Introduction to non linear Analysis

Example sheet $\mathbf{n}^{\circ} 2$ - Weak convergence and linear dispersion

Exercices to be done : 1-2-3.
Exercice 1 (A precised Gagliardo-Nirenberg inequality). Let $d \geq 1$. Let $2<p<2^{*}-1$ with

$$
2^{*}=\left\lvert\, \begin{aligned}
& +\infty \text { for } d=1,2 \\
& \frac{d+2}{d-2} \text { for } d \geq 3
\end{aligned}\right.
$$

1. Let a sequence $u_{n} \in H^{1}\left(\mathbb{R}^{d}\right)$ with $u_{n} \rightarrow 0$ in $H^{1}\left(\mathbb{R}^{d}\right)$, show that $u_{n} \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{d}\right)$.
2. Let $\phi \in H^{1}\left(\mathbb{R}^{d}\right)$ and $x_{n} \in \mathbb{R}^{d}$ with $\lim _{n \rightarrow+\infty}\left|x_{n}\right|=+\infty$, let $u_{n}(x)=\phi\left(x-x_{n}\right)$. Show that $u_{n} \rightharpoonup 0$ in $H^{1}\left(\mathbb{R}^{d}\right)$ as $n \rightarrow+\infty$. Do we have $u_{n} \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{d}\right)$?
3. Let $\mathbf{u}=\left(u_{n}\right)_{n \geq 1}$ be a bounded sequence in H^{1} and $\mathcal{V}(\mathbf{u})$ be the subset of all possible weak H^{1} limit of the transaltes of $u_{n}: V \in \mathcal{V}(\mathbf{u})$ iff there exists a subsequence $\phi(n)$ and $x_{n} \in \mathbb{R}^{d}$ such that

$$
u_{\phi(n)}\left(\cdot-x_{n}\right) \rightharpoonup V \text { in } H^{1}\left(\mathbb{R}^{d}\right)
$$

Show that $\mathcal{V}(\mathbf{u})$ is a bounded subset of $H^{1}\left(\mathbb{R}^{d}\right)$. We therefore define

$$
\eta(\mathbf{u})=\sup _{V \in \mathcal{V}(\mathbf{u})}\|V\|_{H^{1}}
$$

4. Let $f \in H^{1}\left(\mathbb{R}^{d}\right)$ and $u_{n}=\frac{1}{n^{\frac{d}{2}}} f\left(\frac{x}{n}\right)$. Compute $\eta(\mathbf{u})$. Show that u_{n} has a limit in L^{p} for $2<p<2^{*}-1$. Does u_{n} converge to 0 in L^{2} ?
5. We now assume that

$$
\eta(\mathbf{u})=0
$$

Our aim is to show the compactness statement

$$
u_{n} \rightarrow 0 \text { in } L^{p} \text { for } 2<p<2^{*}-1 .
$$

Let us fix $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
\left.\widehat{\chi}(\xi)=\left|\begin{array}{lll}
1 & \text { for } & |\xi| \leq 1 \\
0 & \text { for } & |\xi| \geq 2
\end{array}, \quad\right| \widehat{\chi} \right\rvert\, \leq 1
$$

and given $R>0$, let

$$
\chi_{R}(x)=R^{d} \chi(R x)
$$

Let the low-high frequency splitting

$$
u_{n}=u_{n}^{(1)}+u_{n}^{(2)}, \quad \left\lvert\, \begin{aligned}
& \widehat{u_{n}^{(1)}}=\widehat{v_{n}^{\ell}} \widehat{\chi_{R}} \\
& u_{n}^{(2)}=\widehat{v_{n}^{\ell}}\left(1-\widehat{\chi_{R}}\right)
\end{aligned}\right.
$$

Let s be given by $-s+\frac{d}{2}=\frac{d}{p}$. Show that $0<s<1$.
6. Show that there exists $C_{d, p, \chi}>0$ such that

$$
\forall n \geq 1, \quad \forall R>0, \quad\left\|u_{n}^{(2)}\right\|_{L^{p}} \leq \frac{C_{d, p, \chi}}{R^{1-s}}
$$

