## Introduction to non linear Analysis

## Example sheet $n^{\circ} 3$ - NLS

Exercices to be done : 1-2-3.
Exercice 1 (A symmetry of the harmonic oscillator). We consider the cubic non linear harmonic oscillator in dimension 2

$$
i \partial_{t} u+\Delta u-|x|^{2} u+u|u|^{2}=0
$$

1. Define the renormalization

$$
\left\lvert\, \begin{aligned}
& u(t, x)=\frac{1}{L} w(s, y) \\
& w(s, y)=e^{-i \frac{b(s)|y|^{2}}{4}} v(s, y) \\
& y=\frac{x}{L}, \quad \frac{d s}{d t}=\frac{1}{L^{2}}
\end{aligned}\right.
$$

Show that $v(s, y)$ satisfies the same equation iff

$$
\left\lvert\, \begin{align*}
& \frac{L_{s}}{L}+b=0  \tag{0.1}\\
& \frac{b_{s}}{4}-\left(\frac{b^{2}}{4}+L^{4}\right)-\frac{b}{2} \frac{L_{s}}{L}=-1
\end{align*}\right.
$$

where $f_{s}=\frac{d f}{d s}$.
2. Integrate the dynamical system (0.1) in timet. (hint: look for a conserved quantity and draw the phase portrait).

Exercice 2 (Local existence in $H^{2}$ for cubic (NLS) in dimension 2). We consider

$$
i \partial_{t} u+\Delta u+\varepsilon|u|^{2} u=0 \quad \text { dans } \mathbb{R} \times \mathbb{R}^{2}, \quad \varepsilon \in\{-1,1\}
$$

with data $u_{0} \in H^{2}\left(\mathbb{R}^{2}\right)$.
Let $E_{T}=\mathcal{C}\left([0, T] ; H^{2}\right)$ and $u_{L}=S(t) u_{0}$. For $u \in E_{T}$, we let

$$
\forall t \in[0, T], \Phi(u)(t)=u_{L}(t)+i \varepsilon \int_{0}^{t} S(t-\tau)\left(\left(|u|^{2} u(\tau)\right) d \tau\right.
$$

1. Show that $H^{2}\left(\mathbb{R}^{2}\right)$ is stable by product.
2. Show that $\Phi$ is well defined from $E_{T}$ into $E_{T}$, and there exist two constants $C_{1}, C_{2}>0$ such that for all $u$, $v$ in $B_{E_{T}}\left(u_{L}, R\right)$,

$$
\left\|\Phi(u)-u_{L}\right\|_{E_{T}} \leq C_{1} T\left(R^{3}+\left\|u_{0}\right\|_{H^{2}}^{3}\right) \text { and }\|\Phi(u)-\Phi(v)\|_{E_{T}} \leq C_{2} T\left(R^{2}+\left\|u_{0}\right\|_{H^{2}}^{2}\right)\|u-v\|_{E_{T}}
$$

3. Conclude that there exists $c>0$ and a time $T \geq c /\left\|u_{0}\right\|_{H^{2}}^{2}$ such that $\Phi$ has a fixed point in $E_{T}$.
4. Conclude that there exists $T^{*}>0$ such that $\left(S_{\varepsilon}\right)$ with data $u_{0} \in H^{2}$ has a unique maximal solution $u \in$ $\mathcal{C}\left(\left[0, T^{*}\left[; H^{2}\right) \cap \mathcal{C}^{1}\left(\left[0, T^{*}\left[; L^{2}\right)\right.\right.\right.\right.$.
5. In this question, we look for a blow up criterion.
(a) Prove the Gagliardo-Nirenberg estimate :

$$
\forall u \in H^{2}\left(\mathbb{R}^{2}\right),\left\|\partial_{1} u\right\|_{L^{4}}^{2} \leq 3\|u\|_{L^{\infty}}\left\|\partial_{11}^{2} u\right\|_{L^{2}}
$$

(b) Prove the tame estimate :

$$
\forall(u, v) \in H^{2} \times H^{2},\|u v\|_{H^{2}} \leq C_{0}\left(\|u\|_{L^{\infty}}\|v\|_{H^{2}}+\|v\|_{L^{\infty}}\|u\|_{H^{2}}\right)
$$

for some universal constant $C_{0}$.
(c) Show that there exists $C>0$ universal such that for all solution $u \in E_{T}$ of $\left(S_{\varepsilon}\right)$ :

$$
\forall t \in[0, T],\|u(t)\|_{H^{2}} \leq\left\|u_{0}\right\|_{H^{2}}+C \int_{0}^{t}\|u\|_{L^{\infty}}^{2}\|u\|_{H^{2}} d \tau
$$

(d) Conclude that $T^{*}<+\infty$ implies $\int_{0}^{T^{*}}\|u(t)\|_{L^{\infty}}^{2} d t=+\infty$. For $\varepsilon=-1$, does this allow to conclude $T^{*}=+\infty$ ? 6. Using Theorem 6.2.1 in the notes (gwp in $H^{1}$ ), prove global existence in $H^{2}$ for $\varepsilon=-1$.

