Qx)e™" -

The solution S blows up at time ¢ = 1 at the speed
c

1—t
but is globally defined and scatters as t — —oco. Moreover, the conformal invariance being an
L? isometry, this solution has miminal mass

15@t, )z = Q] 2-

IVS(E, )2 =

10.2.2 Uniqueness of the minimal blow up bubble

A spectacular property of the S solution is that at the time of the singularity, all the mass of
the solution concentrates at the origin as (10.12) easily implies

S(t, )P = QU320 in D/(R?). (10.13)

Hence all the mass available at ¢ = 0 has focused into the singularity. Like the solitary
wave @Q(z)e® which does not loose energy as it propagates, the minimal blow up bubble is
non dispersive and compact in H' up to symmetries, ie it does not eject any energy during
the evolution. This behaviour must be non generic and such objects are rigid: these are the
bubbles of energy which drive the non linear flows, anything else should be linear radiation,
this is the soliton resolution conjecture. Hence the dynamical classification of these compact
bubbles is a fundamental step towards the understanding of all solutions, and a pioneering
result in this direction is:

Theoreme 10.2.1 (Classification of the minimal bubble, F. Merle (1992) [29]). Let ug € H!
with

[uoll 2 = Q| 2-
If the corresponding solution u € C([0,T[; H') blows up in finite time T < 400, then

u(t,z) = S(t, )

up to the symmetries of the flous.

3that is scaling, phase and translations, see Proposition 6.2.1.
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Through the conformal invariance, this yields equivalently the dynamical classification of
the solitary wave.

Corollary 10.2.1 (Dynamical classification of the solitary wave). Let ug € H' with

luoll 2 = |Q|| L2-

If w is neither the solitary wave nor S up to symmetries, then u is global and scattering in
both directions of time.

In other words, Proposition 10.1.3 extends to the limiting case ||ug||r2 = ||@Q||12, modulo
the consideration of two exceptional solutions: the minimal dynamics of the solitary wave and
S which are H' compact. The proof is the starting point of the analysis of all data ug with
Q2 < |lwollzz < Q2 + @*, and 0 < o* < 1, for which most dynamics have now been
classified.

10.2.3 Proof of Theorem10.2.1

Let ug € H' be a minimal mass blow up solution: |jugl|z2 = ||Q||z2, and u € C([0,T[; H') the
corresponding solution to (10.1). We assume finite time blow up T < +o0.

step 1 Orbital stability and H' compactness. Let us renormalize the solution

def [[VQ| 12
A() el (10.14)
[Vu(t)] 2
Then the blow up criterion (6.3) ensures
lim A(¢) = 0. 10.15
Jiz ACt) (10.15)

Let
o(t, z) ENOult, Ab)z),

then by (10.14):
IVo(t, )2 = [IVQ[ 2.

By conservation of mass
[o@t, )2 = lJult, )Lz = Q2
and energy with (10.15) :
E((t)) = M) E(u(t)) = NX(#)E(ug) = 0 as t —T.
We conclude using Proposition 10.1.2 that there exists (x(t),7(t)) € R? x R such that:
o(t,-+2(t)e" — Q dans H'as t— T.
Coming back to u, we conclude

x — z(t)

Wt z) = ——[Q +¢] ( 0

A(t)

In other words, up to renormalization, v has a strong H' limit as ¢ — T, and does not eject
mass: we say that the flow is non dispersive or compact in H'.

) M with lim lle(t, )| g1 = 0. (10.16)
t—T
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step 2 A Cauchy-Schwarz inequality. From (10.7), let u € H' with |jul/;2 < ||@Q||2, then the
total energy controls the kinetic energy. We claim a slightly weaker statement at the minimal
level: let w € H' with ||w| ;2 < ||@]/z2 and 1 a smooth function, then

‘Im</wVw : wdx>

Indeed, we compute for all « € R :

2
§2E(w)/|v¢|2|w2dx. (10.17)

E(we'?) = B(w) + a1m</wVw : V@Dd:ﬁ) + %a2 / w|*| V| da.

Now [|wel®| ;2 = ||Q| 2, implies F(we’®) > 0 by (10.7), which implies (10.17) by rewriting
down the discriminant of the order two polynomial in a.

step 3 L? tightness and control of the concentration point. We now inject the first dynamical
information: we localize the mass conservation and claim that it implies the L? tightness of
the flow

Ve >0, 3R > 0t.q. Vt € [0,T7, / lu(t, z)|?dx < e. (10.18)
|z[>R

Observe by (10.16) that this immediately implies the control of the concentration point

limsup |z(t)| < +o0. (10.19)
t—=T

Proof of (10.18). Let x smooth with spherical symmetry with x(r) = 0 for r < % and x(r) =1
for r > 1. Let R >0 and xg(x) def X (%) . We compute the evolution of the localized mass:

