Introduction to non linear Analysis

Example sheet $n^{\circ} 4$ - Variational methods

Exercices to be done: 1-2.
Exercice 1 (Ground state of a gaseous star). We work in \mathbb{R}^{3}. To every positive function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{+}$, we associate its Poisson field

$$
E_{u}=\nabla \phi_{u} \quad \text { with } \quad \phi_{u}=-\frac{1}{4 \pi|x|} \star u
$$

The potential ϕ_{u} is a solution to

$$
\begin{equation*}
\Delta \phi_{u}=u \tag{0.1}
\end{equation*}
$$

We admit the Hardy-Littlewood-Sobolev inequality which is the borderline case of Young's inequality in \mathbb{R}^{d} (see the notes for a proof): let $0<\alpha<d, 1<p, r<+\infty$ with

$$
1+\frac{1}{r}=\frac{1}{p}+\frac{\alpha}{d}
$$

then

$$
\left\|\frac{1}{|\cdot|^{\alpha}} \star f\right\|_{L^{r}\left(\mathbb{R}^{d}\right)} \leq C_{r, p}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

1. Show that

$$
\left|E_{u}(x)\right| \lesssim \frac{1}{|x|^{2}} \star|u|
$$

and conclude

$$
\left\|E_{u}\right\|_{L^{2}} \lesssim\|u\|_{L^{2}}^{\frac{1}{3}}\|u\|_{L^{1}}^{\frac{2}{3}} .
$$

2. Compute $\widehat{E_{u}}$ in terms of \widehat{u} and conclude

$$
\left\|E_{u}\right\|_{H^{1}} \lesssim\|u\|_{L^{2}}+\|u\|_{L^{1}}
$$

3. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in $L^{1} \cap L^{2}$ such that

$$
u_{n} \rightharpoonup u \text { dans } L^{2} .
$$

Show using Plancherel that

$$
\forall \phi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3}\right), \quad \int E_{u_{n}} \bar{\phi} d x \longrightarrow \int E_{u} \bar{\phi} d x
$$

Prove that

$$
E_{u_{n}} \rightharpoonup E_{u} \text { dans } L^{2}
$$

4. We assume that u has spherical symmetry. Show the representation formula

$$
E_{u}(r)=\phi_{u}^{\prime}(r) e_{r}=\left(\frac{1}{r^{2}} \int_{0}^{r} \tau^{2} u(\tau) d \tau\right) \frac{x}{|x|}
$$

Show that

$$
\forall R>0, \quad \int_{|x| \geq R}\left|E_{u}\right|^{2} d x \lesssim \frac{\|u\|_{L^{1}}^{2}}{R}
$$

5. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in $L^{1} \cap L^{2}$ of radially symmetric positive functions. Show that we can extract $\left(u_{\varphi(n)}\right)_{n \in \mathbb{N}}$ such that

$$
u_{\varphi(n)} \rightharpoonup u \quad \text { in } \quad L^{2}
$$

and

$$
E_{u_{\varphi(n)}} \rightarrow E_{u} \text { in } L^{2}
$$

6. Let $M>0$ and

$$
A(M)=\left\{u: \mathbb{R}^{3} \mapsto \mathbb{R}^{+} \text {with } u \in L^{2}\left(\mathbb{R}^{3}\right) \text { and } \int_{\mathbb{R}^{3}} u d x=M\right\}
$$

Let

$$
I(M)=\inf _{u \in A(M)}\left[\int_{\mathbb{R}^{3}}|u|^{2} d x-\int_{\mathbb{R}^{3}}\left|E_{u}\right|^{2} d x\right]
$$

Show that

$$
-\infty<I(M)<0
$$

7. Compute $I(M)$ in terms of M and $I(1)$.
8. Let $A_{\text {rad }}(M)$ be the set of radially symmetric elements $u \in A(M)$. Let

$$
I_{r a d}(M)=\inf _{u \in A_{\text {rad }}(M)}\left[\int_{\mathbb{R}^{3}}|u|^{2} d x-\int_{\mathbb{R}^{3}}\left|E_{u}\right|^{2} d x\right]
$$

Show that $I_{\text {rad }}(M)$ is attained.
Exercice 2 (Orbital stability of the ground state in the mass critical case). Let $d=2, p=3$ and consider the focusing (NLS). Let Q be the ground state.

1. Let u_{n} be a sequence in H^{1} with

$$
\left\lvert\, \begin{aligned}
& \forall n \geq 1, \quad\left\|\nabla u_{n}\right\|_{L^{2}}=\|\nabla Q\|_{L^{2}} \\
& \lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{L^{2}}=\|Q\|_{L^{2}} .
\end{aligned}\right.
$$

show that there exists $x_{n} \in \mathbb{R}^{d}, \gamma \in \mathbb{R}$ such that up to a subsequence

$$
u_{n}\left(\cdot+x_{n}\right) \rightarrow Q e^{i \gamma} \text { in } H^{1}
$$

Hint: use the profile decomposition.
2. Show the following "orbital stability" statement: $\forall \varepsilon>0, \exists \eta>0$ such that forall $u_{0} \in H^{1}$ with $\left|\left\|u_{0}\right\|_{L^{2}}-\|Q\|_{L^{2}}\right|<$ η, let $u \in \mathcal{C}\left([0, T), H^{1}\right)$ be the corresponding unique solution to (NLS), then if $T<+\infty$, there exist $0<T^{*}<T$ such that $\forall t \in\left[T^{*}, T\right), \exists x(t) \in \mathbb{R}^{d},(\lambda(t), x(t), \gamma(t)) \in \times \mathbb{R}_{*}^{+} \times \mathbb{R}^{d} \times \mathbb{R}$ and $v(t, \cdot) \in H^{1}$ such that

$$
u(t, x)=\frac{1}{\lambda(t)}[Q+v]\left(t, \frac{x-x(t)}{\lambda(t)}\right) e^{i \gamma(t)} \text { with }\|v(t, \cdot)\|_{H^{1}}<\varepsilon .
$$