Exercice 3 (An upper bound on blow up rate for (NLS)). We work in $\mathbb{R}^{2}$. Let the focusing (NLS)

$$
\left\lvert\, \begin{aligned}
& i \partial_{t} u+\Delta u+u|u|^{p-1}=0 \\
& u(0, x)=u_{0}(x)
\end{aligned} \quad\right., \quad x \in \mathbb{R}^{2}, \quad 3<p<5 .
$$

Let $H_{r}^{1}$ be the set of $H^{1}$ functions with radial symmetry, then the Cauchy problem is well posed in $H_{r}^{1}$. We pick $u_{0} \in H_{r}^{1}$ and assume that the solution blows up in finite time $0<T<+\infty$. The aim of this problem is to derive an upper bound on $\|\nabla u(t)\|_{L^{2}}$ as $t \uparrow T$.
Integration by parts should be done without boundary terms (without justification). We let

$$
s_{c}=1-\frac{2}{p-1}
$$

and $E_{0}$ be the energy of the data. We recall Young's inequality :

$$
\begin{equation*}
|x y| \leq \frac{1}{p}\left(\frac{|x|}{A}\right)^{p}+\frac{(A|y|)^{p^{\prime}}}{p^{\prime}}, \quad 1 \leq p, p^{\prime} \leq+\infty, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad A>0 \tag{0.2}
\end{equation*}
$$

1. Let $\chi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ with spherical symmetry, prove the formulas :

$$
\frac{1}{2} \frac{d}{d \tau} \int \chi|u|^{2}=\operatorname{Im}\left(\int \nabla \chi \cdot \nabla u \bar{u}\right)
$$

and

$$
\frac{1}{2} \frac{d}{d \tau} \operatorname{Im}\left(\int \nabla \chi \cdot \nabla u \bar{u}\right)=\int \chi^{\prime \prime}|\nabla u|^{2}-\frac{1}{4} \int \Delta^{2} \chi|u|^{2}-\left(\frac{1}{2}-\frac{1}{p+1}\right) \int \Delta \chi|u|^{p+1} .
$$

2. Prove that for all $u \in H_{r}^{1}$,

$$
\forall R>0, \quad\|u\|_{L^{\infty}(r \geq R)}^{2} \leq \frac{2}{R}\|u\|_{L^{2}}\|\nabla u\|_{L^{2}} .
$$

3. Let $R>0, \psi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ with spherical symmetry and

$$
\psi(x)=\left\lvert\, \begin{aligned}
& \frac{|x|^{2}}{2} \text { pour }|x| \leq 2 \\
& 0 \text { pour }|x| \geq 3
\end{aligned}\right.
$$

Let

$$
\chi(x)=\psi_{R}(x)=R^{2} \psi\left(\frac{x}{R}\right)
$$

show that

$$
c(d, p) \int|\nabla u|^{2}+\frac{1}{2} \frac{d}{d t} \Im\left(\int \nabla \psi_{R} \cdot \nabla u \bar{u}\right) \leq C(d, p)\left[\left|E_{0}\right|+\int_{|x| \geq R}|u|^{p+1}+\frac{1}{R^{2}} \int_{2 R \leq|x| \leq 3 R}|u|^{2}\right]
$$

for some constants $c(d, p), C(d, p)>0$ independant of $R$.
4. Prove using (0.2) that:

$$
\begin{equation*}
\frac{c(d, p)}{2} \int|\nabla u|^{2}+\frac{1}{2} \frac{d}{d t} \Im\left(\int \nabla \psi_{R} \cdot \nabla u \bar{u}\right) \leq C\left(u_{0}, d, p\right)\left[1+\frac{1}{R^{2}}+\frac{1}{R^{\frac{2}{\alpha}}}\right] \tag{0.3}
\end{equation*}
$$

with

$$
\alpha=\frac{5-p}{p-1} .
$$

5. Integrate in time (0.3) and prove : $\forall 0<t_{0}<t_{2}<T$,

$$
\int_{t_{0}}^{t_{2}}\left(t_{2}-t\right)\|\nabla u(t)\|_{L^{2}}^{2} d t \leq C\left(u_{0}, d, p\right)\left[\frac{\left(t_{2}-t_{0}\right)^{2}}{R^{\frac{2}{\alpha}}}+R\left(t_{2}-t_{0}\right)\left\|\nabla u\left(t_{0}\right)\right\|_{L^{2}}+R^{2}\right]
$$

6. Choose $R=\left(T-t_{0}\right)^{\frac{\alpha}{1+\alpha}}$ and conclude that for $t$ close enough to $T$ :

$$
\int_{t_{0}}^{T}(T-t)\|\nabla u(t)\|_{L^{2}}^{2} d t \leq C\left(d, p, u_{0}\right)(T-t)^{\frac{\alpha}{2+\alpha}}+\left(T-t_{0}\right)^{2}\left\|\nabla u\left(t_{0}\right)\right\|_{L^{2}}^{2}
$$

7. Show that for $t$ close enough to $T$ :

$$
\int_{t_{0}}^{T}(T-t)\|\nabla u(t)\|_{L^{2}}^{2} d t \leq C\left(d, p, u_{0}\right)(T-t)^{\frac{2 \alpha}{1+\alpha}}
$$

8. Conclude that there exists a sequence $t_{n} \rightarrow T$ such that

$$
\left\|\nabla u\left(t_{n}\right)\right\|_{L^{2}} \leq \frac{C\left(d, p, u_{0}\right)}{\left(T-t_{n}\right)^{\frac{1}{1+\alpha}}}
$$

(remark: this bound is sharp!).
9. Open problem : prove any bound on blow up rate in the critical case $p=3$ !