7. Show that there exists $C_{d, p, \chi}>0$ such that

$$
\forall n \geq 1, \quad \forall R>0, \quad\left\|u_{n}^{(1)}\right\|_{L^{p}} \leq C_{d, p, \chi}\left\|\chi_{R} \star u_{n}\right\|_{L^{\infty}}^{1-\frac{2}{p}}
$$

8. Show that

$$
\forall R>0, \quad \lim _{n \rightarrow+\infty}\left\|\chi_{R} \star u_{n}\right\|_{L^{\infty}}=0
$$

9. Show that $u_{n} \rightarrow 0$ in $L^{p}\left(\mathbb{R}^{d}\right)$.

Exercice 2 (Cauchy problem for (NLS) in $\mathbb{R})$. Let $S(t)$ be the linear Schrödinger semi group on \mathbb{R}. Show that there exists $\alpha_{p}>0$ and $C_{p}>0$, such that the following holds: for all $u_{0} \in H^{1}(\mathbb{R})$, let $T=\frac{C_{p}}{\left\|u_{0}\right\|_{H^{1}}^{\alpha}}$, then the map

$$
\Phi(u)(t, x)=S(t) u_{0}+\int_{0}^{t} S(t-s)\left(u|u|^{2}(s, \cdot)\right) d s
$$

is a contraction mapping in the Banach space $E=L_{[0, T]}^{\infty} H_{x}^{1}$ equipped with the norm $\|u\|_{E}=\sup _{t \in[0, T]}\|u(t, \cdot)\|_{H_{x}^{1}}$.
Exercice 3 (Dispersion for the free transport). Let the transport equation describing the evolution of the microscopic density $f(t, x, v) \in \mathbb{R}^{+}$of free particules which are at $x \in \mathbb{R}^{d}$ with the speed $v \in \mathbb{R}^{d}$ at time $t \in \mathbb{R}$:

$$
\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f=0 \tag{T}\\
f_{\mid t=0}=f_{0}
\end{array}\right.
$$

1. Assume $f_{0}=f_{0}(x, v)$ is differentiable, compute the solution to (T).
2. If f_{0} is moreover integrable, show that the total density is converved

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f(t, x, v) d x d v=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} f_{0}(x, v) d x d v
$$

3. We define the macroscopic density $\rho(t, x) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{d}} f(t, x, v) d v$. Show the pointwise decay :

$$
\|\rho(t, \cdot)\|_{L^{\infty}} \leq \frac{1}{|t|^{d}}\left\|\sup _{v} f_{0}(\cdot, v)\right\|_{L^{1}} \quad \text { for all } t \neq 0
$$

Exercice 4 (Wave equation). Let the free wave equation
(W)

$$
\left\{\begin{array}{l}
\square u=0 \\
\left(u, \partial_{t} u\right)_{\mid t=0}=\left(u_{0}, u_{1}\right)
\end{array}\right.
$$

where $\square \stackrel{\text { def }}{=} \partial_{t}^{2}-\Delta$ and where $u=u(t, x) \in \mathbb{R},(t, x) \in \mathbb{R} \times \mathbb{R}^{d}$.

1. For $d=1$ and $\left(u_{0}, u_{1}\right) \in C^{2} \times C^{1}$, show that the C^{2} solution is given by d'Alembert's formula :

$$
u(t, x)=\frac{1}{2}\left(u_{0}(x+t)+u_{0}(x-t)+\int_{x-t}^{x+t} u_{1}(y) d y\right)
$$

Do we have pointwise decay in time?
2. For $d=3$, we recall that the solution is given by

$$
u(t, x)=\frac{1}{4 \pi}\left(\frac{1}{t} \int_{S(x, t)} u_{1}(\sigma) d \sigma+\frac{d}{d t}\left(\frac{1}{t} \int_{S(x, t)} u_{0}(\sigma) d \sigma\right)\right)
$$

wher $S(x, t)$ is the sphere of center x and radius t. Assume for simplicity $u_{0} \equiv 0$, then show :

$$
\|u(t)\|_{L^{\infty}} \leq C \frac{\left\|\nabla u_{1}\right\|_{L^{1}}}{|t|}+\frac{\left\|u_{1}\right\|_{L^{1}}}{t^{2}} .
$$

