Introduction to non linear Analysis

Example sheet nº 1- Distributions

Exercices to be done : 1-3-4-6-7

Exercice 1. Division by x in $\mathcal{D}'(\mathbb{R})$.

1. Solve xT = 0 in $\mathcal{D}'(\mathbb{R})$. More generally, solve $x^mT = 0$, $m \in \mathbb{N}$, in $\mathcal{D}'(\mathbb{R})$.

2. Given $S \in \mathcal{D}'(\mathbb{R})$, solve xT = S in $\mathcal{D}'(\mathbb{R})$.

Exercice 2. ODE in $\mathcal{D}'(\mathbb{R})$.

1. Let $T \in \mathcal{D}'(\mathbb{R})$ with T' = 0 in $\mathcal{D}(\mathbb{R})$. Show that T is a constant.

2. Solve $T' - T = \delta$ in $\mathcal{D}'(\mathbb{R})$.

Exercice 3. Limit of distributions.

1. Show that the linear form on $\mathcal{D}(\mathbb{R})$ given by $\langle \operatorname{pv}\left(\frac{1}{x}\right), \phi \rangle = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\phi(x)}{x} dx$ belongs to \mathcal{D}' .

2. Given $\varepsilon > 0$, let the complex valued function $f_{\varepsilon}(x) = \frac{1}{x+i\varepsilon}$, compute $\lim_{\varepsilon \to 0} f_{\varepsilon}$ in $\mathcal{D}'(\mathbb{R})$.

Exercise 4. Derivative and translations. Let $\phi \in \mathcal{D}(\mathbb{R})$, $h \in \mathbb{R}$, we define the translation operation by $\tau_h \phi(x) = \phi(x+h)$. Let $T \in \mathcal{D}'(\mathbb{R})$, we define the translation operation by $\langle \tau_h T, \phi \rangle_{\mathcal{D}',\mathcal{D}} = \langle T, \tau_{-h} \phi \rangle_{\mathcal{D}',\mathcal{D}}$. Show that

$$\lim_{h \to 0} \frac{\tau_h T - T}{h} = T' \quad in \quad \mathcal{D}'(\mathbb{R}).$$

Exercice 5. Computing derivatives in $\mathcal{D}'(\mathbb{R}^d)$.

- 1. Let the Heaviside function be $H(x) = \mathbf{1}_{x>0}$. Let $\tilde{H}(x_1, ..., x_N) = H(x_1)...H(x_N)$ and $\alpha = (1, ...1)$. Show that $\partial^{\alpha} \tilde{H} = \delta_0$.
- 2. Show that the linear form on $\mathcal{D}(\mathbb{R}^2)$ given by $\langle T, \phi \rangle_{\mathcal{D}', \mathcal{D}} = \int_{\mathbb{R}} \phi(x, x) dx$ defines an element of $\mathcal{D}'(\mathbb{R}^2)$. Compute $\partial_x T + \partial_y T$.

Exercice 6. Distributions with support a singleton. Let $T \in \mathcal{D}'(\mathbb{R})$ with finite order $p \in \mathbb{N}$ such that

$$\forall \phi \in \mathcal{D}(\mathbb{R} \setminus \{0\}), \quad \langle T, \phi \rangle_{\mathcal{D}', \mathcal{D}} = 0,$$

we want to show that $T = \sum_{i=0}^{p} c_i \frac{d^i}{dx^i} \delta_{x=0}$.

- 1. Let $\chi \in \mathcal{D}(\mathbb{R})$ with $\chi(x) = 1$ for $|x| \leq 1$ and $\operatorname{Supp}(\chi) \subset [-2, 2]$. Let $\chi_{\varepsilon}(x) = \chi\left(\frac{x}{\varepsilon}\right)$. Let $\phi \in \mathcal{D}(\mathbb{R})$, show that $\langle T, \phi \rangle_{\mathcal{D}', \mathcal{D}} = \langle T, \chi_{\varepsilon} \phi \rangle_{\mathcal{D}', \mathcal{D}}$.
- 2. Assume $\frac{d^i\phi}{dx^i} = 0$ for $0 \le i \le p$. Show that $\lim_{\varepsilon \to 0} \langle T, \chi_{\varepsilon}\phi \rangle_{\mathcal{D}',\mathcal{D}} = 0$ and conclude.
- 3. Extend the result to $\mathcal{D}'(\mathbb{R}^d)$.

Exercice 7. Fundamental solution of the Laplacian.

1. Let
$$\phi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$$
 with radial symmetry (ie $\phi(x) \equiv \phi(r)$ with $r = \sqrt{\sum_{i=1}^d x_i^2}$.) Show that

$$\Delta\phi\equiv\sum_{i=1}^{d}\frac{\partial^{2}\phi}{\partial x_{i}^{2}}=\frac{d^{2}\phi}{dr^{2}}+\frac{d-1}{r}\frac{d\phi}{dr}.$$

2. Let $x \in \mathbb{R}^d$ and define

$$E_d(x) = \begin{cases} |x|^{-d-2} & \text{if } d \ge 3, \\ \ln |x| & \text{if } d = 2. \end{cases}$$

Show that $E_d \in \mathcal{C}^{\infty}(\mathbb{R}^d \setminus \{0\})$ with $\Delta E_d = 0$ in $\mathcal{D}'(\mathbb{R}^d \setminus \{0\})$.

3. Let $\phi \in \mathcal{D}(\mathbb{R}^d)$. Show that

$$\langle \Delta E_d, \varphi \rangle = \lim_{\varepsilon \to 0^+} \int_{\|x\| > \varepsilon} E_d \Delta \varphi \, dx$$

4. Let d = 2, 3. By transforming the above integral using Green's formula, compute ΔE_d in $\mathcal{D}'(\mathbb{R}^d)$.