Hint: Argue by contradiction affter renomalization of the sequence $u_{n}\left(t_{n}, x\right)$.
Exercice 3 (Kinetic model of stars). A galaxy is a cluster of typically 10^{15} stars. A statistic description is given by the distribution $f(x, v)>0$ which is the density of stars which have the speed $v \in \mathbb{R}^{3}$ at the point $x \in \mathbb{R}^{3}$. The total number of stars at $x \in \mathbb{R}^{3}$ is therefore

$$
\rho_{f}(x)=\int_{v \in \mathbb{R}^{3}} f(x, v) d v
$$

and the total number of stars is

$$
\|f\|_{L^{1}\left(\mathbb{R}^{6}\right)}=\int_{\mathbb{R}^{6}} f(x, v) d x d v=\int_{\mathbb{R}^{3}} \rho_{f}(x) d x
$$

The total kinetic energy of the galaxy is

$$
E_{\text {cin }}(f)=\frac{1}{2} \int_{\mathbb{R}^{6}}|v|^{2} f(x, v) d x d v
$$

Last, stars are submitted only to the gravitational force, and the total potential energy is

$$
E_{p o t}(f)=\int_{\mathbb{R}^{3}}\left|\nabla \phi_{f}(x)\right|^{2} d x \quad \text { ò̀ } \quad \phi_{f}(x)=-\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\rho_{f}(y)}{|x-y|} d y .
$$

Given $M_{1}, M_{2}>0$, we consider the minimization problem:

$$
I\left(M_{1}, M_{2}\right)=\inf _{f \in \mathcal{A}\left(M_{1} \cdot M_{2}\right)} E(f)
$$

which defines a stable galaxy, where

$$
A\left(M_{1} \cdot M_{2}\right)=\left\{f(x, v) \geq 0, \quad\|f\|_{L^{1}\left(\mathbb{R}^{6}\right)}=M_{1}, \quad\|f\|_{L^{2}\left(\mathbb{R}^{6}\right)}=M_{2}\right\}
$$

and

$$
E(f)=\frac{1}{2} \int_{\mathbb{R}^{6}}|v|^{2} f d x d v-\int_{\mathbb{R}^{3}}\left|\nabla \phi_{f}(x)\right|^{2} d x
$$

1. Let $x \in \mathbb{R}^{3}$. By splitting $|v| \leq R$ et $|v| \geq R$, show that

$$
\left|\rho_{f}(x)\right| \lesssim R^{\frac{3}{2}}\left(\int_{\mathbb{R}^{3}} f^{2}(x, v) d v\right)^{\frac{1}{2}}+\frac{1}{R^{2}} \int_{\mathbb{R}^{3}}|v|^{2} f(x, v) d v
$$

2. Conclude by optimizing on R that

$$
\forall x \in \mathbb{R}^{3}, \quad\left|\rho_{f}(x)\right| \lesssim\left(\int_{\mathbb{R}^{3}}|v|^{2} f(x, v) d v\right)^{\frac{3}{7}}\left(\int_{\mathbb{R}^{3}} f^{2}(x, v) d v\right)^{\frac{2}{7}}
$$

3. Prove using Hölder:

$$
\left\|\rho_{f}\right\|_{L^{\frac{7}{5}\left(\mathbb{R}^{3}\right)}} \lesssim\left\||v|^{2} f\right\|_{L^{1}\left(\mathbb{R}^{6}\right)}^{\frac{3}{7}}\|f\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{\frac{4}{7}}
$$

4. Prove using Hölder:

$$
\left\|\rho_{f}\right\|_{L^{\frac{6}{5}}\left(\mathbb{R}^{3}\right)}^{2} \lesssim\left\||v|^{2} f\right\|_{L^{1}\left(\mathbb{R}^{6}\right)}^{\frac{1}{2}}\|f\|_{L^{1}\left(\mathbb{R}^{6}\right)}^{\frac{5}{6}}\|f\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{\frac{2}{3}}
$$

5. Show that

$$
\left|\nabla \phi_{f}(x)\right| \lesssim \frac{1}{|x|^{2}} \star \rho_{f}
$$

and obtain the interpolation estimate

$$
\int\left|\nabla \phi_{f}(x)\right|^{2} d x \lesssim\left\||v|^{2} f\right\|_{L^{1}\left(\mathbb{R}^{6}\right)}^{\frac{1}{2}}\|f\|_{L^{1}\left(\mathbb{R}^{6}\right)}^{\frac{5}{6}}\|f\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{\frac{2}{3}} .
$$

6. Show that

$$
I\left(M_{1}, M_{2}\right)>-\infty .
$$

7. Using the scaling

$$
f(x, v)=f\left(\frac{x}{\lambda}, \lambda v\right), \quad \lambda>0
$$

show that

$$
I\left(M_{1}, M_{2}\right)<0 .
$$

8. Using the scaling

$$
f_{, \mu}(x, v)=\frac{\mu}{2} f\left(\frac{x}{\lambda}, \mu v\right), \quad \lambda, \mu>0
$$

show that $I\left(M_{1}, M_{2}\right)$ is homogeneous in both M_{1} and M_{2}.
The compactness of the minimizing problem can be proved, but this requires more work...

