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Introduction to non linear Analysis

Example sheet no 2- Fourier, tempered distributions and Sobolev spaces

Exercices to be done : 1-6-8-9-11.

Exercice 1. Computation of Fourier transforms.
1. Compute the one dimensional Fourier transforms of the following functions

1

2
1[−1,1](x),

1√
2π
e−

x2

2 ,
1

2
e−|x|, |x|e−|x|, 1

π(x2 + 1)
,

sin(x)

πx
,

1

2iπ(x+ i)
.

2. Let f ∈ D(R) and solve the ode u′′ − u = f using the variation of the constant method. Show that there is a
unique solution with the boundary value limx→±∞ u(x) = 0 and give the corresponding representation formula
in Greens’ form :

u(x) =

∫
R
K(x, y)f(y)dy.

3. Let f ∈ D(R) and solve the ode u′′ − u = f in S ′ using the Fourier transform. Make the link with the Green
formula above. Why is it that Fourier analysis does not see the homogeneous solution f = 0, u(x) = ex ?

Exercice 2. Fourier transform of Gaussians. Let A be a d-dimensional symmetric positive definite square matrix.
Compute the Fourier transform of fA(X) = e−

1
2 〈X,AX〉.

Exercice 3. Hilbert transform. Let f ∈ L2(R), we define its Hilbert transform by

Ĵf = −i sgn(ξ)f̂ where sgn(ξ) =

∣∣∣∣ 1 if ξ > 0
−1 if ξ < 0.

1. Show that J is an endomorphism of L2(R). Compute its norm.
2. Compute J∗.
3. Compute J2 and conclude that J is invertible.

Exercice 4. Computation of Fourier transforms in S ′(R). Computation the Fourier transform in S ′(R) of the distri-
butions

1,1x>0, pv

(
1

x

)
.

Exercice 5. PDE in S ′. Solve in S ′(Rd) :

∆u+

n∑
j=1

xj∂xju+ du = 0.

Exercice 6. Fundamental solution of Helmoltz.

1. Let f ∈ S(Rd) with spherical symmetry, show that its Fourier transform also has spherical symmetry

2. Let λ > 0 and E : R3 → R, x 7→ e−
√
λ‖x‖

‖x‖ , show that E ∈ S ′(R3) and compute its Fourier transform.

3. Given f ∈ S(R3), solve the Helmoltz equation in S ′(R3)

(∆− λ)u = f

and give the representation formula both in Fourier and space variables.

Exercice 7. The trace map. We define the trace map from S(Rd) to S(Rd−1) by

τu(x′) = u(0, x′), x′ = (x2, . . . , xd).
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1. Show that for all u ∈ S(Rd) and ξ′ ∈ Rd−1,

τ̂u(ξ′) =
1

2π

∫
R
û(ξ1, ξ

′)dξ1.

2. Show that for s > 1/2, ∃C(s) > 0 such that ∀u ∈ S(Rd),

‖τu‖Hs−1/2(Rd−1) ≤ C‖u‖Hs(Rd).

Hint : use the previous question to derive the estimate

|τ̂u(ξ′)|2 ≤ 1

4π2

(∫
R
|û(ξ)|2〈ξ〉2sdξ1

)(∫
R
〈ξ〉−2sdξ1

)
and express

∫
R〈ξ〉

−2sdξ1 in terms of 〈ξ′〉 (where we noted ξ = (ξ1, ξ
′)).

3. Let s > 1/2. Show that the trace application extends uniquely as a continuous map from Hs(Rd) onto Hs−1/2(Rd−1).
4. Let s > 1/2 and g ∈ Hs−1/2(Rd−1). Define

v̂(ξ) = ĝ(ξ′)
〈ξ′〉2(s−1/2)

〈ξ〉2s
.

Show that v ∈ Hs(Rd) and v(0, x′) = Cg(x′) for some constant C 6= 0. Conclude that the above trace map is
surjective.

Exercice 8. Uniform regularization in Sobolev spaces. Let ζ ∈ D(Rd) with

Supp(ζ) ⊂ {|x| ≤ 1},
∫
Rd
ζ(x)dx = 1, ζ(x) ≥ 0.

For ε > 0, we define ζε(x) = 1
εd
ζ
(
x
ε

)
.

1. Use Fourier analysis to prove that ∀f ∈ L2(Rd), ‖ζε ? f − f‖L2(Rd) → 0.

2. Let s > 0. Show that limε→0 sup‖f‖
Hs(Rd)≤1

‖ζε ? f − f‖L2(Rd) = 0.

3. Show that sup‖f‖
L2(Rd)≤1

‖ζε ? f − f‖L2(Rd) does not converge to zero as ε→ 0.

Exercice 9. Space formulation of the homogeneous Sobolev norm. Let 0 < s < 1. Show that there exists 0 < c1 < c2
such that for all u ∈ Hs(Rd), let

Is(u) =

∫
Rd×Rd

|u(x+ y)− u(x)|2

|y|d+2s
dx dy <∞

then
c1‖u‖2Ḣs ≤ Is(u) ≤ c2‖u‖2Ḣs .

Hint : use Plancherel and Fubbini.

Exercice 10. Let χ ∈ C∞c (Rd) and s ∈ [0, 1]. Let the Fourier multiplier |̂D|sv ≡ |ξ|sv̂. and define the commutator

Asv = [|D|s, χ] ≡ |D|s(χv)− χ|D|sv.

1. Let v ∈ D(Rd), compute Âsv in the form of an integral operator ie Âsv(ξ) =
∫
K(ξ, ξ′)v̂(ξ′)dξ′.

2. Show that As is bounded on L2(Rd).

Exercice 11. Let s > d
2 . Show that ∃c > 0 such that

∀u ∈ Hs(Rd), ‖u‖L∞(Rd) ≤ c‖u‖
1− d

2s

L2 ‖u‖
d
2s

Ḣs
.