1d
3% xrlul>dz = Re (/XRatuudx> =1Im </z’8tuXRud:c>

= —Im (/[Au+uu|2)XRudx> =Im (/VU-V(XRU) dx)
= Im </VU~VXRud:L"> : (10.20)

We conclude using (10.17) and the conservation of mass:

1
2 FE
CZ/XRM’de < \/m(/|VXR2|u2d$>2 < M'

VR
We integrate bewteen 0 and ¢ < T':

C(UO)T
\/R )

and (10.18) is proved. Note that this step uses the finite time blow up assumption.

vt e [0,7], / xalult, z)Pde < / xiluo(@)|? dz +

step 4 Improved regularity. We now enter the heart of the proof: the improved regularity. A
solution to a non linear dispersive PDE’s inherits the regularity of its Cauchy data. But the
key to the classification of minimal bubbles is to integrate the flow from the singularity and
use the minimality to gain regularity. Here more precisely we will show that necessarily the
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solution gains integrability at infinity «w € C([0,T'[;X): since there is no mass at blow up time
away from the origin, there could not be "too much" mass at infinity at initial time.
By (10.19), up to possibly translating by a fixed vector, there exists t, T T with :

z(tp) =0 in RZ (10.21)

Let ¢ be a radially symmetric function +(r) = r2 for r < 1, 9(r) = 8 for » > 2 and

V|2 < Cop. Let A >0 and a(r) = def A?)(%). Then there exists a constant C' independant
of A such that
[Vipal* < Cpa. (10.22)

We estimate using (10.20), (10.17) and (10.22):

1
2
’2dt/w,4|u]2dx = ‘Im/(va-Vuu)dx < VEy (/\vszy?\uy?da;)
1
< VE (/wAyude>2
and hence

< VE. (10.23)

d |
o /wA‘“F

/wA]u(tn)de%O as n — +00.

Now from (10.21) and (10.16):

Hence, integrating (10.23) on [t,t,] and letting n vers +oo, we obtain

vt € 0,77, / balu(®)]? de < C(Eo)(T — 1),

where we used finite time blow up again. Since the right hand side is independent of A, Fatou’s
lemma ensures letting A — +o0:

vt € [0,T[, u(t) €X with /]az\zlu(t, x)[*dx < C(Eo)(T — t). (10.24)
step 5 Conformal invariance and conclusion. The last step is algebra. The bound (10.24)
implies
/|$|2|u(t,x)]2dx —0 as t—=T.
Let now
(t2) = T tT Tz '4(I;g|jt)
B = T )\ Ty e T 1 '
Then

[o(t, )2 = llult, )2 = 1@l 2

and a direct computation ensures:

E(v) = hm/]az\ lu(t, z)|* dz = 0.
8 t T
We conclude using Corollary 10.1.1 that v = ) up to symmetries, and hence © = S up to
symmetries. ]
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10.3 Exercices

Exercice 10.1. Generalize Proposition 10.1.1 with (p,d) such that s, < 1 and obtain the
solitary wave as the extremizer of a suitable Gagliardo-Nirenberg inequality.

Exercice 10.2. Let ug € H' with ||ugl/z2 = ||Q|z2 + a* for some 0 < a* < 1. We assume
that the corresponding solution u € C([0,T[; H') of the L%-critical (NLS) (ie. p=1+73)
blows up in finite time. We define v through the renormalization :

o~ wi d:efm,
O (A(t)) A= T

u(t,x) =

(i) Show that
tl}n% E(v(t)) =0.
(ii) Show that there exist (z(t),v(t)) € R? x R such that
Ve e RY, vtz + z(t))e"®) = Q(z) + &(t, 2)

with
sup |le(®)]lgr =o(1) as a* — 0.
te[0,T]

Hint: argue by contradiction and use Proposition 10.1.2.

Exercice 10.3 (Mass concentration for the cubic focusing (NLS) in dimension 2). Consider
(10.1) with data ug € H}'. We suppose that the corresponding radial solution u blows up in
finite time 0 < T' < +00. We will show that the critical norm must concentrate: :

VR > 0, liminf/ w(ty, z)|?dz > 2,.
mipt [ lutin, )P 2 QU

We argue by contradiction and assume that there exists €, R > 0 and a sequence t, — 1" with

lim sup / [, ) 2dz < Q|22 —e.
|z|<R

n—+oo
(7) Let
def 1
At) = =i
O Tl
Show that
lim A(t) = 0.
AT
(i) Let vp(z) = Apu(tn, \nx) with A, = A(t,). Show that (v,,)nen is bounded in H*.
(7i) Compute E(vy,).
(v) Let v be a weak limit extracted from (vy)nen. Show that v is non zero.
(v) Show that

E(v) <0 and 0</\v\2dm§/Q2dx -,

and conclude.
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