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Introduction to non linear Analysis

Example sheet no 4 - Variational methods

Exercices to be done: 1-2.

Exercice 1 (Ground state of a gaseous star). We work in R3. To every positive function u : R3 → R+, we associate
its Poisson field

Eu = ∇φu with φu = − 1

4π|x|
? u.

The potential φu is a solution to
∆φu = u. (0.1)

We admit the Hardy-Littlewood-Sobolev inequality which is the borderline case of Young’s inequality in Rd (see the
notes for a proof): let 0 < α < d, 1 < p, r < +∞ with

1 +
1

r
=

1

p
+
α

d

then
‖ 1

| · |α
? f‖Lr(Rd) ≤ Cr,p‖f‖Lp(Rd).

1. Show that
|Eu(x)| . 1

|x|2
? |u|

and conclude
‖Eu‖L2 . ‖u‖

1
3

L2‖u‖
2
3

L1 .

2. Compute Êu in terms of û and conclude

‖Eu‖H1 . ‖u‖L2 + ‖u‖L1 .

3. Let (un)n∈N be a bounded sequence in L1 ∩ L2 such that

un ⇀ u dans L2.

Show using Plancherel that

∀φ ∈ C∞c (R3),

∫
Eunφdx −→

∫
Euφdx.

Prove that
Eun

⇀ Eu dans L2.

4. We assume that u has spherical symmetry. Show the representation formula

Eu(r) = φ′u(r)er =

(
1

r2

∫ r

0

τ2u(τ)dτ

)
x

|x|
·

Show that

∀R > 0,

∫
|x|≥R

|Eu|2dx .
‖u‖2L1

R
·

5. Let (un)n∈N be a bounded sequence in L1 ∩L2 of radially symmetric positive functions. Show that we can extract
(uϕ(n))n∈N such that

uϕ(n) ⇀ u in L2

and
Euϕ(n)

→ Eu in L2.
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6. Let M > 0 and
A(M) =

{
u : R3 7→ R+ with u ∈ L2(R3) and

∫
R3

u dx = M
}
·

Let
I(M) = inf

u∈A(M)

[∫
R3

|u|2 dx−
∫
R3

|Eu|2 dx
]
.

Show that
−∞ < I(M) < 0.

7. Compute I(M) in terms of M and I(1).

8. Let Arad(M) be the set of radially symmetric elements u ∈ A(M). Let

Irad(M) = inf
u∈Arad(M)

[∫
R3

|u|2 dx−
∫
R3

|Eu|2 dx
]
.

Show that Irad(M) is attained.

Exercice 2 (Orbital stability of the ground state in the mass critical case). Let d = 2, p = 3 and consider the focusing
(NLS). Let Q be the ground state.

1. Let un be a sequence in H1 with ∣∣∣∣ ∀n ≥ 1, ‖∇un‖L2 = ‖∇Q‖L2

limn→+∞ ‖un‖L2 = ‖Q‖L2 .

show that there exists xn ∈ Rd, γ ∈ R such that up to a subsequence

un(·+ xn)→ Qeiγ in H1.

Hint: use the profile decomposition.

2. Show the following "orbital stability" statement: ∀ε > 0, ∃η > 0 such that forall u0 ∈ H1 with |‖u0‖L2−‖Q‖L2 | <
η, let u ∈ C([0, T ), H1) be the corresponding unique solution to (NLS), then if T < +∞, there exist 0 < T ∗ < T
such that ∀t ∈ [T ∗, T ), ∃x(t) ∈ Rd, (λ(t), x(t), γ(t)) ∈ ×R+

∗ × Rd × R and v(t, ·) ∈ H1 such that

u(t, x) =
1

λ(t)
[Q+ v]

(
t,
x− x(t)

λ(t)

)
eiγ(t) with ‖v(t, ·)‖H1 < ε.

Hint: Argue by contradiction affter renomalization of the sequence un(tn, x).

Exercice 3 (Kinetic model of stars). A galaxy is a cluster of typically 1015 stars. A statistic description is given by
the distribution f(x, v) > 0 which is the density of stars which have the speed v ∈ R3 at the point x ∈ R3. The total
number of stars at x ∈ R3 is therefore

ρf (x) =

∫
v∈R3

f(x, v) dv,

and the total number of stars is

‖f‖L1(R6) =

∫
R6

f(x, v) dx dv =

∫
R3

ρf (x) dx.

The total kinetic energy of the galaxy is

Ecin(f) =
1

2

∫
R6

|v|2f(x, v) dx dv.

Last, stars are submitted only to the gravitational force, and the total potential energy is

Epot(f) =

∫
R3

|∇φf (x)|2 dx où φf (x) = − 1

4π

∫
R3

ρf (y)

|x− y|
dy.
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Given M1,M2 > 0, we consider the minimization problem:

I(M1,M2) = inf
f∈A(M1.M2)

E(f)

which defines a stable galaxy, where

A(M1.M2) =
{
f(x, v) ≥ 0, ‖f‖L1(R6) = M1, ‖f‖L2(R6) = M2

}
and

E(f) =
1

2

∫
R6

|v|2f dx dv −
∫
R3

|∇φf (x)|2 dx.

1. Let x ∈ R3. By splitting |v| ≤ R et |v| ≥ R, show that

|ρf (x)| . R
3
2

(∫
R3

f2(x, v) dv

) 1
2

+
1

R2

∫
R3

|v|2f(x, v) dv.

2. Conclude by optimizing on R that

∀x ∈ R3, |ρf (x)| .
(∫

R3

|v|2f(x, v) dv

) 3
7
(∫

R3

f2(x, v) dv

) 2
7

.

3. Prove using Hölder:
‖ρf‖

L
7
5 (R3)

. ‖|v|2f‖
3
7

L1(R6)‖f‖
4
7

L2(R6).

4. Prove using Hölder:
‖ρf‖2

L
6
5 (R3)

. ‖|v|2f‖
1
2

L1(R6)‖f‖
5
6

L1(R6)‖f‖
2
3

L2(R6).

5. Show that
|∇φf (x)| . 1

|x|2
? ρf

and obtain the interpolation estimate∫
|∇φf (x)|2 dx . ‖|v|2f‖

1
2

L1(R6)‖f‖
5
6

L1(R6)‖f‖
2
3

L2(R6).

6. Show that
I(M1,M2) > −∞.

7. Using the scaling
f(x, v) = f

(x
λ
, λv
)
, λ > 0

show that
I(M1,M2) < 0.

8. Using the scaling
f,µ(x, v) =

µ
2
f
(x
λ
, µv
)
, λ, µ > 0,

show that I(M1,M2) is homogeneous in both M1 and M2.

The compactness of the minimizing problem can be proved, but this requires more work...