Exercice 5 (Oscillatory integrals). Let $a \in \mathcal{D}(\mathbb{R})$ and Φ a C^{2} function such that for some $c_{0}>0$:

$$
\forall x \in \operatorname{Supp} a, \Phi^{\prime \prime}(x) \geq c_{0}
$$

For $t \in \mathbb{R}$, we define the oscillatory integral

$$
I(t) \stackrel{\operatorname{def}}{=} \int_{\mathbb{R}} e^{i t \Phi(x)} a(x) d x
$$

For $t \neq 0$, we define the differential operator \mathcal{L}_{t} acting on derivable functions b by

$$
\mathcal{L}_{t} b(x) \stackrel{\text { def }}{=} \frac{1}{1+t\left(\Phi^{\prime}(x)\right)^{2}}\left(b(x)-i \Phi^{\prime}(x) b^{\prime}(x)\right)
$$

1. Using \mathcal{L}_{t}, show that $I(t)=I_{1}(t)+I_{2}(t)$ with

$$
\begin{aligned}
I_{1}(t) \stackrel{\operatorname{def}}{=} \int e^{i t \Phi(x)} \frac{i \Phi^{\prime}(x)}{1+t\left(\Phi^{\prime}(x)\right)^{2}} a^{\prime}(x) d x & \text { and } \\
& I_{2}(t) \stackrel{\operatorname{def}}{=} \int \frac{e^{i t \Phi(x)}}{1+t\left(\Phi^{\prime}(x)\right)^{2}}\left(1+i \Phi^{\prime \prime}(x)-2 i \frac{t\left(\Phi^{\prime}(x)\right)^{2} \Phi^{\prime \prime}(x)}{1+t\left(\Phi^{\prime}(x)\right)^{2}}\right) a(x) d x .
\end{aligned}
$$

2. Noticing that for $x \in \operatorname{Supp} a$,

$$
\frac{1}{1+t\left(\Phi^{\prime}(x)\right)^{2}} \leq \frac{1}{c_{0}} \frac{\Phi^{\prime \prime}(x)}{1+t\left(\Phi^{\prime}(x)\right)^{2}}
$$

show that

$$
\left|I_{2}(t)\right| \leq \frac{\pi}{2}\left(\frac{1}{c_{0}}+3\right) \frac{1}{|t|^{\frac{1}{2}}}\left\|a^{\prime}\right\|_{L^{1}(\mathbb{R})}
$$

3. Conclude that there exists $C_{0}\left(c_{0}\right)$ such that

$$
|I(t)| \leq \frac{C_{0}}{|t|^{\frac{1}{2}}}\left\|a^{\prime}\right\|_{L^{1}}
$$

4. Application: Consider the Airy equation

$$
\partial_{t} u+\partial_{x x x}^{3} u=0
$$

with data u_{0} integrable and with Fourier transform supported in

$$
[-2,-1 / 2] \cup[1 / 2,2]
$$

(a) Show that the L^{2} norm is conserved. Write $u(t)=k_{t} \star u_{0}$ for a suitable function k_{t} and conclude

$$
\|u(t)\|_{L^{\infty}} \leq C|t|^{-\frac{1}{2}}\left\|u_{0}\right\|_{L^{1}}
$$

(b) What kind of $L^{p}-L^{p^{\prime}}$ estimate do we obtain if \widehat{u}_{0} is supported in the set $[-2 \lambda,-\lambda / 2] \cup[\lambda / 2,2 \lambda]$? Hint : use the fact that if φ is smooth with support in $\left\{\frac{1}{3} \leq|\xi| \leq 3\right\}$ and equal to 1 on $\left\{\frac{1}{2} \leq|\xi| \leq 2\right\}$, then $\widehat{u}_{0}=\varphi \widehat{u}_{0}$.

